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ABSTRACT

Understanding the complex network and dynamics that regulate transcription elongation requires the

quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We

performed native elongating transcript sequencing (NET-seq) in 41 strains of S. cerevisiae lacking known

elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers,

and remodelers. We found that the opposing effects of these factors balance transcription elongation

dynamics. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density

peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring

large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Genes that

are sensitive to disruptions in transcription elongation tend to couple changes in Pol II pausing and antisense

transcription to transcription output. Our findings collectively show that the regulation of transcription elongation

by a diverse array of factors affects gene expression levels and co-transcriptional processing by precisely

balancing Pol II activity.
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INTRODUCTION

Transcription is a highly regulated and conserved process that consists of three phases: initiation,

elongation, and termination (Shandilya and Roberts, 2012; Svejstrup, 2004). Post-initiation regulation is critical

for co-transcriptional RNA processing, shaping the chromatin landscape, and preventing run-on transcription

into downstream genes (Herzel et al., 2017; Holmes et al., 2015; Proudfoot et al., 2002; Rando and Winston,

2012). Transcription elongation is controlled across gene bodies by a wide variety of factors, including

transcription factors, chromatin modifiers, chromatin assembly factors and chaperones, RNA processing

factors, and histone variants. Understanding how these factors act separately and in concert to influence RNA

polymerase II (Pol II) activity will shed light on how transcription elongation and co-transcriptional processes

are coordinated.

Transcription is a discontinuous process: periods of productive elongation are frequently interrupted by

pauses. Pol II pausing was first observed in vitro in E. coli polymerase transcribing the lac operon and lambda

DNA (Dahlberg and Blattner, 1973; Gilbert et al., 1974; Kassavetis and Chamberlin, 1981; Kingston and

Chamberlin, 1981; Lee et al., 1976; Maizels, 1973). Observations of Pol II pausing in vivo provided the first

evidence of promoter-proximal pausing (Gariglio et al., 1981). These findings were extended by chromatin

immunoprecipitation (ChIP) studies, which identified paused polymerase near the 5’ ends of certain Drosophila

and mammalian genes (Bentley and Groudine, 1986; Eick and Bornkamm, 1986; Gilmour and Lis, 1986;

Krumm et al., 1992; Nepveu and Marcu, 1986; Rougvie and Lis, 1988; Spencer and Groudine, 1990; Strobl

and Eick, 1992). Promoter-proximal pausing is now known to occur genome-wide and has been visualized by

high-resolution ChIP-seq (ChIP-exo) experiments, which have pinpointed Pol II accumulation 50 bp

downstream of transcription start sites (TSSs) in the majority of human genes (Venters and Pugh, 2013).

The advent of high-throughput and high-resolution sequencing technologies have led to the

development of sequencing methods such as native elongating transcript sequencing (NET-seq) and precision

run-on sequencing (PRO-seq) that measure Pol II density genome-wide at nucleotide resolution. Collectively,

these techniques have highlighted the control of transcription elongation by regulatory factors. These

approaches and other nascent RNA sequencing methods visualize the production of transcripts from RNA
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polymerases across the genome (Churchman and Weissman, 2011; Core et al., 2008; Kwak et al., 2013;

Mayer et al., 2015; Nojima et al., 2015; Schwalb et al., 2016), and therefore are capable of revealing the

immediate and direct effects of a perturbation on transcription. In addition, these assays capture unstable

transcripts such as enhancer RNAs and antisense RNAs, which are critical to transcription regulation but

invisible to other techniques (Faghihi and Wahlestedt, 2009; Hou and Kraus, 2020). The strand-specificity and

high resolution of these methods are transforming our understanding of transcription dynamics and regulation.

NET-seq, PRO-seq, and other high-resolution methods have revealed regions of high Pol II density,

such as promoter proximal pausing, and specific sites of Pol II pausing within the region and throughout the

gene body (Churchman and Weissman, 2011; Ferrari et al., 2013; Kindgren et al., 2020; Kwak et al., 2013;

Larson et al., 2014; Mayer et al., 2015; Nojima et al., 2015; Vvedenskaya et al., 2014; Weber et al., 2014).

These Pol II pause sites are reminiscent of pausing observed at single nucleotide positions in vitro

(Churchman and Weissman, 2011; Kassavetis and Chamberlin, 1981; Kwak et al., 2013; Schwalb et al., 2016).

In yeast, Pol II pause sites occur frequently (Churchman and Weissman, 2011), arising from intrinsic properties

of the polymerase itself, interactions with the DNA template and specific sequence motifs, and the presence of

bound proteins (e.g. histones and transcription factors) (Gajos et al., 2021; Herbert et al., 2006; Hodges et al.,

2009; Kassavetis and Chamberlin, 1981; Kireeva and Kashlev, 2009; Kireeva et al., 2005; Mayer et al., 2015;

Noe Gonzalez et al., 2021; Shaevitz et al., 2003). In yeast, Pol II tends to pause at an adenine and just before

the nucleosome dyad (Churchman and Weissman, 2011; Hodges et al., 2009), the point of the strongest

DNA–histone contacts (Hall et al., 2009). The presence of elongation factors changes the duration and position

of Pol II pauses in vitro and in vivo. For example, in the absence of Dst1, the yeast homolog of the elongation

factor TFIIS, ~75% of Pol II pauses are shifted 5–18 bp downstream (Churchman and Weissman, 2011). In

vitro, the TFIIS bacterial homolog, NusG, changes the duration of RNA polymerase pausing (Herbert et al.,

2010).

Regions or peaks of high Pol II density, such as promoter proximal pauses, are created in part by a high

density of pause sites that together create barriers to elongation and provide an opportunity for regulation and

coordination of co-transcriptional events (Bentley, 2014; Mayer et al., 2017; Noe Gonzalez et al., 2021;

Rougvie and Lis, 1988). For example, prominent peaks of Pol II density occur at the boundaries of retained

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.15.456358doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456358
http://creativecommons.org/licenses/by/4.0/


exons and near polyadenylation [poly(A)] sites (Harlen et al., 2016; Kwak et al., 2013; Mayer et al., 2015;

Nojima et al., 2015). Myriad factors control Pol II peaks in vivo. Loss of Rtt103, a termination factor, causes a

dramatic peak in Pol II density directly downstream of poly(A) sites (Harlen et al., 2016).

The full range of Pol II pausing preferences and behavior is relatively unknown, and the degree to

which pausing can be suppressed or enhanced by perturbing the transcription regulatory network has yet to be

determined. For example, we do not know which elongation factors are responsible for Pol II pausing, nor

which features of chromatin determine pausing location. Moreover, the connection between Pol II pausing and

overall gene expression levels remains poorly understood. To answer these questions, we need to study

pausing in diverse regulatory landscapes and functionally characterize factors involved in the regulation of

transcription elongation.

Pol II transcribes much of the genome in all eukaryotes, yet only a fraction of its transcripts mature into

stable, protein-coding RNA products (Bertone et al., 2004; Cheng et al., 2005; David et al., 2006; Hangauer et

al., 2013; Kapranov et al., 2007; Mercer et al., 2011; Nagalakshmi et al., 2008; Steinmetz et al., 2006). A major

contributor to unstable noncoding RNA products is antisense transcripts, i.e., RNAs transcribed from the strand

opposite the sense strand of a protein-coding gene. Originally identified in bacteria (Spiegelman et al., 1972),

antisense transcripts were soon discovered in eukaryotes as well (Anderson et al., 1981; Bibb et al., 1981).

Since its discovery, antisense transcription has been detected opposite the vast majority of annotated genes in

yeast (Xu et al., 2011).

Although a general, genome-wide function has not been identified, antisense transcription has been

proposed to regulate transcription factor recruitment and transcriptional repression (Donaldson and Saville,

2012; Gullerova and Proudfoot, 2010; Lenstra et al., 2015; Scruggs et al., 2015). Importantly, misregulation of

antisense transcription can alter the transcriptional landscape and chromatin architecture of cells (Gullerova

and Proudfoot, 2010; Marquardt et al., 2014; Pelechano et al., 2013; Wei et al., 2011). To better understand

pervasive antisense transcription and its role in regulation, we need to determine whether it is tunable by

regulatory factors. If antisense transcription levels are tightly controlled, it is possible that antisense

transcription could be manipulated in order to contribute to overall transcription regulation.
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To gain insight into the regulation of the production of coding and non-coding transcripts by Pol II, we

used NET-seq to analyze 41 S. cerevisiae mutant strains lacking known elongation regulators. We investigated

how each factor regulates nascent transcription, production of antisense transcripts and pausing across gene

bodies. Metrics describing each transcription phenotype span a broad dynamic range with wild-type activity

lying near the center. The loss of each factor revealed distinct sets of pause sites that we used to create

machine learning models of Pol II pausing, highlighting which genomic features can predict pause positions.

Finally, we investigated genes that are frequently regulated across the strains and identified relationships

between transcription elongation dynamics, antisense transcription and transcriptional output. Together, our

results show that Pol II dynamics are determined by the contrasting impacts of regulatory factors that, in turn,

impact the overall production of RNA transcripts.

RESULTS

Reverse genetic screen for transcription regulators

To obtain insight into the transcription regulatory network of S. cerevisiae, we individually deleted 41

known transcription elongation regulators, including RNA processing factors, transcription elongation factors,

histone variants, chromatin modifiers, and chromatin remodelers and chaperones, and assessed the

transcriptional effects of each deletion using NET-seq (Figure 1A). The wild-type transcription baseline was

established using four biological replicates of wild-type cells; the results from the replicates were highly

correlated (R2 ≥ 0.97; Figure S1A). All mutant strains were analyzed in at least biological duplicate. Results

from strain replicates were highly correlated (R2 ≥ 0.75; Table S1). Importantly, all replicates were performed at

different times, by different researchers, and in different strain isolates, demonstrating the reproducibility of our

results.

