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Background: Groups of distantly related individuals who share a short segment
of their genome identical-by-descent (IBD) can provide insights about rare traits
and diseases in massive biobanks via a process called IBD mapping. Clustering
algorithms play an important role in finding these groups. We set out to analyze
the fitness of commonly used, fast and scalable clustering algorithms for IBD
mapping applications. We designed a realistic benchmark for local IBD graphs
and utilized it to compare clustering algorithms in terms of statistical power. We
also investigated the effectiveness of common clustering metrics as replacements
for statistical power.

Results: We simulated 3.4 million clusters across 850 experiments with varying
cluster counts, false-positive, and false-negative rates. Infomap and Markov
Clustering (MCL) community detection methods have high statistical power in
most of the graphs, compared to greedy methods such as Louvain and Leiden. We
demonstrate that standard clustering metrics, such as modularity, cannot predict
statistical power of algorithms in IBD mapping applications, though they can help
with simulating realistic benchmarks. We extend our findings to real datasets by
analyzing 3 populations in the Population Architecture using Genomics and
Epidemiology (PAGE) Study with 51,000 members and 2 million shared
segments on Chromosome 1, resulting in the extraction of 39 million local IBD
clusters across three different populations in PAGE. We used cluster properties
derived in PAGE to increase the accuracy of our simulations and comparison.

Conclusions: Markov Clustering produces a 30% increase in statistical power
compared to the current state-of-art approach, while reducing runtime by 3 orders
of magnitude; making it computationally tractable in modern large-scale genetic
datasets. We provide an efficient implementation to enable clustering at scale for
IBD mapping and poplation-based linkage for various populations and scenarios.

Keywords: Clustering; Community Detection; Genome-Wide Association;
Comparative Analysis; Benchmark; Clustering Metrics

Background
Finding structure in networks, known as community detection, or clustering, is an

important problem with a wide range of biomedical applications such as systems bi-

ology [1], population structure studies [2] and health information systems [3]. In the

past decade, computational geneticists have found a new application for clustering

algorithms in the context of Identity-By-Descent (IBD) mapping [4]. IBD mapping

is an approach for rare variant association testing that leverages genotype data in
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the absence of directly observed variation for genomic discovery. This method relies

on inferring haplotypes of the genome that have been co-inherited identically from

a recent common ancestor and using them as the basis for association, under the

assumption that these recent, shared haplotypes may co-harbour recently arisen

rare variation not directly captured on genotyping arrays to be included within the

association mapping framework.

Gusev et al.[4] found that, empirically, IBD mapping can yield up to forty times

more statistical power than standard genome-wide association analyses (GWAS),

specifically for rare genetic variants with less than 3% frequency in the population.

Using IBD mapping, they found known and novel associations with case-control data

gathered from a study in the United Kingdom. Browning et al.[5] also replicated a

number of GWAS results through IBD mapping. Kenny et al.[6] used IBD mapping

to fine-map known associations with plasma plant sterol levels in an isolated founder

island population in Kosrae. Finally, Belbin et al.[7] utilized IBD mapping to identify

the source of a common collagen disease in the Puerto Rican population of BioMe

biobank.

Figure 1 IBD Mapping Process A general schema of the IBD mapping process. First, IBD
segments are estimated and divided into windows. Second, a clustering algorithm finds the
underlying communities in each window, eliminating false-positive and recovering false-negative
edges. Third, a statistical test is conducted to find associations between cluster memberships and
phenotypes. Significant dissimilarities between a family cluster and general population might be
caused by an unrecorded rare variant carried on a shared IBD segment by the family.

IBD mapping has three main steps, as illustrated in Figure 1. In the first step, an

IBD estimation algorithm finds shared genetic segments along a chromosome. The

chromosome is divided into consecutive windows, and for each window a graph is

generated where nodes represent the samples and edges represent IBD sharing in

that window between the samples. We call these graphs local IBD graphs. In Figure

1, samples 3 and 5 share a segment IBD that covers window n+1, thus, in the graph

generated for that window, they are connected by an edge. Local IBD graphs are

usually comprised of multiple connected subgraphs, such as cluster 2 and cluster 3

in the window n+ 1 graph.

In the second step of IBD mapping, a clustering algorithm extracts groups of

related individuals in each local IBD graphs. In Figure 1, the clustering step finds

3 clusters. Clustering is necessary for the removal of false-positive edges (such as

the edge between samples 2 and 6 on window n+ 1) and the uncovering of missing
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false-negative edges (such as the edge connecting samples 4 and 6 on window n)

in the local IBD graphs in order to accurately extract groups of distantly related

individuals, who share a short segment of their genome IBD in the window. These

segments might carry rare unrecorded causal genetic variants derived from a distant

common ancestor that would otherwise not be detected using the genotype array

data.

In the final step, each cluster is tested for associations with various traits and

diseases. In Figure 1, while 1 out of 3 samples in the population are cases of the

trait under study, in cluster 1, only one out of the four samples is a case, suggesting

a lower susceptibility to the trait. Meanwhile, one out of the two samples in cluster

3 is a case, suggesting a higher susceptibility to the trait. Such associations with

various traits might be caused by rare variants shared by members of the cluster.

While computational methods for the first step (IBD estimation), and the third

step (statistical testing) of IBD mapping have been the subject of thorough studies

[8, 9, 10], there has been a lack of advancement in IBD-clustering methodologies in

the era of biobank-scale genomic data. There have been a plethora of innovations in

clustering techniques in general however, due to their increased importance [11, 12,

13, 14, 15]. New clustering methods have been proposed to address the size of social

networks and internet hosts, which have grown to many millions of nodes in the past

decade[16, 17, 18]; or to find new community structures that reflect the underlying

data more accurately[19, 20]. While the emergence of large biobanks necessitates

the employment of such new clustering techniques in the context of IBD-mapping,

it remains unclear how advancements in community detection methods translate to

this process, where the unique population genetic properties of local IBD graphs

may not resemble that of common graphs analyzed in other fields of study.

Graph properties are derived from factors such as i) the phenomena they repre-

sent, ii) the modeling approach used to generate them, and iii) the data collection

methods used to ascertain them [21, 22]. Local IBD graphs have unique characteris-

tics compared to graphs typically used in clustering method surveys. To explore this,

we analyzed whether common graph properties such as connectivity, “small-world”

property [22] and community size distributions [23] hold for local IBD graphs. Fur-

ther, based on the properties of graphs being studied, definition and properties of

clusters could also differ. Thus, in this manuscript, we also investigate the efficacy

of common clustering metrics in the evaluation of clustering algorithms for IBD

mapping purposes.

We design a realistic local IBD graph benchmark that addresses the shortcomings

of common graph benchmarks in simulating local IBD graphs. We evaluate cluster-

ing methods based on their performance on simulated clusters that are generated

to imitate real datasets. Furthermore, by simulating binary phenotypes for the syn-

thesised clusters, our benchmark enables a comparison of clustering algorithms and

metrics against each other in terms of their statistical power for the first time. In

addition to finding an optimal approach for local IBD clustering, it also provided

insight into the informativeness of common clustering metrics when the goal of com-

munity detection is to elucidate the underlying community and phenotype structure

with high statistical power rather than analyzing the inherent structural properties

of communities themselves.
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Methods
In this section, we first discuss the properties of local IBD graphs and compare them

to common benchmark graphs. We demonstrate that common benchmarks do not

realistically represent local IBD graphs. We then propose a new approach to simulate

and benchmark local IBD graphs realistically. Secondly, we describe the clustering

metrics we found relevant for IBD mapping along with our evaluation method for

clustering algorithms. Finally, we describe the scalable clustering methods evaluated

in this paper.

