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Abstract

Metabolism is directly and indirectly fine-tuned by a complex web of interacting
regulatory mechanisms that fall into two major classes. First, metabolic regulation
controls metabolic fluxes (i.e., the rate of individual metabolic reactions) through the
interactions of metabolites (substrates, cofactors, allosteric modulators) with the
responsible enzyme. A second regulatory layer sets the maximal theoretical level for
each enzyme-controlled reaction by controlling the expression level of the catalyzing
enzyme. In isolation, high-throughput data, such as metabolomics and transcriptomics
data do not allow for accurate characterization of the hierarchical regulation of
metabolism outlined above. Hence, they must be integrated in order to disassemble the
interdependence between different regulatory layers controlling metabolism. To this aim,
we proposes INTEGRATE, a computational pipeline that integrates metabolomics
(intracellular and optionally extracellular) and transcriptomics data, using
constraint-based stoichiometric metabolic models as a scaffold. We compute differential
reaction expression from transcriptomic data and use constraint-based modeling to
predict if the differential expression of metabolic enzymes directly originates differences
in metabolic fluxes. In parallel, we use metabolomics to predict how differences in
substrate availability translate into differences in metabolic fluxes. We discriminate
fluxes regulated at the metabolic and/or gene expression level by intersecting these two
output datasets. We demonstrate the pipeline using a set of immortalized normal and
cancer breast cell lines. In a clinical setting, knowing the regulatory level at which a
given metabolic reaction is controlled will be valuable to inform targeted, truly
personalized therapies in cancer patients.

Author summary

The study of metabolism and its regulation finds increasing application in various fields,
including biotransformations, wellness, and health. Metabolism can be studied using
post-genomic technologies, notably transcriptomics and metabolomics, that provide
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snapshots of transcripts and metabolites in specific physio-pathological conditions. In
the health field, the transcriptome and, more recently, the metabolome have been
broadly profiled at the pre-clinical and clinical levels. The informative power of single
omic technologies is inadequate since metabolism regulation involves a complex
interplay of regulatory steps. While gene expression regulates metabolism by setting the
upper level of metabolic enzymes, the interaction of metabolites with metabolic
enzymes directly auto-regulates metabolism. Therefore there is a need for methods that
integrate multiple data sources. We present INTEGRATE, a computational pipeline
that captures dynamic features from the static snapshots provided by transcriptomic
and metabolomic data. Through integration in a steady-state metabolic model, the
pipeline predicts which reactions are controlled purely by metabolic control rather than
by gene expression or a combination of the two. This knowledge is crucial in a clinical
setting to develop personalized therapies in patients of multifactorial diseases, such as
cancer. Besides cancer, INTEGRATE can be applied to different fields in which
metabolism plays a driving role.

Introduction 1

In recent years, the biological role of metabolism has been reconsidered. Being closely 2

integrated with most - if not all – cellular processes, metabolism may act as a sensitive 3

integrative readout of the physio-pathological state of a cell or organism [1]. 4

Consistently, many physio-pathological states and multifactorial diseases, from cancer to 5

neurodegeneration and aging, show a specific metabolic component [2]. 6

While the general topology of metabolism is well established, the characterization 7

and understanding of system-level regulation of metabolism remain largely unresolved, 8

although some general rules emerged in recent years [3, 4]. Each metabolic flux depends 9

on metabolic enzymes, whose levels and catalytic activities are the outcome of gene 10

expression and regulatory events that include epigenetic control of chromatin, 11

accessibility to transcription factors, the rate of transcription of the individual genes 12

encoding metabolic enzymes, as well as post-transcriptional and post-translational 13

events (from RNA splicing to enzyme phosphorylation). These complex, hierarchical 14

regulatory mechanisms are orchestrated by signal transduction pathways and set the 15

upper level for the flux of each enzyme-catalyzed metabolic reaction. An increasing 16

body of evidence [5–7] indicates that metabolism is not passively regulated by the 17

hierarchical control mechanisms outlined above: on the contrary, metabolism 18

auto-regulates metabolic fluxes (i.e., the rate of individual metabolic reactions) through 19

the interactions of metabolites (substrates, cofactors, allosteric modulators) with the 20

responsible enzymes. An enzyme reaction rate depends on the concentration of its 21

substrate(s) unless the substrate is saturating the enzyme (i.e., is in significant excess 22

over the enzyme Michaelis-Menten constant KM ). The reaction substrate and other 23

metabolites within the same pathway or belonging to other cross-related biochemical 24

pathways can fine-tune each enzyme-catalyzed reaction through allosteric effects that 25

effectively up- or down-modulate the ability of the enzyme to catalyze the reaction at a 26

given substrate concentration. Since substrates and allosteric effectors are consumed 27

and produced by other metabolic reactions and exchanged with the extracellular 28

environment, this metabolic control layer contributes to regulating metabolism at the 29

system level and may even fully account for metabolic rewiring [8]. It is worth noting 30

that the hierarchical expression and the metabolic control layers are not entirely 31

independent. The gene expression layer sets the upper bound for any given flux, and 32

metabolites control the gene expression cascade at different levels, from epigenetic 33

modification of chromatin [9] to signal transduction [10], from enzyme 34

phosphorylation [10] to transcription [11]. 35
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Hence, differences in metabolic fluxes are only partially determined by variation in 36

protein/gene expression. Let us take, for example, two cells A and B at steady-state 37

and a specific, irreversible metabolic reaction r1 (S1 → P1) catalyzed by enzyme E1. 38

Significantly higher activity in cell A of enzyme E1, via transcriptional regulation, might 39

originate - or not - a change of flux through reaction r1, according to the following 40

general cases: 41

• trascriptional control : S1 is in excess, so the flux through E1 is independent of 42

[S1] and depends only on the level of E1. The supply of S1 from the environment 43

or other network reactions should increase to keep up with the higher 44

consumption rates of S1, avoiding a decrease of [S1] below the level where the 45

reaction does not depend on [S1]; 46

• metabolic control : E1 is in excess, so the flux through E1 is independent of its 47

level and depends only on changes in [S1]; 48

• metabolic and transcriptional control : the flux through E1 is co-regulated with 49

changes in [S1]. 50

Characterizing the landscape of metabolism and its regulation is of paramount 51

importance in various fields, including health, wellness, and biotransformations [12]. 52

The first requirement for this characterization is the knowledge of metabolic fluxes. 53

However, direct determination of metabolic fluxes through the use of labeled substrates 54

lags behind other omic technologies, such as metabolomics and transcriptomics, mainly 55

due to technical difficulties [13], especially at the sub-cellular level [14]. On the contrary, 56

transcriptomics (or proteomics) and metabolomics datasets are increasingly being 57

collected in large cohorts but do not allow for accurate characterization of the 58

regulatory mechanisms controlling metabolism unless opportunely integrated. More 59

recently, parallel transcriptomic and metabolomic datasets started to appear [15–20]. 60

Yet, the integration of these different omic data has so far been generally limited to 61

gene-metabolite correlation analysis or pathway enrichment analysis of genes and 62

metabolites [21,22]. Hence, there is a need for data science methods to integrate 63

transcriptomic and metabolomic data to capture all the facets of the interdependence 64

between metabolism and gene expression. 65

Constraint-based steady-state models represent a valuable framework to predict 66

metabolic fluxes from the other high-throughput omics data. In particular, a plethora of 67

methods have been conceived to integrate transcriptomic data into these kinds of models 68

by relying on Gene-Protein-Reaction associations (GPRs) encoded within them, as 69

reviewed in [23–25]. Intracellular metabolomics data have also been indirectly integrated 70

into constraint-based steady-state models in the form of constraints on fluxes [26–28], 71

aiming at identifying the metabolic flux distribution better fitting the given data. 72

