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Abstract 26 

Bulk sequencing of RNA transcripts has typically been used to quantify gene expression 27 

levels and regulatory signals in different experimental systems. However, linking 28 

differentially expressed (DE) mRNA transcripts to gene expression regulators, such as 29 

miRNAs, remains challenging, as miRNA-mRNA interactions are commonly identified 30 

post hoc after selecting sets of genes of interest, thus biasing the interpretation of 31 

underlying gene regulatory networks. 32 

In this study, we aimed at disentangling miRNA-driven post-transcriptional signals 33 

using the pig as a model. We performed an exon-intron split analysis (EISA) to muscle 34 

and fat RNA-seq data from two Duroc pig populations subjected to fasting-feeding 35 

conditions and with divergent fatness profiles, respectively. After running EISA 36 

analyses, protein-coding mRNA genes with downregulated exonic fractions and high 37 

post-transcriptional signals were significantly enriched for binding sites of upregulated 38 

DE miRNAs. Moreover, these genes showed an increased expression covariation for the 39 

exonic fraction compared to that of the intronic fraction. On the contrary, they did not 40 

show enrichment for binding sites of highly expressed and/or downregulated DE 41 

miRNAs. Among the set of loci displaying miRNA-driven post-transcriptional 42 

regulatory signals, we observed genes related to glucose homeostasis (DKK2, PDK4, 43 

IL18, NR4A3, CHRNA1, TET2), cell differentiation (PBX1, BACH2) or adipocytes 44 

metabolism (LEP, ESRRG, PTGFR, SERPINE2, RNF157, GPLD1, OSBPL10, 45 

PRSS23). Our results highlighted mRNA genes showing post-transcriptional signals 46 

linked to miRNA-driven downregulation by using exonic and intronic fractions of 47 

RNA-seq datasets from muscle and adipose tissues in pigs. 48 

Keywords: 49 

Exon-intron split analysis, microRNA, pigs, energy homeostasis. 50 
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1. Introduction 51 

RNA dynamics in the cell metabolism are subjected to complex yet poorly characterized 52 

regulatory mechanisms that contribute to shaping fine-tuned biological responses to 53 

different stimuli [1]. Cellular metabolic changes are hence a direct manifestation of 54 

intricate interactions between expressed transcripts and other regulatory elements that 55 

modify their abundance, localization, fate and degradation rate. MicroRNAs (miRNAs) 56 

are primarily engaged in post-transcriptional control of gene expression through 57 

inhibition of translation and/or destabilization of target mRNAs through poly(A) 58 

shortening and subsequent degradation [2]. These short non-coding regulatory RNAs 59 

trigger changes in the abundance of targeted transcripts, which can ultimately be 60 

modelled as covariation patterns that might help unravel direct or indirect molecular 61 

interplays regulating biological pathways.  62 

In order to disentangle regulatory functions driven by miRNAs, researchers typically 63 

focus on genes of their interest showing significant changes in mRNA abundance or 64 

protein levels that such regulatory effectors might putatively target. This approach, 65 

however, introduces post hoc selection of deregulated genes and ad hoc search of 66 

predicted interactions between the 3’-UTRs of mRNAs and the seed regions of 67 

miRNAs, causing a bias that may obscure other minor but relevant regulatory 68 

interactions [2–4]. 69 

Several studies have addressed the effects of post-transcriptionally perturbed genes in 70 

expression datasets [5–7], or how transcriptional dynamics can reflect the cellular 71 

transition between homeostasis and stress-induced responses or differentiation stages 72 

[8–11]. In an attempt to capture both regulatory components based on expression data, 73 

Gaidatzis et al. [5] described the use of intronic mapping sequences as direct indicators 74 

of primary mRNA oscillations related to transcriptional activation. This study was 75 
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based on early reports describing intronic expression as a proxy of nascent transcription 76 

and co-transcriptional splicing events [12–14]. Besides, the post-transcriptional effect 77 

was defined as a function of the expressed exonic and intronic fraction [5]. Although 78 

many studies have took advantage of this approach to discern transcriptional and post-79 

transcriptional responses within co-expressed mRNAs and their corresponding putative 80 

regulators [5–7], its application remains limited. 81 

In the present study, we aimed to characterize miRNA-driven post-transcriptional 82 

signals in skeletal muscle in response to nutrient boost after food intake. We also 83 

explored post-transcriptional regulatory signals in adipose tissue using an independent 84 

pig population with divergent fatness profiles and qPCR analyses for cross-validation. 85 

Using a set of expression data from RNA-seq and miRNA-seq experiments, we 86 

predicted in silico miRNA-mRNA interactions and we then evaluated the perturbed 87 

expression status of relevant genes at the post-transcriptional level beyond canonical 88 

differential expression analyses. In this way, we were able to disentangle hidden 89 

regulatory effects driven by miRNA post-transcriptional regulation contributing to 90 

modulating energy usage, glucose homeostasis and lipids metabolism in the skeletal 91 

muscle and adipose tissue of pigs. 92 

 93 

 94 

2. Materials and methods 95 

2.1. Experimental design and tissue collection 96 

Expression data and experimental conditions employed to infer gene covariation 97 

networks and regulatory connections were previously described in [15–17]. In brief, two 98 

independent experimental designs comprising expression profiles from mRNAs and 99 

miRNAs in Duroc pigs were used: 100 
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(i) The transcriptomic profile of gluteus medius (GM) skeletal muscle samples from a 101 

total of 23 Duroc gilts were measured employing RNA-seq and small RNA-seq 102 

sequencing using the same biological material as reported in [15,17,18]. All gilts were 103 

fed ad libitum during their productive lives [15,18] until reaching ~150 days of age and 104 

they were subsequently slaughtered at the IRTA Experimental Slaughterhouse in 105 

Monells (Girona, Spain) following Spanish welfare regulations. Prior to slaughtering, 106 

all animals were fasted during 12 h. Gilts were then divided in two fasting/feeding 107 

regimes, i. e. 11 gilts (AL-T0) were slaughtered in fasting conditions upon arrival at the 108 

abattoir, whereas the rest of the animals were slaughtered immediately after 7 h (AL-T2, 109 

N =12) with access to ad libitum feed intake. After slaughtering, gluteus medius skeletal 110 

muscle samples were collected, conserved in RNAlater solution (Thermo Fisher 111 

Scientific, Barcelona, Spain) and subsequently snap-frozen in liquid nitrogen. 112 

(ii) A total of 10 Duroc-Göttingen minipig inter-cross F2 animals with divergent fatness 113 

profiles according to body mass index (BMI) metric (5 lean and 5 obese) were selected 114 

from the UNIK resource population comprising a total of 502 F2 pigs [19,20], as 115 

described in Jacobsen et al. 2019 [16]. Pigs were slaughtered when they reach 8-13 116 

months of age according to the Danish “Animal Maintenance Act” (Act 432 dated 117 

09/06/2004). Tissue samples from retroperitoneal tissue of each animal were collected 118 

and mature adipocytes were isolated following the protocol of Decaunes et al. 2011 [21] 119 

with modifications as reported by Jacobsen et al. 2019 [16]. Once extracted, adipocyte 120 

pellets were snap-frozen at -80°C until further experimental procedures. 121 

 122 

2.2. RNA extraction and sequencing 123 

RNA extraction, RNA-Seq and small RNA-Seq sequencing protocols, quality-check 124 

preprocessing and mapping were performed as previously described [15–17]. In brief, 125 
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total RNA was isolated from GM tissue using the RiboPure kit (Ambion, Austin, TX), 126 

while for RNA from adipocytes, the protocol from Cirera et al. 2013 [22] specifically 127 

adapted to adipose tissue was implemented. Sequencing libraries were prepared with 128 

dedicated TruSeq stranded total RNA kits (Illumina Inc. CA) [16,17] and paired-end 129 

sequenced in a HiSeq 2000 equipment (Illumina Inc. CA). Small RNA-specific libraries 130 

were prepared from total RNA isolates following the TruSeq Small RNA Sample 131 

Preparation Kit (Illumina Inc., CA) and subjected to single-end (1 x 50 bp) sequencing 132 

in a HiSeq 2500 equipment (Illumina Inc., CA). 133 

 134 

2.3. Quality check, filtering and mapping of sequences 135 

Sequenced reads from RNA-Seq and small RNA-Seq data sets belonging to both fasting 136 

and fed Duroc gilts, as well as to lean and obese Duroc-Göttingen minipigs, were  137 

trimmed to remove any remaining sequencing adapters and quality-checked with the 138 

Cutadapt software [23]. Subsequently, reads were mapped against the Sscrofa11.1 139 

porcine reference assembly with the HISAT2 aligner [24] and default parameters for 140 

RNA-Seq reads, and with the Bowtie Alignment v.1.2.1.1 software [25] using small 141 

sequence reads specifications (bowtie -n 0 -l 25 -m 20 -k 1 --best --strata) for small 142 

RNA-Seq reads, respectively. 143 

 144 

2.4. Exon/Intron quantification 145 

We generated exonic and intronic ranges spanning all gene annotations available using 146 

the gtf formatted Sscrofa.11.1 v.103 gene annotation file retrieved from Ensembl 147 

repositories (http://ftp.ensembl.org/pub/release-103/gtf/sus_scrofa/). Overlapping 148 

intronic/exonic regions, as well as singleton positions were removed from intronic 149 

ranges [26]. To avoid the counting of exonic reads mapping close to exon/intron 150 
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junctions that could bias the quantification of intronic regions, we removed 10 basepairs 151 