Characterization of the Local IBD Graphs

Common benchmark graphs such as those introduced by Lancichinetti et al. [23],

and Girvan and Newman [20], are used to evaluate clustering methods in a variety

of fields [24]. However, they should not be used to simulate local IBD graphs, mainly

due to the properties of the local IBD relationships that generates these graphs.

The topology of a graph that represents a relation R between entities of a set S,

where an edge between two nodes x, y ∈ S means that (x, y) ∈ R, is dictated by

the properties of the relation R. Local IBD relation is transitive, which means for

every triplet of samples a, b and c in a dataset, if a and b share a segment l1 of their

genome IBD, and a and c also share the same segment IBD, then b and c should

also share l1 IBD. This means that, under ideal conditions, the local IBD relation

can be represented as disjointed sets, making a graph representation inefficient,

since it is solely made up of cliques. In practice, false-positive and false-negative

edges obfuscate these cliques, necessitating a graph representation. The goal in the

clustering of local IBD graphs is to recover these well-defined cliques.

Transitivity of local IBD relations results in uncommon graph properties. We

look at the “small-world” property as an example [25]. This property measures

the average distance between every two random nodes on a graph and compares it

to a random Erdos Reney (ER) graph with the same size [22]. Small-world prop-

erty cannot be calculated for local IBD graphs since, even before clustering, they

are highly disconnected. To illustrate this, we analyzed the local IBD graphs of

chromosome 1 in the ”Population Architecture using Genomics and Epidemiology”

(PAGE) dataset, which is a diverse genetic dataset with 52,273 samples from multi-

ple populations [26]. We found that local IBD graphs in the PAGE dataset each have

13,961 connected components on average across 7952 local IBD graphs tested on

chromosome 1; deriving an average of 3.74 nodes per connected component. Looking

at two major subpopulations within PAGE, one enriched with IBD connections and

recent founder effect, other with low levels of IBD sharing inside population, pro-

vides further evidence on disconnectedness of local IBD graphs. Puerto–Rican and

African–American subpopulations in the PAGE dataset had 7.77 and 2.31 nodes

per connected component respectively, suggesting that while population structure

affects component size distributions, local IBD graphs are always highly disjointed.

However, common benchmarking algorithms often generate a single connected com-

ponent [23], in contrast with real world local IBD datasets. Cluster size distribution

is another area of difference between local IBD graphs and others. The LFR bench-

mark [23], for example, only supports cluster size distributions that follow the power

law. Estimating the local IBD cluster sizes using power law results in unrealistically
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Figure 2 Cluster Size Distribution of Local IBD Clusters The cluster size distribution of local
IBD clusters along chromosome 1 in the PAGE study compared to a fitted power-law distribution.
While the tail of the distribution can be approximated by the power-law, small clusters remain
under-represented. The majority of local IBD clusters are small clusters. This causes the
distribution to significantly diverge from the power-law approximations (p-value = 3× 10−14).

low numbers for small clusters. For example, as demonstrated in Figure 2, a fitted

power law distribution [27] underestimated the number of cluster sizes for clusters

with less than thirteen members by a factor of ten. As discussed later in the results

section, cluster size distribution affects the statistical power of Louvain and Lei-

den clustering algorithms [28]. Thus, while the tail distribution of local IBD graphs

might follow the power law in some populations, using power law distributions (as

is common in graph benchmarking [23]) for our simulations would result in an unre-

alistic evaluation the fitness of clustering algorithms to find local IBD communities

since such distributions significantly underestimate the number of small clusters.

Here, we describe a benchmarking approach that takes the specific properties of

local IBD clusters into account. Our benchmark simulation has four steps. First, we

generate a set of cliques, fully connected inside and disconnected from other cliques.

These represent distinct IBD families in a given window. Members of a clique share

the same DNA inherited from a common ancestor. To generate realistic clique size

distributions, we sampled community size distributions on the chromosome one

in the PAGE study dataset. In the second step, to simulate false-negative IBD

segments, we randomly remove edges from each clique. Thirdly, in the false-positive

edge generation step, we add inter-cluster edges to further increase the noise based

on a given false-positive rate. Fourth, since the ultimate goal of IBD mapping is to

test the family clusters for associations with traits, we simulate a set of binary traits,

one for every cluster with more than 10 members. Traits have a significantly different

prevalence among their designated cluster compared to the whole population. For

example, trait ti, associated with cluster ωi, has a prevalence rate of Pi when every

node (whole population) is tested. However, when only members of the cluster ωi

are tested, a different prevalence of pii is achieved. The two prevalence rates Pi and

pii are chosen based on the cluster size and total node count such that the disparity
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between them is statistically significant (p-valuebinomial ∼ 10−10). The significance

threshold was chosen empirically.

Metrics

Clustering algorithms categorize nodes into groups called clusters (The words clus-

ter, community, class and category are often used interchangeably in clustering

literature). Metrics help analyze various properties of the resulting clusters that are

either related to the inherent features of the clusters, such as the density of con-

nections in the clusters, or their concordance with the true structure of the graph,

such as the number of nodes that are in the same clusters as they are in the ground

truth. We call the first group feature-based metrics in this manuscript to distinguish

them from metrics that are based on ground truth. For local IBD clustering, it is

important to calculate how much the results reflect the true structure of the cliques

underneath the noise and errors. We studied four metrics that aim to quantify such

correlation with the ground truth through measuring information recovery. Since

ground truth is often not available for real datasets, we also analyzed six clustering

feature-based metrics to evaluate their efficiency in the absence of a ground truth.

Purity

Purity measures the the degree to which the clustering results replicate the ground

truth clusters using a simple greedy mapping of the two [29]. To calculate purity,

for every cluster φj recovered by the algorithm, we find a ground truth cluster ωi

with the highest number of common nodes and assign all the nodes in φj to ωi.

Purity is then defined as the fraction of nodes that receive the correct cluster label

using this approach. It is calculated using the following formula:

purity(Φ|Ω) =
1

|V |

M∑
j=1

max
i
|φj ∩ ωi| (1)

Where V is the set of nodes in the graph, Ω = {ω1, ω2, ..., ωN} is the set of ground

truth clusters, and Φ = {φ1, φ2, ..., φM} is the set of clusters extracted by the

community detection algorithm. Purity is a simple metric to define and to calculate.

It helps measure, transparently, how added noise can affect the structure of the

clusters extracted compared to the original cliques. However, purity score can be

maximized by assigning every node to a one node cluster of its own. For example,

breaking down a cluster into two (or more) does not have an effect on the purity

score, while it negatively affects power. Thus, for local IBD communities, where the

majority of the clusters are doubletons, or tripletons, it can be misleading.

Normalized Mutual Information

Normalized Mutual Information (NMI) is built upon Shanon’s information theory

[30, 31]. It measures the amount of information shared between the ground truth

and the clustering results. It is calculated using the following formula:

NMI(Ω,Φ) =
I(Ω,Φ)

[H(Ω) +H(Φ)]/2
(2)
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Where

I(Ω,Φ) =
∑
i

∑
j

P (ωi ∩ φj) log
P (ωi ∩ φj)
P (ωi)P (φj)

=
∑
i

∑
j

nij
|V |

log

(
|V |nij
|ωi||φj |

)
(3)

H(Ω) = −
∑
i

P (ωi) logP (ωi) = −
∑
i

|ωi|
|V |

log

(
|ωi|
|V |

)
(4)

With |V | as the total number of nodes, nij as the number of nodes in ωi ∩ φj , and

H(Φ) calculated using the same approach as H(Ω) (the entropy of the clustering

and the entropy of the ground truth). Unlike purity, the value of NMI can only

be maximized by replicating the same node assignments as the ground truth. The

value of this score is 1 when the mutual information between Ω (ground truth)

and Φ (clustering results) is maximized [31]. Compared to purity, increasing the

number of clusters will not result in a perfect NMI score of 1, which makes it more

dependable as a metric.