Nascent gene expression is uniquely disrupted across deletion strains

Because all of the factors examined in our screen play roles in transcription regulation, we first sought

to determine whether each factor regulates different sets of genes, or whether modifications of the
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transcriptional regulation network affect the transcription of overlapping sets of genes. Based on NET-seq data,

we assessed the role of each factor in regulating nascent transcription, a more direct measurement of

transcriptional phenotype than can be obtained from RNA-seq data. Interestingly, in some strains (e.g., rph1∆

and nap1∆), very few genes were transcribed at significantly altered levels relative to the wild-type, whereas in

others (e.g. eaf1∆ and dhh1∆), over 15% of all protein-coding genes were differentially transcribed (Figures 1B

& S1B; Table S2).

We then investigated the degree to which differentially transcribed genes were shared across mutant

strains. Over 90% of differentially transcribed genes were identified in fewer than 11 deletion strains, and 27%

were differentially transcribed in only a single strain (Figure 1C). Only a few genes had altered expression in

the majority of deletion strains; some of these, such as HSP26 are involved in stress responses, and their

regulation may represent the cell’s reaction to losing key transcription regulators.

We postulated that genes that were differentially transcribed in many strains might have unique

features that sensitize them to disruptions in the transcription elongation regulation network. We identified 155

genes up-regulated and 173 genes down-regulated in at least 8 strains. Gene Ontology (GO) enrichment

analysis did not reveal significant enrichment of common functions, although genes involved in metabolism, ion

transport, and cell wall/membrane components and assembly were weakly enriched (< 6.5-fold) (Anders and

Huber, 2010; Ashburner et al., 2000; Mi et al., 2019; The Gene Ontology Consortium, 2019). Notably from the

standpoint of transcription regulation, these genes had a greater propensity to have TATA-containing promoters

(p < 0.001 by Chi-squared test) and tended to be shorter than the average gene (p < 0.001 by Student’s t-test,

Figure S1C-D). This is consistent with the fact that 20% of all yeast genes whose promoters contain TATA

boxes are associated with stress responses and are under high degrees of regulatory control (Basehoar et al.,

2004). These results suggest that gene length and promoter composition may predispose genes to

transcriptional changes upon perturbations to the transcription regulatory network

We next asked whether certain biological functions or pathways were commonly affected across the

deletion strains using GO enrichment analysis (Figure 1D; Table S3) (Anders and Huber, 2010; Ashburner et

al., 2000; Mi et al., 2019; The Gene Ontology Consortium, 2019). Over 90% of GO pathways enriched among

the differentially transcribed genes were identified in fewer than nine deletion strains, with 40% identified in a
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single strain, emphasizing the largely distinct responses to loss of each factor (Figure S1E). GO enrichments

were not particularly strong or specific overall (Table S3); however, we did detect enrichment of some

pathways consistent with the known functions of certain factors. Upon deletion of HPC2, which encodes a

subunit of the HIR nucleosome assembly complex involved in the regulation of histone gene transcription

(Formosa et al., 2002; Prochasson et al., 2005; Xu et al., 1992), the term ‘nuclear nucleosome’ (GO:000078)

was significantly enriched (36.5 fold enrichment, FDR = 0.023) among differentially transcribed genes. Upon

deletion of DHH1, differentially transcribed genes were enriched for functions related to the sporulation

pathway (GO:004393, 3.0 fold enrichment, FDR < 0.001), which is nonfunctional in DHH1-null mutants

(Enyenihi and Saunders, 2003; Moriya and Isono, 1999). Interestingly, in half of all deletion strains,

differentially transcribed genes were enriched for functions related to regulation of gene expression

(GO:001046), suggesting feedback loops between perturbation of genes that regulate gene expression and

subsequent expression of other transcription regulatory machinery in order to compensate. Notwithstanding

these patterns, nascent gene expression in these strains indicate that the impact from the loss of each factor is

highly specific.

Antisense transcription is misregulated upon deletion of transcription regulatory factors

Loss of key transcription regulators not only affected mRNA production, but also the expression of

antisense transcripts. Antisense transcripts can be classified as divergent or convergent, depending on where

they occur (Mayer et al., 2015; Seila et al., 2008; Shetty et al., 2017; Xu et al., 2009). We assessed the total

amount of antisense transcription from the opposite strands of protein-coding genes (Figure 2A-B). To

determine the effects of removing transcriptional regulators on antisense transcription, we calculated the

antisense:sense transcription ratios for all protein-coding genes across all deletion strains (Figure 2C).

Interestingly, our data revealed a continuum of median antisense:sense ratios, with that of the wild-type strain

near the middle of the range. The strains in which we observed the largest decrease in antisense:sense

transcription ratios were those lacking factors relating to transcription elongation, such as Elf1, Spt4, and the

Pol II subunit Rpb4, suggesting an asymmetry in the impact of elongation factors on sense and antisense

transcripts (p = 0.03 by Fisher's exact test). The factors whose deletions led to the largest increase in the
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antisense:sense transcription ratios were those involved in the regulation of histone acetylation, including

members of the Rpd3S–Set2 pathway (Set2) and the major histone H4 acetyltransferase complex NuA4

(Eaf1), emphasizing the role of acetylation in antisense transcription (Carrozza et al., 2005; Churchman and

Weissman, 2011; Krogan et al., 2003; Murray and Mellor, 2016; Murray et al., 2015). In many strains, changes

in antisense transcription occurred in specific locations (Figure S2A). For example, increases in antisense

transcription in the dst1∆ strain occurred primarily at the 3’ end; in the set2∆ strain, antisense transcription

increased uniformly across the gene; and in the eaf1∆ strain, antisense transcription increased within the gene,

but not at the 3’ end (Figure 2D-F). These findings imply that antisense transcription is a combination of

different transcriptional activities regulated by separate sets of factors.

Losses of individual complex subunits have different effects on antisense transcription

Impacts of deletions on antisense transcription varied across the genome, i.e., not all genes

experienced the same change in antisense transcription upon the loss of a given factor (Figure 2G).

Interestingly, loss of the members of the Paf1 complex, which plays many roles in regulation of both

transcription and chromatin, including the recruitment of Set2 (Chu et al., 2007; Krogan et al., 2003; Mueller

and Jaehning, 2002; Schaft et al., 2003; Shi et al., 1996, 1997; Squazzo et al., 2002; Tomson and Arndt, 2013;

Wade et al., 1996), did not impact antisense transcription in same genes  (Figure 2G). Rather, clustering

analysis revealed that paf1∆, which had higher antisense:sense ratios, clustered with ctr9∆, distant from leo1∆,

which has lower antisense:sense ratios, as well as from rtf1∆ and cdc73∆, which clustered together and had

closer to wild-type antisense:sense ratios.

In contrast to the Paf1 complex, deletions of two genes involved in the Rpd3S–Set2 pathway, SET2 and

RCO1, had similar effects, increasing antisense transcription of the same set of genes. As reported previously,

these genes are longer than average (Li et al., 2007; Lickwar et al., 2009) (Figure 2H). However, gene length

cannot fully explain why these genes had high antisense transcription, as the correlations between gene length

and normalized antisense:sense transcription ratio in both set2∆ and rco1∆ strains were weak (R2 = 0.07 and

0.03 for set2∆ and rco1∆, respectively; Figure S2B). This effect was largely specific to the set2∆ and rco1∆

strains. Most strains showed no length dependence of antisense transcription, with a few modest exceptions
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(cac2∆, dhh1∆, eaf1∆, paf1∆, rtf1∆; top four shown in Figure S2B). Together, these results indicate that

antisense transcription is regulated by many factors and that levels in wild-type yeast are precisely tuned by

their opposing actions.

Peaks in Pol II density across the gene body are altered in the absence of key transcription regulators

We found that Pol II density increases at loci critical for gene regulation, namely the TSS, poly(A) sites,

and splice sites (SS) (Figure S3A-D). At the 5’ ends of genes, loss of Dst1, a homolog of the general

transcription elongation factor TFIIS, dramatically increased Pol II pausing just downstream of the TSS (Figure

3A). We also observed peaks in Pol II density at the start of antisense transcripts opposite the 3’ ends of

genes. Interestingly, deletion of DST1 had an effect on antisense transcription similar to its impact on sense

transcription (Figure 3B, S3B).

At the 3’ ends of genes, we observed changes in Pol II density upon loss of factors that regulate

termination or polyadenylation. The screen included two subunits of the Ccr4-Not complex, which plays many

roles in gene regulation including deadenylation (Figure 3C) (Funakoshi et al., 2007; Raisch et al., 2019;

Temme et al., 2014; Tucker et al., 2002; Wahle and Winkler, 2013; Yamashita et al., 2005; Yi et al., 2018).

Deletion of the scaffolding Cdc39 subunit of the complex resulted in substantial pausing before poly(A) sites,

followed by reduced Pol II density. By contrast, loss of the catalytic Ccr4 subunit decreased density only

downstream, with a much less prominent upstream pause (Figure 3C). Loss of proteins more directly involved

in transcription termination, such as Rtt103, resulted in Pol II stalling just downstream of poly(A) sites,

suggesting that Pol II may slow down during recruitment of this termination factor (Figure 3D). In these

deletion strains and others, the locations of 3’-end Pol II peaks varied, with some strains exhibiting a Pol II

peak before poly(A) sites and others exhibiting a peak after (Figure S3C), indicating that Pol II is controlled

both before and after poly(A) sites.

