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Abstract 

Acoustic	 atypicalities	 in	 speech	 production	 are	 widely	 documented	 in	 Autism	 Spectrum	

Disorder	(ASD)	and	argued	to	be	both	a	potential	factor	in	atypical	social	development	and	

potential	markers	of	clinical	 features.	A	recent	meta-analysis	highlighted	shortcomings	 in	

the	 field,	 in	particular	 small	 sample	 sizes	and	study	heterogeneity	 (Fusaroli,	 Lambrechts,	

Bang,	Bowler,	&	Gaigg,	2017).	We	showcase	a	 cumulative	yet	 self-correcting	approach	 to	

prosody	in	ASD	to	overcome	these	issues.		

We	analyzed	a	cross-linguistic	corpus	of	multiple	speech	productions	in	77	autistic	children	

and	adolescents	and	72	neurotypical	ones	(>1000	recordings	in	Danish	and	US	English).	We	

replicated	findings	of	a	minimal	cross-linguistically	reliable	distinctive	acoustic	profile	for	

ASD	(higher	pitch	and	longer	pauses)	with	moderate	effect	sizes.	We	identified	novel	reliable	

differences	between	the	two	groups	for	normalized	amplitude	quotient,	maxima	dispersion	

quotient,	and	creakiness.	However,	all	these	differences	were	small,	and	there	is	 likely	no	

one	acoustic	profile	characterizing	all	autistic	individuals.	We	identified	reliable	relations	of	

acoustic	features	with	individual	differences	(age,	gender),	and	clinical	feature:	speech	rate	

and	 ADOS	 sub-scores	 (Communication,	 Social	 Interaction,	 and	 Restricted	 and	 Repetitive	

Behaviors).		

Besides	cumulatively	building	our	understanding	of	acoustic	atypicalities	in	ASD,	the	study	

concretely	 shows	 how	 to	 use	 systematic	 reviews	 and	 meta-analyses	 to	 guide	 follow-up	

studies,	both	in	their	design	and	their	statistical	inferences.	We	indicate	future	directions:	

larger	 and	 more	 diverse	 cross-linguistic	 datasets,	 taking	 heterogeneity	 seriously,	 use	 of	

previous	 findings	 as	 statistical	 priors,	 understanding	 of	 covariance	 between	 acoustic	

measures,	reliance	on	machine	learning	procedures,	and	open	science.	

Lay Summary  

Autistic	individuals	are	reported	to	speak	in	distinctive	ways.	Distinctive	vocal	production	

can	affect	social	interactions	and	social	development	and	could	represent	a	noninvasive	way	

to	support	the	assessment	of	ASD.	We	systematically	checked	whether	acoustic	atypicalities	
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found	 in	 previous	 articles	 could	 be	 actually	 found	 across	 multiple	 recordings	 and	 two	

languages.	We	find	a	minimal	acoustic	profile	of	ASD:	higher	pitch,	longer	pauses,	increased	

hoarseness	and	creakiness	of	 the	voice.	However,	 there	 is	much	individual	variability	(by	

age,	sex,	language,	and	clinical	characteristics).	This	suggests	that	the	search	for	one	common	

"autistic	voice"	might	be	naive	and	more	fine-grained	approaches	are	needed.	
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1. Introduction 
Atypical	prosody	and	voice	 are	 commonly-reported	aspects	of	 the	 speech	of	people	with	

autism,	which	has	been	characterized	as	 flat,	 sing-songy,	pedantic,	hollow,	 inappropriate,	

hoarse	or	hyper-nasal	(Asperger	&	Frith,	1991;	Goldfarb,	Braunstein,	&	Lorge,	1956;	Kanner	

et	 al,	 1943;	 Pronovost,	Wakstein,	 &	Wakstein,	 1966;	 Simmons	&	 Baltaxe,	 1975).	 Indeed,	

distinctive	 prosody	 is	 part	 of	 the	 diagnostic	 criteria	 in	 the	 ICD-10	 and	 in	 the	 ADOS-2	

assessment	for	autism	(Lord,	Rutter,	Dilavore,	&	Risi,	2008;	WHO	1992)	and	is	indicated	as	

one	 of	 the	 earliest-appearing	 markers	 of	 a	 possible	 Autism	 Spectrum	 Disorder	 (ASD)	

diagnosis	(Oller	et	al	2010).	These	vocal	factors	may	play	a	role	in	the	socio-communicative	

impairments	 associated	 with	 the	 disorder.	 In	 addition	 to	 potentially	 impeding	 effective	

communication	 of	 e.g.,	emotional	 content	 (Travis	 &	 Sigman,	 1998),	 they	 also	 generate	

negative	 responses	 from	 neurotypical	 raters,	 even	when	 hearing	 as	 little	 as	 1	 second	 of	

speech	(Grossman	2015,	Sasson	et	al.,	2017).	These	negative	first	impressions	may	have	long	

term	effects,	e.g.,	providing	a	less	optimal	scaffolding	for	socio-communicative	development,	

or	even	increasing	the	risks	of	social	withdrawal	and	anxiety	(Fay	&	Schuler,	1980;	Paul	et	

al.,	 2005;	Shriberg	et	al.,	 2001;	Van	Bourgondien	&	Woods,	1992;	Warlaumont,	Richards,	

Gilkerson,	&	Oller,	 2014).	Given	 their	 potential	 role	 in	 affecting	 social	 functioning	 and	 in	

assisting	diagnostic	and	assessment	processes,	it	is	important	to	understand	how	these	vocal	

atypicalities	 manifest	 themselves	 across	 autistic	 people	 and	 uncover	 their	 acoustic	

underpinnings.	This	is	especially	true	if	we	want	to	assess	whether	and	how	assessment	and	

intervention	tools	should	be	developed	to	target	them.	

It	has	been	nearly	80	years	since	unusual	prosody	was	first	reported	by	Kanner	in	

1943,	 and	 there	 is	 a	 growing	 interest	 in	 finding	markers	 of	 ASD	 and	 social	 functioning.	

Nevertheless,	two	reviews	of	the	field	show	that	we	know	remarkably	little	about	the	precise	

perceptual	and	acoustic	properties	differentiating	the	speech	of	autistic	people	from	that	of	

neurotypical	peers.	A	review	of	the	literature	from	2003	concluded	that	“No	study	offers	a	

large	 number	 of	 subjects,	 matched	 with	 neurotypical	 children	 or	 adults	 (controlled	 for	

linguistic	 and	non-verbal	 abilities).	 If	 findings	were	 consistent,	 small-scale	 studies	would	

offer	pointers,	but	as	it	is	these	do	not	inspire	confidence”	(McCann	&	Peppé,	2003:347).	A	

more	recent	systematic	review	and	meta-analysis	(Fusaroli	et	al.,	2017)	concluded	that	some	
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single	 acoustic	 features	 (pitch	 mean	 and	 variability)	 showed	 robust	 small	 to	 moderate	

differences	 between	 groups.	 However,	 the	 studies	 reviewed	 were	 noted	 to	 have	 small	

sample	size,	high	heterogeneity	in	methods	and	features	analyzed,	voice	quality	features	-	

highlighted	as	important	by	speech	pathologists	and	speech	processing	research	-	had	been	

largely	 neglected,	 and	 that	 there	was	 a	 need	 for	multivariate	 approaches	 to	 account	 for	

shared	variance	and	interactions	across	features.	In	other	words,	there	is	a	need	for	a	more	

rigorously	 cumulative	 scientific	 approach	 to	 the	 understanding	 of	 vocal	 and	 prosodic	

atypicalities	in	ASD.	

In	this	paper	we	develop	such	an	approach.	First,	we	rely	on	the	most	recent	meta-

analysis	 of	 the	 field	 to	 set	 up	 the	 analysis	 of	 two	 new	 data	 sets.	 We	 build	 on	 the	

recommendations	 there	 produced,	 and	 test	 the	 replicability	 of	 the	meta-analytic	 results	

(Fusaroli	et	al	2018).	Second,	as	a	cumulative	approach	might	critically	increase	the	number	

of	acoustic	features	to	analyze	we	explore	principled	ways	to	reduce	the	feature-space	to	a	

meaningful	and	interpretable	subset	of	features.		