Adjusted Mutual Information

The baseline score in NMI can be improved through increasing the number of clus-

ters. Vinh et al [32] first reported that the average NMI score of a random clustering

increases as the number of clusters, or the size of the graph increases. To address this

issue, they proposed the Adjusted Mutual Information (AMI). AMI is calculated by

subtracting the expected mutual information (NMI score) of a random clustering

of nodes from the NMI score of the real clustering. The random clustering should

have the same number of clusters and number of nodes in each cluster.

NMI(Ω,Φ) =
I(Ω,Φ)− E[I(Ω,Φ)]

[H(Ω) +H(Φ)]/2− E[I(Ω,Φ)]
(5)

where

E[I(Ω,Φ)] =
N∑
i=1

M∑
j=1

min(|ωi|,|φj |)∑
nij=max(1,|ωi|+|φj |−|V |)

nij
|V |

log

(
|V | × nij
|ωi||φj |

)
×

|ωi|!|φj |!(|V | − |ωi|)!(|V | − |φj |)!
|V |!|nij !(|ωi| − nij)!(|φj | − nij)!(|V | − |ωi| − |φj |+ nij)!

(6)

with all parameters calculated the same as NMI. Unlike NMI, a random assignment

of nodes into clusters will yield an AMI score of zero. We report both NMI and AMI

because the validity of the assumptions of the random assignment model of AMI

is not universally accepted [33]. However, AMI is better calibrated. We confirmed

that the AMI score has a zero baseline by randomizing the clustering results from

Infomap across experiments so that the number of clusters and their sizes stays

the same while the samples are shuffled among them. Figure 3A illustrates both

NMI and AMI scores of the randomized clustering results. Randomized clusters

continuously yielded a mean AMI score of zero and a mean NMI score higher than

0.6. The mean NMI score increases with the number of clusters. Adjusting the score

to calculate AMI solves this problem.
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Figure 3 The effects of score adjustments on the baseline score (A) Mutual information score
(NMI), and (B) statistical power score of a random assignment of nodes to clusters has a
non-zero baseline, which increases with the number of clusters. Adjusting these scores results in a
score of zero for the same clustering. Adjustment is done through (A) subtracting the expected
mutual information from NMI (AMI score), and (B) only including the results that pass the
significance threshold when calculating power score. The scores were calculated by generating a
random assignment of nodes to the same number of clusters and cluster sizes found by Infomap
for each of the 750 simulations done in the paper.

Statistical Power

We simulate a binary trait ti for every cluster ωi that has more than 10 mem-

bers. The prevalence pii of the trait ti in cluster ωi is significantly different than

the prevalence Pi of the trait among all nodes (p-value∼ 10−10). Statistical power

measures the degree to which clustering algorithms can preserve this difference. It

is calculated in 3 steps. First, for any extracted cluster φj , the prevalence of ev-

ery simulated trait ti in that cluster , pji , is calculated. Second, for each trait ti,

the null hypothesis that the members of φj are as susceptible to test positive for

ti compared to other nodes in the graph (i.e., the difference between pji and Pi is

statistically insignificant) is tested using a binomial test. The negated logarithm of

the null hypothesis probability (p-value) is recorded as S(φj , ti) only if it passes

the bonferroni significance threshold in 5,000 experiments (p-value< 10−5). Third,

for every cluster φj , we only consider the largest score (S(φj , ti)) value. Statistical

power is then defined as the fraction of the maximum score (ground truth cluster-

ing score) retrieved by the clustering method. It is calculated using the following

formula:

Power(Φ,Ω) =

∑M
j=1maxi

[− logS(φj , ti)]

Power(Ω)
(7)

Power(Ω) =
N∑
i=1

− logS(ωi, ti) (8)

Statistical power ranges from zero to one. Random assignment of nodes to clusters

results in a score close to zero; since the difference between the prevalence of any

disease in clusters compared to the whole dataset becomes negligible. A clustering

that exactly follows the ground truth results in a perfect score of one. Moreover,

the value of this score cannot be optimized by extracting more fine-grained clusters

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2021.08.11.456036doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.456036
http://creativecommons.org/licenses/by-nc/4.0/


Shemirani et al. Page 9 of 29

as test scores that fail to pass the significance threshold are discarded, addressing

the granularity problems with the purity and NMI scores. Figure 3B illustrates

the effect of the significance threshold on the baseline power score using the same

experiment we did for NMI/AMI comparison. Similar to NMI, a lack of correction

for random results will increase the baseline statistical power score.

Modularity

Modularity measures the strength of clustering in terms of the density of links inside

the clusters compared to external links connecting them [34]. It is desirable to have

clusters densely connected within and sparsely connected to others [24]. Across all

clusters, modularity measures the expected probability that any random link is

located inside a cluster. It is calculated using the following formula:

Q =

M∑
i=1

(eii − a2i ) (9)

Where M is the number of clusters, eii is the fraction of edges that have both of

their ends in the cluster i, and ai is the percentage of edges that have at least one

the their ends in the cluster i. Since modularity only measures the strength of a

clustering, its calculation does not require ground truth information, in contrast

with the previous metrics. We refer to the metrics that do not require ground truth

information as feature-based metrics. Examination of modularity is essential since

two of the algorithms analyzed in this paper use modularity optimization.

Other Feature-Based Metrics

In addition to modularity we analyze five other feature-based metrics. While mod-

ularity aims to quantify the overall strength of clusters, in terms of both their inner

edge density, and outgoing connection sparsity, each of the following metrics only

focus on one of the two.

• Connectivity: The percentage of nodes that are connected to more than half

of other nodes in their cluster. This score offers an indirect way to measure

the strength of the clustering. Being connected to more than half of a cluster’s

members is impossible for the nodes in a ”cluster” that is made up of smaller

clusters with minimal false-positive connections.

• Coverage: The percentage of intra-cluster edges out of all edges [35]. Cov-

erage captures an estimation of the fraction of edges that are deemed true-

positive by the clustering algorithm.

• Inter-Cluster Edge Rate: The percentage of all edges that connect differ-

ent clusters. This metric can be used to infer about the percentage of available

edges that should be false-positives for the clustering to be correct. Subtract-

ing coverage score from its maximum of 1 (where all edges are covered by

clustering) yields this score.

• Missing Intra-Cluster Edge Rate: The percentage of the edges that are

missing from clusters, assuming they are cliques, compared to the total num-

ber of edges expected in a set of cliques with the same number of members.

This metric can help illustrate the rate of false-negatives necessary for the

clustering to be correct.
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• Highly Connected Rate: Out of all clusters that have more than ten mem-

bers, the percentage of those that are highly connected. We define highly

connected clusters as the ones that posses more than half of the edges of a

clique with the same number of nodes. This score is similar to connectivity,

however it only concerns graph sizes that are important to statistical power

calculations. Also it has a binary nature in that either all the nodes in the

cluster pass the test or none of them will.

Clustering Methods

In this section, we describe the clustering algorithms evaluated in this study. We

have chosen five algorithms in three categories based on their methodology. Every

tested algorithm, except for Highly Connected Subgraphs(HCS), is scalable to large

datasets [31], and can analyze our largest simulated dataset with 11,000 clusters in

less than 5 minutes on average on our workstation running CentOS Linux release

7.4.1708 with 128 GB of memory and Intel R© Xeon R© Processors E5-2695 v2 (2.4

GHz) on a single thread.