(bp) from both sides of each intronic range. 152 

Once the corresponding exonic and intronic ranges for Sscrofa11.1 v.103 were retrieved, 153 

we used the featureCounts function within the Rsubread package [27] to quantify gene 154 

expression profiles based on exon/intron expression patterns for each gene. MiRNA 155 

expression profiles were extracted from small RNA-Seq sequencing data using the 156 

Sscrofa11.1 v.103 mature miRNA annotation with featureCounts software tool [28] in 157 

single-end mode and with default parameters. 158 

 159 

2.5. Exon/intron split analysis (EISA) for assessing post-transcriptional effects on 160 

gene expression 161 

We applied EISA analyses to differentiate gene expression regulation based on post-162 

transcriptional effects [5–7]. To this end, we separately estimated the exonic/intronic 163 

abundance of each annotated mRNA gene using the Sscrofa11.1 v.103 exon/intron 164 

custom annotation ranges previously generated. Only genes showing average expression 165 

values above 1 count-per-million (CPM) in at least 50% of animals were retained for 166 

further analyses. 167 

Counts were processed following the methods described in Gaidatzis et al. [5]. 168 

Normalization was performed independently for exon and intron counts by multiplying 169 

each ith gene expression in each jth sample by the corresponding mean gene expression 170 

and dividing by the total number of quantified counts per sample.  171 

 Normalized and expression filtered gene abundances for exonic and intronic ranges 172 

were subsequently transformed in the log2 scale, adding a pseudo-count of 1. 173 

Exon/intron log2 transformed abundances for each gene were averaged within each 174 
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considered treatment groups (AL-T0 and AL-T2 for GM tissues and lean and obese for 175 

adipocyte isolates).  176 

Only genes with successful exonic and intronic quantified read counts were further 177 

considered in our analyses, hence removing mono-exonic genes and poliexonic genes 178 

where exonic and/or intronic expression was undetected. The transcriptional component 179 

(Tc) contribution to observed differences in each ith gene expression levels between 180 

contrast groups was expressed as the increment of intron counts in fed (AL-T2) and 181 

obese animals with respect to fasting (AL-T0) and lean animals, respectively, denoted as 182 

∆Int = Int2i - Int1i. The increment of exonic counts ∆Ex was defined accordingly, and 183 

the post-transcriptional component (PTc) effect was expressed as ∆Ex - ∆Int = (Ex2i - 184 

Ex1i) - (Int2i - Int1i). Both components were z-scored to represent comparable ranges 185 

between ∆Ex and ∆Int estimates. Post-transcriptional expected effects according to ∆Ex 186 

and PTc (∆Ex - ∆Int) distribution are depicted in Fig. S1A. The classification and 187 

interpretation of the combinatorial possibilities among ∆Ex, ∆Int (Tc) and ∆Ex - ∆Int 188 

(PTc) values explored in the current work are shown in Fig. S1B. All implemented 189 

analyses have been summarized in Fig. S1C. A ready-to-use modular pipeline for 190 

running EISA is publicly available at https://github.com/emarmolsanchez/EISACompR. 191 

 192 

2.6. Post-transcriptional signal prioritization 193 

In order to obtain a prioritized list of genes showing meaningful signals of post-194 

transcriptional regulatory activity, the top 5% genes with the highest negative PTc 195 

scores were retrieved for each of the two experimental contrasts (i.e., AL-T0 vs AL-T2 196 

from Duroc GM muscle and lean vs obese from UNIK Duroc-Göttingen adipocytes). 197 

We only focused on genes showing strong reduced ΔEx values > 2 folds for post-198 

transcriptional signals in AL-T0 vs AL-T2 animals and reduced ΔEx > 3 folds in lean vs 199 
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obese animals. The higher fold change in exonic fractions used for the lean vs obese 200 

experimental design was motivated by the overall weaker differential expression 201 

obtained at both mRNA and miRNA levels for these data sets. MiRNAs actin as post-202 

transcriptional repressors of targeted mRNAs were considered as the main effectors of 203 

the observed mRNA downregulation. 204 

 205 

2.7. Differential expression and significance of regulatory signals 206 

Canonical differential expression analyses were carried out with the edgeR package [29] 207 

using the exonic fraction of mRNAs and miRNA expression profiles from RNA-Seq 208 

and small RNA-Seq data sets comprising AL-T0 vs AL-T2 and lean vs obese contrasts. 209 

Expression filtered raw counts for exonic reads were normalized with the trimmed mean 210 

of M-values normalization (TMM) method [30]. Subsequently, after dispersion 211 

estimation with a Cox-Reid profile-adjusted likelihood method [31], a generalized log-212 

linear model of the negative binomial distribution was fitted and significance in 213 

expression differences was tested with a quasi-likelihood F-test implemented in the 214 

glmQLFit function from edgeR method [29]. Correction for multiple hypothesis testing 215 

was applied using the Benjamini-Hochberg false discovery rate approach [32]. Genes 216 

were considered as differentially expressed (DE) when they had |FC| > 2 and q-value < 217 

0.05 for mRNAs, and |FC| > 1.5 and q-value < 0.05 for miRNAs. 218 

The statistical significance of the post-transcriptional (PTc) component variation 219 

between groups (AL-T0 vs AL-T2 and lean vs obese) was evaluated using edgeR and 220 

incorporating the intronic quantification as an interaction factor for exonic abundances. 221 

In this way we accounted for the previous intronic variation effect on the differences 222 

shown at the exonic level for the mature mRNA after intron splicing. 223 

 224 
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2.8. miRNA target prediction 225 

Target interactions between the seed regions of expressed miRNAs from small RNA-226 

seq datasets and 3’-UTRs of expressed protein-coding mRNA genes from RNA-seq 227 

datasets were assessed on the basis of sequence identity using the Sscrofa11.1 reference 228 

assembly. The annotated 3’-UTRs from porcine mRNAs were retrieved from 229 

Sscrofa11.1 v.103 available at bioMart database (http://www.ensembl.org/biomart) and 230 

miRBase database [33]. The 3’-UTR sequences shorter than 30 nts were discarded. 231 

Redundant seeds from mature porcine microRNAs were removed. 232 

The seedVicious v1.1 tool [34] was used to infer miRNA-mRNA interactions against 233 

the non-redundant set of porcine miRNA seeds and 3’-UTRs retrieved from the 234 

Sscrofa11.1 v.103 annotation (http://ftp.ensembl.org/pub/release-103/gtf/sus_scrofa/). 235 

MiRNA-mRNA interactions of type 8mer, 7mer-m8 and 7mer-A1 were considered as 236 

the most relevant and potentially functional among the set of other alternative non-237 

canonical occurring interactions [2,35,36]. Following early reports about the effects of 238 

miRNA binding site context in determining the miRNA-mRNA interaction efficacy 239 

[35], we removed in silico-predicted miRNA-mRNA interactions complying with any 240 

of the following criteria: (i) Binding sites are located in 3’-UTRs at less than 15 nts 241 

close to the end of the ORF (and the stop codon) or less than 15 nts close to the terminal 242 

poly(A) tail, (ii) binding sites are located in the middle of the 3’-UTR in a range 243 

comprising 45-55% of the central body of the non-coding sequence and (iii) binding 244 

sites lack AU-rich elements in their immediate upstream and downstream flanking 245 

regions comprising 30 nts each. 246 

Covariation patterns between miRNAs and their predicted mRNA targets at gene-wise 247 

level were assessed on the basis of Spearman´s correlation coefficients (ρ) using the 248 

TMM normalized and log2 transformed expression profiles of the exonic fractions of 249 
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mRNA and miRNA genes. Only miRNA-mRNA predicted pairs comprising DE 250 

upregulated miRNAs (FC > 1.5; q-value < 0.05) and mRNA genes with relevant PTc 251 

scores (see post-transcriptional signal prioritization section) were taken into 252 

consideration. Correlations were considered significant at P-value < 0.05. 253 

 254 

2.9. Gene-wise miRNA enrichment analyses 255 

After the identification of mRNA genes showing marked post-transcriptional signals in 256 

both experimental conditions considered and the prediction of putative miRNA binding 257 

sites in their 3’-UTRs, we sought to determine if the overall number of mRNA genes 258 

(gene-wise) targeted by at least one of the upregulated miRNAs (FC > 1.5; q-value < 259 

0.05) was significantly enriched. The whole sets of expressed mRNA genes with 260 

available 3’-UTRs from both AL-T0 vs AL-T2 and lean vs obese datasets were used as a 261 

contrast background for statistical significance of enrichment analyses, which were 262 

carried out using the Fisher’s exact test implementation included in the fisher.test R 263 

function. Results were considered significant at P-value < 0.05. 264 

Besides, we also tested whether these genes were enriched for binding sites of the top 5% 265 

most highly expressed miRNA genes, excluding the significantly upregulated DE 266 

miRNAs, as well as for binding sites of significantly downregulated miRNAs (FC < -267 

1.5; q-value < 0.05). Upregulated or downregulated miRNAs showing redundant seeds 268 

were considered as one single binding site event. Given the relatively low significant 269 

differences in miRNA expression obtained for the small RNA-Seq profiles of UNIK 270 