Current model-based attempts to discern trascriptionally from metabolically 73

controlled fluxes present some limitations [29,30]. Katzir et al. [30] do not directly use 74

metabolomics data to infers reactions controlled at the metabolic level using 75

metabolomic data but determine them by elimination, as fluxes that are not regulated 76

at the transcriptional, translational, or post-translational level. On the contrary, the 77

approach by Cakir at al. [29] is based on the concept of neighborhood in a graph, it 78

does not distinguish reactions substrates from products, nor enzyme subunits from 79

isoforms, and does not predict whether a reaction is up or down-regulated, but simply 80

de-regulated. 81

We here present the INTEGRATE (Model-based multi-omics data INTEGRAtion to 82

characterize mulTi-level mEtabolic regulation) pipeline to accurately characterize the 83

landscape of metabolic regulation in different biological samples, starting form 84

metabolomics data (and optionally exometabolomic data to derive utilization and 85
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elimination of selected nutrients and waste products) and transcriptomic data. 86

INTEGRATE first computes differential expression of reactions from transcriptomics 87

data (transcriptional regulation only). Then, it exploits constraint-based modeling to 88

predict how the global relative differences in expression are expected to translate into 89

consistent differences in metabolic fluxes. To improve model predictions, 90

INTEGRATE optionally sets constraints also on selected extracellular fluxes, according 91

to exo-metabolomic data. In parallel, INTEGRATE uses intracellular metabolomic 92

datasets and the mass action law formulation to predict how differences in substrate 93

availability translate into differences in metabolic fluxes (metabolic regulation only), 94

neglecting enzymatic activity. The intersection of the two output datasets discriminates 95

fluxes regulated at the metabolic and/or gene expression level. 96

A a proof-of-principle of the pipeline, we used a set of immortalized normal and 97

cancer breast cell lines and reconstructed a manually curated, multi-compartment 98

metabolic network of human central carbon metabolism. 99

Results 100

The INTEGRATE pipeline 101

We conceived the INTEGRATE methodology to particularize the hierarchical regulation 102

of metabolic differences across different groups of biological samples. For the sake of 103

readability, we refer to different groups of samples simply as cell lines, which represent 104

the application scope of this work, bearing in mind that the methodology is general and 105

can be applied to any group of samples, as for instance, tissues from different patients. 106

INTEGRATE takes as input 1) a generic metabolic network model, including GPRs 107

2) transcriptomics data 3) intracellular metabolomics data 4) extracellular fluxes data. 108

INTEGRATE returns as final main output two list of metabolic fluxes: 1) fluxes 109

that vary across cells consistently with both metabolic and transcriptional regulation 2) 110

fluxes that vary consistently with metabolic regulation only. 111

The core process of INTEGRATE methodology is depicted in Figure 1 and consists 112

of integrating the input experimental datasets, which are centered around heterogeneous 113

objects (i.e., genes, metabolites and fluxes) into the input metabolic network in order to 114

obtain the three following datasets, each of which is centered around the object reaction: 115

Reaction Activity Scores (RAS). This dataset includes for each input model reaction 116

and for each sample a RAS score. The score is based on the expression value 117

(RNA-seq read counts) of the genes encoding for catalyzing enzymes and on the 118

relationship among them, as previously done in [31]. 119

Feasible Flux Distributions (FFD). This dataset includes a large number of flux 120

distributions associated with a given cell line, obtained by uniformly sampling the 121

feasible flux region of the metabolic model. The model has previously been 122

tailored on the cell line by integrating transcriptomics and relative extracellular 123

constraints. 124

Reaction Propensity scores (RPS). This dataset includes for (ideally) each input model 125

reaction and for each sample, a RPS score based on the availability of reaction 126

substrates. The score is computed as the product of the concentrations of the 127

reacting substances, with each concentration raised to a power equal to its 128

stoichiometric coefficient. According to the mass action law, the rate of any 129

chemical reaction is indeed proportional to this product. This assumption holds as 130

long as the substrate is in significant excess over the enzyme constant KM . If one 131

single reaction substrate is missing in the metabolomics measurements, the 132

reaction is omitted from the dataset. 133
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Subtype
Cell line ER PR HER2 Luminal Origin
MCF102A Non-tumorigenic breast epithelial cell line
SKBR3 - - + Breast adenocarcinoma

MCF7 + + - A
Pleural effusion metastasis of a breast adeno-
carcinoma

MDAMB231 - - -
Pleural effusion metastasis of a breast adeno-
carcinoma

MDAMB361 + + + B Non-tumorigenic breast epithelial cell line

Table 1. Characterization of the investigated non-tumorigenic and cancer breast cell
line in terms of their subtype and origin.

Once the three reaction-oriented datasets are obtained, INTEGRATE assesses for 134

each of them whether the value of each reaction is significantly higher or lower in a 135

given cell line as compared to another one. We consider a variation as statistically 136

significant if both the null hypothesis is rejected according to a proper statistical test 137

and if the variation is greater than a threshold value. 138

INTEGRATE then assigns two scores to metabolic reactions. The first score 139

quantifies the concordance level between the variation signs obtained for the RAS 140

dataset and those obtained for the RPS dataset (for reactions in common). Highly 141

concordant reactions correspond to fluxes whose metabolic and transcriptomic 142

regulation is concerted, poorly concordant vice versa. The second score assesses the 143

concordance between FFD and RPS (for reactions in common) and thus whether flux 144

variations are consistent with metabolic regulation. Reaction displaying a low RAS-RPS 145

agreement but a high FFD-RPS correspond to metabolically controlled reactions. 146

We remark that we preferred not to give the same attention to flux variations that 147

are consistent with transcriptional regulation only, based on the concordance between 148

RAS and FFD, because the two datasets are not independent. 149

Scripts to reproduce the overall workflow are available at: 150

https://github.com/qLSLab/integrate. 151

Selected breast cancer cell lines display heterogeneous 152

metabolic profiles at balanced growth 153

To test our approach, we applied INTEGRATE to cell lines that we expected to be 154

metabolically heterogeneous. We selected four breast cancer cell lines deriving from 155

either primary of metastasis breast cancer tissues belonging to different molecular 156

classifications, and a non-tumorigenic breast cell line. The name, origin and molecular 157

subtyping of the five cell lines are summarized in Table 1. 158

The five cell lines were cultured in a similar growth medium. It can be observed in 159

Figure 2A that the cell lines present major differences in terms of proliferation rate. 160

We first identified a balanced growth phase suitable to obtain measurements to be 161

used as constraints in steady state modeling. To this aim, we analyzed both the number 162

of cells in time and the protein content (Figures 2A-B). It can be observed in Figure 2C 163

that, between 0 and 48 hours, the protein content linearly correlates with the number of 164

cells, indicating that the cell size is constant in this time window. We, therefore, 165

concentrated further analyses on the 0-48 hours time window. 166

We estimated the consumption and production rates of lactate, glutamine, glucose 167

and glutamate in the 0-48 hours time interval from YSI analysis of spent medium. We 168

focused on these metabolites because glucose and glutamine are the main carbon 169

sources of cancer cells and because the rate of lactate and glutamate production over 170

glucose and glutamine consumption is notoriously difficult to be properly predicted by 171

constraint-based models [32,33]. We quantified the abundance of intracellular 172
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metabolites and prepared libraries for RNA-sequencing at 48h. 173