1.1. Towards a cumulative research approach  

A	very	common	approach	to	cumulative	research	is	to	perform	systematic	reviews	to	map	

the	 field,	 and	meta-analyses	of	previous	 results	 to	achieve	a	more	 robust	estimate	of	 the	

underlying	phenomena,	beyond	 the	variability	of	single	studies.	As	an	example,	of	 the	17	

studies	conducted	between	2010	and	2016,	13	found	that	people	with	autism	had	a	wider	

pitch	range,	while	4	studies	found	the	opposite	effect	(Fusaroli	et	al.,	2017).	A	meta-analysis	

can	pool	the	data	from	the	different	studies	and	perform	an	overarching	inference	as	to	the	

underlying	effect	size,	and	even	assess	whether	systematic	variations	in	study	design	(e.g.,	

monological	vs.	dialogic	speech	production)	might	explain	the	differences	in	effects	between	

studies	(Cumming,	2014;	Parola	et	al.,	2020;	Weed	&	Fusaroli,	2020).	A	common	critique	of	

this	approach	is	“garbage-in-garbage-out”:	If	the	studies	included	are	too	diverse,	biased,	or	

methodologically	 problematic,	 the	 meta-analytic	 inference	 will	 also	 be	 unreliable,	 and	

potentially	overestimate	effect	sizes	(Lewis	et	al	2020;	Open	Science	Collaboration,	2015).	

While	a	few	different	techniques	have	been	developed	to	assess	the	heterogeneity	between	

studies	and	potential	publication	biases	(Dwan,	Gamble,	Williamson,	&	Kirkham,	2013),	they	
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are	not	a	solution	to	the	issue	of	more	reliably	estimating	the	true	effect,	and	the	critique	

remains	valid.	Systematic	reviews	and	meta-analyses	are	invaluable	to	get	a	feel	for	the	field	

and	identify	potential	issues	or	directions	for	research,	but	they	should	always	be	taken	with	

caution	as	the	researchers	have	no	control	on	the	quality	and	biases	of	the	studies	reviewed.	

We	 therefore	 need	 to	 critically	 combine	 systematic	 assessments	 of	 the	 field	 with	 well-

targeted	replications	and	new	studies.		

1.1.1 Building on existing guidelines  

Previous	systematic	reviews	and	meta-analyses	can	be	used	to	identify	current	best	

practices,	pitfalls	and	blindspots,	and	therefore	develop	guidelines	for	new	studies	(Gelman,	

Jakulin,	Pittau,	Su,	&	others,	2008;	König	&	Schoot,	2018;	Williams,	Rast,	&	Bürkner,	2018).	

Indeed,	Fusaroli	et	al.	(2017)	identified	several	key	areas	for	improvement	in	investigating	

vocal	atypicalities	in	ASD.		

1.1.1.1 More attention to the heterogeneity of the disorder 

Building	on	insights	from	Fusaroli	et	al	(2017),	we	designed	a	new	study	based	on	

two	 existing	 corpora	 of	 voice	 data,	 collected	 in	 the	US	 and	Denmark	 (Cantio	 et	 al,	 2016;	

Grossman,	 Edelson,	 &	 Tager-Flusberg,	 2013).	 The	 study	 involves	 a	 high	 degree	 of	

heterogeneity	in	its	sample:	two	diverse	languages	(Danish	and	US	English)	and	a	larger	than	

average	 sample:	77	autistic	participants	 and	72	neurotypical	 (NT)	participants,	 against	 a	

previous	median	sample	size	of	17.	Further,	the	study	involves	repeated	measures	of	voice	

(between	 4	 and	 12	 separate	 recordings	 per	 participant).	 For	 each	 participant	 we	 have	

demographic	(age,	biological	sex,	native	language)	and	clinical	features	(ADOS	total	scores,	

as	well	as	the	following	sub-scores:	Communication,	Social	Interaction,	and	Restricted	and	

Repetitive	Behaviors).		

1.1.1.2. More systematic use of acoustic features across studies 

Second,	Fusaroli	et	al	(2017)	noted	that	different	studies	measured	different	acoustic	

features	 with	 diverse	 methods,	 without	 any	 explicit	 concern	 about	 comparing	 across	
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studies1.	Within	our	sample	we	systematically	extract	the	acoustic	features	identified	in	the	

recent	 meta-analysis	 by	 Fusaroli	 (2017).	 This	 includes	 measures	 of	 pitch	 (median	 and	

variability),	and	rhythm	(speech	rate,	average	syllable	length,	pause	number	per	unit	of	time,	

and	length)2.		

Further,	clinicians	variously	describe	autistic	voices	as	hoarse,	creaky,	breathy,	harsh	

or	otherwise	dysphonic	(e.g.,	Baltaxe,	1981;	Pronovost	et	al.,	1966;	Sheinkopf,	Mundy,	Oller,	

&	Steffens,	2000).	We	therefore	identified	in	the	speech	signal	processing	literature	acoustic	

features	thought	to	be	related	to	these	perceptual	qualities,	e.g.,	pertaining	to	the	glottal	or	

spectral	domain,	fully	listed	in	the	methods	section,	and	in	Table	S1.		

1.1.1.3. Interdependencies between features and feature selection 

Third,	 expanding	 the	 acoustic	 features	 investigated	 will	 produce	 a	 non-trivial	

increase	in	the	number	of	statistical	analyses	required,	potentially	inflating	the	risk	of	false	

positives.	Further,	acoustic	features	are	likely	to	be	related	to	each	other,	and	therefore	we	

should	assess	whether	all	the	features	investigated	provide	independent	information,	and	

whether	it	is	really	necessary	to	add	more	complex	acoustic	measures	of	voice	quality	to	the	

more	 traditional	 prosodic	 measures.	 Broadly	 speaking,	 there	 are	 at	 least	 four	 main	

approaches	 to	 the	 problem	 of	 feature-space	 reduction:	 1)	 theoretically-justified	 a	 priori	

decisions,	2)	dimensionality	reduction	methods,	3)	clustering	techniques,	and	4)	outcome-

based	methods.	Each	of	these	is	a	potentially	viable	method	for	reducing	the	feature	space,	

but	each	comes	with	trade-offs.	We	briefly	discuss	each	of	these	in	turn.	

Theoretically-justified	 a	 priori	 feature	 selection	 is	 the	 simplest	 of	 these.	 Choosing	

features	a	priori	has	the	advantage	of	being	perhaps	the	most	easily	interpretable	of	all	four	

	
1	Exploration	is	a	necessary	component	of	research,	and	one	should	not	put	standardization	in	front	of	it,	to	
avoid	getting	stuck	with	suboptimal	methods	(e.g.,	Devezer	et	al	2019;	Wurbel,	2000).	However,	it	is	just	as	
important,	especially	when	discussing	markers	of	disorders,	to	assess	whether	the	findings	generalize	to	new	
samples	and	how	different	methods	compare	to	each	other	(Rocca	and	Yarkoni,	2021).	

2	Note	that	we	did	not	include	intensity-based	measures,	because	we	deemed	them	unreliable,	due	to	their	
strong	dependence	on	distance	from	the	microphone,	movements,	etc.	(Barsties	&	De	Bodt,	2015).	
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approaches:	given	that	the	features	have	been	chosen	on	theoretically	informed	grounds,	the	

framework	for	interpreting	them	is	already	there.	

Dimensionality	reduction	methods,	such	as	Principal	Component	Analysis	(PCA)	are	

a	class	of	methods	which	involve	the	data-driven	inference	of	latent	variables	underlying	the	

actual	features	investigated.	The	goal	is	to	identify	a	small	number	of	variables	which	can	

account	for	the	majority	of	the	variance	in	the	acoustic	features	(Pearson,	1901).	Because	

PCA	transforms	the	feature-space	into	a	smaller	number	of	inferred	features	and	does	not	

distinguish	 between	 shared	 and	 unique	 variance	 among	 the	 original	 features,	 the	

components	 identified	 may	 be	 difficult	 to	 interpret	 within	 a	 theoretically	 meaningful	

framework	(Preacher	&	MacCallum,	2003).	