Duroc-Gottingen minipigs (lean vs obese), miRNAs were considered upregulated at 271 

FC >1.5 and P-value < 0.01 for such experimental setup. 272 

As a control test, we implemented a randomized bootstrap corrected iteration to 273 

generate 100 random sets of 10 expressed mature miRNA genes without seed 274 
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redundancy. These sets of miRNAs were used as input for miRNA target prediction 275 

with the sets of prioritized mRNA genes with the top 5% PTc scores as previously 276 

described. The distribution of odds ratios obtained after iterating over each random set 277 

of miRNAs (N = 100) were then compared with odds ratios obtained with the set of 278 

significantly upregulated miRNAs (FC > 1.5; q-value < 0.05). 279 

The P-value for the significance of the deviation of observed odds ratios against the 280 

bootstrapped odds ratios distribution was defined as, � � ����� � 1 � 
���

���
, where r 281 

is the number of permuted odds ratios with values equal or higher than the observed 282 

odds ratio for enrichment analyses with the set of upregulated miRNAs, and k is the 283 

number of defined permutations (N = 100). 284 

 285 

2.10. Gene covariation network and covariation enrichment score 286 

We hypothesized that genes showing relevant post-transcriptional downregulatory 287 

effects might be regulated by the same set of significantly upregulated miRNAs, which 288 

could induce shared covariation in their expression profiles at the exonic level. On the 289 

contrary, their intronic fractions would be mainly unaffected, as introns would have 290 

been excised prior to any given miRNA-driven downregulation, if occurring. In this 291 

way, an increased gene covariation might be detectable within the sets of commonly 292 

targeted mRNA genes with relevant post-transcriptional signals at the exon but not at 293 

the intron level, as opposed to covariation events of these set of genes with the rest of 294 

DE genes. 295 

In order to test such hypothesis, we computed pairwise correlation coefficients among 296 

the whole set of DE mRNA genes in the AL-T0 vs AL-T2 (q-value < 0.05, N = 454) and 297 

lean vs obese (q-value < 0.05, N = 299) experimental contrasts, with respect to the set 298 

of genes with relevant post-transcriptional signals and putatively targeted by DE 299 
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upregulated miRNAs. Normalized exonic and intronic estimates in the log2 scale 300 

obtained from EISA analyses were used to compute Spearman’s correlation coefficients 301 

(ρ) for each possible pair of DE mRNA genes plus those with post-transcriptional 302 

signals but not DE (q-value > 0.05), excluding self-correlation pairs. Significant 303 

covariation events were identified with the Partial Correlation with Information Theory 304 

(PCIT) network inference algorithm [37] implemented in the pcit R package [38]. Non-305 

significant covarying pairs were set to zero, while significant covarying pairs with both 306 

positive or negative coefficients |ρ| > 0.6 where assigned a value of 1. 307 

The functional regulatory implications of miRNAs in shaping covariation patterns were 308 

then assessed by a covariation enrichment score (CES) following Tarbier et al. 2020 309 

[39]. Significant differences among the set of exonic, intronic and control CES values 310 

were tested with a non-parametric approach using a Mann-Whitney U non-parametric 311 

test [40]. Further details about CES calculation and implementation can be found in 312 

Supplementary Methods File S1. 313 

 314 

2.11. Expression analyses of miRNAs and putative mRNA targets by qPCR 315 

Retroperitoneal adipose tissue (~20 ml) was taken from the abdominal cavity of UNIK 316 

intercrossed Duroc-Göttingen minipigs pigs quickly after slaughtering (more details 317 

about UNIK minipig population are described elsewhere [19,20]). We then isolated 318 

adipocyte cells as described in Jacobsen et al. 2019 [16] and they were used for RNA 319 

extraction following the method of Cirera (2013) [22]. Total RNA from adipocytes was 320 

subsequently employed for quantitative real-time polymerase chain reaction (qPCR) 321 

verification of expression changes. Five mRNAs (LEP, OSBLP10, PRSS23, RNF157 322 

and SERPINE2) among the top 5% with the highest negative PTc values and showing 323 

reduced ΔEx higher than 3-fold (equivalent to -1.58 in the log2 scale) were selected for 324 
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expression profiling. The same 5 lean and 5 obese animals (according to BMI profiles, 325 

Table S1) used for RNA-Seq and small RNA-seq analyses [16,41] were selected, with 326 

the exception of animal 572, for which no additional RNA was available and that was 327 

replaced by animal 503, which had the closest BMI profile within the obese group of 328 

animals (Table S1). Two reference genes (TBP and ACTB, according to Nygard et al. 329 

2007 [42]) were used as normalizers. Primers were collected from available stocks from 330 

previous studies [42,43] or designed using the PRIMER3 software within the PRIMER-331 

BLAST tool [44], considering exon–exon junction spanning primers for poly-exonic 332 

candidates and accounting for multiple transcript capture when possible. 333 

Accordingly, three miRNAs among the most significantly differentially expressed in 334 

small RNA sequencing data from UNIK samples were selected for qPCR profiling (ssc-335 

miR-92b-3p, ssc-miR-148a-3p and ssc-miR-214-3p), plus two miRNAs for 336 

normalization which were among the most highly expressed and with no differential 337 

expression signal in the lean vs obese small RNA-Seq data set (ssc-let-7a and ssc-miR-338 

23a-3p). The same RNA samples used for mRNA profiling were subsequently 339 

processed for microRNA profiling using 50 ng of total RNA for cDNA synthesis in 340 

duplicate and following the protocol for microRNAs of Balcells et al. 2011 [45] with 341 

recommendations reported by Cirera & Busk 2014 [46]. Primers for miRNA qPCR 342 

amplification were designed using the miRprimer software [47]. Further details about 343 

qPCR experimental procedures are available in Supplementary Methods File S1. All 344 

primers for mRNA and miRNA expression profiling are available at Table S2. Raw Cq 345 

values for each assay are available at Table S3. 346 

 347 

 348 

 349 
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3. Results 350 

3.1. Determining post-transcriptional signals in porcine skeletal muscle using the 351 

EISA approach 352 

After the processing, mapping and quantification of mRNA and miRNA gene 353 

expression profiles in GM skeletal muscle samples encompassing 11 fasting (AL-T0) 354 

and 12 fed (AL-T2) Duroc gilts, an average of 45.2 million reads per sample (~93%) 355 

were successfully mapped to annotated genes (N = 31,908, including protein coding and 356 

non-coding genes) in the Sscrofa11.1 v.103 assembly. Besides, around 2.2 million reads 357 

per sample (~42%) from an average of 6.2 million small RNA sequences mapped to 358 

annotated porcine miRNA genes (N = 370). 359 

A total of 30,322 genes based on exonic regions and 22,769 genes based on intronic 360 

regions were successfully quantified after splitting the reference Sscrofa11.1 v.103 361 

assembly between exonic and intronic ranges. The reduced number of genes for intronic 362 

ranges was produced upon the removal of singleton regions, mono-exonic genes and 363 

exon-overlapping intronic ranges that could disturb the accurate determination of 364 

intronic fractions. 365 

The exonic fraction accounted for an average of 1,923.94 estimated counts per gene, 366 

whereas the intronic fraction was represented by an average of 83.02 counts per gene, 367 

meaning that counts in exonic ranges exceeded those in intronic ranges by ~23 fold. 368 

EISA analyses were run using exonic and intronic fractions from the AL-T0 vs AL-T2 369 

contrast excluding genes with expression levels below 1 CPM in at least 50% of the 370 

samples (N = 12). Only genes represented by both exonic and intronic mapping counts 371 

were retained, resulting in a total of 9,492 mRNA genes used for determining ΔEx and 372 

ΔInt values and using the fasting group (AL-T0) as baseline control, i.e., any given 373 

upregulation in ΔEx or ΔInt values represents and overexpression in fed (AL-T2) over 374 
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fasting (AL-T0) Duroc gilts. Finally, PTc scores were obtained from z-scored values of 375 

ΔEx – ΔInt estimates and differential expression analyses based on exonic fractions 376 

were carried out using the 9,492 genes retrieved. 377 

Differential expression analyses resulted in a total of 454 DE genes (q-value < 0.05), 378 

and of those, only genes with |FC| > 2 were retained, totaling 52 upregulated and 80 379 

downregulated genes (Table S4, Fig. S2A). Besides, differential expression analyses on 380 

small RNA-seq data for AL-T0 vs AL-T2 pigs revealed a total of 16 DE miRNAs (|FC| > 381 

1.5; q-value < 0.05), of which 8 were upregulated (representing 6 unique miRNA seeds, 382 

Table S5). The non-redundant seeds of miRNAs with significantly differential 383 

upregulation in fed AL-T2 animals (N = 6; ssc-miR-148a-3p, ssc-miR-7-5p, ssc-miR-384 

30-3p, ssc-miR-151-3p, ssc-miR-374a-3p and ssc-miR-421-5p, Table S5) were selected 385 

as those potentially affecting genes post-transcriptionally after nutrient supply. Post-386 

transcriptional signal analyses revealed a total of 133 genes with significant post-387 

transcriptional effects (|FC| > 2; q-value < 0.05, Table S6), of which three had reduced 388 