Min-Cut Based Method

Min-cut based approaches use consecutive min-cuts to iteratively divide a graph

into subgraphs that are highly connected inside and have few connections to other

subgraphs [36]. The Highly Connected Subgraphs (HCS) algorithm is a example

of a min-cut based approach. The criteria to decide whether a subgraph is highly

connected depends on the algorithm [37]. A simple example is defining highly con-

nected subgraphs as the ones where each node is connected to at least half of the

other nodes in the subgraph. Whenever a subgraph reaches this threshold, the al-

gorithm considers it a cluster. DASH [4], the best known local IBD clustering tool,

uses a modified version of HCS. To decide whether a subgraph is highly connected

or not, DASH uses an optimization function which requires parameter tuning using

a priori estimation of the rate false-negative and false-positive edges in the graph.

To reduce the complexity of our experiments, and to have a fair comparison, we

use the fast HCS algorithm described in [38], where a subgraph is called highly

connected if a minimum of |V |/2 edges need to be removed to break it down into

two disjointed subgraphs. Running HCS is equivalent to running DASH without

passing the false-positive/false-negative information to the algorithm.

Modularity Optimizing Approaches

Modularity optimization approaches aim to maximize the modularity score function

described in the metrics section[34]. Modularity optimization can uncover structures

unknown a priori [39]. Moreover, high modularity is a prefered structural property

for clusters as it indicates the strength of internal connections compared to external

ones [40]. While optimizing modularity is NP-complete [40], greedy algorithms have

proven to be fast and approximately accurate [39, 41, 24, 31]. Utilizing greedy heuris-

tics, methods such as the Louvain algorithm achieve a polynomial runtime [39]. We

also analyze the Leiden algorithm [41], another clustering algorithm based on greedy

optimization of modularity. In Leiden algorithm, Traag et al. have improved Lou-

vain clustering heuristically in scenarios that cause the Louvain algorithm to find

clusters that are poorly-connected, or entirely disconnected [41].
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Information Theory Based Methods

Instead of focusing on the hierarchical structure of clusters and their connectivity,

methods based on information theory focus on the flow of information among the

nodes. These methods often analyze information flow using random walk probabil-

ities between the nodes. We analyze two methods in this category.

Infomap The Infomap algorithm is the most commonly used information theory

based clustering method. It aims to minimize the memory required to describe any

random walk on the graph, also called path description length, through collapsing

groups of vertices that are more likely to appear consecutively in a random walk into

a single vertex. These groups are then labeled as clusters. Infomap uses an objective

function called the Map Equation to approximately minimize the path description

length [42]. This approximation approach helps infomap to scale to large graphs [31].

For every pair of nodes connected by an edge, Infomap checks whether collapsing

them into a single node would help minimize the result of the map equation (and

by definition, the path description length) or not; if so, it puts them in the same

cluster.

Markov Clustering The Markov Clustering (MCL) algorithm uses flow dynamics

to simulate random walks on the graph until they converge to a steady state [43].

To do so, it employs matrix multiplication to simulate the destination probabilities

of a single step of a random walk and then inflates those probabilities to weaken the

unstable paths in an effort to guarantee that the series of random walk simulations

will always converge to a specific, non-random group of clusters. The elimination

rate of the lower-probability paths is controlled through a parameter called the

inflation rate with a range of 1.2 to 5.0. Theoretically, setting a higher inflation rate

will result in finer-grained clusters with dense connections. We explore four inflation

rates: 1.5, 2, 3, 5 in the results section. We use subscripts to denote which parameter

was used to run MCL: MCL1.5,MCL2,MCL3,MCL5.

Results
Performance on Simulated Data

Using our benchmark algorithm described in the methods section, we generated 750

graphs (one per experiment). The number of clusters in each experiment ranged

from 1,000 to 5,000. For each cluster count, we considered 25 sets of false-positive

and false-negative combinations ranging from 5% to 50%. Finally, for each com-

bination of cluster count, false-positive, and false-negative rates we simulated six

experiments. The mean and standard error of the prevalence of simulated traits

among the whole population in each of these six experiments were selected from a

set of 3 (0.05, 0.1, 0.15) and 2 (0.01 ,0.1) predetermined values, respectively; for a

total of 750 experiments. This added up to a total of 2,274,500 clusters with more

than 6 million nodes across all simulated experiments. We demonstrate the accu-

racy of our benchmark in Figure 4. The figure illustrates the layout of a random

sample of local IBD graphs on chromosome 1 (Figure 4 A) against randomly gen-

erated benchmarks, both using our algorithm (Figure 4 B) and the LFR algorithm

(Figure 4 C). As shown in the figure, our benchmark simulates the disjointedness

of local IBD graphs, unlike the LFR algorithm.
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Figure 4 Comparison of graph layouts Graph layouts with ∼ 130 nodes generated (A) from the
real IBD data in the PAGE study dataset on chromosome one via random sampling, (B) by our
benchmark algorithm, (C) using the LFR method. LFR benchmarks are generally comprised of a
single connected component which does not happen in real local IBD graphs. Further, the cluster
sizes generated using the power law distribution do not resemble that of the real local IBD graphs.
Our benchmark addresses both of these issues.

We ran the clustering algorithms on these simulated datasets to extract clusters.

We then calculated the scores achieved by every method for each metric described

earlier. In the remainder of this section, we first discuss the connections between the

clustering metrics. We then describe the performance of the clustering algorithms

on simulated data using the metrics. Finally, we discuss how their performance on

simulated data can be translated to real datasets.

Clustering Metrics

We calculated the Pearson correlation coefficients and R2 scores [44] between met-

rics across all simulations for every tool to see whether, and to what degree, each

clustering metric is associated with statistical power. The results are displayed in

Figure 5.

Among all metrics, AMI had the highest concordance with statistical power (Fig-

ure 5 B), explaining 79% of the variation of the power score. Among the feature-

based metrics, missing intra-cluster edge rate has the highest R2 score, predicting

29% of the variability of statistical power, while highly connected rate had the

lowest score. Thus, while generating denser subgraphs with less missing edges is

important to gain power, focusing solely on the density and ignoring coverage will

counter those effects, resulting in lower power.
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Figure 5 Similarities Among Clustering Metrics (A) Correlation, and (B) R2 scores among
clustering metrics across all simulations. AMI has the highest correlation and R2 with statistical
power score. Among feature-based metrics, missing intra-cluster edge rate can predict power
better than the others.

Modularity showed a weak association with statistical power (R2 = 0.14). It was

not able to predict statistical power as precisely as missing intra-cluster edge rate.

Thus, partitioning a graph into highly modular subgraphs (through optimizing mod-

ularity) does not necessarily result in clusters that represent the true IBD commu-

nities in the underlying population. While optimizing modularity is advantageous in

finding large non-clique-like communities [45], local IBD graphs are both clique-like

and often smaller in scale (See Figure 2). A high percentage of small cliques results

in amplification of discordance between modularity and power scores. Adding or

removing a node from a cluster with a large enough number of members, say two

hundred, to improve the modularity score does not drastically change the statisti-

cal power of the clustering. However, this is not the case for smaller clusters, for

example, those with ten to twenty members.

To further demonstrate the effects of small clusters (prevalent in local IBD cluster

size distributions) on the discordance between modularity and statistical power, we

re-ran the same experiments with a uniform cluster size distribution (instead of our

sampled distribution). The R2 score for modularity and statistical power rose to

0.34 (from 0.15) and the gap between modularity/power and AMI/power R2 scores

decreased from 0.63 with realistic distribution, to 0.49 with the uniform distribution.