Network	 modeling	 approaches	 conceive	 of	 features	 as	 nodes	 in	 a	 network,	 and	

represent	the	shared	variance	between	them	graphically	as	connections	between	the	nodes.	

An	 advantage	 to	 network	 models	 is	 that	 they	 represent	 the	 relationships	 between	 the	

original	variables	graphically,	making	them	easier	to	interpret.	A	variety	of	algorithms	exist	

for	identifying	“communities”	of	related	variables,	thus	facilitating	dimensionality	reduction.		

A	final	approach	is	outcome-driven	(or	supervised)	feature	selection.	This	common	

machine	learning	approach	aims	at	identifying	the	minimum	set	of	features	most	effective	in	

discriminating	 between	 groups	 (Huang,	 2015;	 Smialowski	 et	 al.,	 2010)	 These	 algorithms	

evaluate	features	based	on	their	correlations	with	previously	labelled	data	(Sheikhpour	et	

al.,	2017).	Because	this	approach	selects	features	from	the	original	data	set,	it	can	maintain	

a	 reasonable	 degree	 of	 interpretability,	 although	 these	 techniques	 can	 easily	 choose	 a	

combination	of	features	that	do	not	make	obvious	intuitive	sense.		

We	 wished	 to	 explore	 common	 principled	 means	 of	 reducing	 these	 often	

intercorrelated	 acoustic	 features	 to	 a	 smaller	 subset	 of	 features.	 Ideally,	 these	 should	 be	

features	which	are	not	only	useful	 for	modeling	 the	voice	 in	a	predictive	 framework,	but	

which	are	also	easily	generalizable	and	crucially	clinically	intuitive.	We	therefore	chose	to	

focus	 on	 dimensionality	 reduction	 and	 network	 analysis.	 We	 discarded	 a	 priori	 feature	

selection,	although	we	hope	that	over	time,	cumulative	and	theory-driven	studies	will	lead	

to	 an	 a	 priori	 set	 of	 features.	We	 also	 set	 aside	 outcome-based	methods	 as	 our	 primary	
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interest	here	is	in	understanding	the	broader	landscape	of	acoustic	features	associated	with	

the	 speech	 of	 people	 with	 autism,	 and	 not	 optimizing	 for	 predictive	 power	 with	 our	

particular	data	set.		

1.1.1.4. Open science practices 

To	 further	 promote	 cumulative	 approaches,	 we	 also	 provide	 an	 open	 data	 set	

including	 demographic,	 clinical	 and	 acoustic	 features,	 and	 open	 scripts	 to	 reproduce	 our	

analysis	on	the	current	data	set	and	replicate	and	extend	our	findings	on	future	data	sets	

(https://osf.io/gnhw4/?view_only=3e51ee6253d548eb836af23ed9d01d73m;	 see	 also	

Wilkinson,	2016	and	Parish-Morris	et	al.,	2016).	

1.2. Hypotheses 

Based	 on	 the	 systematic	 review	 and	meta-analysis	 and	 on	 current	meta-scientific	

knowledge	 on	 replicability	 of	 meta-analytic	 findings,	 we	 developed	 the	 following	

expectations.	

1. We	will	replicate	meta-analytic	findings	that	autistic	people	have:	higher	pitch	

mean	 and	 variability;	 more	 frequent	 and	 longer	 pauses;	 no	 differences	 in	

speech	rate	and	syllable	length,	compared	to	neurotypical	participants.		

a. Effect	sizes	will	be	half	to	a	third	smaller	than	previous	meta-analytic	

findings	due	to	hard	to	correct	publication	bias	issues	(Kvarven	et	al.,	

2020,	see	Table	2	for	effect	sizes	of	meta-analytic	findings).		

2. At	 least	 some	 of	 the	measures	 of	 voice	 quality	 will	 be	 different	 in	 autistic	

people	compared	to	neurotypicals,	with	effect	sizes	comparable	to	prosodic	

measures.		

3. We	expect	 the	 acoustic	profile	 of	 autistic	 voice	 to	be	 affected	by	 individual	

differences	 (vs.	 a	 unique	 profile	 of	 autistic	 voice).	 In	 particular,	 we	 expect	

effects	 to	 be	 different	 by	 gender,	 and	 age;	 and	 acoustic	 features	 to	 relate	

clinical	 features	 of	 ASD	 as	 measured	 by	 ADOS	 sub-scores.	 In	 particular,	

increased	 pitch	 mean	 and	 variability,	 and	 pause	 number	 will	 relate	 to	

increased	sub-scores,	plausibly	Social	and	Communication.	
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In	a	more	exploratory	fashion,	we	investigate	whether	acoustic	features	share	variance,	thus	

suggesting	a	priori	ways	of	reducing	the	number	of	features	investigated.	

2. Materials and Methods 

2.1. Participants and recordings 

We	collected	two	Danish	and	US	English	data	sets	involving	77	autistic	participants	and	72	

neurotypical	 (NT)	participants,	 each	 recording	 several	 audios,	 for	 a	 total	 of	 1074	unique	

recordings.	 The	Danish	 dataset	 included	 29	 autistic	 participants	 and	 38	NT	 participants,	

retelling	stories	(Memory	for	stories,	Reynolds	and	Voress,	2007)	and	freely	describing	short	

videos	(Abell	et	al,	2000).	The	dataset	included	335	recordings	of	autistic	 individuals	and	

427	recordings	 from	NT	participants.	The	US	English	data	set	 included	48	participants	of	

ASD	and	34	NT	participants,	retelling	stories	(Grossman	et	al	2013).	The	dataset	included	

178	 recordings	 of	 autistic	 individuals	 and	 134	 recordings	 from	 NT	 participants.	 The	

recordings	had	been	collected	 for	other	purposes	and	 their	 content	–	but	not	acoustics	–	

analyzed	in	published	studies	(Cantio	et	al	2016;	Grossman	et	al	2013).	

Table	1.	Participant	characteristics.	Clinical	symptoms	severity	was	measures	using	the	Autism	

Diagnostic	Observation	Schedule	–	Generic	(ADOS,	Lord	et	al	2000).	Cognitive	functions	were	

measured	using	the	WISC-III	for	the	Danish	data	(Kaufman,	1994),	and	the	Leiter-R	(nonverbal	

IQ,	Roid	&	Miller,	1997)	and	the	Peabody	Picture	Vocabulary	test	(receptive	vocabulary,	Dunn	

&	Dunn,	2007).		Note	that	the	age	spans	are	not	precisely	overlapping	in	the	two	corpora,	but	

this	is	not	an	issue	for	the	following	analyses,	given	the	effects	are	tested	separately	in	the	two	

corpora.	

Language	 Group	 Age	(months)	
Males/		
Total	N	 ADOS	–	Mean	(SD)	 Cognitive	function	

US	English	 NT	 160.24	(36.57)	 27/38	 NA	 Verbal	IQ	114.58	(16.91)		
Nonverbal	IQ	113.84	(9.71)	

US	English	 ASD	 152.83	(36.46)	 24/29	 Total:	13.94	(5.80)		
Communication	3.42	(1.71)		
Social	8.71	(2.57)		
Repetitive	1.59	(2.03)	

Verbal	107.55	(19.15)	
Nonverbal	104.64	(15.49)	

Danish	 NT	 130.53	(15.79)	 31/34	 NA	 Verbal	108.59	(18.22)	
Nonverbal	102.57	(16.30)	

Danish	 ASD	 132.00	(17.13)	 46/48	 Total:	11.31	(3.03)		
Communication	2.85	(1.43)		

Verbal	100.72	(19.02)	
Nonverbal	103.14	(18.62)	
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Social	7.04	(1.84)		
Repetitive	0.15	(0.46)	

All	 recordings	were	 pre-processed	 to	 remove	 background	 noise	 and	 interviewer	 speech	

when	present.	32	acoustic	measures	were	extracted	(see	Table	2	and	3).	A	full	description	of	

the	process	and	features	is	available	in	the	Supplementary	Materials	–	S1.	

