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Summary:  

While the number of genome sequences continues to increase, the functions of many detected 

gene variants remain to be identified. These variants of uncertain significance constitute a major 

barrier to precision medicine 1–3. Although many computational methods have been developed to 

predict the function of these variants, they all rely on individual gene features and do not consider 

complex molecular relationships. Here we develop PathoGN, a molecular network-based approach 

for predicting variant pathogenicity. PathoGN significantly outperforms existing methods using 

benchmark datasets. Moreover, PathoGN successfully predicts the pathogenicity of 3,994 variants 

of uncertain significance in the real-world database ClinVar and designates potential 

pathogenicity. This is the first computational method for the clinical interpretation of variants 
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using biomolecular networks, and we anticipate our method to be broadly useful for the clinical 

interpretation of variants and for assigning biological function to unknown variants at the 

genomic scale. 

 

Introduction  

As genome sequencing accelerates, the functional interpretation of biological phenomena hidden in the 

genomic code is becoming extremely important. Recently, genomic medicine has begun to be integrated 

in a clinical setting with genomic information used to optimize medical care to individual patients. 

Diagnostic and treatment decisions can be made based on patient genome analysis, literature, and 

database research on disease-related genes, alongside family history information and the patient’s 

clinical background. This process is referred to as the “clinical interpretation” of genomic data. Since the 

information and criteria used for the clinical interpretation of variants vary from disease to disease, in 

actual practice, experts in each disease area discuss and decide the criteria for clinical significance based 

on literature information and actual cases in each hospital or institution. For example, in 2015, the 

American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular 

Pathology (AMP) published guidelines for the clinical assessment of variants 4.  

However, the functions of many detected variants from clinical sequence data remain to be elucidated. 

One of the reasons that variants cannot be interpreted is a lack of functional investigation, since it is 

unfeasible to validate the pathogenicity of such an enormous number of variants experimentally. As a 

result, most variants are assigned as being variants of “uncertain significance” (VUS), which means there 

was no sufficient evidence to judge a relationship between the variant and disease. This is a crucial 

bottleneck promoting genomic medicine. Therefore, computational methods for predicting the functionality 

of variants are widely used 5, and ACMG-AMP guidelines recommend computational prediction as 

supporting information for variant interpretation.  

A myriad of computational methods has been developed to predict deleterious non-synonymous single 

nucleotide variants (nsSNVs) 6. However, existing methods only utilize features derived from an individual 

variant or individual gene within the variant. In a physiological setting, genes and their products are 

associated with each other, and the associations have a strong influence on biological processes and 

disease development 7. These associations can be represented as biological molecular networks, which 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2021. ; https://doi.org/10.1101/2021.07.15.452566doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452566
http://creativecommons.org/licenses/by/4.0/


 

3 
 

are composed of diverse biochemical and functional relationships between genes and gene products 8, in 

the form of metabolic pathways, signaling pathways, and protein–protein interaction networks. In many 

cases, human disease will not be caused by individual genomic alterations but by the interaction of 

individual mutations on multiple other pathways and relationships. It is known that utilizing molecular 

networks enables the identification of novel genes and pathways associated with a particular disease 

phenotype 9. Nevertheless, there are no computational methods for clinical interpretation of variants using 

knowledge of biological molecular networks. 

 

Results 

Overview of network-based prediction 

To address these challenges, in this study, we developed a pathogenicity prediction model with a graph 

neural network (PathoGN). While existing methods predict the function of variants by machine learning 

using sequence and structural information of genes and variants, PathoGN achieves highly accurate 

prediction of variant function (pathogenicity) by learning the structure of a large biological molecular 

network as background knowledge. As shown in Fig. 1a, PathoGN consists of two major parts: the part 

that builds a large biomolecular network model by adding variant data to biological pathways and the part 

that learns the biomolecular network by deep learning and predicts pathogenicity of the variant. 

Table 1 shows the statistics of molecules and variants (nodes) and their connections (edges) that make 

up the biomolecular network (graph) used in this study. First, we constructed biomolecular networks 

consisting of proteins and ligands, which include protein–protein interactions, signaling pathways, and 

metabolic pathways from the Reactome database 10, a representative database of biological networks. 

Then, using the databases with information on effects and pathogenicity of variants, we integrated the 

relationships (edges) between genes and variants into the Reactome-derived network by considering the 

same genes and proteins to be common nodes. In addition, the pathogenicity scores predicted by the 

conventional method were added as nodes of the biomolecular network, resulting in the construction of a 

large network composed of conventional score-variant-gene-protein-ligand (Fig. 1b). 