It can be observed in Figure 2E that the cell lines present major differences in terms 174

of metabolic profile. The clusters of samples referring to each cell are indeed well 175

separated from one another. In particular, as it can be observed in the dot plot in 176

Figure 2D, the abundance of some metabolites well distinguish a cell from the others. 177

MCF7 cell line shows a prevalence of NADH involved in redox balance, and fumaric 178

acid that is involved in the tricarboxylic acid cycle. MCF102A is enriched in the 179

pentose phosphate pathway as D-Erythose 4-phosphate. MDAMB231 cell line results 180

enriched in metabolites involved in methionine and cysteine metabolism (Adenosine) 181

and nucleotide synthesis (Adenine). MDAMB361 cell line shows enrichment in 182

metabolites involved in glycolysis (D-glucose and Glyceric acid 1,3-biphosphate), 183

methionine metabolism (L-homocysteine) and urea cycle (ornithine and citrulline). 184

Finally, the most abundant metabolites in SKBR3 cell line are involved in glycolysis 185

(D-glucose and 3-Phosphoglyceric acid), cholesterol synthesis (Acetoacetic acid) and 186

redox balance (NADPH). 187

Measurements on spent medium in Figure 2F show that the ratio of lactate 188

produced over glucose consumed is quite similar across the five cell lines. In contrast, 189

the lactate and glutamate over glucose ratios are more heterogeneous. 190

All raw experimental data are provided in Supplementary File 1. 191

The ENGRO2 metabolic model 192

Genome-wide metabolic reconstruction of human metabolism, such as Recon3D [34] are 193

precious repositories of detailed and multi-level information about human metabolism. 194

They involve thousands of metabolites, reactions and genes. In principle, they can be 195

used directly in our pipeline as a scaffold model for integrating the experimental input 196

data relative to the five breast cell lines. Yet, in their current form, their 197

comprehensiveness comes at the cost of some simulation issues and difficulties in 198

interpretation of the outcomes. The most relevant simulation problem is the presence of 199

thermodynamically infeasible loops, which make the simulated growth rate insensitive to 200

variation in essential nutrient availability constraints, as reported in [35]. For this reason, 201

we preferred to rely on a core model, extracted from Recon3D, focusing on more limited 202

aspects of metabolism, but that underwent extensive manual curation and debugging. 203

To this aim, we reconstructed the ENGRO2 metabolic network, which is a 204

constraint-based core model about central carbon metabolism and essential amino acids 205

metabolism. ENGRO2 is a follow-up of the core model of human central metabolism 206

ENGRO1 introduced in [36] to gain new knowledge about the logic of metabolic 207

reprogramming in promoting tumour cells proliferation under different nutritional 208

conditions. 209

Starting from ENGRO1, we reconstructed a more extended and curated 210

constraint-based core model of human metabolism. The reconstruction of the ENGRO2 211

model was based on a step-wise manual procedure using ENGRO1 model as a scaffold 212

and progressively including specific pathways or reactions from Recon3D according to 213

their relevance in literature for cancer cells. In order to associate Gene-Protein-Reaction 214

associations, we relied, when possible, on the HMR core model [37], whose GPRs were 215

manually refined, and for remaining reactions on the RECON3D model [31]. 216

The most invasive change we implemented in the model was the 217

compartmentalization of reactions and metabolites within the intracellular space. Many 218

studies support the evidence of an altered expression of some mitochondrial carriers in 219

multiple cancer cells that, most probably, arise as an adaptation to their current 220

metabolic state and the consequent new requirements [38]. Therefore, in addition to the 221

extracellular compartment, we divided the internal model side into cytosol and 222

mitochondrion, and we catalogued all the included reactions depending on their 223
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Fig 2. Experimental metabolic measurements at balanced growth phase. A) Number of
cells in time. B) Protein content in time. C) Correlation plots between protein content
and number of cells for experimental observations in the 0-48hrs time windows. D)
Dotplot representing the mean metabolite abundances within each line (visualized by
color) and the fraction of samples of each cell line with the abundance over the average
of all cell lines samples (visualized by the size of the dot). The first five metabolites that
better distinguish each cell line from the others, according to t-test p-value, are
reported. E) t-SNE dimensionality reduction of intracellular metabolomic profiles. F)
Extracellular flux ratios, derived from spent medium measurements.
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localization according to literature knowledge. This first change implied the necessity to 224

add specific transport reactions in order to link biochemical transformations occurring 225

within the cytosol and mitochondrial matrix. The extension of ENGRO1 to the 226

ENGRO2 model also included the addition of all the reactions belonging to 227

non-essential and essential amino acids metabolism. Further details on the 228

modifications with respect to ENGRO1 are reported in the Methods section. 229

The reconstructed model has been refined by checking: i) the capability to reproduce 230

ENGRO1 results [36] in terms of contribution of glucose and glutamine as carbon and 231

nitrogen sources for supporting proliferative wirings and of sensitivity of the model at 232

high and low levels of these nutrients; ii) the actual essentiality of essential amino acids, 233

that is, null growth rate if they are depleted from the medium; iii) the capability to 234

reproduce experiments in literature, including the dependence of cancer phenotypes 235

from the de novo synthesis of palmitate-derived lipids rather than on an external source 236

of fatty acids, as came out in [39], the in silico simulation of the effect of an inverse 237

agonist for the nuclear receptor liver-X-receptor, whose role is to regulate the expression 238

of some key genes in the glycolysis and lipogenesis, as a putative cancer treatment 239

approach [40], the role of the creatine kinase (CK) enzyme that due to the requested 240

high amount of ATP may act as potential anticancer agent [41], and the overexpression 241

of argininosuccinate synthase enzyme as a mechanism for impairing cancer cells 242

proliferation due to aspartate deviation from the production of pyrimidines [42]. 243

The final version of the ENGRO2 core model consists of 496 reactions and 422 244

metabolites. A graphical representation of the network, splitted into two figures for 245

improved readability, is reported in Supplementary Figure 1 and 2, depicting, 246

respectively, the central carbon metabolism and the metabolism of the essential amino 247

acids. The model in SBML format is provided as Supplementary File 2. 248

Cell-relative metabolic models 249

We customized the ENGRO2 core model to obtain five cell-specific core models of the 250

cell lines under study. Because the cell-specific models must be functional to highlight 251

the metabolic differences between the cell lines, we incorporated most constraints in the 252

form of relative constraints. For this reason, the models cannot be considered as 253

cell-specific stand-alone models. Hence we refer to them as cell-relative. 254

Specifically, we integrated the following three kind of relative constraints: 255

1. Constraints on nutrient availability. Only metabolites that are supplied in the 256

medium can be internalized by the network. These constraints also reflect the 257

slight differences among the growth medium of the five cells. Similarly to what 258

was done in [43], if the concentration of metabolite X in the medium of cell A is, 259

for instance, 20% higher than in the medium of Cell B, the maximum uptake flux 260

allowed for metabolite X in cell A will be 20% greater than that of cell B. 261

2. Constraints on extracellular fluxes. For the metabolites for which we have 262

estimated the consumption and production rate, we set constraints on their ratios, 263

namely on the glutamate/glutamine, lactate/glucose and lactate/glutamine ratios. 264