Pol II density increases around splice sites upon the loss of several transcription regulators. For

example, pause indices increased most strongly when any of the CAF-I complex components (i.e., Cac1,

Cac2, Cac3) were deleted (Figure 3E-F, S3D). CAF-I promotes histone H3 and H4 deposition onto newly

synthesized DNA (Kaufman et al., 1997), and to the best of our knowledge has not been implicated in splicing.
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To determine whether splicing is altered upon loss of CAF-1, we analyzed cac2∆ RNA-seq data (Hewawasam

et al., 2018). We detected a modest but statistically significant increase in splicing in the cac2∆ strain relative to

the wild-type (p = 0.02; Figure S3E-F). Thus, CAF-1 decreases Pol II density at splice sites and regulates

splicing, suggesting that the complex links Pol II pausing with splicing efficiency.

To quantify Pol II pausing at each site, we defined a pausing index (PI), a length-normalized metric

comparing Pol II density in the region of interest to that in the rest of the gene body (Figure 3G). Interestingly,

genes with a high pausing index in one location did not tend to have a high index for other locations (Figure

3H-I). Overall, at the per gene level, there was a poor correlation between all pausing indices in the wild-type

strain (e.g., TSS PI versus poly(A) PI for each gene has R2 = 0.06; all R2 ≤ 0.10, p > 0.05; Figure S4A). Even

across each intron, pause indices differ at 5’- and 3’-splice sites although strong pausing occurs at 5’ splice

sites as often as at 3’ splice sites (Figure S4B). Thus, pause indices vary across each gene, from the TSS to

poly(A) sites, suggesting that each region of high Pol II density is regulated in a different manner.

Across deletion strains, the median pausing index varied, with the wild-type indices lying near the

middle of the dynamic range (Figure 3L-P, S4D-H). For example, the median TSS pausing index ranged from

1.06 in cdc73∆ to 2.81 in dst1∆, with wild-type at 1.68 (Figure 3L, S3A). The levels of antisense pausing also

vary substantially across the strains (Figure 3M). Interestingly, the strains with the highest antisense PI had the

lowest antisense:sense ratios, and vice versa (R2 = 0.59, p < 0.001; Figure S2C-D). This result implies that

strong antisense pausing suppresses antisense transcription, perhaps by promoting termination and thereby

preventing antisense transcription deep into gene bodies.

We asked whether the same factors are implicated in regulating the different Pol II peaks. Indeed, there

was a relatively strong correlation between median TSS pausing indices and antisense pausing indices across

the deletion strains (R2 = 0.56, p < 0.001; Figure 3J). Of the 10 strains with the highest TSS pausing indices, 9

were also in the top 10 for median antisense pausing indices (Figure 3L-M). In addition, factors that modulate

pausing at splice sites tended to do so at both sites overall, but not at the same intron (R2 = 0.87, p < 0.001;

Figure 3K, S4B). However, we did not observe similar relationships between other pause indices (Figure

S4C). Thus, similar regulatory mechanisms function at both 5’ and 3’ splice sites and at both sense and

antisense transcription start sites.
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Pol II pausing propensity and location are affected by deletion of transcription regulators

Along with identifying regions of elevated Pol II density, NET-seq data pinpoints the precise positions

that Pol II pauses at within regions of high Pol II density and elsewhere. These precise sites of Pol II pausing at

single nucleotides are reminisant of in vitro RNA polymerase pausing observed at specific positions of DNA

templates (Galburt et al., 2007; Hodges et al., 2009; Kingston and Chamberlin, 1981; Mayer et al., 2017; Wang

et al., 1998). We systematically identified pause sites in strains with sufficient coverage as positions with read

densities that deviate from the statistical fluctuations of the surrounding 200 nucleotides, modeled as a

negative binomial distribution (>3 standard deviations from the mean; Figure 4A-B). We found thousands of

reproducible pauses at single nucleotides in highly expressed genes across all deletion strains (irreproducible

discovery rate <1%; Figure S5A-B) (Li et al., 2011).

Pause site density, or the number of pauses per kilobase, varied widely across deletion strains (Figure

4C) that cannot be explained by differences in sequencing depth across deletion strains (R2 = 0.001, p =0.845;

Figure S5C). In the wild-type strain, we found Pol II pause sites on average every 31 bp. Loss of most

transcription elongation factors resulted in a lower pause site density relative to the wild-type (Figure 4C).

However, some of the deletion strains exhibited more pausing overall; upon loss of capping factor Npl3, for

example, 35% of all NET-seq reads mapping to highly expressed genes constituted pause sites, versus only

21% in the wild-type (Figure S5B). The increased Pol II pause site density in npl3∆ cells is consistent with its

role in stimulating Pol II elongation (Figure 4C) (Dermody et al., 2008).

The pause loci for each strain included many that were not observed in wild-type yeast (Figures 4D,

S5D). Indeed, when the sets of pause loci are used to cluster deletion strains by principal component analysis,

the wild-type strain stands away from most strains (Figure S5D). However, some deletion strains shared many

pause sites with those observed under in the wild-type: 81% of pause sites identified in wild-type yeast were

also identified in the htz1∆ strain, consistent with its confined role at the +1 nucleosome (Bagchi et al., 2020;

Zhang et al., 2005).

We wondered whether loss of related factors would lead to the same sets of pause sites. We first

identified all pauses observed in at least 8 strains and used the presence or absence of these pauses in each
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strain to perform hierarchical clustering (Figure 4D). dst1∆ pause sites clustered far away from those in

wild-type cells, consistent with the backtracking role of Dst1 that leads to downstream-shifted pause sites

(Churchman and Weissman, 2011; Noe Gonzalez et al., 2021). H2B ubiquitidation increases the nucleosomal

barrier to Pol II (Chen et al., 2019), so alterations to histone ubiquitination might lead to new pause sites.

Interestingly, pause sites after the loss of Rad6, Ubp8, Paf1 and Cdc73 all cluster together. Rad6 and Ubp8

ubiquitinates and deubiquitinates H2B respectively (Amerik et al., 2000; Jentsch et al., 1987).  Paf1 and

Cdc73, members of the Paf1 complex, are responsible for recruiting Rad6 to chromatin (Kim and Roeder,

2009). The clustering of these factors indicates a role for H2B ubiquidation in determining the locations of

many pause sites. Finally, we figured that differences in nucleosome positioning may lead to differential pause

sites usage, so we inspected how pause sites change after the loss of different chromatin remodelers.

Interestingly, we observed that loss of ISWI and CHD chromatin remodelers Isw1, Isw2, and Chd1 lead to

pause sites that cluster together (Figure 4D). For example, most of the pause sites observed in isw1∆ (76%)

were also observed in chd1∆, consistent with their joint roles in maintaining chromatin structure (Smolle et al.,

2012). In contrast, loss of Ino80, Rsc30 and Swr1 all lead to distinct sets of pause sites (Figure 4D). isw1∆

pause sites cluster as far from those of wild-type as dst1∆ pause sites, perhaps due to the large-scale

disruption of chromatin structure after Ino80 loss (Kubik et al., 2019).

Pol II pause sites in the wild-type strain were distributed evenly throughout gene bodies (Figure 4E). By

contrast, deletion strains exhibited a range between two-fold decreased to two-fold increased Pol II pause sites

in the 3’ regions of genes, with slightly less variability at the 5’ regions of genes relative to a scrambled control

or wild-type pausing (Figure 4E). The enrichment of pause sites at 5’ end and 3’ regions generally correspond

with our pausing index results (Figure 3H, L, N). For example, deletion of DST1 approximately doubled pause

loci in the 5’ regions at the expense of pausing in 3’ regions. However, in general, changes in 5’ vs 3’ pause

sites in deletion strains were not correlated (Figure 4E). We find substantially more pause sites at the 3’

regions of genes in rpb4∆. Rpb4 is a Pol II subunit that dissociates with the complex at the ends of genes

(Mosley et al., 2013) and is responsible for sustained transcription elongation through the 3’ ends of genes

(Runner et al., 2008). Thus, Rpb4 prevents Pol II from pausing at the 3’ regions of genes that may protect from

premature termination before the canonical 3’ cleavage site is transcribed.  Similarly, more 3’ pause sites are
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found in the ubp8∆ strain, consistent with the global increase in this strain of H2B ubiquidylation, a mark that

increases the nucleosomal barrier to Pol II and is coincident with Pol II pausing at transcription termination

sites (Bonnet et al., 2014; Chen et al., 2019; Harlen et al., 2016). Together, these data show how the chromatin

landscape and transcriptional regulatory network of the cell dictate sites of Pol II pausing that in turn controls

where and for how long Pol II pauses during elongation.