Next, we used a graph convolutional neural network (GCN), a type of deep learning, to learn the 

biomolecular network as a knowledge graph and predict the pathogenicity of variants. GCN effectively 

learns the network structure by using the same concept as convolutional neural network (CNN), which 
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has recently led to a breakthrough in image classification problems 11–13. While CNN features a 

“convolution” process that multiplies and adds weights to the surrounding pixels of a pixel to all the pixels 

of an input image, GCN can learn the network structure by convoluting the relationships between the 

nodes of the input network along with the network structure. Our approach employs a node-focused 

prediction 14, which predicts a label corresponding to each node. Specifically, we constructed a 

knowledge graph in which the pathogenicity information of variants registered in the ClinVar database 

and VariBench datasets is attached as labels to the large molecular network constructed above. By 

training this graph with GCN, we can predict the pathogenicity or non-pathogenicity of variants with 

unknown functions, including VUS. 

 

Performance evaluations using a benchmark set 

To investigate the effectiveness of utilizing molecular networks and associate information between 

variants in predicting pathogenicity, we compared the prediction performance of PathoGN and existing 

popular methods using a benchmark dataset.  

Most of the existing methods utilize probabilistic models and machine learning algorithms with features 

obtained from nucleotide or amino acid sequence conservation and biochemical properties of amino acids 

that impact protein structure. We compared included MutationTaster 15, MutationAssessor 16, 

PolyPhen217, Sorting Intolerant From Tolerant (SIFT) 18, likelihood ratio test (LRT) 19, and Functional 

Analysis Through Hidden Markov Models (FATHMM)20, which are commonly used in annotations with 

clinical interpretation. Additionally, ensemble methods combine the prediction results from multiple 

individual methods, improving prediction performance 21–25. Thus, we also compared the performance of 

random forest (RF) and support vector machines (SVM), which were used for ensemble learning with the 

same predicted scores. RF-based ensemble methods, such as REVEL26 and ClinPred27, generally show 

excellent performance.  

Five benchmark sets by VariBench 28 were used for comparison. In the evaluating pathogenicity 

prediction methods, there was a problem with mixed training and test sets, where the variant information 

used to train each method was also included in the evaluation data (called type 1 circularity 28). VariBench 

provides datasets after removing duplication between datasets in each tool to solve this problem.  
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Fig. 2a and b show the area under the receiver operating characteristic curve (ROC AUC) and the 

accuracy for the six existing methods, including Mutation Taster, Mutation Assessor, PolyPhen2, SIFT, 

LRT, and FATHMM, and other popular algorithms, SVM and RF. For all datasets, the AUC and accuracy 

of PathoGN significantly outperformed all of the other methods. Notably, PathoGN also showed high 

accuracy in the SwissVar dataset (Fig. 2a), which contains many unpredictable variants. The difficulty of 

predicting the SwissVar dataset is thought to be caused by the low ratio of deleterious variants to neutral 

variants and the mixture of both interpretations in the same gene. PathoGN demonstrated robust 

accuracies even for unbalanced sets. (See Extended data Table 1 and 2 for the details accuracies and 

Extended data Fig. 1 for the ROC curves of all datasets) 

In comparison with existing methods and typical algorithms, RF showed the second-best accuracy after 

PathoGN. Therefore, we examined the difference in prediction results between RF and PathoGN, 

focusing on genes. The average accuracies for all genes were calculated based on the prediction results 

for variants of each gene. In Fig. 2c, the comparison between the accuracies of PathoGN and those of RF 

in the SwissVar dataset is shown. Genes located in the upper left corner in Fig. 2c, which are more 

accurately predicted by PathoGN, have a higher pathogenic rate of 0 or 1, indicating that they have more 

similar annotations (benign/pathogenic labels) within the gene. (The comparison between PathoGN and 

RF for other benchmark datasets are shown in Extended data Fig. 2). Many genes were predicted with 

almost the same accuracies in both PathoGN and RF, but some genes were confirmed to be more 

accurately predicted by PathoGN (Fig 2e and f). These genes tend to have more than one variant in the 

same gene and have similar annotations (pathogenic/benign labels) (See also Extended data Fig. 3). 

Since our method enables us to use associated information between variants using the knowledge graph, 

these variants could be accurately predicted. 