The choice of constraining the relative ratios among these metabolites rather than 265

their absolute intake or secretion rates is motivated by the limited subset of 266

measured metabolites and the need to avoid an imbalance between such values 267

and the arbitrary absolute values of type 1 constraints. In this way, the relative 268

ratios between boundaries on extracellular fluxes are preserved both within and 269

across cells. 270

3. Transcriptomics-derived constraints on internal fluxes. Each reaction is assigned a 271

Reaction Activity Score (RAS), according to the expression of its associated genes 272
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Fig 3. Evaluation of the iterative integration of constraints in the ENGRO2 model. A)
Effect of constraints on nutrients availability (type 1), extracellular fluxes (type 2) and
intracellular fluxes based on transcriptomics data (type 3) in segregating the five
investigated cell lines, when they are considered alone and all together (type 1+2+3). A
two dimensional map of the FFDs of the five cell line in each setting is shown. For
reversible reactions, that net flux is considered. For computational reasons, only a
randomly selected subset of 10000 – out of the 1 million steady-state solutions that we
sampled within the feasible region of each model – is plotted. B) Correlation between
the wet and in silico growth yield on glucose is reported for each of the four settings in
panel A. The Pearson correlation coefficient is reported on top of each plot.
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and on the relationship among them encoded within GPR associations. The 273

differences in the flux boundaries of any given reaction across the five cell lines 274

reflect the differences in their RAS. More in detail, the cell line with the highest 275

RAS is allowed to reach the maximum possible flux value, which in turn is 276

determined by type 1 and type 2 constraints, whereas the other cell lines have a 277

RAS-proportionally reduced capability. 278

We expected the integration of the above constraints to segregate the feasible flux 279

distributions of each cell line. To verify this hypothesis, we extensively sampled the 280

feasible region of each model. We then applied a t-distributed stochastic neighbor 281

embedding (t-SNE) algorithm to visualize the high-dimensional sampled flux 282

distributions location in a two-dimensional space [44]. 283

In Figure 3 it is evident how the iterative application of the three constraints 284

progressively well separates the flux distributions sampled from each model 285

(corresponding to the specific colour in the plots) from one another. Notably, constraints 286

on extracellular fluxes alone do not allow to discriminate the feasible flux distributions 287

of the five models. On the contrary transcriptomics-derived constraints alone result in a 288

good separation of the feasible regions of the five models. Combination of both kind of 289

constraints decrease the distance between the sampled solutions for a given model 290

(intra-model) and increase inter-model distances. The same conclusions are derived by 291

also considering the correlation between the growth yield on glucose computed starting 292

from wet and computational data (on average over the sampled FFDs). The wet growth 293

yield is computed for each of the two collected biological replicates at 48 hours as the 294

ratio of the protein content over the glucose consumption deriving from the YSI analyzer 295

of spent medium. The counterpart in silico growth yield is computed as the mean ratio 296

of the biomass synthesis over the the glucose uptake flux values. The condition where 297

transcriptomics-derived constraints alone are integrated well discriminates the five cell 298

lines in terms of their growth rate, as shown in the relative correlation plot in Figure 3. 299

However, predictions of growth rates improve when constraints on extracellular fluxes 300

are also added. Note that YSI-derived constraints alone are sufficient to well predict the 301

growth rates, but they are not enough to discriminate the FFD of the five models. 302

The final five cell-relative metabolic models are included in Supplementary File 3. 303

INTEGRATE discriminates reactions regulated at different 304

levels 305

By integrating the information of the three derived datasets, we can ascertain at which 306

level each reaction is controlled. We measured the qualitative concordance between the 307

RAS and RPS, as well as between RPS and FFD values in all pairwise comparisons 308

between cell lines, for all eligible reactions, i.e., reactions for which metabolite levels for 309

all substrates are available. We focused on the qualitative concordance, that is, the 310

concordance of variation sign, rather than on a quantitative concordance of numerical 311

variations values, as we cannot expect proportionality between RPS and FFD, nor 312

between RAS and RPS values. 313

Qualitative concordance was measured by the Cohen’s Kappa coefficient, which 314

quantifies the difference between the rate of agreement that is actually observed and the 315

rate of agreement that would be expected purely by chance. The value of Cohen’s kappa 316

is 1 if the two datasets are fully concordant; 0 if they agreed only as often as they would 317

by chance. A negative value of Cohen’s kappa indicates that the two datasets agreed 318

even less often than they would by chance. A value of –1 means that the two raters 319

made opposite judgments in every case. This metric allowed us to rank reactions 320

according to their concordance. We remark that Cohen’s kappa is not a statistical test 321

that provides a well defined yes/no result. However, it has been recommended [45] to 322
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Fig 4. Variation concordance analysis. A) RPS vs FFD (x-axis) and the RPS vs RAS
(y-axis) scores of the 81 metabolic reactions for which quantification of all substrate
abundances was available. The points are coloured as a function the RAS vs FFD
scores. We reported the names of the reactions having one of the scores greater than 0.2
at least (i.e. fair concordance). The points are coloured as a function the RAS vs FFD
scores. B) Heatmap showing the RPS vs RAS and the RPS vs FFD concordance scores,
for reactions having a level of concordance between RPS and FFD greater than 0.2. C)
Scatterplot of average FFD log2-fold change vs average RPS log2-fold change for
ACONT reaction.
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consider a value below 0.2 as poor concordance, a value between 0.21 and 0.40 as fair, 323

between 0.41 and 0.60 as moderate, between 0.61 and 0.80 as good, and between 0.81 324

and 1.0 as very good agreement. 325

Figure 4A reports the concordance level between RAS and RPS variations (briefly 326

RPSvsRAS) versus the concordance level between RPS and FFD variation (briefly 327

RPSvsFFD), for the 81 metabolic reactions of ENGRO2 for which quantification of all 328

substrate abundances was available. It can be observed that reactions distribute among 329

the following categories: 330

• Reactions displaying positive values for both RPSvsFFD and RPSvsRAS scores 331

(first quadrant - gray shadow in Figure 4A). Variations in these reactions must be 332

imputed to transcriptional and metabolic regulation. 333

• Reactions having positive values for RPSvsFFD and negative values RPSvsRAS 334

scores (fourth quadrant - pink shadow in Figure 4A). Variations in these reactions 335

must be imputed to metabolic control only. 336

• Reactions having negative values for both RPSvsFFD and RPSvsRAS scores, but 337

high values for RASvsFFD concordance (third quadrant - white shadow in Figure 338

4A). Variations in these reactions must be imputed to transcriptional control only. 339

The heatmap in Figure 4B reports the RPSvsRAS and the RPSvsFFD concordance 340

scores (Cohen’s kappa) of ENGRO2 metabolic reactions, limited to the subset (of 341

cardinality 81) of ENGRO2 reactions for which quantification of all substrate 342

abundances was available. The values are ranked according to RPSvsFFD concordance 343

scores. Only reactions with a RPSvsFFD concordance score higher than 0.2. Remaining 344

reactions are reported in Supplementary Figure 3. 345

It can be observed that 11 reactions resulted from consistent transcriptional and 346

metabolic regulation. On the contrary, 9 reactions resulted only metabolically regulated 347

because of a RPSvsFFD score above 0.2 and a RPSvsRAS score below this threshold or 348

even missing. Missing RPSvsRAS values occur when a reaction is not associated with a 349

GPR. Among them, we obtained a perfect RPSvsFFD concordance of 1 for the ACONT 350

reaction (Figure 4C), which catalyzes the production of cytosolic isocitrate from citrate. 351

A few fluxes well discriminate the five cell lines 352

In Figure 5 the mean RPS (on the left) and the FFD (on the right) of the previously 353

identified reactions resulting from a consistent transcriptional and metabolic regulation 354

or only metabolically controlled are shown. For each reaction, the values are normalized 355

by dividing them by the highest one. 356

We ranked FFDs according to their power in discriminating the five cell lines, as 357

detailed in Material and Methods. The ranking is reported in Supplementary File 4. 358