Chromatin features can accurately predict Pol II pausing locations in deletions strains

Given the number of reproducible pause sites we identified, we next investigated whether we could

determine which genomic features, if any, were responsible for the pause sites. In vitro studies have shown

that Pol II pausing has many causes, including specific DNA sequences, nucleosomes, and histone

modifications (Bintu et al., 2012; Herbert et al., 2006; Hodges et al., 2009; Kassavetis and Chamberlin, 1981;

Kireeva and Kashlev, 2009; Kireeva et al., 2005; Shaevitz et al., 2003). In vivo, the dominant factors globally

associated with Pol II pause sites remain unclear, although sequence elements, transcription factors,

nucleosomes, and CTD modifications have all been connected to Pol II pausing (Alexander et al., 2010;

Churchman and Weissman, 2011; Gajos et al., 2021; Nechaev et al., 2010; Noe Gonzalez et al., 2021; Nojima

et al., 2018; Shukla et al., 2011). Recently, DNA sequence and shape were shown to be important contributors

to pause site locations in human cells (Gajos et al., 2021). We first asked whether specific DNA sequences

were connected with Pol II pausing loci. Previous studies reported that Pol II has a strong bias toward pausing

at adenine (Churchman and Weissman, 2011), which we also observed here. More specifically, we observed a

3.4-fold enrichment of real Pol II pause sites at TAT trinucleotide sequences relative to shuffled control sites in

the same well-expressed genes (Figure 5A). The shape of the DNA itself, as predicted from sequence, also

appears to inform the location and propensity for Pol II to stall: DNA low helix twist values were more common

under real pause loci than in the shuffled control (Figure 5B). These observations were consistent, as the AT

dinucleotide step has a low average twist angle of 32.1º (Ussery, 2002).

Beyond the trinucleotides, significantly enriched sequence motifs were also associated with Pol II

pause sites in most deletion strains (Table S4), including three motifs related to pauses in the wild-type strain

(Figure 5C). Notably, not all motifs are shared across strains, and upon deletion of some factors, new motifs
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were associated with Pol II pause sites. 13 of the 26 identified sequence motifs with high relative entropies

significantly matched known transcription factor binding site motifs (Figure 5D). Thus, it is likely that Pol II

pause sites can partially, but not fully, be explained by DNA sequence and/or proteins binding to DNA.

In addition to the structure of the DNA itself, chromatin features, such as nucleosome positions and

histone modifications, are also connected to Pol II pausing behavior. To search broadly for genomic features

underlying sites of Pol II pausing, we evaluated 51 chromatin features (Table S5), including nucleotide

sequence, DNA shape, position of pauses within a gene, histone modifications, and Pol II CTD

phosphorylation marks.  35 out of 42 exhibited a statistically significant difference between real wild-type pause

sites and shuffled controls (the remaining nine of the 51 are sequence features that cannot be compared on a

numeric scale) (Figure S6A, Table S6). For example, the MNase-seq signal around pause loci and the

distance to the nearest nucleosome differed significantly between real and shuffled pause sites (Figure 5B,

S6A), consistent with observations of pauses at nucleosomes (Churchman and Weissman, 2011). Interestingly,

Ser2, Ser5 and Ser7 phosphorylation of the Pol II CTD did not differ relative to random positions, indicating that

connections between Pol II phosphorylation and pausing at intron-exon boundaries is specific to pausing at

those loci (Alexander et al., 2010). Among the features that differed significantly was DNA melting temperature,

which was previously shown to influence Pol II stalling (Nechaev et al., 2010).

To determine whether any features could predict where Pol II pauses, we created a random forest

classifier to discriminate between real and shuffled control Pol II pause sites based on the surrounding

chromatin features. A random forest classifier using all 51 features performed well (AUC = 0.85, Figure 5E)

relative to a random model (AUC = 0.5) at classifying Pol II pauses in wild-type yeast. The most critical

features for accurate identification of Pol II pause sites were DNA sequence surrounding the pause locus and

topology features of the DNA at that locus (Figure 5F). Together, these analyses showed that DNA sequence

and shape contribute strongly to Pol II pause locations, but their effects are enhanced by many other chromatin

features.

To ask whether prediction models for Pol II pausing vary in different regulatory and chromatin

landscapes, we built random forest models for each deletion strain. Across all deletion strains, an AUC of at

least 0.78 was attained. These AUC values were only partially correlated with the total number of pauses
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detected in each deletion strain (R2 = 0.37, p =0.000064; Figure S7A). Although nucleotide sequence and

DNA shape were the most important features for classifying Pol II pause loci in the wild-type and many deletion

strains, models for a subset of strains (including cdc39∆, dst1∆, ubp8∆) revealed that wild-type chromatin

modifications were more powerful for Pol II classification (Figure 6A, S7B-E). We next performed a transfer of

learning analysis to ask how each model would perform when predicting pauses in other strains. When trained

on Pol II pause sites identified in wild-type yeast, the AUC when testing on pauses across all other strains

ranged from 0.53 (cbc1∆) to 0.82 (vps15∆), revealing the differences across the strains (Figure 6B). We

previously observed that loss of Dst1 leads to ~75% of pause sites to shift downstream(Churchman and

Weissman, 2011). Thus, training a model on dst1∆ pause sites should not do well to predict pauses in another

strain. Indeed, a model trained on dst1∆ pause sites performed well in predicting dst1∆ pause sites (AUC =

0.83), however it performed the worst of all models in predicting pause sites in other deletion strains, obtaining

a median AUC of 0.63 across them. These models indicate that the nucleotide sequence, DNA topology,

position within a gene, and chromatin landscape all play roles in determining the location of Pol II pauses

during transcription elongation.

Pol II pausing and antisense transcription are linked to overall gene transcription

Antisense transcription can repress sense transcription through transcriptional interference (Lenstra et

al., 2015; Nevers et al., 2018; Scruggs et al., 2015), and strong Pol II pausing can lead to low transcriptional

output or early termination (Gressel et al., 2017; Shao and Zeitlinger, 2017; Steurer et al., 2018). However, it

remains unclear whether changes in transcriptional output are generally connected to changes in Pol II

pausing or antisense transcription. Through a meta-analysis of the NET-seq data sets, we compared changes

in gene transcription to changes in Pol II pausing and antisense transcription across a range of transcription

regulatory landscapes.

First, we compared levels of sense and antisense transcription in all strains analyzed and saw a

modest correlation between fold change in the antisense:sense ratios and fold change in expression (r = 0.38)

(Figure 7A). For the TSS pausing index, we do not observe a correlation between changes in expression and

changes in pausing (r =0.062 for all deletion strains) (Figure 7A).  We reasoned that genes exhibiting
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sensitivity to alterations in the gene regulatory landscape might exhibit greater sensitivity to changes in pausing

or antisense transcription. Indeed, for frequently-regulated genes (differentially transcribed in eight or more

strains), correlations between antisense:sense ratios and fold change in expression ( r = 0.6) or TSS pausing

index and fold change in expression (r = 0.13) increase (Figure 7B).

To determine whether pausing and antisense transcription are linked to gene regulation, we asked how

pausing and/or antisense transcription changes specifically when frequently-regulated genes are differentially

expressed.  As each of these genes is not differentially expressed in many deletion strains, we compared the

pausing and antisense transcription of the genes in strains where the gene is regulated to strains where it is

not. We found that frequently up-regulated genes exhibited higher antisense:sense ratios when they were

up-regulated relative to when they were not differentially transcribed (Figure 7C). By contrast, frequently

down-regulated genes had lower antisense:sense ratios when they were down-regulated (Figure 7C). With

respect to pausing, genes that were commonly down-regulated exhibited decreases in their TSS pausing

specifically in strains where their expression levels change (Figure 7C). Frequently up-regulated genes had

more pausing near the TSS when they were up-regulated than when they did not experience a change in

expression (Figure 7C), although the effect size is too low to be considered statistically significant for genes

already experiencing high levels of pausing. Together, genes that are frequently down-regulated tend to exhibit

a decrease in antisense transcription and TSS pausing, whereas frequently up-regulated genes tend to exhibit

an increase in both, but only when regulated. Thus, there is a relationship between TSS pausing, antisense

transcription and gene regulation that argue against a general repressive role for antisense transcription and

Pol II pausing.

DISCUSSION

Advances in high-throughput sequencing of nascent RNA have revealed that, in many eukaryotes, the

vast majority of the genome is transcribed (Hangauer et al., 2013; Struhl, 2007). Nevertheless, this broad

transcriptional activity is one of the most highly regulated processes within the cell. Multiple levels of regulation

are orchestrated by DNA sequence, transcription factors, RNA processing factors, and chromatin modulators.

Here, we used NET-seq to study 41 factors with connections to transcription elongation and discovered the
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remarkable tunability of transcription elongation. For all of the transcriptional phenotypes analyzed, the

wild-type strain fell in the middle of the dynamic range observed across the deletion strains, revealing the

intricate balance of multiple aspects of transcriptional activity.

The 41 factors chosen for this study were previously annotated to regulate transcription elongation.

However, loss of each factor had a unique impact on gene expression, suggesting that genes are differentially

sensitized to perturbations of the transcription regulatory network. Levels of antisense transcription in the

deletion strains vary across a broad dynamic range, revealing that antisense transcription is finely tuned by

many factors. Interestingly, loss of 17 factors decreased the antisense:sense transcription ratio in cells (Figure

2C), indicating that it is possible to suppress antisense transcription further than what is observed in wild-type.

Conversely, loss of eight factors increased antisense:sense ratios. Together, these results imply that wild-type

antisense transcription is balanced by the influence of many factors and, in turn, can be precisely controlled.

The possibility of tight control of antisense transcription indicates that regulatory mechanisms may exist where

antisense transcription impacts sense transcription. Indeed, differentially transcribed genes showed

pronounced changes in their antisense:sense transcription ratios, especially for a subset of sensitive genes

that are differentially transcribed in many of the deletion strains.

Peaks of Pol II density were detected near TSSs, poly(A) sites, and both 5’ and 3’ splice sites.