ΔEx fractions > 2 folds and two of them had significantly negative PTc scores (q-value 389 

< 0.05, Table 1). 390 

From these results, we aimed at determining relevant genes putatively downregulated 391 

by miRNAs at the post-transcriptional level. Genes within the top most extreme 5% 392 

negative PTc scores with visibly reduced ΔEx values > 2 folds were selected as genes 393 

showing putative miRNA-driven post-transcriptional downregulation (Fig. S2B). This 394 

resulted in a total of 26 selected genes (Table 1), from which one of them did not have a 395 

3´-UTR annotated (ENSSSCG00000049158) and was hence excluded from miRNA 396 

seed target prediction at the 3’-UTR level. Among this set of 26 genes with high post-397 

transcriptional signals, 18 of them were also downregulated considering canonical 398 

differential expression analyses on their exonic fractions (FC < -2; q-value < 0.05, 399 
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Table 1 and Table S4), while three additional genes showed suggestive yet not 400 

evidently significant downregulation (P-value < 0.01, Table 1 and Table S4). 401 

 402 

3.2. Context-based pruning of predicted miRNA-mRNA interactions removes 403 

spurious unreliable target events 404 

As a first step to determine if genes with highly negative PTc scores and showing a 405 

marked reduction in exonic fractions were possibly affected by the repressor activity of 406 

upregulated DE miRNAs (Table S5), we aimed to investigate the accuracy and 407 

reliability of in silico predicted miRNA binding sites in their 3’-UTRs (Table S7). 408 

We evaluated the presence of enriched binding sites gene-wise over a random 409 

background of expressed genes with no context-based removal of predicted binding 410 

sites, applying each one of the three established removal criteria independently (see 411 

methods), and combining them pairwise and altogether. As depicted in Fig. S3A and 412 

S3B, introducing additional context-based filtering criteria for removing spurious 413 

unreliable binding site predictions resulted in an overall increased enrichment of 414 

miRNA targeted genes within the top 1% (Fig. S3A) and 5% (Fig. S3B) negative PTc 415 

scores and with reduced ΔEx > 2 folds. This increased enrichment significance was 416 

more prevalent for the AU-rich-based criterion, and was slightly improved when adding 417 

the other two context-based removal criteria (Fig. S3A). These results were, however, 418 

less evident for the list of the top 5% genes (Fig. S3B), probably due to the reduced 419 

stringency of gene prioritization and the inclusion of putative false positive candidate 420 

genes that are not targeted by the non-redundant seeds of detected upregulated miRNAs 421 

(N = 6, Table S5). Nevertheless, still an increased enrichment was detectable for all 422 

combined filtering criteria, especially for binding sites of type 7mer-A1, and probably at 423 

the expense of the scarcer and more efficient 8mer binding sites. 424 
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Supported by the observed increased reliability of retrieved miRNA binding sites and 425 

targeted genes after context-based site pruning, we applied the three joint 426 

aforementioned criteria for further target enrichment analyses. 427 

 428 

3.3. Genes with relevant post-transcriptional signals are enriched for putative 429 

miRNA binding sites in their 3’-UTRs. 430 

Target prediction and context-based pruning of miRNA-mRNA interactions for mRNA 431 

genes with the top 5% negative PTc scores and a reduction in the exonic fraction (ΔEx) 432 

of at least 2 folds (N = 25 after excluding ENSSSCG00000049158) resulted in a total of 433 

11 binding sites of type 8mer, 21 of type 7mer-m8 and 22 of type 7mer-A1 (Table S7) 434 

belonging to non-redundant seeds of DE upregulated miRNAs (N = 6) in AL-T2 gilts 435 

(Table S5). 436 

Furthermore, we aimed at investigating if these genes showing putative post-437 

transcriptional signals were enriched for miRNA-derived target events at the gene-wide 438 

level (i.e., assessing whether the number of these genes being putative targets of 439 

upregulated miRNAs were significantly higher compared with a random background). 440 

The set of genes with the top 5% (N = 25, Fig. 1A) PTc scores and reduced ΔEx > 2 441 

folds obtained significant enrichment results (P-value < 0.05) for 8mer, 7mer-m8 and 442 

7mer-A1 targeted genes (Fig. 1B), and this was especially relevant for all target types 443 

combined. More importantly, 21 out of 25 genes from the top 5% PTc scores (Table 444 

S7) were predicted as putative targets for miRNAs upregulated in AL-T2 fed gilts 445 

(Table S5), the majority of which were concentrated among those with the highest PTc 446 

scores (Table 1). The gene with the highest post-transcriptional signal was the Dickkopf 447 

WNT Signaling Pathway Inhibitor 2 (DKK2, Table 1), and was the only gene gathering 448 

two miRNA binding sites of type 8mer simultaneously (Table S7). Other genes with the 449 
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top PTc score that gathered multiple miRNA binding sites were, to mention a few, 450 

pyruvate dehydrogenase kinase 4 (PDK4), interleukin 18 (IL18), nuclear receptor 451 

subfamily 4 group A member 3 (NR4A3) or cholinergic receptor nicotinic α1 subunit 452 

(CHRNA1). The most relevant miRNAs gathering the highest amount of significant 453 

miRNA-mRNA interactions in terms of their correlation patterns were ssc-miR-30a-3p 454 

and ssc-miR-421-5p, which showed 9 and 8 significant miRNA-mRNA interactions, 455 

followed by ssc-miR-148-3p with a total of 4 significant interactions among the set of 456 

mRNA genes with post-transcriptional signals (Table S7). 457 

A special case was represented by the ENSSSCG00000049158 gene (Table 1 and 458 

Table S8), with no 3’-UTR available in the Sscrofa11.1 annotation. Interestingly, this 459 

gene has a relatively long and fragmented 5’-UTR, and we decided to investigate 460 

whether putative miRNA targets could happen in this region. No context-based filtering 461 

was implemented for these analyses. Surprisingly, we found a total of 7 and 9 binding 462 

sites (Table S8) for the set of DE upregulated miRNAs (Table S5) across the two 463 

annotated transcripts of this gene, respectively. 464 

We also evaluated the gene-wise enrichment for this set of genes (N = 25, Table 1) with 465 

the following sets of miRNAs: (i) Non-redundant seeds from downregulated miRNAs in 466 

AL-T2 fed gilts (ssc-miR-1285, ssc-miR-758, ssc-miR-339, sc-miR-22-3p, ssc-miR-467 

296-5p, ssc-miR-129a-3p, ssc-miR-181c and ssc-miR-19b, Table S5), (ii) the top 5% 468 

most expressed non-redundant miRNA seeds, excluding those being upregulated, if 469 

present (ssc-miR-1, ssc-miR-133a-3p, ssc-miR-26a, ssc-miR-10b, ssc-miR-378, ssc-470 

miR-99a-5p, ssc-miR-27b-3p, ssc-miR-30d, ssc-miR-486 and ssc-let-7f-5p) and (iii) for 471 

an iteration (N = 100) of random sets of 10 expressed miRNAs, irrespective of their DE 472 

and abundance status, as a control test. None of these additional analyses recovered a 473 
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significant enrichment for any type of the three considered miRNA target subtypes (Fig. 474 

1B). 475 

To exclude the possibility that any additional DE downregulated mRNA genes (Table 476 

S4) were also putatively regulated by miRNAs, removing those previously analyzed for 477 

post-transcriptional signals (which were not necessarily downregulated in a significant 478 

manner), we also repeated our enrichment analyses for binding sites on this set of genes 479 

with 3’-UTR available (N = 48). When we analyzed the enrichment of the number of 480 

DE downregulated genes (Fig. 1C) being putative targets of upregulated, downregulated 481 

or highly expressed miRNAs, no significant results were observed, except for a slight 482 

enrichment of genes targeted for highly expressed miRNAs considering 8mer + 7mer-483 

m8 binding sites only (Fig. 1D). 484 

 485 

3.4. Studying post-transcriptional signals in adipocytes metabolism using an 486 

independent Duroc-Göttingen minipig population 487 

We decided to evaluate the performance of EISA analyses on the miRNA target 488 

prioritization using an additional independent experimental setup with the adipocyte 489 

mRNA and miRNA expression profiles of a Duroc-Göttingen minipig population with 490 

divergent fatness profiles well characterized at the metabolic and molecular level 491 

[19,20]. A total of 10 animals divided into two groups of 5 animals each with high and 492 

low BMI profiles (lean vs obese, Table S1) were selected for sequencing of adipocyte 493 

homogenates collected from retroperitoneal adipose tissue. After pre-processing and 494 

filtering of sequenced reads, an average of ~98.1 and ~0.87 million mRNA and small 495 

RNA reads per sample were generated, of which ~96.5% and ~73.4% mapped to 496 

annotated porcine mRNA and miRNA genes, respectively. Differential expression 497 

analyses revealed a total of 299 DE mRNAs (q-value < 0.05), of which 52 mRNAs were 498 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.14.452370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452370
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

downregulated and 95 were upregulated (|FC| > 2; q-value < 0.05), respectively (Table 499 