The maps and histograms in Figure 5B and C report the FFD values distribution 359

within the five cell lines of two metabolically regulated reactions that proved to 360

discriminate the investigated cell lines: the ACONT reaction, which we previously 361

discussed, and the mitochondrial OCOAT1m reaction catalysed by the 3-oxoacid 362

CoA-transferase 1 (OXCT1), which transfers a CoA unit from succinyl-CoA to 363

acetoacetate to form acetoacetyl-CoA and succinate. OXCT1 is a key enzyme involved 364

in ketone bodies re-utilization by converting them into acetyl-CoA, which can enter the 365

tricarboxylic acid cycle (TCA cycle), driving the production of ATP. Multiple studies 366

elucidated the role of OXCT1 in breast cancer cells, proving to behave as a 367

mitochondrial metabolic oncogene with a positive impact on the tumor growth and 368

metastasis [46–48]. This evidence indicates ketone bodies inhibitors as a potential 369

anti-tumor therapeutic strategy. 370
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Fig 5. A) Normalized average RPS and median FFD for reactions in Figure 4B. B)
Left: Figure 3A (constraints 1+2+3) with dots coloured according to the flux of
cytosolic ACONT. Right: distribution of cytosolic ACONT flux values within the 5 cell
lines. C) Same as B for mitochondrial OCOAT1m reaction.
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Among the metabolically regulated reactions identified in Figure 5, amino acid 371

metabolism is heavily involved. Hence, we were interested in investigating whether 372

amino acids are metabolized or synthesized by the network. To this aim, similarly to 373

what was done in [32], we compared for each amino acid its uptake flux values against 374

its contribution to biomass. The plots in Figure 6 report the results of this comparison 375

for selected amino acids, namely isoleucine, valine, leucine and tyrosine are chosen. 376

Sampled fluxes located along the bisector correspond to cases where all the internalized 377

amino acid from the extracellular environment is wholly directed towards the 378

production of biomass. This is the case of essential amino acid isoleucine (Figure 6A). 379

Sampled fluxes located in the grey area above the bisector, as in the case of tyrosine 380

(Figure 6D), indicate that the uptake rate of the amino acid is lower than its 381

incorporation rate within biomass. This implies that it is synthesized by other 382

metabolic processes within the network to fulfill the biomass requirement. On the 383

contrary, when the sampled fluxes are below the bisector, as it is the case for valine and 384

leucine (Figure 6B-C), the amino acid uptake rate is higher than its incorporation rate 385

within biomass. This implies a dual role of the metabolite because in addition to 386

contributing to biomass demand it is also metabolized within the network. 387

Results in Figure 6 indicate that the five cell lines under study do not markedly 388

differ in their preference to metabolize or synthesize a given amino-acid, but only in the 389

extent at which it is metabolized or synthesized. 390

Discussion 391

Metabolism is controlled by several interacting regulatory layers, including mechanisms 392

that control the expression and activity of each metabolic enzyme and auto-regulatory 393

features that depend on the interaction of metabolites with the enzymes [8, 49,50]. 394

Understanding whether a given reaction is controlled at the gene expression or at the 395

metabolic level is required not only to understand regulatory features of metabolic 396

pathways fully, but also to design appropriate actions to control metabolism in various 397

fields, including health, wellness, and biotransformations [12], where metabolism plays a 398

crucial regulatory role. 399

To enable this understanding we presented the INTEGRATE computational 400

framework. INTEGRATE uses a metabolic stoichiometric model as a scaffold to predict 401

metabolic flux distributions and their underlying regulation from transcriptomics and 402

metabolomics data. In particular, we used ENGRO2, a manually curated, 403

simulation-ready reconstruction of the human central carbon metabolism. 404

INTEGRATE first uses transcriptomic data to reconstruct metabolic fluxes, by 405

constraining simulations of the ENGRO2 model. It then exploits intracellular 406

metabolomic data to discriminate fluxes controlled at the substrate level from fluxes 407

controlled by regulating enzyme activity or expression. To this aim, information on the 408

stoichiometry of reactions included in the metabolic network model is used to compute 409

Reaction Propensity Scores. INTEGRATE uses intracellular metabolomic datasets and 410

the mass action law formulation to predict how differences in substrate availability 411

translate into differences in metabolic fluxes (metabolic regulation only), neglecting 412

enzymatic activity. Finally, INTEGRATE identifies fluxes that vary consistently at the 413

metabolic and transcriptional regulation level and fluxes whose variation is concordant 414

with metabolic regulation only. 415

INTEGRATE captures dynamic features of the metabolic state of different cells or 416

tissues from the integration of high-throughput data that provide complementary views 417

on their static profile. The model-based integration of transcriptomic and metabolomic 418

data enriches their expressive power. Metabolic fluxes predicted by constraint-based 419

modeling complement information on the differential activity of reactions derived from 420
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B

D

over produced

over consumed

A

C

Fig 6. Amino acids requirement for growth when consumed from the extracellular
environment and directed towards biomass synthesis. Each plot shows the sampled flux
values of amino acid exchange reactions against their contribution to biomass
production. Contribution to biomass is computed by multiplying the corresponding
stoichiometric coefficient representing the amino acid abundance in biomass over the
flux values of biomass reaction. Specifically, for each of the 1 milion sampled FFDs, the
uptake flux of a given amino acid and the biomass flux were used for the calculation.
Each panel refers to a different amino acids among those that were chosen as
representative of alternative scenarios. A: isoleucine. B: valine. C: leucine. D: tyrosine.
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gene expression data, with the information on the direction of the observed variation. 421

Application of our pipeline to one non-tumorigenic cell line and four different breast 422

cancer cell lines identified fluxes that markedly differ across the five cell lines, ascribing 423

each differentially regulated flux to either transcriptional or metabolic control or both. 424

Remarkably, we identified reactions for which there is a good agreement between flux 425

variations and variations in RPSs. We remind that these two data sets are fully 426

independent. 427

INTEGRATE also complements information on the differential propensity of 428

reactions derived from metabolomics, with information on the compartment in which 429

the reaction occurs. Metabolomic data alone would not have allowed us to differentiate 430

between the contribution of the Aconitase reaction (ACONT) substrate when located in 431

the cytosol compartment or when coming from its metabolic counterpart. On the 432

contrary, INTEGRATE indicated that the metabolic regulation involves the cytosolic 433

reaction. Notably, this information was complemented by transcriptomics data even 434

though the aconitase flux itself is not regulated at the transcriptional level. This result 435

indicates that indirect transcriptional regulation is likely to be responsible for observed 436

differences in this flux, which would deserve further investigations. 437

The cytosolic ACONT reaction is strictly coupled to the cytosolic isocytrate 438

dehydrogenase reaction, acting as an early participant in isocitrate dehydrogenase 439

(IDH1)-dependent NADPH biosynthesis required for lipid biosynthesis [51]. 440

Consistently, knockdown of the gene encoding cytosolic isociytrate dehydrogenase in 441

preadipocytes results in decreased isocitrate dehydrogenase 1 (NADP+) mRNA levels 442

and shifts the NADPH:NADP+ ratio towards the oxidized form, impairing 443

adipogenesis [52]. These observation reinforce the involvement of cell redox balance in 444

the metabolic rewiring of cancer metabolism, as already pointed out in [36,53,54]. 445