 

Application to ClinVar data 

To confirm the applicability of PathoGN using clinically relevant data, we evaluated the performance of 

PathoGN in predicting the pathogenicity of VUS with the ClinVar dataset. ClinVar is a database of genetic 

mutation information and its association with diseases and is widely used for interpretation in clinical 

practice worldwide 29. ClinVar updates the clinical significance of each variant when new evidence for 

interpretation is obtained, providing a dataset that has improved over time. Here, we performed 
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pathogenicity prediction using past datasets of ClinVar and assessed whether these predictions were 

consistent with the latest annotations.  

In the 2020 ClinVar dataset, 908 variants were annotated as pathogenic or benign, but were annotated as 

belonging to other categories (such as likely pathogenic, likely benign) in the 2019 ClinVar dataset (Fig. 

3a). We refer to these variants as “conflict variants.” We performed predictions against the conflict 

variants to assess how well PathoGN correctly predicts the 2020 labels. PathoGN was trained using 

14817 missense variants (pathogenic: 10654, benign: 4163) in the 2019 ClinVar. Then, we used this 

model to make predictions for conflict variants and verified the model’s accuracy by using the labels of the 

2020 dataset as the correct answer set. As a result, PathoGN successfully predicted clinical significance 

in the 2020 ClinVar dataset with a high predictive performance of accuracy 0.8700 and AUC 0.9410. 

PathoGN also showed excellent performance with the other past versions of ClinVar (2017, 2018) (Table 

2). 

In addition, we investigated the significance category of variants for the prediction results in the 2019 

ClinVar dataset (Fig. 3b and c). In all clinical significance, PathoGN shows high predictive accuracy. No 

correlation between label bias or the number of variants within the same gene and accuracy was 

observed (Extended data Fig. 4a and b). On the other hand, the accuracy tended to be lower in 

categories with fewer variants, such as "Pathogenic" and "NonACMG" than in other categories. PathoGN 

also enabled us to make predictions for variants with “Not provided”. This type of variants tends to 

comprise those with multiple reported same significance within the same gene (Extended data Fig. 4c). 

This indicates that PathoGN has the ability to utilizing neighboring information from the molecular 

network, such as association information between variants to make these predictions. 

 

Predictions of VUS in the current ClinVar dataset 

Next, we looked to identify the clinical significance of variants for which there is currently no known 

disease association. To do this, we predicted the pathogenicity for all variants that were not annotated as 

being either pathogenic or benign in the 2020 ClinVar dataset. The model was trained using the labeled 

data (pathogenic=10,877, benign=7504) and then used to make predictions for the 12,520 unlabeled 

variants. The details of the variants and prediction results are shown in Fig. 4a. The distribution of 

predicted pathogenicity probabilities for each significance category is shown in Fig. 4b. The predicted 
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probability of being benign is calculated as one minus the pathogenicity probability. Variants annotated as 

likely benign in ClinVar tend to have a higher probability of being benign, whereas variants annotated as 

likely pathogenic tend to have a higher probability of pathogenicity. As a result, 2802 and 1192 variants 

with uncertain significance were predicted as pathogenic and benign, respectively. The cut-off value for 

the label was determined by Youden index, which is the most popular approach for determination of cut-

point 30, and 0.3902 was used. Among them, 1570 and 593 mutations were extracted as the top 10% 

predicted probability of pathogenic and benign, respectively. Details of these variants and the predicted 

pathogenicity scores are available in GitHub and MGeND. 

 

Validation of prediction results in the 2020 ClinVar dataset and ACMG classification 

In order to evaluate the prediction results for a clinical assessment of VUS (the unlabeled variants), we 

performed a validation by biocurators assuming a clinical interpretation by an expert panel. Of the 

predicted unlabeled variants, five variants for which case information was available from the National 

Center for Cancer in Japan (NCC) were reviewed for classification according to ACMG guidelines. The 

clinical genetics professionals in NCC reviewed these variants in conjunction with the available clinical 

information. The reviewed variants and classification results are described in Fig. 4c. 

The ACMG guidelines evaluate variants using multiple criteria and integrate each assessment to 

determine the variant’s final pathogenicity. The variant’s pathogenicity is represented by five categories: 

Pathogenic, Likely pathogenic, Likely benign, Benign, and Uncertain significance. These guidelines 

provide a more objective and accurate assessment. 