S9). Regarding miRNAs, only one gene (ssc-miR-92b-3p) was significantly upregulated 500 

in lean pigs (|FC| > 2; q-value < 0.05), while 7 additional miRNAs showed suggestive 501 

differential expression (P-value < 0.01, Table S10). 502 

After running EISA analyses on the mRNA expression profiles for exonic and intronic 503 

fractions, a total of 15 downregulated mRNAs in lean pigs were among the top 5% PTc 504 

scores with reduced ΔEx > 3 folds (Table 2, Fig. 2A). The whole set of mRNA genes 505 

from PTc EISA analyses is available at Table S11. A total of 12 out of the initial 15 506 

mRNA genes were then classified as putative miRNA targets from the set of 507 

upregulated miRNA genes in lean pigs (ssc-miR-92b-3p, ssc-miR-148a-3p, ssc-miR-508 

204 and ssc-miR-214-3p; Table S10), respectively. Among these, it is worth 509 

mentioning leptin (LEP), oxysterol binding protein like 10 (OSBPL10), serine protease 510 

23 (PRSS23), ring finger protein 157 (RNF157), serpin family E member 2 511 

(SERPINE2), estrogen related receptor γ (ESRRG) or prostaglandin F receptor 512 

(PTGFR). Moreover, the number of obtained miRNA-mRNA interactions were 1 of 513 

type 8mer, 10 of type 7mer-m8 and 11 of type 7mer-A1 (Table S12). The strongest 514 

covariation patterns among miRNAs and targeted mRNAs were those between ssc-miR-515 

204, ssc-miR-214-3p and ssc-miR92b-3p (Table S12), which were also the miRNAs 516 

showing the more relevant significant differences in overexpression in lean pigs (Table 517 

S10). 518 

Gene-wise enrichment analyses for the set of putative miRNA target genes with post-519 

transcriptional signals (N = 12, Table 2 and Table S12) revealed a slight yet consistent 520 

enrichment for miRNA targets of type 7mer-m8 and 7mer-A1, although it did not reach 521 

significant levels (P-value > 0.05, Fig. 2B). Nonetheless, these binding sites showed 522 

suggestive enrichment compared to analyses assessing the presence of enriched miRNA 523 
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target genes with the set of downregulated miRNAs in lean pigs (ssc-miR-190a and ssc-524 

miR-1839-5p), as well as with those within the top 5% most highly expressed miRNAs 525 

(Table S10, Fig. 2B). 526 

Furthermore, in order to validate the results obtained for mRNAs with high post-527 

transcriptional signals and the miRNAs putatively interacting with them, we selected 5 528 

mRNAs (LEP, OSBPL10, PRSS23, RNF157 and SERPINE2) and 3 miRNAs (ssc-miR-529 

148a-30, ssc-miR-214-3p and ssc-miR-92b-3p) for qPCR expression profiling 530 

verification. All the analyzed mRNA genes showed a reduced expression in lean pigs 531 

compared with their obese counterparts (Fig. 2C) and the LEP gene was the most 532 

significantly downregulated gene (P-value = 1.12E-10), a result that was in agreement 533 

with the strong downregulation observed in differential expression analyses of the 534 

RNA-Seq data set (Table S9). With regard to miRNAs, the oppositive expression 535 

pattern was revealed, with all the three profiled miRNA genes being upregulated in lean 536 

pigs. Moreover, as described in the small RNA-Seq differential expression results 537 

(Table S10), the ssc-miR-92b-3p gene was the miRNA with the most significant 538 

upregulation observed in qPCR analyses (P-value = 3.57E-02, Fig. 2D). 539 

 540 

3.5. Genes showing post-transcriptional regulatory signals predominantly covary 541 

at the exonic level. 542 

To further elucidate whether genes with top 5% post-transcriptional regulatory signals 543 

could account for truly targeted genes by miRNAs according to in silico predictions (N 544 

= 21), we evaluated the covariation patterns among them and with the whole set of DE 545 

mRNA genes (q-value < 0.05, N = 454) in our RNA-seq data from AL-T0 and AL-T2 546 

gilts. In this way, if a set of genes were to be downregulated by any upregulated 547 

miRNAs in a coordinated manner, we would expect a reduced abundance in their 548 
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mature spliced mRNA forms, i.e., only the exonic fractions but not the intronic fractions 549 

might predominantly covary. The intronic fraction, eventually spliced and degraded in 550 

the nucleus, should not reflect any posterior post-transcriptional regulatory effects in the 551 

cytoplasm, and a reduced or null covariation in their abundances might be expected. 552 

Using CES values previously described for the top 5% mRNA genes with highest 553 

negative PTc scores, reduced ΔEx fractions > 2 folds and putatively targeted by DE 554 

upregulated miRNAs (N = 21), we obtained an estimation of the fold change in their 555 

observed covariation with respect to other DE mRNAs (N = 435), and this was 556 

measured for both their exonic and their intronic abundances. Our analyses revealed that 557 

set of mRNA genes with the top 5% negative PTc scores and reduced ΔEx > 2 folds 558 

predicted as miRNA targets (N = 21, Table S7) of upregulated miRNAs (N = 6, Table 559 

S5) showed an average significantly increased covariation of ~2 folds in their exonic 560 

fractions compared with their intronic fractions (Fig. 3A). When we analyzed the 561 

observed fold change in covariation for random sets of genes iteratively (N = 1,000), 562 

they fell towards null covariation changes, i.e., CES ≈ 1 (Fig. 3A). The observed CES 563 

distributions of exonic, intronic and control sets were significantly different after 564 

running non-parametric tests (Fig. 3A), thus supporting the expected predominant effect 565 

at the exon level by miRNA-driven post-transcriptional downregulation. 566 

In agreement with results obtained for the AL-T0 vs AL-T2 contrast, an increased 567 

covariation of ~2 folds was also observed for exonic and intronic fractions of putatively 568 

targeted mRNA genes (N = 12) by DE upregulated miRNAs in the lean vs obese 569 

contrast, although not at a significant level (Fig. 3B). 570 

Moreover, 19 out of 21 (AL-T0 vs AL-T2) and 9 out of 12 (lean vs obese) analyzed 571 

mRNA genes putatively targeted by DE upregulated miRNAs showed an overall 572 

increased covariation in their exonic fractions compared with their intronic fractions, 573 
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expressed as the increment in their CES values (ΔCES = exonic CES – intronic CES, 574 

Table S13). From these, the mRNA genes with a highest fold change increment in 575 

exonic covariation were, to mention a few, the Dickkopf WNT Signaling Pathway 576 

Inhibitor 2 (DKK2), which also had the highest post-transcriptional signal (Table 1), 577 

leucine rich repeat neuronal 1 (LRRN1), PBX homeobox 1 (PBX1), cholinergic receptor 578 

nicotinic α1 subunit (CHRNA1), Tet methylcytosine dioxygenase 2 (TET2), 6-579 

Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 (PFKFB3) or nuclear receptor 580 

subfamily 4 group A member 3 (NR4A3) for the AL-T0 vs AL-T2 contrast, as well as 581 

glycosylphosphatidylinositol specific phospholipase D1 (GPLD1), tumor protein P53 582 

inducible protein 11 (TP53I11), serine protease 23 (PRSS23) or estrogen related 583 

receptor γ (ESRRG) for the lean vs obese contrast. 584 

 585 

 586 

4. Discussion 587 

In the present study we have applied and exon/intron split approach [5], which provides 588 

an unbiased methodology to prioritize mRNA genes showing post-transcriptional 589 

downregulatory signals linking them to upregulated miRNAs that might be targeting 590 

these mRNAs and triggering their observed decay in differential expression analyses. 591 

Motivated by the notion that genes showing strong downregulation in exonic variance 592 

(ΔEx) between groups, combined with highly negative PTc scores (ΔEx – ΔInt), would 593 

represent a proxy for post-transcriptionally regulated genes, we selected those mRNAs 594 

showing a reduced exonic fraction while also having highly negative PTc scores. The 595 

strong downregulation observed in ΔEx values would exceed that observed in the ΔInt 596 

fraction, resulting in a lack of intronic downregulation that might result from post-597 

transcriptional changes only at the exonic level after mRNA splicing in the nucleus. 598 
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We observed that the majority of mRNA genes with highly negative PTc scores, i.e., 599 

predominantly downregulated at their exonic fractions, also had a coordinated 600 

downregulatory effect in their intronic fractions, taken as a proxy of transcriptional 601 

repression. This was evidenced by the overall low significance of post-transcriptional 602 

signals within the mRNA genes with the top 5% negative PTc scores and reduced ΔEx 603 

in both analyzed experimental conditions (Tables 1 and 2). It is worth noting that we 604 

did not consider the significance of PTc scores as a relevant criterion for prioritizing 605 

putative post-transcriptionally downregulated genes, as these will appear as significant 606 

only when the post-transcriptional activity was the unique mechanism modulating the 607 

target gene expression profile. Only co-occurring yet opposite transcriptional and post-608 

transcriptional events or single post-transcriptional signals would arise as significant, 609 

excluding those genes with both coordinated downregulation at the post-transcriptional 610 

level. Only two genes (DKK2 and NAV2) in the AL-T0 vs AL-T2 contrast showed 611 

significant PTc scores (q-value < 0.05, Table 1), revealing the overall coordinated 612 

downregulatory effect at transcriptional and post-transcriptional level we found, which 613 

is in agreement with previous reports using EISA [6,7]. 614 

Since the efficacy of miRNA targeting  depends on the context of the target site within 615 

the 3’-UTR [35], we have described the usefulness of introducing context-based 616 

filtering criteria for removing spurious in silico-predicted target sites for miRNAs. The 617 

increase in enrichment significance shown for targeted mRNAs with post-618 

transcriptional signals and upregulated miRNAs, as opposed to other highly expressed 619 

and/or downregulated miRNAs, highlighted the ability of such criteria to discriminate 620 

and remove weak or false positive target sites located within unfavored regions of the 621 