Many analyses can be conceived and performed downstream of our pipeline. As an 446

example, we analyzed fluxes that better discriminate between cell lines. We also 447

investigated the metabolism of amino acids, to analyze whether they tend to be 448

preferentially synthesized or metabolized by each cell line. 449

The direct exploitation of metabolomics represents the main novelty of our approach 450

to determine whether a flux is regulated at the metabolic level. In a first instance, we 451

intercept this information with information on transcriptional regulation. Nevertheless, 452

the pipeline can be promptly extended to integrate proteomics and phosphoproteomics, 453

allowing to characterize other hierarchical levels of regulation. 454

Knowing whether a flux is controlled at the metabolic or gene expression level is 455

mandatory in designing therapeutic strategies. If a putative therapeutic flux is 456

controlled metabolically, direct targeting the corresponding metabolic enzyme will not 457

produce any effect. On the contrary, identifying the metabolic reaction(s) that 458

indirectly affect the target reaction allows for designing an effective therapeutic 459

intervention. Hence, by integrating high-throughput omics data through mathematical 460

models, INTEGRATE makes it possible to dissect the complex and intertwined 461

regulation of metabolic networks and inform targeted strategies to counteract metabolic 462

rewiring and/or dysfunction underlying different pathological disorders. 463

The pipeline, however, can be applied to any case study. By way of example, 464

metabolic engineering efforts are already inspired by constraint-based modeling [55]. 465

Expanding the toolbox of computational tools will surely increase the success rate of 466

efforts toward the application of engineering concepts to living organisms, contributing 467

to the development of predictable, scalable, and efficient biological devices, whose 468

performance is not hampered by inadequate knowledge of the underlying design 469

principles [56]. 470

July 24, 2021 17/30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.08.13.456220doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.13.456220
http://creativecommons.org/licenses/by/4.0/


Material and Methods 471

Model reconstruction 472

Throughout the process of model reconstruction, we evaluated the inclusion of a number 473

of metabolic pathways according to their literature relevance in cancer metabolism. 474

In addition to the main changes introduced in ENGRO2 (as compared to ENGRO1) 475

already enumerated in the Results Section, we included required cofactors within the 476

stoichiometric equations of the model reactions. In fact, recent findings associated 477

altered levels of some cofactors, including coenzyme A [57], water [58] and 478

orthophosphate [59], with the emergence of various side effects and cancer promotion. 479

Moreover, to integrate gene expression data, we made all the reactions belonging to 480

the oxidative phosphorylation (OXPHOS) pathway explicit. A lumped version of the 481

entire route was instead considered in the ENGRO1 model in the form of two reactions 482

explaining the NADH and FADH2 oxidation through the transfer of electrons from 483

these two reducing agents to oxygen. The stoichiometry of the complex I-like reaction 484

also included the generation of reactive oxygen species (ROS) that are known to be 485

generated by a deficient Complex I activity following specific mutations affecting 486

subunits of this enzymatic complex [60,61]. In the ENGRO2 network, we included five 487

separate reactions representing the reaction catalyzed by each OXPHOS complex. 488

Because of the ROS production from the Complex I, it was necessary to add the ROS 489

detoxification pathway by means of glutathione. 490

In view of the relevance of one-carbon metabolism in cancer cells [62], we enriched 491

the ENGRO2 model by including both folate and the methionine cycles. 492

In ENGRO1, the oxidative branch of the pentose phosphate pathway was just 493

partially included until the synthesis of the phosphoribosyl pyrophosphate (PRPP). 494

PRPP is fundamental for cell biomass synthesis as the entry point of nucleotides 495

biosynthesis. In view of the implications of the one-carbon metabolism in purines and 496

pyrimidines production, we extended the pentose phosphate pathway by including in 497

ENGRO2 the complete nucleotides biosynthesis route. Moreover, we also included all 498

the non-oxidative branch of this pathway because of its relevance in reconverting the 499

intermediates of this pathway into glycolytic metabolites. 500

Recent evidence highlighted a crucial role of beta oxidation in tumour cells for 501

providing them fueling growth sources and benefiting tumour survival, especially under 502

metabolic stress, such as following glucose or oxygen deprivation [63]. Moreover, fatty 503

acid oxidation contributes to the total cell NADPH pool because of acetyl-CoA that, 504

once produced, enters the TCA cycle and is converted with the oxaloacetate to citrate. 505

The high relevance of NADPH is linked to its role in providing redox power for tumour 506

cells to counteract the oxidative stress. For these reasons, we included the mitochondrial 507

beta-oxidation pathway in ENGRO2 for degradating fatty acids that in the model are 508

represented under the form of palmitate. 509

Another recent finding that we considered during the reconstruction of ENGRO2 510

regards the disregulation of the polyamines metabolism and its requirement under the 511

neoplastic condition [64]. In view of these evidence, we added reactions belonging to the 512

polyamines metabolism in the ENGRO2 model. 513

The biomass synthesis reaction was set according to biomass composition of 514

Recon3D model in terms of metabolites and stoichiometric coefficient except for 515

1-Phosphatidyl-1D-Myo-Inositol, Phosphatidylcholine, Phosphatidylethanolamine, 516

Phosphatidylglycerol, Cardiolipin, Phosphatidylserine, Sphingomyelin whose load is 517

ascribed to palmitate. 518
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Flux Variabilty Analysis 519

Flux Variability Analysis (FVA) [65] is a constraint based modelling technique aimed at 520

identifying the range of possible flux values for the reactions involved in the metabolic 521

system under analysis. As other constraint based modelling methods, it relies on the 522

fact that the steady states of the metabolic model corresponds to the kernel of the 523

stoichiometric matrix S associated to the model itself. It is exactly this null space that 524

defines the space of all the feasible fluxes. Moreover, to mimic as closely as possible the 525

biological process in analysis, it is possible to bound the feasible fluxes space by means 526

of convex half planes represented by the reaction’s lower and upper bounds. 527

Given a M ×N stoichiometric matrix S, with M metabolites and N reactions, and 528

the vectors vL and vU specifying, respectively, lower and upper bounds for the flux 529

vector v, the mass balance constraint S · v = 0 together with the flux boundaries specify 530

the feasible region of the linear problem. 531

FVA solves the following two optimization problems (one for minimization and one 532

for maximization) for each flux vi of interest, with i = 1, . . . , N : 533

max/min vi

subject to S · v = 0

vL ≤ v ≤ vU

We remark that we do not ask the network to support a percentage of maximal 534

possible biomass production rate as often done in other studies. We simply prevent 535

biomass to be completely null, by setting the biomass synthesis lower bound to 10−4. 536

This small level should be high enough to be distinguished form numeric instability. 537

Reaction Activity Score computation 538

Reaction catalysis by a given set of enzymes is encoded within the model through the 539

gene-protein-reaction (GPR) rule. GPR rules are logical expressions exploiting AND and 540

OR logical operators to describe different types of relationship established among 541

enzymes. In particular, AND operator is used when distinct genes encode multiple 542

subunits of the same enzyme, implying that all the subunits are equally necessary for 543

the reaction to take place. On the contrary OR operator is used when distinct genes 544

encode multiple isoforms of the same enzyme, entailing that either isoform is enough for 545

the reaction catalysis. These logical operators can be combined to describe more 546

complex scenarios involving both isoforms and subunits. 547

According to [31], we combined the RNA-seq datasets with the defined GPR rules 548

associated with each reaction r included in the model through the employment of the 549

Reaction Activity Score (RAS). For each cell line c in the set C of the cell lines to 550

analyze, for each sample ξ and for each reaction r, we computed the corresponding 551

RAScr,ξ, by resolving the corresponding logical expression taking the minimum 552

transcript level value when multiple genes are joined by an AND operator, and taking 553

the sum of their values when multiple genes joined by an OR operator encode distinct 554

isoforms of the same enzyme. 555

We then computed the cell line reaction score by averaging over the samples as 556