Variants predicted as “Benign” 

Three of the reviewed five variants were predicted to be “Benign” by PathoGN. Firstly, BRCA c.5660C>T 

(p.T1887M) is assigned as BP4 because many prediction tools predicted it to be benign/tolerated/neutral. 

A BP5 was also assigned to this variant because BRCA1 p.E1214X, a pathogenic variant, was 

concurrently detected in the case. Therefore, although reported in ClinVar with VUS annotations, based 

on ACMG guidelines, this variant would be determined as Likely benign. Next, MSH2 c.2533A>G 

(p.K845E) is annotated as VUS for BS1 and PP3 criteria based on ACMG guidelines. Here, PP3 is 

predicted to be Pathogenic by multiple algorithms, and BS1 indicates that the allele frequency is higher 

than expected for the disease. The variant frequency in Human Gene Mutation Database (HGMD) is 
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4/2,416 (=0.001656) and in ToMMo is 23/9,546 (=0.0025). ToMMo is an integrative Japanese Genome 

Variation Database of the Japanese population, and the frequencies are obtained from 4.7k Japanese 

individuals23. HGMD manually collects and curates all published germline variants related to human 

inherited disease 31. These frequency values in the general Japanese population present a strong 

evidence, while the in silico prediction is a supporting evidence in the ACMG guidelines. Taken together, 

this variant may be considered to be a “benign-like VUS”. While many in silico prediction tools assign this 

variant to be Damaging/Pathogenic, PathoGN predicts “Benign.” 

The frequency of third variant APC c.3821C>T (p.T1274M) is 3/2,420 (=0.00124) in HGMD and 21/9,546 

(=0.0022) in ToMMo, BS1 criteria was also assigned to this variant. Based on the publication search, it 

was reported that the pathogenic variant had been found in other gene involved in the molecular 

mechanism of the disease in a case with the same variant 32. From this evidence, BP5 was assigned to 

this variant. Thus, this variant is annotated as “likely benign” based on BS1 and BP5 criteria. These 

reviews suggest that variants predicted as Benign by PathoGN may be variants that are possible to judge 

as Benign if more detailed information, such as functional analysis in the population, is obtained in the 

future. 

Variants predicted as “Pathogenic” 

Two variants predicted to be “Pathogenic” were also reviewed for ACMG classification. For TP53 c.566 

C>T (p.A189V), BS1 and PP3 were assigned, and the classification by the clinical geneticists at NCC is 

VUS based on the ACMG guidelines.  However, the case with this variant is clinically suspected as Li-

Fraumeni syndrome. For instance, the mother with breast cancer also had this variant. However, no other 

segregation data is available, and the biocurators could not assign other ACMG criteria to update the 

VUS status. The remaining variant, CFTR c.4277C>T (p.S1426F) was also reexamined and determined 

to be VUS.  

 

Discussion/Conclusion 

Our novel pathogenicity prediction approach utilizing molecular networks outperformed existing methods, 

and the evaluation results indicated the usefulness of molecular network information as a knowledge 

graph for predicting variant pathogenicity. The predictions made by PathoGN also utilize variant 

information on the same gene. Thus, variants on genes that have hotspots can be predicted with higher 
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accuracy. The validation using the ClinVar dataset succeeded in accurately predicting the latest clinical 

significance of variants whose significance was not decided in the past. The clinical decision of the 

variant's pathogenicity is comprehensive, considering any information such as the family phenotype 

information. Therefore, it is not easy to validate the prediction results experimentally. However, PathoGN 

shows the possibility of making correct predictions for variants whose clinical significance is not clear at 

present and is expected to accelerate the re-evaluation of VUS.   

Moreover, we confirmed the ACMG annotation for the variants that were predicted to be pathogenic or 

benign. For most of the variants, the guideline-based evidence could not be assigned and clarify their 

pathogenicity. The current ACMG classification is only designed for high penetrant variants. On the other 

hand, recent large-scale germline analyses have identified clinically significant variants in the populations 

that do not exhibit the classic hereditary tumor phenotype. These analyses revealed the need to discuss 

moderate risk variants, modifier genes, and oligogenic diseases 33,34. However, the clinical utility for these 

variants is still undetermined, and are most of them are annotated as VUS. 

As a tool to support clinical interpretation, the ability to accurately predict the pathogenicity of high 

penetrance variants is a prerequisite. On the other hand, the interpretation of VUS in actual genomic 

medicine requires a more comprehensive judgment based on a thorough understanding of family 

phenotype and patient information. The data labeled in the current guidelines are not sufficient for this, 

and a range of additional information needs to be taken into account.  