AMI/power R2 score slightly increased to 0.83, compared to the 100% increase in

modularity/power R2 score.

The observed discordance between modularity and power in our experiments can

also be explained through the concept of ”resolution-limit” in modularity optimiza-

tion, i.e., the inability of modularity optimizing methods in detecting fine-grained

clusters. Fortunato and Barthelemy [28] found that the modularity score for a clus-

tering is not only dependant on the structure of the graph, but also on the expected

maximum possible modularity of any random graph with the same number of edges.

Through the introduction of the resolution limit, they further illustrated that mod-

ularity optimization may fail to capture clusters that have an order of magnitude
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fewer edges compared to the total number of edges in the graph. In other words,

collapsing cliques with minimal connectivity to each other (two cliques connected

via a single edge) and no connectivity to the rest of the graph could increase mod-

ularity of a clustering due to the resolution limit. Small, clique-like structure of

local IBD graphs intensifies the effects of this phenomenon on the performance of

the madularity metric and methods optimizing it; especially when compared to the

leading methods/metric. We further discuss the resolution limit when analyzing the

performace of the clustering algorithms.

Figure 6 The effects of cluster count on the scores of algorithms The effects of number of
simulated clusters on the performance of algorithms through different metrics using 750 simulated
graphs sampled from the PAGE dataset. With false-positive and false-negative edges ranging from
5%-50%. Total number of clusters affected the performance of some algorithms. Such dependency
on the number of clusters negatively affects IBD mapping application.

Our results show that purity is unfit for our IBD clustering purposes. Specifically,

regardless of the true underlying structure, a more granular clustering always yields

a higher purity score. This is further demonstrated in Figures 6, 7 and 8, where

we look at the score trends of all clustering algorithms in every metric across our

simulated data as the number of clusters, false-negatives, and false-positives grow,

respectively. Consider Figure 6 as an example. MCL5, a clustering approach that

has the fifth best performance in statistical power (Figure 6 E), repeatedly gains

the highest purity score (close to the perfect score of 1 in Figure 6 C), due to over-

clustering, suggesting that purity score in the absence of others can be misleading

and uninformative.

We have found the AMI score to be the best indicator of statistical power among

the metrics we tested. However, due to the effects of smaller clusters (with less
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Figure 7 The effects of false-positives on the scores of algorithms The effects of false-positive
rate on the performance of algorithms through different metrics using 750 simulated graphs
sampled from the PAGE dataset. False-negative edges ranging from 5%-50% and the number of
simulated clusters per graph ranging from 1,000 to 5,000. Infomap and MCL1.5 had the most
stable performances across various rates of false-positives, followed closely by MCL2. In real
dataset, we expect the false-positive rate to never go above 15%.

than 10 nodes) on AMI, its concordance with statistical power is imperfect. As

further demonstrated by the performances of MCL2 and MCL3 in Figures 6, 7,

and 8, compared to statistical power (Figure 6 E), the gap between MCL3 and

top performing methods is less pronounced for the AMI scores (Figure 6 B). More-

over, MCL2 performance increases and surpasses the performance of Infomap and

MCL1.5 in terms of AMI score compared to the statistical power. The same issue,

together with a high baseline, severely affects the performance of NMI as well. Fig-

ure 9 illustrates the NMI score trends of every method across our simulated data

as the number of clusters (A), false-negative edges (B), and false-positive edges (C)

grows. Compared to AMI scores, the gap in the NMI scores of MCL algorithms

and Infomap is even less pronounced, to a point where MCL5 and MCL3 receive

the same average score as Infomap while statistical power score of Infomap is on

average 57% and 27% higher than MCL3 and MCL5, respectively.

Another disadvantage of the AMI metric is its reliance on the existence of ground

truth data. However, in the absence of the true clustering information, our experi-

ments show that none of feature-based metrics, including modularity, can be used

to accurately predict statistical power. We look at missing intra-cluster edge rate as

an example due to its higher R2 score. Methods that yield the highest and lowest

score in this metric (Leiden and MCL5) both perform poorly in terms of statistical
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Figure 8 The effects of false-negatives on the scores of algorithms The effects of false-negative
rate on the performance of algorithms through different metrics using 6,250 simulated graphs
sampled from the PAGE dataset. False-positive edges ranging from 5%-50% and the number of
simulated clusters per graph ranging from 1,000 to 5,000. Compared to observations with the
number of clusters and rate of false-positives, Louvain and Leiden have a stable performance
when false-negative rate is increased. Although they are still under-performing against Infomap
and MCL with an 80% statistical power score gap.

Figure 9 NMI score trends The NMI score of algorithms as (A) the number of clusters, (B)
false-negative rate, and (C) false-positive rate grows over all experiments. For MCL and Infomap,
an increased number of clusters can increase NMI score due to a lack of adjustment for the
probability of a random clustering conforming to the ground truth. Louvain and Leiden are the
exceptions here as they undergo the effects of resolution-limit.

power (see Figure 6). Thus, unlike AMI, this, and other feature-based metrics, do

not preserve the algorithms rankings in terms of statistical power. We cannot rely

upon these metrics as a representation of statistical power of a clustering.
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Clustering Algorithms

Table 1 shows the average score of clustering algorithms for every metric across all

of the simulated datasets. Infomap received the highest average statistical power

score, followed closely by MCL, while Louvain and Leiden got the lowest score.

As expected, Louvain and Leiden algorithms yield the most modular clustering

results; followed by Infomap. In terms of conforming to the ground truth (purity,

power, and AMI/NMI scores), however, Louvain and Leiden achieve a much lower

score than MCL and Infomap. Since Louvain and Leiden algorithms are both based

on optimizing modularity, their performance further corroborates our analysis of

resolution limit in the previous section.

As a result of resolution limit, Louvain and Leiden were unable to find smaller

communities in our simulations. We know from [28] that greedy modularity opti-

mization tends to merge lightly connected subgraphs into clusters. Although clusters

of any size can be incorrectly merged when optimizing modularity, the most affected

clusters are those with fewer internal edges than
√

2E, with E as the total number

of edges in the graph. For example, the average number of edges for a graph with

2,000 clusters in our experiments is 62,007, which means any pairs of clusters that

have a combined edge count smaller than
√

2× 62, 007 = 352 have a high chance of

being merged by Louvain and Leiden if they are connected by a single edge, as it in-

creases the modularity score. The vast majority of IBD clusters in our experiments

have less than 352 individuals.

Figure 10 Resolution-limit trends Trends for the average resolution limit threshold (red), and the
expected frequency of clusters that pass the resolution limit threshold (blue) as (A) the number
clusters grows, (B) number of false-positive edges grows, and (C) number of false-negative edges
grows in 100 simulations sampled from the PAGE study dataset. Clusters that are not large
enough to pass this threshold may be merged with other clusters in modularity optimization
clustering process. The shaded area shows 95% confidence interval.

Figure 10 shows how the threshold for the smallest community size detectable

by Louvain and Leiden is affected as the number of (A) clusters, (B) false-negative

edges, and (C) false-positive edges, increase in our experiments. As illustrated in

Figure 10A, the threshold for resolution limit grows at a faster rate compared to the

number of large clusters. In other words, in local IBD graphs, the average number

of subgraphs that are larger than this threshold decreases as the total number of

clusters increases. The approximate threshold for resolution limit grew from 227 to

744 as cluster count was increased from 1,000 to 10,000 clusters. At the same time,

the percentage of clusters larger than the resolution limit threshold decreased from

23.4% to 0.8%. As the size of the local IBD graphs grows, resolution limit causes
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Louvain and Leiden algorithms to merge subgraphs with minimal connections to

each other, going as far as grouping sets of cliques connected by a single false-

positive edge. This effect also causes the modularity optimizing algorithms to have

an improved modularity score as the number of clusters grows while their statistical

power decreases as shown in Figure 6D and E, respectively.