RAScr = 〈RAScr,ξ〉ξ. Once that RAScr of each reaction is computed for each investigated 557

cell line, these values are normalized on the maximum RAScr of all cell lines: 558

RAS
c

r =
RAScr

max {RAScr}c
. (1)

Finally, missing information about transcript level implies that RAS of the 559

corresponding reactions are set to 1. When RAS is equal to 0 in all the cell line, the 560
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corresponding normalized RAS is kept equal to 0 to consider that the corresponding 561

reaction is off in all the cell lines. 562

Cell-relative model construction 563

Constraints on nutrient availability 564

To set constraints on nutrient availability, we defined the set of nutrients that can be 565

internalized by each of the five investigated cell lines according to the two exploited 566

experimental medium composition. For every uptaken metabolite, an exchange reaction 567

is included within the network by setting its upper bound to 0 and tuning its lower 568

bound proportionally to the corresponding concentration contained in the growth 569

medium. 570

Constraints on extracellular fluxes 571

To set constraints on the extracellular fluxes according to the experimentally 572

determined flux ratio of lactate to glucose, lactate to glutamine and glutamate to 573

glutamine, we proceeded as follows: 574

• Firstly, we took the concentration values of the two nutrients glucose, glutamine 575

and of the two byproducts glutamate and lactate previously collected from the 576

YSI analyzer of spent medium. 577

• Treating the two biological replicas separately, we computed for each of the three 578

technical replicas the mean concentration difference of the considered metabolites 579

between initial time and after 48 hours of growth to get their utilization or 580

formation rate. Focusing on the ratio between these metabolites rather than on 581

their absolute uptake or secretion rates, we limited to consider the mean 582

concentration difference values between time 0 h and 48 h without dividing them 583

by the integral of cells number. 584

• We computed the lactate produced over glucose consumed, lactate produced over 585

glutamine consumed and glutamate produced over glutamine consumed ratios for 586

the two biological replicas. 587

• We then added these experimentally determined flux ratios as further constraints 588

to the model to ensure that exchange reactions involved in the considered ratios 589

follow the experimental values. To give an example, the lactate to glucose ratio is 590

included within the model as constraint by considering the following expression: 591

− σLac/Glc ≤ vExLac − xLac/Glc · vExGlc ≤ σLac/Glc, (2)

where the ratio of the flux value vExLac of the lactate secretion reaction over the 592

flux value vExGlc of the glucose consumption reaction ranges between minus one 593

and plus one standard deviation σLac/Glc of the mean lactate to glucose ratio 594

xLac/Glc of the two biological replicas. 595

Trascriptomics-derived constraints 596

Assuming that it is possible to modulate the reactions activity by transcription 597

mechanisms, it is possible to exploit the RAS
c

r score to further constraint the extremal 598

fluxes, vL,vU obtained through FVA, to represent this process and better mimic the 599

cell lines behaviour: 600

RAS
c

r · vcL,r ≤ vr ≤ RAS
c

r · vcU,r. (3)
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In this case, for the internal reactions when a GPR rule exists for a given reaction, 601

its lower and upper bounds are scaled according to its computed RAS. 602

The only exceptions to application of this constraints are the boundaries for reactions 603

CARPEPT1tc and HIStiDF for which we ignored the RAS contribution because the 604

constraints were limiting too severely the growth of some of the cellular lines. 605

Generation of FFD dataset, via random sampling 606

Once the cell-relative models were created, for following analyses, we converted them 607

into irreversible models, in which reversible reactions are represented with two distinct 608

and complementary forward reactions. 609

The ability to properly sample the constrained null space of S is of paramount 610

importance to obtain correct fluxes distributions. 611

In this work, we exploited the implementation of optGpSampler algorithm [66] 612

available in COBRApy [67], and we sampled a million of steady-state solutions of the 613

ENGRO2 model in all the tested conditions. 614

Generation of RPS dataset 615

Let xi be the vector of abundances of the chemical species in a given steady state i of 616

the metabolic network. Let vi be the vector of reaction flux rates in the same steady 617

state i. The flux of chemical species through a reaction is the rate of the forward 618

reaction, minus that of the reverse reaction (in molecules per unit of time). When 619

dealing with irreversible models, the reaction flux and the rate coincide. 620

The following assumptions allow one to analytically estimate relative fluxes from 621

relative abundances: 622

• for each reaction r in the system, the mass action law is assumed: 623

vr = kr
∏N
q=1 [Xq]

sr,q , where kr is the kinetic constant of reaction r and Xq is the 624

qth substrate of the N total substrates of reaction r, and sr,q is the stoichiometric 625

coefficient of substrate Xq in reaction r i.e., how many molecules of the substrate 626

partake to the reaction; 627

• the kinetic constant kr of a given reaction r is assumed to not vary between two 628

steady states i and j. 629

Given such assumptions, the variation between the flux of an irreversible reaction r 630

in two steady states i and j can thus be computed as the ratio vir/v
j
r : 631

vir
vjr

=
N∏
q=1

(
[Xq]

i

[Xq]
j

)sr,q
, (4)

which does not depend on kr. 632

It goes without saying that if the numerator is higher than the denominator, than 633

flux vr in steady state i is higher than flux vr in steady state j. Therefore, in order to 634

compare the susbtrate contribution to the reaction rate in different cell lines, we 635

computed for each reaction r and for each cell line c (assumed at steady state) a 636

Reaction Propensity Score (RPS), defined as as follows: 637

RPScr =
N∏
q=1

([Xq])
sr,q . (5)

Of course, the above assumptions not often hold. However, RPSr allow us to predict 638

whether the flux of a reaction in a cell line is expected to be different as compared to 639
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another cell line, just considering substrate availability. Nothing prevents the observed 640

flux variation to be consistent with the RPS variation, even if the enzyme activity 641

actually differs between the two cell lines under study. 642

Concordance analysis 643

We wanted to test whether the variation in the value of a reaction is consistent between 644

different datasets. Statistical evaluation of the concordance between two techniques 645

used to measure a particular variable, under identical circumstances, has been largely 646

addressed in literature [68]. We decided to treat our measurements, i.e. the log ratio of 647

the flux, as up, down or no-change. 648

Concerning the FFD values, we performed the Mann-Whitney U test [69] 649

(p-value < 0.05) between the distributions of each pair of the five investigated cell lines 650

to determine if the FFD of every reaction differed significantly between the two cell 651

lines. In parallel, the log2 of the absolute ratio of the median flux of each reaction in 652

the two cell lines is also computed. 653

Concerning the RAS and the RPS values, we performed a t-test (p-value < 0.05) for 654

the means of each pair of RAS and RPS samples taken for all the pairwise combinations 655

of the five investigated cell lines to determine if the values differed significantly between 656

the two cell lines. We also computed the log2 of the absolute ratio of the mean RAS 657

and RPS values of each reaction in the two cell lines. 658

Hence, we registered the sign of the variation for each pair of the five cell lines under 659

study (for a total of 10 pairs) according to each of the three datasets. At first instance, 660

a positive sign is registered if the distribution of samples values of first member of the 661

comparison is statistically higher and if the average or median value is at least 20% 662

higher. A negative sign is registered if the distribution of samples values of the first 663

member of the comparison is statistically lower and if the average or median value is at 664

least 20% lower. A 0 is registered otherwise. We used a relaxed threshold for the 665

fold-change as in [31] because even a difference of 20% in genes encoding members of a 666

metabolic pathway may dramatically alter the flux through the pathway. Yet, this 667

parameter can be modified arbitrarily. 668

We quantified the level of concordance of the 10 variation signs (1 for each pair of 669

cell lines) for a given pair of datasets by means of the Cohen’s kappa metric, which has 670

been commonly used to measure inter-rater reliability for qualitative (categorical) items. 671

Ranking of discriminative fluxes 672

For each reaction r in our model, we tried to address the problem of quantifying its 673

capability to fingerprint the investigated cell lines. To this aim, we derived the Reaction 674

Fingerprinting Score (RFS), which exploits the frequency distribution of flux values 675

derived from the optGpSampler algorithm and applies a homogeneous binning among 676

the cell lines (i.e. Rice’s rules). According to this, the frequency distribution f cr (b) 677

retains the flux values count for cell line c of reaction r in the binning b: 678

RFS
c∗

r (b) =

f c
∗

r (b) −
C\c∗∑
c

f cr (b)

C∑
c

f cr (b)

.