2.2. Statistical modeling 

2.2.1. Differences by diagnostic group 

To	 assess	 whether	 autistic	 participants	 differed	 from	 NT	 participants,	 we	 ran	

Bayesian	multilevel	Gaussian	regression	models	with	the	standardized	acoustic	feature	as	

outcome,	group	(ASD	vs.	NT)	and	language	(Danish	vs.	US	English)	as	predictors	(separately	

assessing	 the	 effects	 within	 language),	 and	 varying	 effects	 by	 participant	 (separately	 by	

language	 and	 group).	 Further	 details	 on	 the	 implementation	 and	 on	 the	 priors	 used	 are	

presented	 in	 the	 Supplementary	 Materials	 –	 S2,	 S3	 and	 S5.	 We	 reported	 the	 estimated	

difference	by	group	in	terms	of	mean	difference	separately	by	language	(that	is,	by	corpus),	

95%	Compatibility	Intervals	(CIs,	indicating	the	probable	range	of	difference,	assuming	the	

model	is	correct)	and	Evidence	Ratio	(ER,	evidence	in	favor	of	the	effect	observed	against	

alternative	hypotheses).	When	ER	was	weak	(below	3,	that	is,	less	than	three	times	as	much	

evidence	for	the	effect	as	for	alternative	hypotheses),	we	also	calculated	the	Evidence	Ratio	

in	favor	of	the	null	hypothesis.	Note	that	given	the	standardization	of	the	outcome	variables,	

the	effect	size	is	equivalent	to	Cohen’s	d,	that	is,	is	expressed	in	units	of	standard	deviations.		

To	 evaluate	 the	 potential	 role	 of	 individual	 differences	 in	 biological	 sex	 (Male	

vs.	Female)	 and	 age,	 we	 built	 additional	 models,	 one	 per	 each	 suggested	 moderator	

interacting	with	group	separately	in	the	two	languages.	Age	was	modeled	in	terms	of	years	

and	scaled.	We	reported	the	model	estimates	for	the	interaction,	including	CIs	and	ERs.	

Note	that	we	report	additional	analyses	in	the	appendix	to	assess	the	robustness	of	

the	findings:	we	repeat	all	analyses	on	audio	segments	of	6	seconds	to	control	for	recoding	

length,	as	well	as	use	the	meta-analytic	findings	as	priors	to	compare	the	change	in	inference	

with	 the	 models	 using	 skeptical	 priors,	 see	 Tables	 S2,	 S4,	 S5,	 S6.	 The	 results	 generally	

support	our	main	findings	and	we	report	in	the	manuscript	only	qualitative	divergences.	
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2.2.2. Relations to clinical features 

To	analyze	the	relation	of	acoustic	and	clinical	features	(ADOS	total,	Communication,	

Social	 Interaction,	 Repetitive	 Behaviors	 scores)	 we	 built	 multilevel	 Bayesian	 linear	

regression	models	with	the	acoustic	feature	as	outcome	(rescaled	on	a	0-1	scale)	and	clinical	

features	 as	 ordinal	 predictors,	 on	 the	 ASD	 group	 only,	 separately	 by	 language	 and	with	

varying	effects	by	participant	(separately	by	language).	We	selected	only	features	that	were	

highlighted	by	 the	meta-analysis,	as	associated	with	group	differences	 (pitch	median	and	

variability,	speech	rate,	pause	number	and	length),	or	with	clinical	features	(jitter,	Harmonic	

to	Noise	Ratio).		

We	otherwise	followed	the	procedure	described	in	the	previous	paragraphs.	Further	

details	on	the	implementation	and	priors	are	available	in	the	Supplementary	Materials	-	S4	

and	S5.	Note	that	given	the	rescaling	of	the	outcome	and	predictor	variables,	the	effect	size	

is	on	the	scale	of	Pearson’s	r.	

2.3 Feature-space reduction 

We	used	 two	methods	 to	 explore	 feature-space	 reduction:	Principal	Component	Analysis	

(PCA),	 and	 a	 spin	 glass	 community	 detection	 algorithm	 on	 a	 network	model.	 PCA’s	 and	

network	 models	 were	 calculated	 separately	 data	 sets.	 See	 supplementary	 materials	 for	

details,	in	particular	S8,	as	well	as	Figure	S1	and	S2.	

The	data	analysis	scripts	are	available	in	the	article	repository	at	Open	Science	Foundation	

(https://osf.io/gnhw4/?view_only=3e51ee6253d548eb836af23ed9d01d73),	 and	 further	

details	on	the	software	employed	is	available	in	the	Supplementary	Materials	–	S5.	

3. Results  

3.1. Analysis of group differences in acoustic features 

3.1.1. Acoustic features with meta-analytic results 

The	detailed	results	and	comparison	to	the	meta-analysis	are	reported	in	Table	2,	and	Figure	

1.	 The	 results	 generally	 supported	 our	 hypotheses.	 We	 mostly	 replicated	 meta-analytic	

findings	across	both	data	sets	(H1).	Autistic	participants	across	languages	tend	to	use	higher	
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pitch,	 as	well	 as	 fewer	 and	 longer	 pauses,	 and	 showed	 no	 differences	 in	 syllable	 length.	

Perhaps	 unsurprisingly,	 the	 effect	 sizes	 in	 our	 data	 are	 often	 smaller	 than	 in	 the	 meta-

analysis	(H1a),	except	for	length	of	pauses.	We	also	observe	evidence	for	the	importance	of	

individual	and	linguistic	differences	(H3).	Only	in	US	English	did	we	see	robust	evidence	of	

slower	 speech	 rate	 and	 only	 in	 Danish	 did	 we	 see	 increased	 pitch	 variability.	 Further,	

biological	sex	and	age	interact	with	the	effects,	albeit	inconsistently	so	across	languages.	

The	findings	are	maintained	if	using	only	6	second	clips	of	the	audio	recordings,	with	the	

exception	 of	 syllable	 length	 becoming	 credibly	 longer	 in	 ASD	 in	 both	 languages	 (see	

Supplementary	Materials	–	S9,	and	Figure	S3).	

	

Table	2.	Estimated	standardized	mean	differences	(ASD	–	NT)	 for	 the	six	acoustic	measures	

present	in	the	meta-analysis.	The	first	column	reports	the	main	effect	of	the	diagnostic	group	

(across	sex	and	age),	respectively	from	the	meta-analysis,	for	Danish	and	for	US	English.	The	

second	column	indicates	the	interaction	between	the	effect	of	diagnostic	group	and	biological	

sex	(Male	–	Female),	that	is,	the	difference	in	effect	of	group	between	the	male	and	the	female	

participants.	The	third	column	reports	the	interaction	between	the	effect	of	diagnostic	group	

and	age,	that	is,	the	change	in	effect	size	as	age	increases	of	1	standard	deviation.	ER	indicates	

the	evidence	ratio	for	the	difference,	ER01	the	evidence	ratio	for	the	no	effects.	See	Table	S2	for	

a	comparative	perspective	on	the	findings	using	skeptical	(as	here)	and	informed	priors.			