Figure 11 The effect of resolution-limit on the density of clusters A violin plot for average
connectivity score of clustering algorithms across our 750 simulations. Among the top performing
algorithms in terms of power, MCL2 had the highest connectivity score at 79%, suggesting that
it finds densely connected clusters that also conform to the ground truth. Infomap and MCL1.5
gained mean connectivity scores of 41% and 49% respectively. The lowest average scores belonged
to Louvain and Leiden at 13% and 12%, respectively. Connectivity scores of Louvain and Leiden
further demonstrate the inability of Louvain and Leiden to accurately extract clusters due to the
resolution limit.

We further analyze the distribution of connectivity scores achieved by the algo-

rithms across all of our simulations in Figure 11. The average percentage of nodes

that were connected to at least half of the other members of their cluster, extracted

by Louvain and Leiden, was 13% and 12%, respectively. The same average for

MCL2 was 78%, indicating that Louvain and Leiden merge more cliques together

compared to other methods.

Resolution limit has another disadvantage; its accuracy depends on the overall

edge count and not on the individual clusters [28], making it problematic for local

IBD clustering; where a variety of cluster size distributions exist for the same to-

tal edge count. For example, in the PAGE study dataset, the average number of

edges per cluster for local IBD graphs that only include samples from Puerto Ri-

can and African American populations is 96.8±12.7 and 1.6±0.1 respectively. Thus,

the statistical power of Louvain and Leiden is subject to change between the two

populations, even if they are in the same dataset.

Figure 12 displays the distribution of the average number of nodes per cluster

across 100 experiments each with 2,000 simulated clusters and false-positive/false-

negative rates of 25%. The figure shows the tendencies of MCL3 and MCL5 for

over-clustering and that of Louvain and Leiden for under-clustering that results in
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Figure 12 Extracted cluster size distribution Distribution of the average number of nodes per
cluster found by each algorithm across 100 simulations. Each simulated graph was comprised of
2,000 clusters, sampled from chromosome 1 in the PAGE study dataset with 25% false-positive
and false-negative edges added. MCL2 had the closest distribution to the ground truth, while
modularity optimizing methods had the furthest distribution. They failed to capture many of the
small clusters, merging them into larger ones, compared to other methods. Infomap and MCL1.5

had slightly coarser-grained clusters that the ground truth. MCL3 and MCL5 often
over-clustered and returned finer-grained clusters.

very low (for MCL3 and MCL5), and very high (for Louvain and Leiden) average

number of nodes per clusters compared to the ground truth. While the average

number of nodes per cluster in the ground truth was 3.6 (std=0.2), the average

number of nodes per clusters found by Louvain and MCL5 were 197.7 (std=212.5)

and 3.0 (std=1.7), respectively.

We are aware that the resolution limit helps with Louvain’s performance in exper-

iments involving large clusters; where not searching for smaller clusters helps with

the recovery of the large ones [24]. This phenomenon is called field-of-view limit [45]

and is known to hinder Infomap’s performance [24]. For local IBD graphs however,

field-of-view limit does not pose a challenge as the communities are clique-based and

their size are orders of magnitude smaller compare to the total number of nodes. In

the PAGE study dataset with 52,000 nodes, the largest cluster we extracted had

726 members.

The Effects Of False-Positive Edges

Our experiments show that the supremacy of the Infomap, MCL1.5, and MCL2

performances over other methods is stable for false-positive rates ranging from 5% to

50% of the total number of edges. Figure 7 illustrates the effects of false-positives on

the performance of algorithms in every metric. High rates of false-positive edges were

simulated to simplify detection and comparison of performance patterns. They do

not happen in our real data experiments regularly since iLASH, our IBD estimation

algorithm, has a low false-positive rate [8]. The statistical power of Infomap and

MCL1.5 stays stable as the number of false-positives grows (Figure 7 E). The power
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Table 1 Average scores (with standard error) of clustering algorithms across our experiments.
Overall, MLC2, Informap, and MCL1.5 yielded the best performances. Modularity optimizing methods
had a much lower power.

Methods
Metrics Infomap Louvain Leiden MCL1.5 MCL2 MCL3 MCL5

Connectivity
Mean 41.52% 13.03% 12.28% 49.34% 78.78% 90.58% 94.03%
Error 14.20 8.79 9.07 15.63 13.31 8.31 5.32

AMI
Mean 61.77% 24.81% 25.18% 63.05% 75.60% 61.36% 37.26%
Error 8.62 12.04 11.65 9.51 12.69 22.12 26.02

Purity
Mean 63.24% 23.58% 23.03% 67.58% 86.85% 92.57% 94.41%
Error 7.62 11.84 12.12 8.77 6.76 6.51 6.01

Modularity
Mean 75.52% 78.64% 78.48% 75.02% 71.76% 57.98% 29.07%
Error 13.52 11.99 12.17 13.19 14.32 21.14 24.39

Power
Mean 95.49% 21.54% 17.98% 95.47% 92.61% 62.85% 29.05%
Error 5.84 10.36 10.98 3.69 12.19 31.64 30.97

ICE∗ Mean 14.26% 8.70% 9.10% 14.64% 17.91% 32.66% 66.35%
Error 10.61 6.77 7.45 9.80 11.66 21.84 27.19

HCR∗∗ Mean 27.40% 19.53% 15.95% 33.80% 82.50% 95.15% 91.67%
Error 12.27 19.35 16.42 17.11 19.47 9.56 23.31

MICER∗∗∗ Mean 37.92% 94.33% 94.09% 36.44% 25.51% 22.17% 14.65%
Error 13.93 6.24 6.12 14.64 16.20 13.84 8.04

Coverage
Mean 85.74% 91.30% 90.90% 85.36% 82.09% 67.34% 33.65%
Error 10.61 6.77 7.45 9.80 11.66 21.84 27.19

NMI
Mean 91.72% 58.89% 59.65% 92.02% 95.26% 94.10% 91.70%
Error 3.58 19.47 19.19 2.90 2.89 3.36 3.58

*: Inter-Cluster Edges **:Highly Connected Rate ***: Missing Intra-Cluster Edges Rate

of MCL2 slightly decreases as the rate of false-positives is increased above 30%.

However, it still stays above 0.9. The three methods always recover the disease

information simulated for larger clusters, suggesting that they do not: (1) break

these clusters into smaller ones, and (2) mix them together as a results of their false-

positive connections to each other. This is not true for other clustering methods as

their power decreases with higher rates of false-positives, seemingly converging to

a minimum value.

The minimum value for the scores is determined by the large clusters that are less

structurally affected by the higher rates of false-positive edges. In case of modularity

optimizing methods, the lower bound is affected by the resolution limit, as men-

tioned in the last section. Increasing the number of edges in the graph (by adding

false-positive edges), thus has a twofold effect on Louvain and Leiden. First, it in-

creases the chances that two clusters are merged by the methods, especially if their

aggregated number of edges is smaller than the resolution limit threshold. Second,

it increases the resolution limit itself, intensifying the adverse effects of resolution

limit. Figure 10B illustrates how resolution limit threshold increases as the number

of false-positives grows. Compared to the resolution limit trends when the num-

ber of clusters was increased, increasing false-positives had a subdued effect on the

resolution limit. In Figure 10B the percentage of clusters that are larger than the

threshold does not approach 0%, explaining the lower bound on statistical power.