In the future, there is a need to expand the dataset and develop suitable models to achieve this while 

narrowing down the target diseases. PathoGN is suitable for such an expansion because PathoGN is the 

knowledge graph-based model. Incorporating detailed information, such as clinical data, into the 

knowledge graph, PathoGN can be easily expanded to deal with other information. This expansion may 

help in predictions for variants with unknown functions in the current situation. Additionally, at the 

moment, PathoGN is only applicable to non-synonymous single nucleotide variants (nsSNV). By 

improving the input network and knowledge graph, we intend to expand our model to predict 

insertion/deletion variants, variants in splicing sites, and variants outside of exonic regions. 

The era in which individual genomes can be analyzed as a part of the standard health care services will 

soon be realized, and a vast amount of variants will be identified. We anticipate that the use of molecular 

networks and knowledge graphs will facilitate these interpretations.  
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Figures and tables 
 
 

 

Fig. 1. Schematic graph-based prediction method of PathoGN (a) Overview of graph-based 
prediction. Conventional approaches use the information for individual variants such as that obtained 
from genome sequences. By contrast, PathoGN utilizes biological networks represented in a graph 
structure. Combining biological network information, disease-associated variants information, and 
prediction scores by conventional tools, a knowledge graph is constructed and used as an input for 
graph convolutional networks (GCN). Proteins, genes, variants, compounds, and prediction scores 
are represented by a node, and relationships between them are denoted as edges on a graph.  (b) 
Knowledge graph image as input of PathoGN. The statistical detail of graph is shown in Table 1. 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2021. ; https://doi.org/10.1101/2021.07.15.452566doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452566
http://creativecommons.org/licenses/by/4.0/


 

14 
 

 

Fig. 2. Performance evaluation. (a, b) ROC curves for our method (PathoGN), other non-ensemble 
methods, and two popular algorithms (SVM and RF) on SwissVar dataset and Varibench dataset. 
Solid line indicates ROC curves for PathoGN and other non-ensemble methods. For this plot, only 
variants for which predicted scores by all comparator tools could be obtained were used in the 
evaluation. Dashed line indicates ROC curve for PathoGN and other algorithms using all variants in 
the dataset. (c, d) Accuracy comparison with our approach (PathoGN) and Random Forest (RF) on 
SwissVar dataset and Varibench dataset. Each point represents an aggregated accuracy (mean 
accuracy) for each gene. The dot size represents the number of variants present in each gene in the 
dataset; the larger dot, the more variants on the gene are included in the dataset. The color indicates 
the bias of labels (label ratio) in a gene. For example, the red color indicates that all variants present 
in the gene have the same labels. (e, f) Gene counts and the label bias for PathoGN and RF. Gene 
were classified according to which method was more accurate (high accuracy value), and the 
number of genes and the bias of the labels were compared. Bar charts show the number of genes, 
violinplots indicate the label ratio for each gene. Orange is for genes for which prediction by 
PathoGN was more accurate, and green is for genes for which prediction by RF was more accurate.  
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Figure 3. Details of predictions made with the ClinVar dataset. (a) Details of labels in the ClinVar 
dataset. Each row indicates variant’s labels in the 2019 ClinVar dataset, and the columns indicate 
labels assigned to the variants in the 2020 ClinVar dataset. (b) Each pie chart shows the category of 
variants. The left pie chart shows distributions of variants predicted correctly, the right pie chart 
shows those variants that were predicted incorrectly. The outer pie indicates the labels in the 2020 
ClinVar dataset, and the inner pie shows the labels in the 2019 ClinVar dataset. (c) Accuracy for 
each significance category of variants. Pathogenic/Benign Acc column indicates prediction accuracy 
for the variants annotated with pathogenic/benign in 2020 ClinVar, and All Acc columns total 
prediction accuracy for the variants in each category. 
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Fig. 4. Validating predictions using ClinVar dataset. (a) Details of the 2020 ClinVar dataset. The 
"Total" column represents the number of variants included in the 2020 ClinVar dataset and used in 
the prediction. Variants for which a score was available from Varibench were used in the prediction. 
The "Predicted label" columns show the number of labels predicted by PathoGN. (b) For each 
significance label, the distribution of the predicted pathogenicity probability is shown. The vertical 
axis shows the frequency percentage normalized by the number of variants with each label, and the 
horizontal axis shows the predicted pathogenicity probability. Here, the predicted probability of 
Benign is equal to the pathogenicity probability minus one. Dash line indicates cut-off value for the 
label (Youden index = 0.3902) (c) Details of the variants reviewed with ACMG guideline. All variants 
are annotated as “Uncertain significance” in 2020 ClinVar dataset.  
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2021. ; https://doi.org/10.1101/2021.07.15.452566doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452566
http://creativecommons.org/licenses/by/4.0/