3’-UTR. However, highly efficient target sites such as those of type 8mer, although 622 

scarcer than 7mer-m8 sites, might still be functional even at unfavored positions 623 
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[35,48,49], which may partially explain the relative lack of 8mer sites found in the top 624 

post-transcriptionally regulated mRNA genes. 625 

We opted for using the intronic fraction of expressed mRNAs as a proxy of their 626 

transcriptional activity. In this way, the intronic fraction might reflect an approximation 627 

to transcriptional activity of yet unspliced mRNA transcripts leading to the 628 

accumulation of intronic sequences prior to their debranching and degradation by 629 

exonucleases. Previous reports have also explored the use of specific techniques to 630 

capture nascent transcripts before they are spliced [8,50,51], and these have been used 631 

to account for the transcriptional activity in a similar approach to EISA [52]. The use of 632 

intronic fractions as a signal of transcription allows the use of RNA-seq datasets to 633 

apply EISA without the need of further experimental procedures and it can also be 634 

applied to investigate transcriptional regulatory signals [7]. Nevertheless, the use of 635 

more advanced methodologies to measure transient transcription of mRNAs might 636 

provide a better resolution for future experimental designs [52], while EISA would be 637 

still useful to explore already available RNA-seq data. 638 

From the analysis of top mRNA genes showing the strongest post-transcriptional 639 

downregulatory effects in fasted (AL-T0) vs fed (AL-T2) gilts, relevant biological 640 

functions putatively regulated by miRNAs were highlighted. The DKK2 gene was the 641 

one showing the highest negative PTc score, and its post-transcriptional regulatory 642 

signal was also significant (Table 1), meaning that no additional coordinated 643 

transcriptional downregulation was found for this particular gene. Moreover, this gene 644 

also showed the strongest covariation difference in its exonic fraction compared with its 645 

intronic fraction (Table S13). This consistent post-transcriptional regulatory effect 646 

might be explained by the presence of two miRNA target sites of type 8mer in its 3´-647 

UTR for ssc-miR-421-5p and ssc-miR-30a-3p, two differentially upregulated miRNAs 648 
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in the same experimental setup (Table S5). Besides, ssc-miR-30e-3p, a miRNA sharing 649 

its seed and regulatory effect with ssc-miR-30a-3p, was also upregulated in fed (AL-T2) 650 

gilts, which would reinforce the repression of the mRNA transcripts. The DKK2 gene is 651 

a member of the dickkopf family that inhibits the Wnt signaling pathway through its 652 

interaction with the LDL-receptor related protein 6 (LRP6). Its repression has been 653 

associated with reduced blood-glucose levels and improved glucose uptake [53], as well 654 

as with improved adipogenesis [54] and inhibition of aerobic glycolysis [55]. Moreover, 655 

the miR-493-5p, a miRNA that was also upregulated in fed gilts (Table S5) although 656 

only at nominal level, has been shown to directly regulate its expression [55]. These 657 

results would be in agreement with the increased glucose usage and triggered 658 

adipogenesis in muscle tissue after nutrient supply. Other additional relevant post-659 

transcriptionally downregulated mRNA genes worth mentioning are: PDK4, a 660 

mitochondrial enzyme that inhibits pyruvate to acetyl-CoA conversion thus hindering 661 

glucose utilization and that promotes fatty acids oxidation in energy-deprived cells 662 

under fasting conditions [56,57], IL18, a proinflammatory interleukin involved in 663 

controlling energy homeostasis in the muscle by inducing AMP-activated protein kinase 664 

(AMPK) [58], a master metabolic regulator that is suppressed upon nutrient influx in 665 

cells [59], NR4A3, an orphan nuclear receptor that activates both glycolytic and 666 

glycogenic factors [60], as well as β-oxidation in muscle cells [61], CHRNA1, the α 667 

subunit of the nicotinic cholinergic receptor of muscle cells, whose repression was 668 

linked to the inhibition of nicotine-dependent STAT3 upregulation [62], a transcription 669 

factor that promotes insulin resistance in muscle [63], PBX1, a stage-specific regulator 670 

of adipocyte differentiation [64], TET2, a tumor suppressor linked to glucose-dependent 671 

AMPK phosphorylation [65] and BTB domain and CNC homolog (BACH2), whose 672 

inhibition is directly associated with mTOR complex 2 (mTORC2) glucose-dependent 673 
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activation [66,67] and the repression of forkhead box protein O1 (FOXO1) [68] and 674 

PDK4 in a coordinated manner [17,69]. Overall, the highlighted downregulated genes in 675 

the muscle of fed gilts after nutrient supply pointed towards a common regulatory 676 

function of miRNAs in modulating glucose uptake and energy homeostasis of the 677 

skeletal myocytes. 678 

Although miRNAs were the major post-transcriptional regulators that we considered in 679 

this study, it is important to remark that other additional post-transcriptional 680 

modifications and interactions might be responsible of the observed downregulation of 681 

mRNAs [70–74]. This could explain the presence of non-miRNA targets within the top 682 

post-transcriptional signals, as well as additional regulatory mechanisms not directly 683 

involved in energy homeostasis or glucose usage among the highlighted genes. For 684 

instance, three circadian clock-related mRNA genes that showed high post-685 

transcriptional signals were the circadian associated repressor of transcription (CIART), 686 

period 1 (PER1) and salt inducible kinase 1 (SIK1), yet the first two were not detected 687 

as targets of differentially expressed miRNAs, as shown in Table 1. As previously 688 

reported for this experimental design [15], the presence of several genes showing 689 

abundance differences might reflect a tight feedback interplay among them, where their 690 

expression and accumulation are coordinately regulated. 691 

Regarding EISA analyses in RNA-seq profiles of adipocytes from lean and obese 692 

Duroc-Göttingen minipigs, several of the mRNA genes that showed high post-693 

transcriptional repression were involved in lipids metabolism and the regulation of 694 

energy homeostasis. For instance, the gene showing the highest post-transcriptional 695 

signal was ESRRG, an orphan nuclear receptor that modulates oxidative metabolism and 696 

mitochondrial function in adipose tissue and that results in the downregulation of 697 

adipogenic markers and adipocyte differentiation when repressed [75]. The 698 
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prostaglandin F2- receptor protein (PTGFR) overexpression has been associated with 699 

hypertension and obesity-related risks [76], and its repression improved insulin 700 

sensitivity and glucose homeostasis [77]. High expression of SERPINE2 gene and its 701 

paralog SERPINE1 were linked to obesogenic states and diabetic symptoms [78], while 702 

their inhibition improved glucose metabolism [79]. The serine protease PRSS23 703 

regulates insulin sensitivity and cytokine expression in adipose tissue, and its 704 

downregulation confers protective effects against inflammation, reduced fasting glucose 705 

level and improved insulin resistance [80], while a high expression of RNF157 has been 706 

described in adipose tissue with high fatness profiles and increased autophagy [81]. 707 

Silencing of ORP10 protein, encoded by the OSBLP10 gene, promotes low-density 708 

lipoprotein (LDL) synthesis and inhibits lipogenesis [82]. The serum levels of GPLD1, 709 

the gene showing the highest increase in covariation at the exonic fraction (Table S13), 710 

are regulated by insulin and glucose metabolism [83] and linked to the development of 711 

insulin resistance and metabolic syndrome [84]. Finally, leptin production was also 712 

decreased in lean pigs compared to their obese counterparts, and was among the top 713 

post-transcriptionally regulated mRNA genes. This adipokine is mainly produced in 714 

adipose tissue [85] and regulates appetite, energy expenditure and body weight [86,87]. 715 

In summary, similar to what we found for glucose metabolism and energy homeostasis 716 

in fasted vs fed Duroc pigs, we were also able to describe a set of post-transcriptionally 717 

regulated genes in lean vs obese minipigs related to adipose tissue metabolism 718 

regulation dependent of their fatness profiles. 719 

 720 

 721 

 722 

 723 
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5. Conclusions 724 

In this study we have implemented an exon/intron split analysis of RNA-seq data from 725 

skeletal muscle and adipose tissue of pigs, in order to disentangle miRNA-driven post-726 

transcriptional signals that are not evident from the solely analysis of differentially 727 

expressed mRNAs comparing divergent experimental conditions. In this way, we were 728 

able to prioritize regulatory relationships between upregulated miRNAs and their 729 

putative mRNA targets. We demonstrated that incorporating context-based pruning of 730 

in silico-predicted miRNA targets increased the reliability of the putative miRNA-731 

mRNA interactions. Besides, these downregulated mRNAs with relevant post-732 

transcriptional signals were significantly enriched for being cooperatively targeted by a 733 

set of upregulated miRNAs, as opposed to other highly expressed and/or downregulated 734 

miRNAs. The majority of these genes showed an average of 2-folds increase in 735 

expression covariation in their exonic fractions compared to their intronic fractions, a 736 

result that reinforced their putative post-transcriptional downregulation by miRNA-737 

driven transcript decay. Our results highlight an efficient framework to prioritize 738 

mRNA genes showing post-transcriptional signals linked to miRNA-driven 739 

downregulation using exonic and intronic fractions of commonly available RNA-seq 740 

datasets. 741 
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Duroc gilts. 1101 