	

	
Group	(ASD	-	NT)	
β	(95%	CIs)	

Biological	sex	(M	-	F)	
β	(95%	CIs)	

Age	
β	(95%	CIs)	

Pitch	Median	 	 	
MA	 0.38	(0.16	0.59)	 NA	 NA	
DK	 0.12	(-0.08	0.32)		

ER	=	5.26	
0.32	(-0.02	0.64)		
ER	=	14.62	

-0.01	(-0.06	0.03)		
ER	=	2.34	ER01	=	9.73	

US	 0.36	(0.12	0.61)		
ER	=	221	

-0.07	(-0.46	0.33)		
ER	=	1.56	ER01	=	1.81	

-0.02	(-0.06	0.02)		
ER	=	4.13	

Pitch	Variability	 	 	
MA	 0.48	(0.26	0.7)	 NA	 NA	
DK	 0.31	(0.16	0.46)		

ER	>	1000	
0.28	(-0.06	0.61)		
ER	=	11.05	

0.01	(-0.04	0.05)		
ER	=	1.45	ER01	=	10.29	

US	 0.02	(-0.2	0.23)		
ER	=	1.3	ER01	=	2.32	

-0.23	(-0.66	0.2)		
ER	=	4.41	

-0.02	(-0.06	0.01)		
ER	=	6.02	
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Speech	Rate	 	 	
MA	 0.02	(-0.27	0.31)	 NA	 NA	
DK	 0.03	(-0.14	0.2)		

ER	=	1.55	ER01	=	2.71	
-0.02	(-0.35	0.29)		
ER	=	1.19	ER01	=	2.15	

0	(-0.04	0.04)		
ER	=	1.12	ER01	=	11.28	

US	 -0.11	(-0.28	0.05)		
ER	=	6.74	

0.24	(-0.21	0.69)		
ER	=	4.12	

-0.02	(-0.06	0.01)		
ER	=	8.71	

Syllable	Length	 	 	
MA	 0.06	(-0.63	0.76)	 NA	 NA	
DK	 -0.02	(-0.14	0.09)		

ER	=	1.64	ER01	=	4.19	
-0.03	(-0.3	0.25)		
ER	=	1.37	ER01	=	2.38	

0	(-0.04	0.04)		
ER	=	1.14	ER01	=	13.57	

US	 0	(-0.21	0.22)		
ER	=	1	ER01	=	2.16	

-0.04	(-0.52	0.45)		
ER	=	1.28	ER01	=	1.48	

0	(-0.03	0.04)		
ER	=	1.1	ER01	=	13.81	

Pause	Number	 	 	
MA	 0.4	(0.01	0.78)	 NA	 NA	
DK	 -0.11	(-0.24	0.01)		

ER	=	14.04	
-0.05	(-0.34	0.22)		
ER	=	1.6	ER01	=	2.55	

-0.01	(-0.05	0.03)		
ER	=	2.36	ER01	=	11.55	

US	 -0.17	(-0.35	0)		
ER	=	17.6	

0.39	(-0.05	0.83)		
ER	=	12	

-0.02	(-0.05	0.01)		
ER	=	4.66	

Pause	Length	 	 	
MA	 0.21	(-0.09	0.5)	 NA	 NA	
DK	 0.21	(0.03	0.39)		

ER	=	34.09	
0.15	(-0.19	0.47)		
ER	=	3.4	

1.01 (-0.04	0.05)		
1.02 ER	=	2.05	ER01	=	10.31	

US	 0.27	(0.11	0.43)		
ER	=	332	

-0.12	(-0.55	0.31)	E	
R	=	1.96	ER01	=	1.4	

0	(-0.03	0.03)		
ER	=	1.17	ER01	=	16.13	
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Figure	1:	Comparing	meta-analysis,	skeptical	expectations	and	results.	Each	panel	presents	a	

separate	acoustic	measure,	with	 the	 x-axis	 corresponding	 to	 standardized	mean	differences	

(ASD	-	NT)	equivalent	to	Hedges’	g.	The	first	row	in	each	panel	presents	our	prior	expectation	

for	effects:	the	skeptical	expectations	in	red	and	the	meta-analytic	findings	in	blue.	The	second	

row	represents	the	estimated	difference	(posterior)	for	Danish,	and	the	third	for	US	English.	

Estimated	 differences	 are	 in	 red	 for	models	 using	 weakly	 skeptical	 priors	 (reported	 in	 the	

manuscript)	and	–	for	comparison	-	in	blue	for	models	using	informed	priors	(reported	in	the	

appendix).	

3.1.2. Novel acoustic features  

The	detailed	results	for	each	of	the	26	features	are	reported	in	Table	S3	in	the	appendix.	We	

observe	 small	 to	moderate	 (<	 0.4)	 but	 reliable	 differences	 by	 group	 in	 the	 voice	 quality	

features	within	each	data	set,	which	are	comparable	to	those	in	prosodic	features	(partially	

corroborating	H2).	As	in	more	traditional	acoustic	features	we	see	that	including	biological	

sex	and	age	of	the	participants	does	in	some	cases	affect	the	group	differences	(corroborating	

H3).	However,	strikingly,	only	three	acoustic	measures	present	the	same	small	but	reliable	

difference	 between	 the	 diagnostic	 group	 across	 the	 two	 languages	 (questioning	 the	
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generalizability	of	H2).	In	particular,	autistic	participants	have	higher	Normalized	Amplitude	

Quotient	(NAQ,	effect	sizes	of	0.1	and	0.11),	Maxima	Dispersion	Quotient	(MDQ,	effect	sizes	

of	0.07	and	0.06)	and	creak	(effect	sizes	of	0.13	and	0.15).	

3.2. Relation with clinical features 

Detailed	 results	 are	 presented	 in	 Table	 3.	 While	 we	 can	 observe	 several	 reliable	

relations	between	acoustic	and	clinical	features,	the	only	consistent	one	across	languages	is	

speech	 rate	 (the	 slower	 the	 speech,	 the	more	 severe	 the	 clinical	 feature),	 and	 to	a	 lesser	

degree	 Harmonic	 to	 Noise	 Ratio	 (the	 lower,	 the	more	 severe	 the	 clinical	 feature).	 Many	

correlations	are	small	(<	0.2	or	4%	of	the	variance),	but	some	are	moderate	(between	0.4	

and	0.54,	that	is,	between	16%	and	29%	of	the	variance).	The	findings	are	analogous,	albeit	

with	smaller	effect	size	in	the	6	second	audio	recordings	(see	Supplementary	Materials	–	S9).	

Table	3.	Estimated	standardized	relation	between	acoustic	and	clinical	features.	ER	indicates	

the	evidence	ratio	for	the	difference,	ER01	the	evidence	ratio	for	the	no	effects.	

	
ADOS	Total	
β	(95%	CIs)	

ADOS	Communication	
β	(95%	CIs)	

ADOS	Social	
β	(95%	CIs)	

ADOS	Stereotyped	
β	(95%	CIs)	