Interestingly, factors that impacted pausing at the 5’ ends of genes were not the same as those that impacted

pausing at 3’ ends or at splice sites. Clearly, different mechanisms regulate Pol II pausing at different points

during elongation. However, pausing around the TSS and pausing during antisense transcription were

controlled by a similar set of factors, suggesting the existence of a checkpoint early in transcription, in the

sense and antisense directions.

Within the regions of elevated Pol II density and across the gene body are discrete pauses at single

nucleotides throughout elongation. Our data indicated that in wild-type cells, the density and intensity of these

pause sites are precisely balanced by numerous factors. For example, the set of Pol II positions where Pol II

pauses vary substantially across the deletion strains (Figure 4D), indicating that there are a large number of

positions where Pol II could pause in wild-type cells, but the presence of these factors modulates the pausing

landscape such that they are not utilized.
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We identified genes that are sensitive to alterations of the transcription elongation regulatory network

and found their changes in expression are accompanied by changes in Pol II pausing. When these genes are

down-regulated, Pol II peaks after TSSs are smaller and vice versa for up-regulated genes, suggesting a

possible stimulatory role of these pauses (Figure 7C). However, this result is in contrast to our observation that

higher antisense pausing was generally associated with lower levels of antisense transcription overall (Figure

S2C-D). Thus, pausing in the antisense direction seems to lead to tighter quality control through earlier

termination. While in the sense direction, it may enhance expression levels for some genes (i.e. the sensitive

genes identified in this screen), perhaps by keeping the promoter region open to encourage more initiation as

described in mammalian cells (Scruggs et al., 2015).

This work reveals the complex regulation of transcription elongation by a network of factors. In addition,

it serves as a resource of NET-seq data to explore more specific hypothesis-driven research questions relating

to individual factors and an open-source code base with which to analyze these data. Many of the transcription

elongation regulators studied here are conserved in all domains of life, as are many of the transcriptional

phenotypes we examined, including antisense transcription and Pol II pausing. These insights into transcription

regulation in S. cerevisiae will serve as a foundation for learning more about transcription in multicellular

eukaryotes.
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METHODS
Yeast mutant generation

To create deletion mutants of the 41 factors analyzed, the parent strain YSC001 (BY4741 rpb3::rpb3-3xFLAG

NAT) (Churchman and Weissman, 2011) was transformed with PCR products of the HIS3 gene flanked by 40

bp of homology upstream and downstream of the start and stop codons for the gene of interest. Standard

lithium acetate transformations were used.

NET-seq library generation

Cultures for NET-seq were prepared as described in (Churchman and Weissman, 2012). Briefly, overnight

cultures from single yeast colonies grown in YPD were diluted to OD600 = 0.05 in 1L of YPD medium and grown

at 30ºC shaking at 200 rpm until reaching an OD600 = 0.6 - 0.8. Cultures were then filtered over

0.45mm-pore-size nitrocellulose filters (Whatman). Yeast was scraped off the filter with a spatula pre-chilled in

liquid nitrogen and plunged directly into liquid nitrogen as described in (Churchman and Weissman, 2012).

Mixer mill pulverization was performed using the conditions described above for 6 cycles. NET-seq growth

conditions, IPs, and isolation of nascent RNA and library construction were carried out as described in

(Churchman and Weissman, 2012). A random hexamer sequence was added to the linker to improve ligation

efficiency and allow for the removal of any library biases generated from the RT step as described in (Mayer et

al., 2015). After library construction, the size distribution of the library was determined by using a 2100

Bioanalyzer (Agilent) and library concentrations were determined by Qubit 2.0 fluorometer (Invitrogen). 3’ end

sequencing of all samples was carried out on an Illumina NextSeq 500 with a read length of 75 bp. For

analysis of cac1∆, cac2∆, and cac3∆, raw Fastq files were obtained from (Marquardt et al., 2014) and

re-aligned using the parameters described below.

Processing and alignment of NET-seq data

The adapter sequence (ATCTCGTATGCCGTCTTCTGCTTG) was removed using cutadapt with the following

parameters: -O 3 -m 1 --length-tag ‘length=’. Raw fastq files were filtered using PRINSEQ

(http://prinseq.sourceforge.net/) with the following parameters: -no_qual_header -min_len 7 -min_qual_mean

20 -trim_right 1 -trim_ns_right 1 -trim_qual_right 20 -trim_qual_type mean -trim_qual_window 5

-trim_qual_step 1. Random hexamer linker sequences (the first 6 nucleotides at the 5’ end of the read) were

removed using custom Python scripts, but remained associated with the read. Reads were then aligned to the

SacCer3 genome obtained from the Saccharomyces Genome Database using the TopHat2 aligner (Kim et al.,

2013) with the following parameters: --read-mismatches 3 --read-gap-length 2 --read-edit-dist 3

--min-anchor-length 8 --splice-mismatches 1 --min-intron-length 50 --max-intron-length 1200

--max-insertion-length 3 --max-deletion-length 3 --num-threads --max-multihits 100 --library-type fr-firststrand

--segment-mismatches 3 --no-coverage-search --segment-length 20 --min-coverage-intron 50

--max-coverage-intron 100000 --min-segment-intron 50 --max-segment-intron 500000 --b2-sensitive. To avoid
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any biases toward favoring annotated regions, the alignment was performed without providing a transcriptome.

Reverse transcription mispriming events were identified and removed where molecular barcode sequences

correspond exactly to the genomic sequence adjacent to the aligned read. With NET-seq, the 5’ end of the

sequencing, which corresponds to the 3’ end of the nascent RNA fragment, is recorded with a custom Python

script using the HTSeq package (Anders et al., 2015). NET-seq data were normalized by million mapped

reads. Replicate correlations were performed comparing RPKM of each gene in each replicate; replicates were

considered highly correlated with a Pearson correlation of R2 ≥ 0.75. Raw NET-seq data of highly correlated

replicates were merged, and then re-normalized by million mapped reads. For analysis of rco1∆, raw Fastq

files were obtained from (Churchman and Weissman, 2011) and re-aligned using the parameters described

below.

Differential gene transcription and gene ontology enrichment analysis

Expression levels were determined for each gene using the entire sequencing read (rather than only the 3’

end, as typical when determining Pol II location from NET-seq data) and normalized using DESeq2 (Love et

al., 2014). Differential transcription analysis between deletion strains (with replicates) and wild-type strains was

performed using DESeq2 (Love et al., 2014) for all UCSC known genes. Genes were considered differentially

transcribed if they had an adjusted p-value < 0.05 and an absolute log2 fold change > 1.0. The relationship

between the number of differentially transcribed genes identified and growth rate (i.e., doubling time) of strains

was quantified using Pearson correlation. Because the cac1∆, cac2∆, and cac3∆ strains were constructed in a

different lab (Marquardt et al., 2014), they were excluded from this analysis.

GO term enrichment analysis was performed using the PANTHER GO Enrichment Analysis (Ashburner et al.,

2000; Mi et al., 2019; The Gene Ontology Consortium, 2019; Thomas et al., 2003) and enriched terms for

biological processes, molecular function, and cellular components were recorded for up-regulated differentially

transcribed genes, down-regulated differentially transcribed genes, and all differentially transcribed genes. Fold

enrichment and false discovery rates for each GO by deletion strain pair are reported in (Table S3).

Trends in differentially transcribed genes

Frequently regulated genes were identified as those that had been differentially transcribed in 8 or more

deletion strains. GO enrichment, gene length, and type of promoter were all examined to understand if these

genes were unique compared to all other genes. To perform the promoter-type analysis, we used the

characterization of gene promoters as reported in (Basehoar et al., 2004). We also characterized several

transcriptional phenotypes - antisense:sense ratio and pausing index around the TSS - for these frequently

regulated genes in perturbation conditions. We examined these phenotypes split by the deletion strains in

which the gene is differentially transcribed and those in which it is not, quantifying both at the gene level and

split according to phenotype in the wild-type condition.
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Antisense transcription

For analysis of divergent antisense transcription at tandem genes, the sum of reads on the strand opposite the

coding gene from 100 bp upstream of the sense TSS to 600 bp upstream of the sense TSS is divided by the

sum of reads from the sense TSS to 500 bp downstream of the TSS on the coding strand. The genes selected

were tandem gene pairs with each gene transcribed in the same direction and were obtained from (Churchman

and Weissman, 2011). For analysis of antisense transcription, Pol II genes that did not overlap with another

coding gene were chosen. The region analyzed spanned from the TSS to the poly(A) site as defined by taking

the most abundant TSS and poly(A) site from (Pelechano et al., 2013). The sum of reads from the antisense

strand was divided by the sum of reads from the sense strand. For all analyses, the log2 antisense:sense ratio

was used. To generate antisense heatmaps, the log2 RPKM of NET-seq reads was used. Analysis at coding

genes ranged from 250 bp upstream of the TSS to 4000 bp downstream of the coding TSS. To allow

comparison between mutant and wild-type samples, a pseudocount of 1 was added to every position in all

samples before calculating the log2 RPKM. Differential heatmaps were calculated by taking the log2 ratio of

mutant / wild-type RPKM at each position. To assess the relative levels of antisense transcription across each

gene in each strain, antisense and sense RPM were normalized by wild-type levels before the final normalized

antisense:sense ratio was calculated. The “high-ratio” cluster of genes in the set2∆ and rco1∆ was identified by

eye; gene length for genes in this cluster was compared to gene length of those genes not within this cluster

using a Student’s t test. The relationship between antisense levels and gene length was quantified for each

deletion strain using Pearson correlation (with Bonferroni correction for significance); this relationship was also

visualized by binning genes according to length and quantifying mean antisense RPKM.