ID Gene log2FC ΔEx PTc P-value q-value DE miRNA target 

ENSSSCG00000032094 DKK2 -2.010 -1.431 -4.738 1.654E-05 3.830E-03 • x 

ENSSSCG00000015334 PDK4 -2.108 -5.250 -4.698 4.693E-03 1.330E-01 x x 

ENSSSCG00000015037 IL18 -1.655 -1.191 -3.682 4.787E-03 1.340E-01 • x 

ENSSSCG00000005385 NR4A3 -1.337 -3.082 -3.646 4.038E-02 4.098E-01 x x 

ENSSSCG00000003766 DNAJB4 -1.391 -1.008 -3.348 8.358E-03 1.905E-01  
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ENSSSCG00000015969 CHRNA1 -1.561 -1.339 -3.341 2.606E-03 9.406E-02 x x 

ENSSSCG00000039419 SLCO4A1 -1.055 -2.279 -3.180 2.820E-02 3.544E-01 x x 

ENSSSCG00000049158 -1.107 -1.096 -3.164 3.182E-02 3.735E-01  
x 

ENSSSCG00000004347 FBXL4 -1.298 -1.126 -3.133 1.422E-03 6.520E-02 x x 

ENSSSCG00000004979 MYO9A -1.239 -1.003 -3.043 7.296E-03 1.731E-01  
x 

ENSSSCG00000013351 NAV2 -1.163 -1.196 -2.863 2.605E-04 2.301E-02 x x 

ENSSSCG00000032741 TBC1D9 -0.913 -1.061 -2.736 1.534E-02 2.583E-01 • x 

ENSSSCG00000031728 ABRA -1.238 -1.393 -2.704 1.295E-03 6.116E-02 x x 

ENSSSCG00000006331 PBX1 -0.891 -1.039 -2.480 1.135E-02 2.177E-01 x x 

ENSSSCG00000035037 SIK1 -1.357 -1.289 -2.475 3.999E-03 1.212E-01 x x 

ENSSSCG00000038374 CIART -1.027 -1.321 -2.052 1.543E-02 2.587E-01 x 
 

ENSSSCG00000023806 LRRN1 -0.776 -1.013 -1.983 1.580E-01 7.074E-01  
x 

ENSSSCG00000009157 TET2 -0.381 -1.123 -1.792 4.880E-01 9.582E-01  
x 

ENSSSCG00000011133 PFKFB3 -0.022 -2.256 -1.785 9.712E-01 9.987E-01 x x 

ENSSSCG00000002283 FUT8 -0.578 -1.286 -1.784 9.887E-02 6.059E-01 x x 

ENSSSCG00000023133 OSBPL6 -0.432 -1.088 -1.772 3.835E-01 9.108E-01 x 
 

ENSSSCG00000017986 NDEL1 -0.767 -1.644 -1.759 1.006E-02 2.081E-01 x x 

ENSSSCG00000031321 NR4A1 -0.630 -1.328 -1.720 6.298E-02 5.006E-01 x 
 

ENSSSCG00000035101 KLF5 -0.519 -1.487 -1.708 2.942E-01 8.488E-01 x x 

ENSSSCG00000004332 BACH2 -0.714 -2.105 -1.705 9.089E-02 5.861E-01 x x 

ENSSSCG00000017983 PER1 -0.773 -1.073 -1.627 3.000E-02 3.662E-01 x   

 1102 

aLog2FC: estimated log2 fold change for mean exonic fractions from gluteus medius expression profiles of fasted AL-1103 

T0 and fed AL-T2 Duroc gilts; b
ΔEx: exonic fraction increment (Ex2 – Ex1) when comparing exon abundances in AL-1104 

T0 (Ex1) vs AL-T2 (Ex2) Duroc gilts; cPTc: post-transcriptional signal (ΔEx – ΔInt) in z-score scale; dq-value: q-value 1105 

calculated with the false discovery rate (FDR) approach [32]. The “x” symbols represent differentially expressed 1106 

(DE) genes (FC < -2; q-value < 0.05) according to their exonic fractions, as well as those targeted by at least one of 1107 

the upregulated miRNAs excluding redundant seeds (N = 6, Table S5). The “•” symbol represents suggestive 1108 

canonical differential expression (P-value < 0.01, Table S4). 1109 

 1110 
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Table 2: mRNA genes with the top 5% post-transcriptional signals (PTc) and reduced 1111 

exonic fractions (ΔEx) > 3 folds (equivalent to -1.58 in the log2 scale) from adipocyte 1112 

expression profiles of lean (N = 5) and obese (N = 5) Duroc-Göttingen minipigs 1113 

according to their body mass index (BMI). 1114 

mRNA Gene log2FCa ΔExb PTcc P-value q-valued DE miRNA target 

ENSSSCG00000010814 ESRRG -0.591 -5.305 -6.425 7.364E-01 9.996E-01 x 
ENSSSCG00000032452 WFS1 -2.198 -2.138 -5.510 9.509E-03 9.996E-01 x 
ENSSSCG00000039548 PTGFR -1.634 -1.590 -4.915 8.804E-03 9.996E-01 • x 
ENSSSCG00000002265 FAM174B -1.244 -1.726 -4.179 5.385E-02 9.996E-01 • x 
ENSSSCG00000016233 SERPINE2* -1.735 -2.060 -3.603 5.684E-02 9.996E-01 x x 
ENSSSCG00000006243 PENK -0.42 -2.104 -3.573 7.628E-01 9.996E-01 

 ENSSSCG00000014921 PRSS23* -1.141 -1.739 -3.360 2.719E-01 9.996E-01 • x 
ENSSSCG00000017186 RNF157* -1.218 -2.338 -3.317 2.413E-01 9.996E-01 x x 
ENSSSCG00000031819 TP53I11 -1.002 -1.711 -2.883 4.102E-01 9.996E-01 x 
ENSSSCG00000001089 GPLD1 -0.872 -1.761 -2.723 4.302E-01 9.996E-01 x 
ENSSSCG00000003377 ACOT7 -0.79 -2.688 -2.544 3.439E-01 9.996E-01 x 
ENSSSCG00000040464 LEP* -0.747 -2.186 -2.463 1.880E-01 9.996E-01 x x 
ENSSSCG00000025652 CDH1 -0.472 -2.592 -2.372 6.533E-01 9.996E-01 • x 
ENSSSCG00000011230 OSBPL10* -0.576 -1.594 -1.869 4.272E-01 9.996E-01 • x 
ENSSSCG00000017328 ARHGAP27 -0.235 -2.788 -1.699 8.113E-01 9.996E-01 x x 

 1115 

aLog2FC: estimated log2 fold change for mean exonic fractions from adipocyte expression profiles of lean and obese 1116 

Duroc-Göttingen minipigs; b
ΔEx: exonic fraction increment (Ex2 – Ex1) when comparing exon abundances in obese 1117 

(Ex1) vs lean (Ex2) Duroc gilts; cPTc: post-transcriptional signal (ΔEx – ΔInt) in z-score scale; dq-value: q-value 1118 

calculated with the false discovery rate (FDR) approach [32]. The “x” symbols represent differentially expressed 1119 

(DE) genes (FC < -2; q-value < 0.05) according to their exonic fractions, as well as those targeted by at least one of 1120 

the upregulated miRNAs excluding redundant seeds (N = 4, Table S10). The “•” symbol represents suggestive 1121 

canonical differential expression (P-value < 0.01, Table S9). 1122 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 
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Figure legends 1130 

Figure 1: (A) Scatterplot depicting mRNA genes with the top 5% negative post-1131 

transcriptional regulatory signals according to exonic (ΔEx) and PTc (ΔEx – ΔInt) 1132 

scores (in purple) and putatively targeted by upregulated (FC > 1.5; q-value < 0.05) 1133 

miRNAs from gluteus medius skeletal muscle expression profiles of fasted (AL-T0, N = 1134 

11) and fed (AL-T2, N = 12) Duroc gilts. (B) Enrichment analyses of the number of 1135 

mRNA genes with the top 5% negative post-transcriptional signals (PTc) and reduced 1136 

exonic fractions (ΔEx) > 2 folds putatively targeted by DE upregulated miRNAs (FC > 1137 

1.5; q-value < 0.05), DE downregulated miRNAs (FC < -1.5; q-value < 0.05) and the 1138 

top 5% most highly expressed miRNAs excluding DE upregulated miRNAs. (C) 1139 

Scatterplot depicting DE upregulated (in green) and downregulated (in red) mRNA 1140 

genes (|FC| > 2; q-value < 0.05) according to exonic (ΔEx) and PTc (ΔEx – ΔInt) 1141 

scores. (D) Enrichment analyses considering DE downregulated mRNA genes (FC < -2; 1142 

q-value < 0.05) and excluding those with the top 5% putative post-transcriptional 1143 

regulatory signals previously analyzed. The black dashed line represents a P-value = 1144 