Pitch	
Median	DK	

0.09	(-0.39	0.62)	ER	=	
1.51	ER01	=	29.51	

0.09	(-0.2	0.4)	ER	=	2.4	
ER01	=	13.51	

0.06	(-0.37	0.52)	ER	=	
1.41	ER01	=	17.71	

-0.05	(-1.37	1.23)	ER	=	
1.18	ER01	=	3.4	

Pitch	
Median	US	

0.17	(-0.17	0.52)	ER	
=	3.68	

0.04	(-0.2	0.26)	ER	=	1.67	
ER01	=	17.41	

-0.16	(-0.42	0.12)	ER	
=	5.42	

0.14	(-0.08	0.37)	ER	=	
5.54	

Pitch	IQR	
DK	

0.02	(-0.3	0.32)	ER	=	
1.26	ER01	=	48.74	

0.15	(-0.03	0.38)	ER	=	
12.51	

-0.05	(-0.32	0.21)	ER	
=	1.57	ER01	=	28.93	

-0.1	(-1.21	0.88)	ER	=	
1.41	ER01	=	5.62	

Pitch	IQR	
US	

0.17	(-0.09	0.45)	ER	
=	5.83	

0	(-0.15	0.14)	ER	=	1.02	
ER01	=	28.49	

0.03	(-0.14	0.19)	ER	=	
1.6	ER01	=	37	

0.06	(-0.1	0.24)	ER	=	
2.64	ER01	=	16.66	

Speech	Rate	
DK	

-0.18	(-0.42	0.01)	ER	
=	14.87	

-0.17	(-0.35	-0.04)	ER	=	
87.89	

-0.1	(-0.32	0.06)	ER	
=	5.12	

0.34	(-0.15	1.3)	ER	=	
5.47	

Speech	Rate	
US	

-0.07	(-0.2	0.05)	ER	
=	4.6	

-0.03	(-0.1	0.03)	ER	=	
4.38	

-0.05	(-0.12	0.02)	ER	
=	8.66	

-0.04	(-0.11	0.04)	ER	=	
3.77	

Pause	
Number	DK	

0.13	(-0.04	0.32)	ER	
=	10.11	

0.07	(-0.04	0.2)	ER	=	
6.18	

0.16	(0.02	0.37)	ER	
=	33.19	

-0.47	(-1.4	-0.03)	ER	=	
30.5	

Pause	
Number	US	

-0.01	(-0.23	0.21)	ER	
=	1.27	ER01	=	70.95	

-0.03	(-0.14	0.08)	ER	=	
1.97	ER01	=	32.94	

-0.06	(-0.2	0.07)	ER	
=	3.51	

0	(-0.13	0.13)	ER	=	1.06	
ER01	=	24.89	

Pause	
Length	DK	

-0.08	(-0.27	0.1)	ER	
=	3.4	

-0.07	(-0.21	0.05)	ER	=	
5.32	

-0.03	(-0.19	0.13)	ER	
=	1.68	ER01	=	48.94	

0.18	(-0.53	1.16)	ER	=	
2.27	ER01	=	6.77	

Pause	
Length	US	

0.02	(-0.07	0.11)	ER	=	
1.87	ER01	=	148.46	

0.03	(-0.02	0.08)	ER	=	
5.16	

-0.04	(-0.1	0.02)	ER	
=	6.26	

0	(-0.05	0.06)	ER	=	1.07	
ER01	=	57.12	

Jitter	DK	 0.04	(-0.16	0.26)	ER	=	
1.73	ER01	=	68.93	

0.05	(-0.09	0.2)	ER	=	2.53	
ER01	=	28.63	

0.04	(-0.13	0.23)	ER	=	
1.83	ER01	=	43.24	

-0.2	(-1.08	0.43)	ER	=	
2.51	ER01	=	7.1	

Jitter	US	 -0.06	(-0.15	0.04)	ER	
=	4.97	

-0.02	(-0.08	0.04)	ER	=	
2.67	ER01	=	55.02	

0.02	(-0.05	0.09)	ER	=	
2.07	ER01	=	88.23	

-0.01	(-0.07	0.05)	ER	=	
1.48	ER01	=	50.57	
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HNR	
Median	DK	

-0.3	(-0.73	0.09)	ER	
=	9.39	

-0.24	(-0.54	0)	ER	=	
18.32	

-0.26	(-0.65	0.05)	ER	
=	10.11	

0.54	(-0.33	1.93)	ER	=	
5.88	

HNR	
Median	US	

-0.27	(-0.6	0.06)	ER	
=	10.24	

-0.01	(-0.14	0.11)	ER	=	
1.27	ER01	=	34.04	

-0.1	(-0.27	0.05)	ER	
=	6.17	

-0.21	(-0.53	0.06)	ER	=	
6.84	

HNR	IQR	
DK	

0.4	(-0.03	0.92)	ER	=	
16.17	

0.21	(-0.09	0.59)	ER	=	
7.47	

0.37	(0.03	0.85)	ER	
=	27.78	

-0.5	(-1.93	0.51)	ER	=	
4.08	

HNR	IQR	US	 -0.14	(-0.49	0.24)	ER	
=	2.94	ER01	=	30.82	

-0.1	(-0.28	0.09)	ER	=	
4.31	

-0.27	(-0.47	-0.08)	
ER	=	113.29	

-0.15	(-0.35	0.06)	ER	=	
7.55	

3.3. Feature-space reduction 

Principal	Component	Analysis	did	not	yield	any	insights	into	how	the	feature-space	

could	be	meaningfully	 reduced,	 see	 Figure	2.	 The	 first	 10	principal	 components	 for	 each	

group	cumulatively	accounted	for	a	substantial	portion	of	the	variance	(DK	NT	=	87.8%,	DK	

ASD	=	87.7%,	US	NT	=	93.5%,	USA	NT	=	93.4%).	However,	the	distribution	of	variance	across	

the	components	was	unequal	between	 the	 two	 languages,	with	 the	 first	 two	components	

accounting	 for	 substantially	more	 variance	 in	 the	American	English	 speakers	 than	 in	 the	

Danish	speakers	(see	supplementary	materials).	Features	from	the	three	feature	types	were	

fairly	evenly	distributed	along	components	1	and	2,	and	no	clear	patterns	were	discernable.	

Both	the	Kaiser-Guttman	rule	and	the	scree	plot	method	indicated	that	the	feature	space	of	

the	 data	 could	 be	 reduced	 to	 approximately	 7-9	 components.	 Inspection	 of	 the	 relative	

contributions	 to	 the	 components	 did	 not	 suggest	 any	 clear	 pattern,	 although	 a	 full	

exploration	 of	 these	 data	 is	 beyond	 the	 scope	 of	 this	 paper.	 Scree	 plots	 and	 feature	

contributions	can	be	found	in	supplementary	materials.	
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Figure	 2:	 Features	 plotted	 against	 the	 first	 two	 principal	 components	 (Dimension	 1	 and	

Dimension	2).	Green	triangles	represent	rhythm	features,	red	circles	represent	pitch	features,	

and	blue	square	represent	voice	quality	features.	

Spin-glass	community	detection	did	not	yield	any	immediate	insights	into	how	the	feature-

space	could	be	meaningfully	reduced,	either,	see	Figure	3.	Three	of	the	four	groups	settled	

on	 a	 three-community	 solution,	 while	 the	 fourth	 (DK	 NT)	 settled	 on	 a	 two-community	

solution.	 There	was	 some	 indication	 that	 underlying	 patterns	may	 exist,	 e.g.,	articulation	

rate,	speech	rate,	and	number	of	syllables	were	clustered	in	the	same	community	in	all	four	

groups	(see	supplementary	materials),	however	a	full	exploration	of	these	data	is	beyond	the	

scope	of	this	paper.	
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Figure	3:	Partial	correlation	network	graphs	of	acoustic	features.	Letters	indicate	the	type	of	

acoustic	feature:	“P”	pertains	to	pitch;	“R”	to	rhythm	and	duration;	“V”	to	voice	quality.	Colors	

indicate	feature	communities	identified	with	spinglass	algorithm	(Traag	&	Buggerman,	

2009).	

4. Discussion 
In	 this	 work	 we	 aimed	 at	 building	 the	 foundations	 for	 a	 cumulative	 yet	 self-correcting	

approach	to	the	study	of	prosody	in	ASD.	Relying	on	a	previous	systematic	review	and	meta-

analysis	 of	 the	 field,	 we	 hypothesized	 that:	 H1)	 meta-analytic	 findings	 would	 replicate,	

potentially	with	smaller	effect	sizes;	H2)	voice	quality	measures	would	yield	differences	in	

the	 2	 groups	 analogous	 in	 size	 to	 those	 from	 prosodic	 measures;	 H3)	 individual	

demographic,	clinical	and	 linguistic	differences	would	play	an	 important	role,	defying	the	

idea	of	a	unique	acoustic	profile	of	ASD.	We	also	set	to	explore	whether	the	acoustic	features	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.13.452165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452165
http://creativecommons.org/licenses/by-nc-nd/4.0/


showed	obvious	redundancies,	allowing	to	reduce	their	numbers.	In	the	following	discussion	

we	will	consider	how	the	findings	bear	on	the	hypotheses	and	explorations,	highlight	the	

limitations	 of	 the	 current	 study,	 and	 discuss	 further	 the	 cumulative	 yet	 self-correcting	

approach	we	propose.	

	 We	 found	 a	minimal	 (characterized	 by	 only	 few	 features)	 acoustic	 profile	 of	 ASD	

across	Danish	and	US	English:	Autistic	participants	 tended	 to	use	higher	pitch,	 fewer	but	

longer	pauses,	and	increased	NAQ,	MDQ	and	creak	compared	to	NT	participants.	Given	the	

heterogeneity	of	previous	 studies	 and	uncertainty	 about	publication	bias	 reported	 in	 the	

meta-analysis,	these	cross-linguistic	replications	(or	lack	thereof)	are	important.	However,	

equally	important	is	the	focus	that	our	findings	put	on	linguistic,	demographic,	and	clinical	

differences	 undermining	 the	 idea	 of	 a	 strong	 acoustic	 profile	 of	 ASD.	 There	 are	 many	

language-specific	 effects	 (e.g.,	 speech	 rate	 being	 slower	 in	ASD	 only	 for	US	 English),	 and	

demographic	differences	(sex	and	age)	affect	even	the	cross-linguistically	reliable	acoustic	

features	 of	 ASD.	 From	 a	 clinical	 perspective,	 the	 moderate	 relations	 between	 acoustic	

measures	and	clinical	symptoms	are	even	more	intriguing	than	diagnostic	group	differences.	