Pausing index calculation

Pausing indices were calculated as the length-normalized Pol II density in the region of interest (-50 bp to +150

bp around TSS, ±100 bp around poly(A) sites, and ±10 bp around 5’ and 3’ splice sites) divided by the

length-normalized Pol II density in the remainder of the gene, as illustrated in (Figure 3A).

Metagene analysis

Only protein-coding, non-overlapping genes were included in the metagene analysis. The regions analyzed

were -100 to +600 bp surrounding the most abundant transcription start site (TSS), -500 to +200 bp

surrounding poly(A) sites, as identified in (Pelechano et al., 2013) and ± 25 bp surrounding annotated 3’ and 5’

splice sites. NET-seq signal across each region was normalized and the Loess smoothed mean (span = 0.01)

and 95% confidence interval are plotted for NET-seq generated from each deletion strain across each region of

interest.

Splicing index calculation
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Cac2∆ and wild-type RNA-seq data were retrieved from (Hewawasam et al., 2018) under the GEO accession

number GSE98397. Splicing index calculations were determined for each gene by counting the number of

reads that span exon junctions by at least 3 nucleotides and measuring the number of spliced reads divided by

unspliced reads; splicing index = 2 * spliced reads / (5’ SS unspliced + 3’ SS unspliced reads) as in (Drexler et

al., 2020).

Extracting pause positions

Pauses were identified in previously annotated transcription units (Xu et al., 2009) of well-expressed genes

(average of ≥ 2 reads per base-pair in two replicates). Pauses were defined as having reads higher than 3

standard deviations above the mean of the surrounding 200 nucleotides which do not contain pauses. Mean

and standard deviation were calculated from a negative binomial distribution fit to the region of interest. Pauses

were required to have at least 2 reads regardless of the gene’s sequencing coverage. Pauses were considered

reproducible and used in downstream analyses when the Irreproducible Discovery Rate (IDR) is ≥ 1% between

two replicates. To calculate the IDR of each pause, log10 of pause strength (number of reads in pause) for each

replicate was used as a proxy for pause score. IDR was calculated using the est.IDR function of the idr R

package (mu = 3, sigma = 1, rho = 0.9, p = 0.5) (Li et al., 2011). Reproducible pauses were visualized using

the IGV genome browser (Robinson et al., 2011). Because the cac1∆, cac2∆, and cac3∆ strains were

constructed by a different lab (Marquardt et al., 2014), these strains were excluded from these analyses.

Additionally, dhh1∆ and gcn5∆ were excluded because of low sequencing coverage resulting in zero or 15

genes passing the coverage threshold, respectively.

Pol II pausing location and strength

Pause density was calculated as the ratio of total number of pauses to the total length of the genome

considered when extracting pause positions (combined length of all well-expressed genes in both replicates of

each deletion strain). To identify deletions that induced similar pausing patterns, 8,816 pauses were found to

be shared in at least eight strains and in regions sufficiently covered in multiple deletion strains. Shared pauses

were visualized with a heatmap, clustered on both axes using the eisenCluster correlation clustering method in

the hybridHclust R package (Chipman and Tibshirani, 2006), which takes into account missing data (where

there was not enough coverage to confidently identify pausing in a particular deletion strain). Similarity in

pause loci was also visualized as a scatter plot of the first two principal components. When calculating

distribution of pauses across the gene body, all genes in which pauses were identified were normalized in

length; the 5’ gene region was defined as the first 15% of each gene, the mid-gene region was defined as

extending from the 15th percentile of gene length to the 85th percentile, and the 3’ gene region was defined as

starting at 85% of gene length and extending to the annotated poly(A) site. The scrambled control for the

pausing location analysis was created by randomly scrambling all identified pauses in all deletion strains

across the gene in which they were discovered.
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Pol II pause loci sequence motifs

All analyses related to sequence motifs underlying pause loci were conducted using the MEME suite of tools

(Bailey et al., 1994, 2009). The sequence ± 10 bp around each identified, reproducible pause (as well as the

matched scrambled control) was extracted and used to run the MEME tool using parameters to find 0 - 1 motif

per sequence, motifs 6 - 21 bp in length, and up to 10 motifs with an E-value significance threshold of 0.05

(Bailey et al., 1994). These significant motifs were compared to known transcription factor binding site motifs in

the YEASTRACT_20130918 database (Teixeira et al., 2014) using the TOMTOM tool (Gupta et al., 2007)

using default parameters, calling all hits as significant with an E-value greater than 0.1. TOMTOM searches

were only performed on those motifs with a relative entropy greater than 5 and only the top match is reported.

Random forest classifier for Pol II pausing loci

The predictive value of chromatin features for identifying Pol II pause loci was determined using a Random

Forest model with the randomForest R package (Breiman, 2001). All reproducible Pol II pause loci were

included in these analyses, as were an equal number of shuffled control loci. The shuffled control loci were

selected to maintain the same number of real and control loci in each gene, controlling for effects of differential

gene expression. In total, 51 chromatin features were compiled for all pause loci (Table S5) (Chiu et al., 2016;

Oberbeckmann et al., 2019; Pelechano et al., 2013; Turner and Mathews, 2010; Umeyama and Ito, 2018;

Vinayachandran et al., 2018; Weiner et al., 2015). Before applying the random forest classifier, we examined

the distribution of values for each numeric feature (not discrete sequence) for real Pol II pauses compared to

the scrambled control loci; statistical significance in the difference between these distributions was calculated

with a Student’s t test, correcting for multiple hypothesis testing with the Bonferroni correction. From the

random forest classifier, feature importance scores were generated using a random forest classifier with 75%

training and 25% testing sets; for wild-type yeast, this is 10,495 training and 3,499 training loci. Due to the low

number of reproducible pauses identified in the dhh1∆ and gcn5∆ deletion strains, they were excluded from

these analyses.

Reported feature importance values are the mean decreases of accuracy over all out-of-bag cross validated

predictions, when a given feature is permuted after training, but before prediction. Optimized parameters were

selected for random forest classifiers trained using all features (Figure S6B):ncat = 4, mtry =  20, ntrees =

2500. ROC curve and AUC measurements were determined from binary prediction probabilities and calculated

using the ROCR R package (Sing et al.). Prediction accuracy was determined by measuring the difference

between the model’s predictions on a held-out test set and measured variables. The baseline score was

determined using a “null” parameter that has the same value for every training and testing pair; thus, baseline

represents the prediction accuracy with no additional information added to the model. To assess the

transferability of a random forest classifier trained on Pol II pause loci in one strain, a model was trained on
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100% of real and shuffled control Pol II loci from one deletion strain and then tested on all those pause loci in a

second deletion strain, which was not included in the training set.

Data and code availability

The accession number for the Illumina sequencing reported in this paper is Gene Expression Omnibus (GEO):

GSE159603.

All scripts and data analyses are available at https://github.com/churchmanlab/Yeast_NETseq_Screen. All plots

were created in R using ggplot2 (Team, 2013; Wickham, 2016).
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Figure 1 
 

 
Figure 1. Gene expression is affected differently when transcription regulatory proteins are knocked 
out, both at the level of individual genes and gene ontology. (A) As Pol II transcribes along a 
chromatinized template, a complex network regulates eukaryotic transcription elongation. Factors analyzed in 
the reverse genetic screen are listed and grouped by function: RNA processing factors (green), transcription 
elongation factors (purple), histone variants (grey), chromatin modifiers (orange), and chromatin remodelers 
and chaperones (blue). Colors of factors consistent throughout figures. Each of these factors were deleted to 
conduct a reverse genetic screen in S. cerevisiae. For each deletion strain, a fresh gene deletion was 
conducted in two isolates by two technicians. After a growth phenotype was measured, NET-seq was 
performed in at least two biological replicates. (B) Number of differentially up- (blue) and down-regulated (red) 
genes vary widely across deletion strains. (C) Cumulative density plot illustrating that 27% of DE genes are 
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only differentially transcribed in one strain, with 90% of DE genes differentially transcribed in 10 strains or 
fewer. There are several genes that are expressed in 24 out of 31 deletion strains for which there were 
sufficient replicates to conduct differential expression analysis. (D) 303 gene ontology terms are enriched 
(purple) in at least one of the strain’s differentially transcribed genes; if a GO term is not enriched in a deletion 
strain, the heatmap tile is white. Both axes are hierarchically clustered to group those deletion strains that 
share enriched ontologies. Differential transcription and GO term enrichment analyses conducted only on 
deletion strains with biological replicates. 
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Figure 2 
 

 
Figure 2. Antisense transcription is altered in most deletion strains. (A) Cartoon illustrating sense and 
antisense transcription of an example gene on the positive strand. (B) Wild-type and set2∆ NET-seq data at 
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YAL011W. Sense and antisense are displayed in purple and red respectively.  (C) Antisense:sense 
transcription ratios for each deletion strain compared to wild-type reveals that some strains have dramatically 
increased antisense transcription (blue) while others have much less than wild-type (red). Horizontal dotted line 
indicates the 45th and 55th percentile of wild-type values. (D) Heatmap of fold change in antisense transcription 
in the dst1∆ strain compared to wild-type reveals that most antisense transcription in the dst1∆ strain originates 

from the 3’ end of genes. (E-F) Same as in (D), for set2∆ and eaf1∆, respectively. (G) Heatmap for all non-
overlapping protein-coding genes, colored by the ratio of antisense to sense transcription in each deletion 
strain normalized to expression in wild-type. Both axes are ordered via hierarchical clustering. Box highlights a 
cluster of genes with high values for set2∆ and rco1∆ strains. • indicates subunits of the Paf1 complex, * 
indicates members of the Rpd3S-Set2 pathway (G) Boxplot illustrating the difference in distribution of gene 
lengths for those genes in the set2∆ and rco1∆ gene cluster. Significance was determined using a Student’s t-
test (p < 0.001). Outliers are omitted from visualization.  
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Figure 3 