 

17 
 

 

Table 1a. The statistics of knowledge graph for the basic biological network. The number of 
nodes and edges in the knowledge graph constructed from the molecular network (Reactome). 
Reactome instance is a Reactome record, which indicates a reaction by any of the components in 
the Reactome database. 
 

nodes edges 

Protein Compound Reactome 
instance 

Protein - 
Protein 

Protein - 
Compound 

Protein-
Reactome 

7003 885 677 24975 6805 2952 

 

Table 1b. The statistics of knowledge graph for the benchmark dataset. The number of nodes 
and edges in the knowledge graph constructed each benchmark dataset and molecular network 
graph. In the node columns, fixed nodes derived from Reactome dataset are omitted. The “total” 
edges include self-edges and bidirectional edges, and the “unique” column is calculated by (total 
edges – the number of nodes)/2. The interaction edges (e.g. score-variant) include bidirectional 
edge. 
 
 

 nodes edges 

dataset total variant gene proteins scores total unique score-
variant 

gene-
variant 

protein-
variant 

exovar 57192 8850 9089 3862 151 2646530 1294669 177000 17700 17700 

humvar 98062 40389 12791 9488 154 3444336 1673137 807780 80778 80778 

predictSNP 63286 16098 11129 664 155 2826576 1381645 321960 32196 32196 

swissvar 62645 12729 9694 4830 152 2745079 1341217 254580 25458 25458 

varibench 59640 10266 9521 4460 153 2682962 1311661 205320 20532 20532 
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Table 2. Details of the ClinVar dataset and performance results. Training set includes variants 
annotated as Pathogenic or Benign in ClinVar. For the “Infer” set, variants have conflicting clinical 
significance among 2019, 2018, 2017, and 2020. The clinical significance in 2020 was assumed to 
be the correct label, and the accuracy and AUC were calculated accordingly. 
 

 
Training set Infer set 

Accuracy AUC 
pathogenic benign pathogenic benign 

2019 10654 4163 344 564 0.8700 0.9410 

2018 11041 3893 409 727 0.8636 0.9365 

2017 10490 3555 555 836 0.8742 0.9468 
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Methods: 

 

Graph Convolutional Network model 

Graph Convolutional Network model (GCN) is a type of neural network proposed by Tomas Kipf in 

2017 35. It takes a graph as input, convolves features of adjacent nodes, so it can learn the structural 

information of the graph. Networks such as molecular interactions can be represented by a graph, 

and GCN is suitable for network-based prediction. Here, we apply GCN on the pathogenicity 

prediction task. We consider an undirected graph with total 𝑁 nodes and labeled 𝑇 nodes. 

In the pre-processing step, we construct a binary, symmetric adjacency matrix 𝐴 ∈ ℝ!×! by setting 

entries 𝐴#$ = 1, if relationships are present between nodes (i.e., proteins, genes, variants, 

compounds, and prediction scores) 𝑖 and 𝑗. 𝐴+ = 𝐴 + 𝐼! is the adjacency matrix with added self-

connections, where 𝐼! is the identity matrix. 

In the Embedding layer, node indices are represented by a fixed-length feature vector 𝑥 and updated 

by learning. Then the values of each element are clipped to [0, 1.5]. 𝑋 ∈ ℝ!×% is a matrix of node 

feature vectors with dimension 𝐶. 

In the Graph Convolution layer, node features are updated according to the following propagation 

rule: 

	𝑍 = 	𝜎4𝐴+𝑋𝑊6 

 

Here, 𝑍 is the convolved node feature matrix, 𝑊 ∈ ℝ%×& is a weight matrix, 𝜎(∙) denotes an 

activation function and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = '
'()*+	(.*)

 is used. 

In the Dense layer, Z is projected onto binary classification probability using a fully connected layer 

and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥0) =
)*+	(*!)