To highlight the fingerprinting role of reaction r, we chose to keep into account only 679

the contribution to counts for which cell line c∗ is greater than the contribution of other 680

cell lines C \ c∗: 681
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RFSc
∗

r (b) = max
{
ϕc

∗

r (b), 0
}
,

whereas with RFScr =
∑
b ϕ

c
r(b) it is possible to identify cell lines with a more set 682

apart fluxes distribution with respect to the others cell lines. The same RFScr allows to 683

state which reactions are more discriminating to fingerprint cell line c. With the aim to 684

identify those reactions that more than others allow to globally discriminate the set of 685

cell lines in analysis, it is necessary to combine this information defining the RFS as 686

RFSr =
C∑
c

RFScr . (6)

Cell culture 687

MDA-MB231 and MCF7 cell lines were grown in Dulbecco’s modified Eagle’s medium 688

(DMEM) containing 4 mM L-glutamine, supplemented with 10% fetal bovine serum 689

(FBS). MDA-MB361 cell line was maintained in DMEM/F12 containing 20% FBS and 690

4 mM L-glutamine. SKBR3 cell line was grown in DMEM containing 2 mM 691

L-glutamine, supplemented with 10% FBS. MCF102A cell line was maintained in 692

DMEM/F-12 containing 5% horse serum, 2.5 mM L-glutamine, 20 ng/ml EGF, 693

100 ng/ml cholera toxin, 0.01 mg/ml insulin, and 500 ng/ml hydrocortisone. All media 694

were supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin, and cells 695

were incubated at 37°C in a 5% CO2 incubator. All reagents for media were purchased 696

from Life Technologies (Carlsbad, CA, USA). 697

Cell proliferation and protein content analysis 698

Cells were plated in 6-well plates in normal growth medium. Culture medium was 699

replaced after 18 h and cells were collected and counted after 24, 48, and 72 hours. 700

Protein extraction was performed at each indicated time in RIPA buffer supplemented 701

with protease inhibitor cocktail. Protein content was evaluated through Bradford assay, 702

using Pierce™ Coomassie Plus (Thermo Scientific) and bovine serum albumin as a 703

standard protein. 704

Metabolite extraction from cell culture 705

Cells were plated in 6-well plates with normal growth medium. The culture medium was 706

replaced after 18 h and then cells were incubated for 48 h. For metabolites extraction, 707

cells were quickly rinsed with NaCl 0.9% and quenched with 500 µl ice-cold 70:30 708

acetonitrile-water. Plates were placed at -80°C for 10 minutes, then the cells were 709

collected by scraping, sonicated 5 seconds for 5 pulses at 70% power twice and then 710

centrifuged at 12000 g for 10 min at 4°C. The supernatant was collected in a glass insert 711

and evaporated in a centrifugal vacuum concentrator (Concentrator plus/ Vacufuge® 712

plus, Eppendorf) at 30 °C for about 2.5 h. Samples were then resuspended with 150 µl 713

of ultrapure water prior to analyses. 714

LC-MS metabolic profiling 715

LC separation was performed using an Agilent 1290 Infinity UHPLC system and an 716

InfintyLab Poroshell 120 PFP column (2.1 x 100 mm, 2.7 µm; Agilent Technologies). 717

The injection volume was 15 µL, the flow rate was 0.2 mL/min with column 718

temperature set at 35°C. Both mobile phase A (100% water) and B (100% acetonitrile) 719

contained 0.1% formic acid. LC gradient conditions were: 0 min: 100% A; 2 min: 100% 720
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A; 4 min: 99% A; 10 min: 98% A; 11 min: 70% A; 15 min: 70% A; 16 min: 100% A 721

with 5 min of post-run. MS detection was performed using an Agilent 6550 iFunnel 722

Q-TOF mass spectrometer with Dual JetStream source operating in negative ionization 723

mode. MS parameters were: gas temp: 285°C; gas flow: 14 L/min; nebulizer pressure: 724

45 psig; sheath gas temp: 330°C; sheath gas flow: 12 L/min; VCap: 3700 V; 725

Fragmentor: 175 V; Skimmer: 65 V; Octopole RF: 750 V. Active reference mass 726

correction was done through a second nebulizer using the reference solution (m/z 727

112.9855 and 1033.9881) dissolved in the mobile phase 2-propanol-acetonitrile-water 728

(70:20:10 v/v). Data were acquired from m/z 60–1050. Data analysis and isotopic 729

natural abundance correction were performed with MassHunter ProFinder (Agilent). 730

Metabolites quantification in the media samples 731

Absolute quantification of glucose, lactate, glutamine, and glutamate in spent media 732

after 48 hours of growth was determined enzymatically using YSI2950 bioanalyzer (YSI 733

Incorporated, Yellow Springs, OH, USA). 734

RNA Extraction 735

Total RNA was extracted from at least 8 x 106 cells by using RNeasy Mini Kit (Qiagen). 736

Each pellet was resuspended by adding 30 µL of RNAse-free water. Following RNA 737

isolation, DNAse treatment was performed using DNAse I, RNase-free (ThermoFisher 738

Scientific). After purification, to assess the final RNA yield and purity, the 739

spectrophotometer NanoDrop ND-1000 (NanoDrop Technologies) was employed by the 740

means of 260/280 and 260/230 ratios. The 2200 TapeStation instrument (Agilent 741

Technologies) also evaluated the RNA quality, in order to assess the RNA Integrity 742

Number Equivalent (RIN) for each processed sample. 743

RNA-Seq library preparation 744

The RNA-Seq libraries were prepared using the Illumina TruSeq Stranded mRNA 745

Library Prep Kit, according to the manufacturer’s instructions. Starting from each 746

RNA isolated, three replicates were prepared. All the 15 obtained libraries were, as first, 747

analyzed by the 2200 TapeStation instrument to check their length and quality and, 748

then, quantified by the fluorescent dye PicoGreen® (ThermoFisher Scientific) on 749

NanoDrop ND-1000 to calculate the concentration. RNA-Seq libraries were then diluted 750

at 2 nM concentration and normalized using standard library quantification and quality 751

control procedures as recommended by the Illumina protocol. RNA-Seq libraries were 752

sequenced using Illumina® HiSeq2500 to obtain 150-bp paired-end reads. After fastq 753

quality control by using FastQC tool, raw reads were mapped with STAR aligner 754

(v.2.6.1d) to human reference genome (hg38) and gene counts were calculated by HTSeq 755

(v.0.6.1), using the hg38 Encode-Gencode GTF file (v28) as gene annotation file. Gene 756

abundance was measured in fragments per kb of exon per million fragments mapped 757

(FPKM). 758
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