 
 
Figure 3. Pol II density is increased around transcription start sites, polyadenylation sites, and splice 
sites. (A) Metagene plot of normalized mean Pol II occupancy and the surrounding 95% confidence interval for 
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the 500 bp surrounding the most abundant annotated transcription start sites (Pelechano et al. 2013) (n = 
2,415 genes). Metagene for dst1∆ (green) can be compared to the Pol II density in the wild-type strain (grey). 
(B) Normalized mean Pol II occupancy and the surrounding 95% confidence interval for the 600 bp 
surrounding the most abundant annotated poly(A) sites (Pelechano et al. 2013) in the antisense orientation. 
Metagene for dst1∆ (blue) can be compared to the Pol II density in the wild-type strain (grey). (C) Normalized 
mean Pol II occupancy and the surrounding 95% confidence interval for the 500 bp surrounding the most 
abundant annotated poly(A) sites (Pelechano et al. 2013). Metagenes for subunits of the Ccr4-NOT complex 
deleted (red) can be compared to the Pol II density in the wild-type strain (grey). (D) Same as (C), for rtt103∆. 
(E-F) Normalized mean Pol II occupancy and the surrounding 95% confidence interval for the 50 bp 
surrounding annotated 5’ and 3’ splice sites. Metagenes for subunits of the Caf1 complex deleted (blue) can be 
compared to the Pol II density in the wild-type strain (grey). (G) Cartoon and equation illustrating pausing index 
calculation. (H) Pausing index for the transcription start site (green), poly(A) (red), and 3’ antisense (blue) 
regions across genes. Horizontal axis is hierarchically clustered, revealing TSS, poly(A), and antisense 
pausing indices for genes in wild-type yeast. (I) Same as (H), for 5’ and 3’ splice site pausing indices. (J) 
Scatter plot of the median pausing indices in the TSS and 3’ antisense regions for all deletion strains. 
Relationship was quantified using Pearson correlation. (K) Same as in (J), comparing pausing the 5’ and 3’ 
splice sites surrounding introns. (L) Boxplot of TSS pausing index distributions in each deletion strain, ordered 
by median PI. Horizontal solid line indicates median value for wild-type yeast; dotted lines indicate the 45th and 
55th percentile of wild-type PI values. (M-P) Same as (L), for 3’ antisense PI, poly(A) site PI, 5’ splice site PI, 
and 3’ splice site PI. 
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Figure 4 
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Figure 4. Trends in Pol II pausing behavior at single-nucleotide resolution across deletion strains. (A) 
Cartoon illustrating algorithm for robust and reproducible Pol II pause detection. Scatter plot shows correlation 
between pause strength in two different wild-type replicates. Pause strength is measured by log10(RPM) at 
pause loci, and only reproducible pauses are shown (IDR ≥ 1%). (B) Example of Pol II density on the positive 
(purple) and negative (red) strands, as measured by NET-seq in two wild-type replicates. Pauses that meet the 
1% IDR reproducibility threshold are shown as blue vertical lines. (C) Boxplot of the distribution of Pol II pause 
densities, the number of pauses per kilobase examined, in each deletion strain, ordered by median pausing 
density. Whiskers and outliers were removed for visualization. (D) Hierarchically clustered heatmap of 8816 
Pol II pause loci across the genome reveals locations of pauses shared by multiple deletion strains. Heatmap 
is colored based on if that locus was identified as a pause (teal), not a pause (white), or if there was not 
sufficient coverage to determine pause status (grey). Analyses conducted only on deletion strains with 
biological replicates and only at loci at which there was enough coverage to determine the absence of a Pol II 
pause in at least one deletion strain. (E) The percent of Pol II pause loci located in the 5’ gene region, mid-
gene, and 3’ gene region varies across deletion strains. 5’ gene region was identified for each well-expressed 
gene as extending from the transcription start site to the 15th percentile of the gene length. Similarly, the 3’ 
gene region was defined as the last 15th percentile of the gene length, with the mid-gene region spanning in 
between. The control (grey) was created by scrambling all identified pauses across all deletion strains within 
the genes they were identified in. Rows are ordered by the percent of pauses found in the 5’ region. 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.15.456358doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456358
http://creativecommons.org/licenses/by/4.0/


 

 43 

Figure 5 
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Figure 5. Chromatin features explain the location of some Pol II pauses in wild-type yeast. (A) Heatmap 
illustrating the relative frequency of each trinucleotide sequence surrounding real and shuffled control pauses 
centered on Pol II pauses identified in wild-type. (B, left) Comparison in the distribution of values for twist 
values underlying Pol II pauses in wild-type yeast (n = 13,994) compared to a shuffled control, in which the 
same number of pauses are shuffled, maintaining the same number of pauses within each well-expressed 
gene. Differences between the real and shuffled distributions were determined as significantly significant by a 
Student’s t-test with Bonferroni correction for multiple hypotheses. P-values are reported in Table S5. (* 
adjusted p-value ≤ 0.05; ** adjusted p-value ≤ 0.01; *** adjusted p-value ≤ 0.001). Also shown for MNase-seq 
signal (center) and Ser5P CTD ChIP-exo signal (right).(C) Table showing the three significant motifs identified 
under Pol II pauses in the wild-type strain. All analysis was performed using the MEME suite of tools. 
Significant motifs were those with an E-value greater than 0.05. Pause sites were scrambled within well-
expressed genes to be used as a negative control and to calculate enrichment of motifs. (D) Table with all 
sequence motifs underlying pauses across deletion strains that are significantly similar to known transcription 
factor binding motifs. Only the top match, as assessed by E-value, is reported. (E) Receiver operating 
characteristic (ROC) curve from a random forest classifier that measures the predictive value of chromatin 
features on Pol II pauses in wild-type yeast (10,495 training and 3,499 training loci). (F) Table of all features 
used in random forest classifier for pause loci classification and the importance of each feature. Feature 
importance is calculated as the mean decrease in accuracy upon removing that feature from the model. 
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Figure 6 

 
 
Figure 6. Random forest classifiers can predict Pol II pause loci across deletion strains, with different 
feature importance values across deletion strains. (A) Heatmap illustrating the mean AUC for the random 
forest classifier when trained (75% of loci) and tested (25% of loci) on each deletion strain. Deletion strains are 
hierarchically clustered along the x-axis. (B) Heatmap showing the AUC values from random forest classifiers 
trained on all pauses from one deletion strain (y-axis) and tested on those unique pauses observed in another 
deletion strain (x-axis). Both axes are hierarchically clustered to reveal similarities in AUC values across 
deletion strains. Tiles when the same training and testing strain are indicated are colored according to the AUC 
for that deletion strain when 75% of pauses in that deletion strain are used for training and the remaining 25% 
are used for testing as reported in (A).  
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Figure 7 
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Figure 7. Antisense transcription and Pol II pausing around the TSS are intimately linked to gene 
expression across deletion strains. (A) Scatter plots of antisense:sense ratio fold-change compared to wild 
type (left) and TSS pausing index fold-change compared to wild type (right) vs expression fold-change 
compared to wild type for all genes across all strains. Pearson r value is shown. (B) Scatter plots of 
antisense:sense ratio fold-change compared to wild type (left) and TSS pausing index fold-change compared 
to wild type (right) vs expression fold-change compared to wild type for sensitive genes across all strains. 
Sensitive genes are those that were differentially expressed in at least eight deletion strains. Pearson r value is 
shown. (C) Boxplots illustrating distributions of antisense:sense transcription ratios (top panels) or TSS 
pausing index (bottom panels) in deletion strains for binned antisense:sense ratios in wild-type. The only genes 
plotted were those that were differentially up-regulated (left) or down-regulated (right) in at least eight deletion 
strains. Distributions in each bin were split by whether that gene-deletion strain combination was differentially 
transcribed (n = 239 genes up-regulated in at least 8 deletion strains, n = 316 genes down-regulated in at least 
8 deletion strains). Asterisks indicate p-value (* < 0.05, ** < 0.01, *** < 0.001, n.s. not significant) from a 
Student’s t-test comparing the distribution of values from differentially expressed and not differentially 
expressed genes.  
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Figure S1 
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Figure S1. High-quality NET-seq screen data identifies largely different groups of genes with varying 
functions that differentially expressed across deletion strains. (A) Four biological replicates of the wild-
type strain were used to establish baseline transcription activity. All replicates are highly correlated in gene 
RPKM by Pearson correlation. All four wild-type replicates are highly correlated. (B) Number of differentially 
expressed genes identified when using the entire gene and a sub-genic region to calculate expression. 
Regardless of whether the entire gene body (top) or a sub-genic region excluding pausing around the 
transcription start site and poly(A) site (bottom), there are similar numbers and trends across deletion strains in 
the amount of differentially expressed genes identified. Analyses conducted only on deletion strains with 
biological replicates. (C) Stacked bar chart illustrating the difference in proportion of genes that have TATA 
boxes in their promoters (light blue), are categorized as TATA-less (pink), or are not in either category (grey). 
Chi-squared test was used to quantify enrichment of TATA-containing promoters of frequently regulated genes. 
Gene promoters were categorized as in (Basehoar et al., 2004).  (D) Distribution of gene lengths split by those 
genes that are not frequently regulated (differentially expressed in < 8 deletion strains, grey), frequently up-
regulated (blue), and frequently down-regulated (red). Difference in distribution was assessed with a Student’s 
t-test. (E) The majority of genes found to be differentially expressed and the associated enriched GO pathways 
in one deletion strain are differentially expressed in multiple strains. Cumulative density plot illustrating that 
40% of enriched GO pathways are only identified in one strain, with 90% of identified GO pathways enriched in 
8 strains or fewer. There are several GO pathways that are enriched in 24 out of 31 deletion strains for which 
there were sufficient replicates to conduct differential expression analysis. 
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Figure S2 