However,	only	 speech	rate	and	–	 to	a	 lower	extent	 -	HNR	show	the	same	cross-linguistic	

relation:	the	slower	the	speech,	and	the	lower	the	HNR,	the	more	severe	the	clinical	feature.	

Even	more	tellingly	these	features	are	not	consistently	different	between	diagnostic	groups.	

The	findings	thus	suggest	that	there	is	no	one	general	extensive	acoustic	profile	of	

ASD.	Systematic	individual	variations	(sex,	age,	language,	clinical	features)	should	be	always	

taken	into	account	and	we	suspect	that	multiple	clusters	of	acoustic	profiles	in	ASD	could	be	

identified,	all	leading	to	the	more	general	clinical	descriptions	of	vocal	atypicalities	in	ASD.	

However,	 to	explore	 this	 idea	and	 its	potential	clinical	applications,	we	need	to	construct	

even	 larger	 cross-linguistic	 datasets	 systematically	 covering	 the	 heterogeneity	 in	 clinical	

features	-	and	beyond	-	of	autistic	people,	and	more	explicit	normative	modeling	of	individual	

variability	(Marquand	et	al	2017).	

Our	exploration	of	feature	reduction	methods	did	not	yield	any	clear	finding.	Future	

directions	should	explicitly	include	machine	learning	techniques	targeting	diagnostic	group	

differences	and	relevant	clinical	features.		
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5. Conclusions 
We	 set	 out	 to	 more	 cumulatively	 advance	 the	 study	 of	 acoustic	 markers	 in	 ASD,	

applying	and	assessing	the	recommendations	and	findings	in	a	recent	systematic	review	and	

meta-analysis.	 Across	 a	 relatively	 large	 cross-linguistic	 corpus,	 we	 identified	 a	 minimal	

acoustic	profile	of	ASD	(higher	pitch,	fewer	and	longer	pauses,	higher	NAQ,	MDQ	and	creak).	

However,	 we	 also	 highlight	 that	 individual	 differences	 in	 language,	 sex,	 age	 and	 clinical	

features	relate	to	systematic	variations	in	the	acoustic	properties	of	speech.	This	suggests	

that	 the	 search	 for	 a	 population-level	 marker	 might	 be	 naive	 and	 more	 fine-grained	

approaches	are	needed.	We	released	the	data	and	scripts	used	in	the	article	to	facilitate	such	

future	cumulative	advances.	The	current	study	critically	showcases	a	cumulative	yet	self-

correcting	approach,	which	we	advocate	should	be	more	commonly	used.	
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Abell,	F.,	Happé,	F.,	&	Frith,	U.	(2000).	Do	triangles	play	tricks?	Attribution	of	mental	states	
to	animated	shapes	in	normal	and	abnormal	development.	Cognitive	Development,	15,	1-16.	
doi:	10.1002/aur.174		

Asperger,	H.,	&	Frith.	(1991).	Translation	and	annotation	of	“autistic	psychopathy”	in	
childhood,	by	h.	Asperger.	(U.	Frith,	Ed.).	Cambridge,	UK:	Cambridge	University	Press.	

Baltaxe,	C.	(1981).	Acoustic	characteristics	of	prosody	in	autism.	Frontier	of	Knowledge	in	
Mental	Retardation,	223–233.	

Barsties,	B.,	&	De	Bodt,	M.	(2015).	Assessment	of	voice	quality:	Current	state-of-the-art.	
Auris	Nasus	Larynx,	42(3),	183–188.	

Cantio,	C.,	Jepsen,	J.	R.	M.,	Madsen,	G.	F.,	Bilenberg,	N.,	&	White,	S.	J.	(2016).	Exploring	‘The	
autisms’	at	a	cognitive	level.	Autism	Research,	9(12),	1328-1339.	

Cumming,	G.	(2014).	The	new	statistics:	Why	and	how.	Psychological	Science,	25(1),	7–29.	

Cummins,	N.,	Scherer,	S.,	Krajewski,	J.,	Schnieder,	S.,	Epps,	J.,	&	Quatieri,	T.	F.	(2015).	A	
review	of	depression	and	suicide	risk	assessment	using	speech	analysis.	Speech	
Communication,	71,	10–49.	

Devezer,	B.,	Nardin,	L.	G.,	Baumgaertner,	B.,	&	Buzbas,	E.	O.	(2019).	Scientific	discovery	in	a	
model-centric	framework:	Reproducibility,	innovation,	and	epistemic	diversity.	PloS	one,	
14(5),	e0216125.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.13.452165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452165
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dunn,	L.	M.,	&	Dunn,	D.	M.	(2007).	Peabody	picture	vocabulary	test–fourth	edition	(PPVT-
4).	Circle	Pines,	MN:	AGS.	

Dwan,	K.,	Gamble,	C.,	Williamson,	P.	R.,	&	Kirkham,	J.	J.	(2013).	Systematic	review	of	the	
empirical	evidence	of	study	publication	bias	and	outcome	reporting	bias—an	updated	
review.	PloS	One,	8(7),	e66844.	

Fay,	W.	H.,	&	Schuler,	A.	L.	(1980).	Emerging	language	in	autistic	children.	Hodder	
Education.	

Fusaroli,	R.,	Lambrechts,	A.,	Bang,	D.,	Bowler,	D.,	&	Gaigg,	S.	(2017).	Is	voice	a	marker	for	
autism	spectrum	disorder?	A	systematic	review	and	meta-analysis”.	Autism	Res,	10(3),	
384–407.	

Fusaroli,	R.,	Weed,	E.,	Lambrechts,	A.,	Bowler,	D.,	&	Gaigg,	S.	(2018).	Towards	a	cumulative	
science	of	prosody	in	asd.	INSAR	2018:	Annual	meeting.	

Gelman,	A.,	Jakulin,	A.,	Pittau,	M.	G.,	Su,	Y.-S.,	&	others.	(2008).	A	weakly	informative	default	
prior	distribution	for	logistic	and	other	regression	models.	The	Annals	of	Applied	Statistics,	
2(4),	1360–1383.	

Goldfarb,	W.,	Braunstein,	P.,	&	Lorge,	I.	(1956).	Childhood	schizophrenia:	Symposium,	
1955:	5.	A	study	of	speech	patterns	in	a	group	of	schizophrenic	children.	American	Journal	
of	Orthopsychiatry,	26(3),	544.	

Grossman,	RB	(2015).	Judgments	of	Social	Awkwardness	from	Brief	Exposure	to	Children	
with	High-Functioning.	Autism,	19(5):580-7.		

Grossman,	R.	B.,	Edelson,	L.	R.,	&	Tager-Flusberg,	H.	(2013).	Emotional	facial	and	vocal	
expressions	during	story	retelling	by	children	and	adolescents	with	high-functioning	
autism.	Journal	of	Speech,	Language,	and	Hearing	Research.	

Huang,	S.	H.	(2015).	Supervised	feature	selection:	A	tutorial.	Artif.	Intell.	Research,	4(2),	22–
37.	

Kanner,	L.,	&	others.	(1943).	Autistic	disturbances	of	affective	contact.	Nervous	Child,	2(3),	
217–250.	

Kaufman,	A.	S.	(1994).	Intelligent	testing	with	the	WISC-III.	John	Wiley	&	Sons.	

König,	C.,	&	Schoot,	R.	van	de.	(2018).	Bayesian	statistics	in	educational	research:	A	look	at	
the	current	state	of	affairs.	Educational	Review,	70(4),	486–509.	
Lewis,	M.,	Mathur,	M.,	VanderWeele,	T.,	&	Frank,	M.	C.	(2020).	The	puzzling	relationship	
between	multi-lab	replications	and	meta-analyses	of	the	rest	of	the	literature.	