∑ )*+	(*!)!
. 

The cross-entropy loss used as the objective function is defined as follows: 

	ℒ = −D𝑦2
2∈4

ln𝑧2 

where label and classification probability are denoted by 𝑦 and 𝑧, respectively. 
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We employed 𝐶 = 128 and 𝐹 = 64. We initialize weights using He Normal initialization 36. We train 

models every 1000 labeled nodes for a maximum of 100 epochs using Adam 37 with early stopping. 

The learning rate and window size of early stopping are 0.001 and 3 for the benchmark datasets, 

0.01 and 5 for the ClinVar datasets. To implement this model, Tensorflow 38 was used. 

 

Benchmark datasets 

We evaluated PathoGN using five datasets constructed in the VariBench benchmark set 36. The 

benchmark set consists of five datasets, VariBench, HumVar, PredictSNP, SwissVar, and ExoVar. 

The definition of variants as being pathogenic (damaging) or benign (neutral) vary between each 

dataset. The VariBench dataset collects nsSNV that affect protein tolerance as positive controls and 

obtains negative controls from dbSNP. HumVar dataset contains disease-causing mutations from 

UniProtKB database as positive controls and uses nsSNPs with MAF > 1% as negative controls. The 

PredictSNP dataset is constructed from disease-causing/deleterious variants with neutral variants 

from various databases such as SwissProt and HGMD. The SwissVar dataset collects positive 

controls that were found in patients or have a reported disease association from the literature, with 

negative controls collected from variants without any reports of disease association. In the ExoVar 

dataset, positive controls are variants related to human Mendelian disease annotated in UniProt 

database, and negative controls are collected using nsSNVs in the 1000 Genomes Project.  

Wholly or partly HumVar and ExoVar datasets are potentially used to train MutationTester2, 

MutationAssessor, PolyPhen2, and FatHMM-W. Contrarily, VariBench, PredictSNP, and SwissVar 

datasets are provided after filtering variants used in the training phase of the prediction tools. An 

unavoidable exception for MutationTester2 is mentioned in 39. These datasets are obtained from the 

VariBench website (http://structure.bmc.lu.se/VariBench/GrimmDatasets.php). 

 

Construction of graph representation to predict pathogenicity 

We defined the graph representation for ensemble prediction using protein–protein interactions 

obtained from Reactome 40 
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(https://reactome.org/download/current/interactors/reactome.homo_sapiens.interactions.tab-

delimited.txt; Download 2021 July). The molecular network consists of 7,003 proteins, 885 

compounds, 677 reactome instances, and 35,340 unique interactions. The graph consists of nodes 

representing each variant, gene, and protein. Each node initially has a random value. The variant 

nodes have labels to indicate whether they are pathogenic or benign, and prediction score nodes are 

predicted by MutationTaster, MutationAssesor, PolyPhen2, CADD, SIFT, LRT FatHMM-U, FatHMM-

W, GERP++, and PhyloP. The prediction scores from these tools were obtained from the VariBench 

website, which was the same as for the benchmark datasets. We excluded Condel, Condel+, Logit, 

Logit+ because they include PP2, MutationAssessor, and SIFT scores. Before merging into the 

graph, the prediction scores were normalized to the range −8 to 8, and missing values were replaced 

by nodes representing a missing value.  

 

Validation with benchmark dataset 

We constructed graphs with each dataset and trained them. For performance evaluation, prediction 

scores from Mutation Taster, Mutation Assessor, SIFT, PolyPhen2, LRT, and FATHMM-W in the 

benchmark set were used as comparators in this study. Mutation Taster 41 predicted the disease-

causing potential of each variant with a naïve Bayes classifier that incorporated evolutionary 

conservation and splice-site changes. MutationAssessor 42 evaluated the functional impact of 

missense variants based on the evolutionary conservation of amino acids in protein sequences. The 

likelihood ratio test (LRT) 43 utilized a comparative genomics dataset of multiple vertebrate species 

to evaluate conserved amino acid positions and predicted the effect of variants. SIFT 44 evaluated 

whether variants were deleterious on sequence homology and position-specific scoring matrices with 

Dirichlet priors. PolyPhen2 45 utilized sequence conservation and also protein information such as B-

Factor and solvent accessibility and employs the naive Bayes classifier algorithm. FATHMM 46 

incorporated hidden Markov models and sequence conservation of amino acids. FATHMM-W is an 

improved version that incorporated pathogenicity weights derived from disease association. 