 
Figure S2. Antisense transcription is largely uncorrelated with gene length, and not uniformly 
distributed across gene bodies. (A) Heatmaps showing the relative enrichment of antisense transcription in 
deletion strains compared to wild-type across the gene body, from 250 bp upstream of the transcription start 
site to the end of the gene body, up to 4 kb downstream (ordered by gene length). All analyses conducted on 
non-overlapping, protein-coding genes (n = 3479). Heatmaps are ordered according to median 
antisense:sense transcription levels. (B) Line chart showing the gene-length dependence of antisense 
transcription levels, as measured by mean RPKM, in the dhh1∆, eaf1∆, rco1∆, and set2∆ strains compared to 
wild-type. Error bars indicate standard error of the mean. (C) Metagene plot of antisense transcription from 1 
kb upstream to the poly-adenylation sites of non-overlapping protein-coding genes for four deletion strains and 
wild-type. The gene body region is defined as 500 bp upstream of the poly(A) site to 250 bp upstream while the 
5’ region of antisense transcripts is defined as 250 bp upstream of the poly(A) site to the poly(A) site itself. 
Deletion strains with high median antisense:sense ratios (set2∆, eaf1∆) have generally low antisense 

transcription in the defined 5’ region while deletion strains with low median antisense:sense ratios (spt4∆, 
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rpb4∆) have high antisense transcription in this region. (D) Scatter plot showing the strong negative correlation 
between the median antisense:sense ratio and median 5’:gene body region antisense transcription ratios. 
Pearson correlation was calculated to demonstrate the strong negative correlation. 
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Figure S3 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.15.456358doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456358
http://creativecommons.org/licenses/by/4.0/


 

 53 

Figure S3. Heatmaps of Pol II density around RNA processing sites reveal differences in polymerase 
behavior across deletion strains, which can have functional consequences in specific deletion strains. 
(A) Normalized mean Pol II occupancy and the surrounding 95% confidence interval for -100 to +600 bp 
surrounding the most abundant annotated transcription start sites (Pelechano et al. 2013) (n = 2415 genes). 
Metagenes for each deletion strain (green) can be compared to the Pol II density in wild-type strains (grey). 
Deletion strains are ordered by median pausing index for the TSS region, as in Figure 3F. (B) Normalized 
mean Pol II occupancy and the surrounding 95% confidence interval for -200 to +500 bp surrounding the most 
abundant annotated poly(A) sites (Pelechano et al. 2013) (n = 2415 genes). Metagenes for each deletion strain 
(blue) can be compared to the Pol II density in wild-type strains (grey). Deletion strains are ordered by median 
pausing index for the antisense region, as in Figure 3G. (C) Normalized mean Pol II occupancy and the 
surrounding 95% confidence interval for the -500 to + 200 bp surrounding the most abundant annotated 
poly(A) sites (Pelechano et al. 2013) (n = 2415 genes). Metagenes for each deletion strain (red) can be 
compared to the Pol II density in wild-type strains (grey). Deletion strains are ordered by median pausing index 
for the poly(A) region, as in Figure 3H. (D) Normalized mean Pol II occupancy and the surrounding 95% 
confidence interval for the 50 bp surrounding annotated 5’ (dark blue) and 3’ (light blue) splice sites. 
Metagenes for each deletion strain can be compared to the Pol II density in wild-type strains (grey) (n = 252 
genes). Deletion strains are ordered by median pausing index for the 5’ splice site region, as in Figure 3I. (E) 
Cartoon illustrating splicing index calculation. (F) Boxplot showing the distribution of splicing indices calculated 
in both the cac2∆ and wild-type strain. Significance was determined with a Student’s t-test. RNA-seq data was 
obtained from (Hewawasam et al. 2018). 
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Figure S4 
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Figure S4. Pol II density is increased around RNA processing sites to varying degrees across deletion 
strains. (A) Scatterplot of the pausing index (PI) in the TSS and poly(A) region (top left), TSS and 3’ antisense 
(top right), poly(A) and 3’ antisense (bottom left), and the 5’ and 3’ splice sites surrounding introns (bottom 
right) for each gene in the wild-type strain. The lack of any relationship between these values is quantified by 
Pearson correlation. (B) Cumulative density plot illustrating the distribution of pausing indices for transcription 
start site (green), poly(A) site (red), 3’ antisense (blue), 5’ splice site (dark blue), and 3’ splice site (light blue) 
regions. In wild-type yeast, 25% of genes have a TSS PI ≥ 2.74; this PI value falls to 0.78 for poly(A) PI, 2.51 
for 3’ antisense, and 2.18 and 2.35 for 5’ and 3’ splice site regions, respectively. Distributions of both splice site 
pausing indices are statistically the same, as determined by a Kolmogorov-Smirnov test (p = 0.273). (C) 
Scatter plot of the median pausing indices in the TSS and poly(A) regions (top) and poly(A) and 3’ antisense 
(bottom) for all deletion strains, colored as in Figure 1B. Relationship was quantified using Pearson correlation. 
(D) Pausing index for the transcription start site region across all non-overlapping protein-coding genes (n = 
3,341). Both axes are hierarchically clustered, revealing genes with similar pausing densities as well as 
deletion strains that share pausing indices across their genomes. (E-H) Same as in (D), for pausing indices 
calculated across different gene regions - 3’ antisense, poly(A) sites, 5’ splice sites, and 3’ splice sites, 
respectively. 
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Figure S5. Pol II pausing behavior at single-nucleotide resolution across deletion strains reveal that 
pausing is balanced and dynamic in wild-type. (A) The number of reproducible pauses varies across 
deletion strains, as does the percent of pauses found to be reproducible. There is a median of 23% of pauses 
that reproduce across two replicates with an IDR threshold of ≥ 1%. Applying an IDR threshold of ≥ 1%, the 
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strong pauses (dark cyan) are reproducible, while others do not meet this threshold (cyan), while still others 
are only present in one replicate (grey). Only genes meeting the coverage threshold for both replicates are 
considered by the pause-calling algorithm for each deletion strain. (B) Bar plot showing the median percent of 
reads, mapping to within highly-expressed gene bodies, contained within reproducible Pol II pauses, ordered 
from lowest to highest. (C) Scatter plot illustrating the relationship between the number of sequencing reads 
obtained in each duplicate for each deletion strain and the percent of NET-seq reads located in pauses across 
deletion strains. Relationship was quantified using Pearson correlation. (D) Principal component plot based on 
shared Pol II pause loci across the genome for different deletion strains. Deletion strains with more shared Pol 
II pause loci are closer together in this plot whereas deletion strains with very different Pol II pausing patterns 
are further apart. 
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Figure S6 

 
Figure S6. Chromatin features explain the location of some Pol II pauses in wild-type yeast using a 
random forest classifier. (A) Comparison in the distribution of values for each chromatin feature surrounding 
Pol II pauses in wild-type yeast (n = 13,994) compared to a shuffled control, in which the same number of 
pauses are shuffled, maintaining the same number of pauses within each well-expressed gene. Differences 
between the real and shuffled distributions were determined as significantly significant by a Student’s t-test 
with Bonferroni correction for multiple hypotheses. P-values are reported in Table S6. (* adjusted p-value ≤ 
0.05; ** adjusted p-value ≤ 0.01; *** adjusted p-value ≤ 0.001). Colors correspond to legend in Figure 5E. (B) 
Accuracy of random forest classifiers trained to identify real and shuffled Pol II pause loci based on 51 features 
across parameter space. All continuous features were converted into categorical features by binning into 3 
(left), 4 (middle), and 5 (right) categories of equal size. The number of variables randomly sampled at each 
branch (mtry) varied from 1 to 30 and the number of trees in the random forest classifier (ntrees) varied from 
1000 to 2500. Parameters used for all downstream analyses were those that yielded the highest accuracy for 
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each feature set (4 feature categories, 20 variable samples, and 2500 trees in forest for all features). All 
classifiers were trained on 75% of pause loci and tested with the remaining 25% of loci. 
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Figure S7 

 
Figure S7. Random forest classifiers can predict Pol II pause loci across deletion strains, with different 
feature importance values across deletion strains. (A) Correlation between the number of reproducible 
pauses identified in each deletion strain and the AUC measurements for random forest classifiers trained on 
full set of chromatin features. The variation among deletion strain AUC measurements is not fully explained by 
the number of reproducible pauses identified in each deletion strain, as measured by Pearson correlation. (B) 
Heatmap illustrating feature importance for each feature, across all deletion strains. Deletion strains are 
hierarchically clustered along the x-axis, in the same order as in Figure 6A. . (C-E) ROC curves and 
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corresponding AUC values for random forest models trained on cdc39∆ (B) dst1∆ (C) and ubp8∆ (D), 
respectively.  
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