0.05. 1145 

 1146 

Figure 2: (A) Scatterplot depicting mRNA genes with the top 5% negative post-1147 

transcriptional regulatory signals according to exonic (ΔEx) and PTc (ΔEx – ΔInt) 1148 

scores (in purple) and putatively targeted by upregulated (FC > 1.5; P-value < 0.01) 1149 

miRNAs from adipocyte expression profiles of lean (N = 5) and obese (N = 5) Duroc-1150 

Göttingen minipigs according to their body mass index (BMI). (B) Enrichment analyses 1151 

of the number of mRNA genes with the top 5% negative post-transcriptional signals 1152 

(PTc) and reduced exonic fractions (ΔEx) > 3 folds (equivalent to 1.58 in the log2 scale) 1153 

putatively targeted by DE upregulated miRNAs (FC > 1.5; P-value < 0.01), DE 1154 
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downregulated miRNAs (FC < -1.5; P-value < 0.01) and the top 5% most highly 1155 

expressed miRNAs excluding DE upregulated miRNAs. (C) Barplots depicting qPCR 1156 

log2 transformed relative quantities (Rq) for LEP, OSBPL10, PRSS23, RNF157 and 1157 

SERPINE2 mRNA transcripts measured in adipocytes from the retroperitoneal fat of 1158 

lean (N = 5) and obese (N = 5) Duroc-Göttingen minipigs. (D) Barplots depicting qPCR 1159 

log2 transformed relative quantities (Rq) for ssc-miR-148a-3p, ssc-miR-214-3p and ssc-1160 

miR-92b-3p miRNA transcripts measured in the isolated adipocytes from the 1161 

retroperitoneal fat of lean (N = 5) and obese (N = 5) Duroc-Göttingen minipigs. 1162 

 1163 

Figure 3: Covariation enrichment scores (CES) for the exonic and intronic fractions of 1164 

mRNA genes with post-transcriptional signals (PTc) and putatively targeted by 1165 

upregulated miRNAs from (A) gluteus medius skeletal muscle expression profiles of 1166 

fasted (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc gilts and (B) adipocyte 1167 

expression profiles of lean (N = 5) and obese (N = 5) Duroc-Göttingen minipigs 1168 

according to their body mass index (BMI). The top post-transcriptional signals were 1169 

defined as the 5% most negative PTc scores and reduced exonic fractions (ΔEx) > 2 1170 

folds for AL-T0 vs ALT-2 Duroc gilts (N = 21) and (ΔEx) > 3 folds for lean vs obese 1171 

Duroc-Göttingen minipigs (N = 12), respectively. The control set of CES values were 1172 

generated by permuted (N = 1,000) random sets of exonic and intronic profiles of genes 1173 

with same length as those with post-transcriptional signals in both contrasts (N = 21 for 1174 

AL-T0 vs ALT-2 and N = 12 for lean vs obese). Significant differences were assessed 1175 

using a Mann-Whitney U non-parametric test [40]. 1176 

 1177 

 1178 

 1179 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.07.14.452370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452370
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 

 

Supplementary Tables 1180 

Table S1: Phenotype values for selected Duroc-Göttingen minipigs from the F2-UNIK 1181 

source population according to their body mass indexes (BMI). 1182 

 1183 

Table S2: Primers for qPCR validation of selected mRNA and miRNA genes according 1184 

to EISA results in the F2-UNIK Duroc-Göttingen minipig population comparing lean 1185 

(N = 5) and obese (N = 5) individuals. 1186 

 1187 

Table S3: Raw Cq values after efficiency correction measuring adipocyte expression 1188 

profiles of selected mRNAs and miRNAs from lean (N = 5) and obese (N = 5) Duroc-1189 

Göttingen minipigs. 1190 

 1191 

Table S4: Genes detected by edgeR tool as differentially expressed when comparing 1192 

gluteus medius expression profiles of fasted AL-T0 (N = 11) and fed AL-T2 (N = 12) 1193 

Duroc gilts. 1194 

 1195 

Table S5: microRNA genes detected by edgeR tool as differentially expressed when 1196 

comparing gluteus medius expression profiles of fasted AL-T0 (N = 11) and fed AL-T2 1197 

(N = 12) Duroc gilts. 1198 

 1199 

Table S6: EISA analyses for post-transcriptional signals detected in gluteus medius 1200 

skeletal muscle expression profiles of fasted (AL-T0, N = 11) and fed (AL-T2, N = 12) 1201 

Duroc gilts. 1202 

 1203 
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Table S7: Binding sites for differentially upregulated miRNAs from mRNA genes with 1204 

the top 5% negative PTc scores and reduced ΔEx > 2 folds from gluteus medius skeletal 1205 

muscle expression profiles of fasting (AL-T0, N = 11) and fed (AL-T2, N = 12) Duroc 1206 

gilts. 1207 

 1208 

Table S8: Binding sites for differentially upregulated miRNAs from the 5'-UTR of the 1209 

two transcripts annotated for the ENSSSCG00000049158 mRNA gene. 1210 

 1211 

Table S9: Genes detected by edgeR tool as differentially expressed when comparing 1212 

adipocyte expression profiles from lean (N = 5) and obese (N = 5) Duroc-Göttingen 1213 

minipigs according to their body mass index (BMI). 1214 

 1215 

Table S10: microRNA genes detected by edgeR tool as differentially expressed when 1216 

comparing adipocyte expression profiles from lean (N = 5) and obese (N = 5) Duroc-1217 

Göttingen minipigs according to their body mass index (BMI). 1218 

 1219 

Table S11: Genes with the top 5% post-transcriptional signals (PTc) and reduced 1220 

exonic fractions (ΔEx) > 3 folds (equivalent to -1.58 in the log2 scale) from adipocyte 1221 

expression profiles of lean (N = 5) and obese (N = 5) Duroc-Göttingen minipigs 1222 

according to their body mass index (BMI). 1223 

 1224 

Table S12: Binding sites for differentially upregulated miRNAs from mRNA genes 1225 

with top 5% negative PTc scores and reduced ΔEx > 3 folds from adipocyte expression 1226 

profiles of lean (N = 5) and obese (N = 5) Duroc-Göttingen minipigs according to their 1227 

body mass index (BMI). 1228 
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 1229 

Table S13: Covariation enrichment scores (CES) for the exonic and intronic fractions 1230 

of mRNA genes with the top 5% post-transcriptional signals (PTc) that were putatively 1231 

targeted by DE upregulated miRNAs from gluteus medius skeletal muscle expression 1232 

profiles AL-T0 vs AL-T2 Duroc gilts (N = 21), as well as from adipocyte expression 1233 

profiles of lean vs obese Duroc-Göttingen minipigs (N = 12). 1234 

 1235 

 1236 

Supplementary Figures 1237 

Figure S1: (A) Scatterplot depicting post-transcriptional regulatory signals according to 1238 

differences in the exonic fraction (ΔEx) and PTc (ΔEx – ΔInt) scores. (B) The 1239 

classification and interpretation of post-transcriptional signals according to ∆Ex, ∆Int 1240 

(Tc) and ∆Ex - ∆Int (PTc) values. (C) Diagram depicting the consecutive steps 1241 

implemented for studying miRNA-driven post-transcriptional regulatory signals 1242 

applying the EISA approach and additional enrichment and covariation analyses. 1243 

 1244 

Figure S2: Scatterplots depicting the exonic (ΔEx) and intronic (ΔInt) fractions from 1245 

gluteus medius skeletal muscle expression profiles of fasting (AL-T0, N = 11) and fed 1246 

(AL-T2, N = 12) Duroc gilts. (A) mRNA genes with the top 5% post-transcriptional 1247 

(PTc) negative scores and reduced exonic (ΔEx) fractions > 2 folds (equivalent to -1 in 1248 

the log2 scale), suggestive of miRNA-driven post-transcriptional regulation. (B) mRNA 1249 

genes differentially expressed showing upregulation (FC > 2; q-value < 0.05, in green) 1250 

and downregulation (FC < -2, q-value < 0.05, in red) in fed (AL-T2, N = 12) Duroc gilts 1251 

with respect to their fasted (AL-T0, N = 11) counterparts. 1252 

 1253 
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Figure S3: Enrichment analyses of the number of genes with the (A) top 1% and (B) 1254 

top 5% negative post-transcriptional signals (PTc) and reduced exonic fractions (ΔEx) > 1255 

2 folds putatively targeted by upregulated miRNAs (FC > 1.5; q-value < 0.05) from 1256 

gluteus medius skeletal muscle expression profiles of fasting (AL-T0, N = 11) and fed 1257 

(AL-T2, N = 12) Duroc gilts and the consequences of incorporating context-based 1258 

pruning of miRNA binding sites of type 8mer, 7mer-m8 and 7mer-A1. R: Raw 1259 

enrichment analyses without any additional context-based pruning. AU: Enrichment 1260 

analyses removing miRNA binding sites without AU-rich flanking sequences (30 nts 1261 

upstream and downstream). M: Enrichment analyses removing miRNA binding sites 1262 

located in the middle of the 3’-UTR sequence (45-55%). E: Enrichment analyses 1263 

removing miRNA binding sites located too close (< 15 nts) to the beginning or the end 1264 

of the 3’-UTR sequences. The black dashed line represents a P-value = 0.05. 1265 

 1266 
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