FATHMM-W was shown to have the best performance in benchmark testing by Grimm et al.39. Only 
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variants for which predicted scores could be obtained by all comparator tools were used in the 

evaluation. 

To investigate algorithm superiority, we compared performance with RF and SVM. Random forest is 

often employed for ensemble methods and shows good performance. For example, REVEL 

incorporates RF and 18 individual pathogenicity predictions and outperforms other ensemble 

methods. We implemented prediction models based on RF and SVM algorithms with scikit-learn. 

Hyperparameters of both models were selected by grid-search using 3-fold cross validation. For RF 

and SVM, the normalized prediction scores were also used as input features and missing values 

were completed by using the mean. The labels for each variant were assigned as being pathogenic 

or benign using cut-offs determined from the Youden index 47 of the predicted scores or probabilities. 

The Youden index is the point with the maximum value calculated by (sensitivity + specificity −1). 

The cut-off values for the validation are shown in Extended data Table 3. 

 

Validation with ClinVar dataset  

The ClinVar dataset was downloaded in variant call format (VCF) from the web site of the National 

Center for Biotechnology Information (NCBI) ClinVar. For evaluation, a dataset downloaded on 

January 8th, 2019 was used. Missense single nucleotide variants that were annotated as pathogenic 

and benign were used for training, and we estimated labels for variants with conflicting significance 

from a dataset downloaded on February 10th, 2020 (2020 dataset). As some variants in ClinVar had 

multiple significances, we categorized variants using the following terms: Benign, Likely_benign, 

Likely_pathogenic, Pathogenic, Conflicting, Uncertain, NotProvided, NonACMG. Details of these 

categories are shown in Extended data Table 4. For each variant, we assigned the prediction scores 

obtained from the VariBench dataset, and variants whose scores are not listed in Varibench dataset 

were eliminated. The graph data was constructed using the prediction scores and Reactome dataset 

with the same workflow as above. For training, 14,817 variants were used, and for prediction, 908 

variants were targeted. For the 2017 and 2018 datasets, the same process was performed. The 
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datasets for 2017 and 2018 used the following versions: clinvar_20170104 and clinvar_20180401, 

respectively.  

We evaluated our model with mean accuracy and mean AUC by 5-fold cross validation. The 

accuracies of each model are shown in Extended data Table 5. The model with the best 

performance among folds was used to estimate labels with conflicting variants. The details of 

conflicting variants in each dataset are shown in Extended data Table 6. The labels for each 

conflicting variant were decided based on the probability of pathogenicity and compared with the 

significance in the 2020 dataset.  

 

Prediction for variants with no clearly defined significance in ClinVar and manual validation 

Predictions were also conducted for variants that were not annotated as being either pathogenic or 

benign in the 2020 dataset. The model was trained with labeled data from the 2020 dataset and then 

used to predict labels for the unlabeled variants. The cut-off value for prediction was determined 

using the Youden index 47. For this prediction, we employed 0.3902 as the cut-off for predictions. 

Of these, variants annotated as "Uncertain significance" in 2020 ClinVar and with more than 0.9 

predicted probability of pathogenic or benign were extracted. Five variants were selected for which 

detailed case information could be analyzed in the National Center for Cancer in Japan (NCC). The 

clinical genetics professionals at NCC classified the variant pathogenicity based on the ACMG 

guidelines 48.  

The ACMG guideline defines 28 criteria to assign an evidence code type for a variant. Each 

evidence code type is represented by benign (B) or pathogenic (P), and a level of evidence strength: 

stand-alone (A), very strong (VS), strong (S), moderate (M), or supporting (P). Here, multiple criteria 

may be applicable for a single variant. The overall combination of criteria is then used to determine if 

the variant is pathogenic.  

 

Data availability:  
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All data are available in the main text. The knowledge graph used for PathoGN was constructed 

from public databases; Reactome, VariBench, ClinVar. The predicted results for all benchmark 

datasets and the pathogenicity scores for ClinVar 2020 dataset predicted by PathoGN are available 

on GitHub (https://github.com/clinfo/PathoGN.git). The pathogenicity scores for ClinVar 2020 dataset 

are also available in MGeND (https://mgend.med.kyoto-u.ac.jp/).  

 

Code availability: 

The open-source Python code to run the demo with PathoGN is available on GitHub 

(https://github.com/clinfo/PathoGN.git).   
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