AMI score trends slightly differ from power, primarily due to a more pronounced

effect of smaller clusters. MCL1.5 and Infomap yield less stable results. While

MCL3 and MCL5 have a similar performance to the top performing methods

with a false-positive rate of 5%, their performance declines with higher intensity,

resulting in the same pattern as their power score. However, due to the lack of

baseline adjustment, these two methods continue having the same NMI score as the

top performing methods solely by generating a large number of fine-grained clusters

(see Figure 12).
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MCL5 and MCL3 achieved the highest purity scores (Figure 7 C) as purity is

biased towards more granular clustering results and can be maximized readily by

having each node assigned to a single dedicated cluster. Higher inflation rates result

in a fine-grained clusters in MCL, helping the method score higher in purity.

False-Negatives Edges

As shown in Figure 8E, the effects of false-negative edges on the power of the

algorithms is less pronounced than that of the false-positives edges. While false-

negative edges have an adverse effect on the power of MCL and Infomap, they

do not affect the power of Louvain and Leiden significantly. Still, even the lowest

power scores of MCL1.5, MCL2, and Infomap, at a false-negative rate of 50%, is

70% higher than the scores of Louvain and Leiden.

Resolution limit works slightly in favor of Louvain and Leiden here. As discussed

in the previous section, resolution limit depends on the number of edges. Higher

rates of false-negatives, thus, improve the performances of Leiden and Louvain as

they dampen the effects of the resolution limit via lowering the number of edges.

Figure 10C displays the effects of increasing the percentage of false-negative edges

on the resolution limit. As shown in Figure 8D, the effects of false-negative edges

on modularity of the graph are also eviden in the modularity score. While their

power score decreased, the top performing algorithms gained higher modularity

scores. This is the opposite of what happened when the number of false-positives

edges grew; causing modularity to have a higher correlation with power and AMI.

Thus, compared to false-positive trends, modularity optimization methods receive

a performance boost in terms of both power and AMI scores.

Runtimes

Figure 13 displays the average amount of time (in seconds) each method took in our

experiments to analyze a dataset as the number of clusters in the dataset grew. The

runtime for all methods seem to grow quadratically with respect to the number of

simulated clusters. Louvain and Leiden were the fastest methods, analyzing datasets

with 5,000 clusters in 0.9 and 0.6 of a second, respectively. The slowest algorithm,

Infomap, took 191 seconds on average for the same number of clusters, while the

other top performing methods in terms of power, MCL1.5 and MCL2, took 30 and

15 seconds on average, respectively. We exclude HCS here since it does not pass our

criteria for scalability.

Highly Connected Subgraphs

DASH, a method that uses HCS, has been a standard tool for IBD mapping in

recent years [4]. DASH uses a number of heuristics in its implementation of HCS,

which were fine-tuned based on the performance of GERMLINE [46] (an IBD es-

timation algorithm) in terms of its expected false-positive and false-negative rates

in estimating IBD segments. Our experiments, however, cover a range of false-

positive/false-negative rates; we do not provide a priori knowledge about these

parameters to the algorithm in order to have a fair comparison. Moreover, HCS,

the oldest clustering method among the five methods we analyzed, does not scale

to the size of our experiments. We ran HCS, and the other four algorithms, on a set
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Figure 13 Clustering methods runtimes Average runtime of the clustering methods for graphs
with cluster counts ranging from 100 to 5000 clusters. Each repeated 150 times with various
false-positive false-negative ratios ranging from 5% to 50%. HCS algorithm time complexity grows
quadratically. It took more than an hour to analyze any graphs with more than 300 clusters. The
runtime trends of other methods suggest that they could scale up to analyze Biobank-scale local
IBD graphs with tens of thousands of clusters.

of 750 small graphs, with cluster counts ranging from 100 to 500. While other algo-

rithms took less than half a second on average to analyze graphs with 100 clusters,

HCS took 81.6. This number grew quadratically to 5595 seconds to analyze graphs

with 500 clusters (Figure 13). For the same number of clusters, MCL2 analysis took

only 1 second on average.

While we were not able to analyze HCS performance in our simulation and real

data analysis due to its scalability issues, our simulations of smaller datasets showed

that HCS has a lower statistical power compared to that of Infomap and MCL. The

average statistical power of HCS algorithm in these experiments was 0.23 while the

top performing algorithm, Infomap had an average score of 0.92.

Performance on Real Data

We next used the PAGE study dataset to compare the algorithms on real data.

First, we ran iLASH over the chromosome 1 genotype data to estimate IBD[1].

While false-negative and false-positive edges occur in local IBD graphs due to a

variety of phenomena (minimum length of IBD, genotyping errors, phasing errors),

our previous analysis suggests iLASH introduces negligible rates of false-positives

and false-negatives [8], which prevents high false-positive/false-negative rates in

local IBD graphs. We then divided the first chromosome into a set of windows

based on the ends of the IBD segments, such that no segments would start or end

inside a window (see Figure 1). We generated a local IBD graph for each window,

where nodes pertaining to samples that share a segment IBD in that window are

connected via an edge. Out of the resulting 8,447 local IBD graphs, we randomly

chose 800 (∼ 10%) to cluster using every algorithm. We then calculated the feature-

based metric scores of the results. For each local IBD graph, we also generated and

[1]We chose chromosome 1 since it was the largest chromosome without any regions

of low complexity in the PAGE dataset.
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analyzed two population specific graphs for African American and Puerto Rican

subpopulations, where all the nodes that do not belong to these populations were

removed from the graphs.

The real dataset results further demonstrate the effects of the resolution limit on

Louvain and Leiden (Table 4). In every population, the two algorithms returned

the lowest percentages of node connectivity and highly-connected subgraphs among

the clustering methods. Their high rate of edge coverage suggests they are not

able to detect false-positive edges. An inflated percentage of missing intra-cluster

edges further proves this. Their total clustering of the PAGE data on chromosome 1

requires 43% additional edges in order to turn all the clusters to cliques, compared

to MCL1.5 (top performing method in the simulations) which requires 10% less

edges. MCL5 requires only 19.7% additional edges to achieve the same task, 24%

less than Louvain and Leiden.

The score gap between Infomap, MCL1.5, and MCL2 on feature-based clustering

metrics decreases in the real datasets compared to the simulated ones. This can be

partly explained by a lower false-positive rate demonstrated in the high coverage

scores achieved by all the methods. To explore this, we trained a linear regressor

based on the feature-based metric scores of all algorithms in our simulations to

predict false-positive and false-negative rates of the graphs. The linear regressor

could predict false-positive and false-negative rates in our simulated graphs with an

average error of 2% (std=1%) and 1%(std=2%), respectively. We employed cross

validation leaving 20% of the data for testing each round. Using the linear regression

model, we estimated that, in our PAGE dataset, the false-positive rate is 2% (std<

1%), and the false-negative rate is 24% (std=3%). Similarities between the coverage

scores and false-positive rates in our simulations, listed in Table 2, further back up

the predicted false-positive rates. For example, the coverage of MCL2 goes from

96% to 84% as the number of false-positives is increased from 5% to 20%. Based

on the coverage scores of MCL2 on the PAGE dataset (Table 4), we can infer the

average false-positive rate of the dataset is under 5%. With fixed values for the

false-positive rate, the missing intra-cluster edge rate, listed in Table 3, scores can

now be observed to verify our predicted false-negative rates in the same manner.