Lord,	C.,	Rutter,	M.,	Dilavore,	P.	C.,	&	Risi,	S.	(2008).	ADOS:	Autism	diagnostic	observation	
schedule.	Hogrefe	Boston,	MA.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.13.452165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452165
http://creativecommons.org/licenses/by-nc-nd/4.0/


Marquand,	A.	F.,	Kia,	S.	M.,	Zabihi,	M.,	Wolfers,	T.,	Buitelaar,	J.	K.,	&	Beckmann,	C.	F.	(2019).	
Conceptualizing	mental	disorders	as	deviations	from	normative	functioning.	Molecular	
psychiatry,	24(10),	1415-1424.	

McCann,	J.,	&	Peppé,	S.	(2003).	Prosody	in	autism	spectrum	disorders:	A	critical	review.	
International	Journal	of	Language	&	Communication	Disorders,	38(4),	325–350.	

Oller,	D.	K.,	Niyogi,	P.,	Gray,	S.,	Richards,	J.	A.,	Gilkerson,	J.,	Xu,	D.,	...	&	Warren,	S.	F.	(2010).	
Automated	vocal	analysis	of	naturalistic	recordings	from	children	with	autism,	language	
delay,	and	typical	development.	Proceedings	of	the	National	Academy	of	Sciences,	107(30),	
13354-13359.	

Open	Science	Collaboration.	(2015).	Estimating	the	reproducibility	of	psychological	
science.	Science,	349(6251).	

Parish-Morris,	J.,	Liberman,	M.,	Ryant,	N.,	Cieri,	C.,	Bateman,	L.,	Ferguson,	E.,	&	Schultz,	R.	T.	
(2016,	June).	Exploring	autism	spectrum	disorders	using	HLT.	In	Proceedings	of	the	
conference.	Association	for	Computational	Linguistics.	Meeting	(Vol.	2016,	p.	74).	NIH	Public	
Access.	

Parola,	A.,	Simonsen,	A.,	Bliksted,	V.,	&	Fusaroli,	R.	(2020).	Voice	patterns	in	schizophrenia:	
A	systematic	review	and	bayesian	meta-analysis.	Schizophrenia	Research,	216,	24–40.	

Paul,	R.,	Shriberg,	L.	D.,	McSweeny,	J.,	Cicchetti,	D.,	Klin,	A.,	&	Volkmar,	F.	(2005).	Brief	
report:	Relations	between	prosodic	performance	and	communication	and	socialization	
ratings	in	high	functioning	speakers	with	autism	spectrum	disorders.	Journal	of	Autism	and	
Developmental	Disorders,	35(6),	861.	

Pearson,	K.	(1901).	LIII.	On	lines	and	planes	of	closest	fit	to	systems	of	points	in	space.	The	
London,	Edinburgh,	and	Dublin	Philosophical	Magazine	and	Journal	of	Science,	2(11),	559–
572.	

Preacher,	K.	J.,	&	MacCallum,	R.	C.	(2003).	Repairing	tom	swift’s	electric	factor	analysis	
machine.	Understanding	Statistics:	Statistical	Issues	in	Psychology,	Education,	and	the	Social	
Sciences,	2(1),	13–43.	

Pronovost,	W.,	Wakstein,	M.	P.,	&	Wakstein,	D.	J.	(1966).	A	longitudinal	study	of	the	speech	
behavior	and	language	comprehension	of	fourteen	children	diagnosed	atypical	or	autistic.	
Exceptional	Children,	33(1),	19–26.	

Reynolds,	C.	R.,	&	Voress,	J.	K.	(2007).	Test	of	Memory	and	Learning	(TOMAL	2).	Austin,	TX:	
Pro-Ed.	

Rocca,	R.,	&	Yarkoni,	T.	(2020).	Putting	psychology	to	the	test:	Rethinking	model	evaluation	
through	benchmarking	and	prediction.	

Roid,	G.	H.,	&	Miller,	L.	J.	(1997).	Leiter	international	performance	scale-revised	(Leiter-
R).	Wood	Dale,	IL:	Stoelting,	10.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.13.452165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452165
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sasson,	N.	J.,	Faso,	D.	J.,	Nugent,	J.,	Lovell,	S.,	Kennedy,	D.	P.,	&	Grossman,	R.	B.	(2017).	
Neurotypical	peers	are	less	willing	to	interact	with	those	with	autism	based	on	thin	slice	
judgments.	Scientific	Reports,	7(1),	1–10.	

Sheikhpour,	R.,	Sarram,	M.	A.,	Gharaghani,	S.,	&	Chahooki,	M.	A.	Z.	(2017).	A	survey	on	semi-
supervised	feature	selection	methods.	Pattern	Recognition,	64,	141–158.	

Sheinkopf,	S.	J.,	Mundy,	P.,	Oller,	D.	K.,	&	Steffens,	M.	(2000).	Vocal	atypicalities	of	preverbal	
autistic	children.	Journal	of	Autism	and	Developmental	Disorders,	30(4),	345–354.	

Shriberg,	L.	D.,	Paul,	R.,	McSweeny,	J.	L.,	Klin,	A.,	Cohen,	D.	J.,	&	Volkmar,	F.	R.	(2001).	Speech	
and	prosody	characteristics	of	adolescents	and	adults	with	high-functioning	autism	and	
asperger	syndrome.	Journal	of	Speech,	Language,	and	Hearing	Research.	

Simmons,	J.	Q.,	&	Baltaxe,	C.	(1975).	Language	patterns	of	adolescent	autistics.	Journal	of	
Autism	and	Childhood	Schizophrenia,	5(4),	333–351.	

Smialowski,	P.,	Frishman,	D.,	&	Kramer,	S.	(2010).	Pitfalls	of	supervised	feature	selection.	
Bioinformatics,	26(3),	440–443.	

Traag,	V.	A.,	&	Bruggeman,	J.	(2009).	Community	detection	in	networks	with	positive	and	
negative	links.	Physical	Review	E,	80(3),	036115.	

Travis,	L.	L.,	&	Sigman,	M.	(1998).	Social	deficits	and	interpersonal	relationships	in	autism.	
Mental	Retardation	and	Developmental	Disabilities	Research	Reviews,	4(2),	65–72.	

Van	Bourgondien,	M.	E.,	&	Woods,	A.	V.	(1992).	Vocational	possibilities	for	high-functioning	
adults	with	autism.	In	High-functioning	individuals	with	autism	(pp.	227–239).	Springer.	

Warlaumont,	A.	S.,	Richards,	J.	A.,	Gilkerson,	J.,	&	Oller,	D.	K.	(2014).	A	social	feedback	loop	
for	speech	development	and	its	reduction	in	autism.	Psychological	Science,	25(7),	1314–
1324.	

Weed,	E.,	&	Fusaroli,	R.	(2020).	Acoustic	measures	of	prosody	in	right-hemisphere	damage:	
A	systematic	review	and	meta-analysis.	Journal	of	Speech,	Language,	and	Hearing	Research,	
1–14.	

Wilkinson,	M.	D.,	Dumontier,	M.,	Aalbersberg,	I.	J.,	Appleton,	G.,	Axton,	M.,	Baak,	A.,	…	others.	
(2016).	The	fair	guiding	principles	for	scientific	data	management	and	stewardship.	
Scientific	Data,	3(1),	1–9.	

Williams,	D.	R.,	Rast,	P.,	&	Bürkner,	P.-C.	(2018).	Bayesian	meta-analysis	with	weakly	
informative	prior	distributions.	

World	Health	Organization.	(1992).	The	ICD-10	classification	of	mental	and	behavioural	
disorders:	Clinical	descriptions	and	diagnostic	guidelines.	Geneva:	World	Health	
Organization.	

Würbel,	H.	(2000).	Behaviour	and	the	standardization	fallacy.	Nature	genetics,	26(3),	263-
263.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.13.452165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452165
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.13.452165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452165
http://creativecommons.org/licenses/by-nc-nd/4.0/