Focusing exclusively on the simulated graphs with false-positive and false-negative

rates close to the ones we estimated for the PAGE study dataset shows a clear supe-

riority for MCL2 in terms of statistical power. Figure 14 shows the distribution of

statistical power scores of all algorithms on simulated graphs with false-positive rate

of 5%, and false-negative rates of 20% and 30%. To expand on these results, we sim-

ulated 100 graphs, each containing 11,000 clusters (the average number of clusters

in a PAGE study dataset local IBD graph) and with realistic false-positive/false-

negative rates we estimated. In these simulations,MCL2 yielded the highest average

statistical power score of 98.8%, followed by MCL1.5 (98.6%), MCL3 (97.6%) and

Infomap (95.5%). Louvain and Leiden had the lowest score at 35%, considerably

lower than the MCL methods.

Discussion
We proposed a realistic approach to simulate local IBD graphs that addresses dis-

tinctive properties of such graphs, and analyzed the suitability of scalable clustering
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Figure 14 Distribution of Statistical Power Scores The distribution of power scores in 60
experiments with a false-positive rate of 5% and false-negative rate of 20% and 30%. These rates
were closest to our predicted rates in the PAGE dataset.

Table 2 Average Coverage scores across all simulated experiments with false-positive rates of 5% and
20%. Higher connectivity scores observed in the real datasets, suggest that the false-positive rates of
our real datasets less than 5%.

False-Positives Infomap Louvain Leiden MCL1.5 MCL2 MCL3 MCL5

Coverage
5% 97.33% 98.82% 98.83% 96.86% 95.80% 90.24% 62.90%

20% 87.05% 91.68% 91.69% 86.51% 83.59% 67.77% 28.90%

Table 3 Average missing intra-cluster edge ratio (MICER) scores across all simulated experiments
with false-negative rates of 20% and 30%, and false-positive rate of 5%.

False-Negatives Infomap Louvain Leiden MCL1.5 MCL2 MCL3 MCL5

MICER* 20% 30.83% 88.24% 87.92% 27.25% 23.42% 22.39% 19.28%
30% 39.82% 85.08% 85.22% 36.52% 33.38% 31.81% 27.32%

Power
20% 94.59% 26.78% 26.59% 97.91% 98.26% 95.10% 71.19%
30% 93.95% 29.27% 28.54% 96.82% 97.23% 90.46% 54.54%

*: Missing Intra-Cluster Edge Rate

algorithms for IBD Mapping. Our measurements and analysis found that common

benchmark graphs such as LFR [23] are not suited to represent local IBD graphs

due to the aforementioned properties. Our benchmark, thus, provided us with a

ground truth for analyzing a group of scalable clustering algorithms and common

clustering metrics for the purpose of local IBD clustering for the first time.

We demonstrated that available analyses on clustering algorithms and clustering

metrics do not apply to local IBD graphs, further stressing the importance of our

analysis. Comparing feature-based clustering metrics, including modularity, against

AMI and statistical power showed that metrics based on community structure can-

not be considered sufficient substitutes for statistical power in IBD mapping. We

also found out that even metrics that are based on ground truth, specifically AMI,

are not a perfect substitute for statistical power despite having higher correlation

with it when compared to feature-based metrics. Errors in small clusters (which are

ignored in IBD mapping) affect AMI more than power, causing discrepancies.
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While feature-based clustering metrics cannot predict statistical power, we showed

that they can help with realistic dataset specific simulations of local IBD graphs.

The simulations determine the fittest clustering algorithm in terms of statistical

power.

As suggested by Emmons et al [24], the definition and structure of communities

under study should derive the decision on what clustering methods to use. Our

real dataset analysis shows various population structures may also require specific

clustering approaches. MCL2 generally performed better than the other methods

in our realistic experiments. We believe MCL2 to be the best clustering method

for general IBD mapping purposes. However, various datasets and IBD estimation

algorithms have different false-positive/false-negative rates; necessitating dataset

specific simulations in order to find the fittest clustering algorithm. A preliminary

analysis using MCL2 to calculate its missing intra-cluster edges and coverage scores

on the data can help estimate realistic false-positive/false-negative rates for such

simulations.

We showed that the cluster size distribution of IBD graphs, which is heavily

skewed towards smaller clusters, could result in numerous groups of small clusters

being aggregated by clustering methods, specially for methods that are based on

greedy modularity optimization. Moreover, we found further evidence that the per-

formance of greedy modularity optimizing methods is dependent on the size of the

graph being analyzed, making them unpredictable.

Novel clustering methods, such as spectral clustering [47] and neural network

clustering [48], do not scale to the size of the graphs in IBD Mapping. Methods

based on spectral decomposition of adjacency matrix took significantly longer to

process even smallest graphs in our experiments. (Note that a local IBD clustering

process involves clustering thousands of graph datasets independently). Moreover,

finding the optimal cluster count from the decomposition, or choosing a numerical

clustering method for the eigenvectors introduces optimization problems that have

a different scope than that of this paper. This, together with the exaggerated gap in

run time resulted in the exclusion of spectral clustering methods from our analysis.

Also, while spectral clustering can help with modularity optimization [47], we have

demonstrated that optimizing modularity should not be a priority for local IBD

clustering.

Methods based on neural networks were three orders of magnitude slower than

other methods ( 4000-fold increase in runtime). One of the main strengths of neural

network based methods such as node-2-vec is their ability to incorporate knowledge

from large data sets and apply it on other data sets [48]. In our case, however,

we are working with a large number of smaller graphs, which we aim to analyze

independently. Moreover, the extreme disjointedness of our graphs is unfavorable

to the both neural network based and spectral based approaches [48, 47].

While IBD mapping can help us understand the genetic origins of some traits,

its potential is bound by the capabilities of its clustering approach. Even slight

clustering errors can negatively affect the accuracy due to the small size of the local

IBD communities. Clustering algorithms such as MCL can help alleviate these

effects by better eliminating erroneous IBD data. We plan to utilize the MCL

algorithm to conduct a large IBD mapping analysis on the UK Biobank dataset.
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We believe distinctive properties of UK Biobank, such as its size, and health record

availability, together with power of IBD mapping will help us find novel genetic

associations.

We plan to add two functionalities to our benchmark algorithm. First, we aim

to design a realistic approach to simulate edges weights for the graphs that rep-

resent IBD segments length. Augmenting local IBD graphs with segment lengths

as edge weights can help clustering methods (that support weights) detect false-

positives more accurately. The longer the segment, the lower the probability of

it being a false-positive edge. Second, we plan to simulate overlapping local IBD

graphs, where a group of IBD graphs are merged and processed together to save

computing resources. In order to reduce the number local IBD graphs to process, we

can aggregate them in groups via dividing the chromosome into windows of static

length (for example 0.5 cM). We aim to evaluate clustering algorithms’ power in

detecting overlapping communities in our benchmark. Simulating these two phe-

nomena requires a genetic coalescence simulation that is outside the scope of this

paper.

Conclusion

We demonstrated the shortcomings of LFR, the common benchmark algorithm, in

simulating local IBD graphs, and proposed a realistic benchmark that addresses

them. We evaluated the performances of four modern clustering algorithms in the

context of local IBD graphs and IBD mapping and compared them with the stan-

dard algorithm, HCS, in clustering 3,374,500 simulated and∼8,800,000 real clusters.

We showed that utilizing clustering approaches that do not fit the target dataset

properties results in poor statistical power of the downstream analyses, such as

IBD mapping. We introduced an approach that uses our benchmark to find the

fittest clustering algorithm for a dataset. It can also be utilized to optimize clus-

tering algorithm parameters. We found MCL2 as the most appropriate algorithm

for our purpose and dataset. Furthermore, our findings show that greedy modular-

ity optimization approaches are not appropriate for local IBD graph clustering in

general. These findings will make IBD mapping on large scale datasets such as the

UK Biobank possible, paving the way for the efficient discovery of novel causal rare

variants.
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