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Abstract1

Population response functions based on climatic and phenotypic data from common gardens have2

long been the gold standard for predicting quantitative trait variation in new environments. How-3

ever, prediction accuracy might be enhanced by incorporating genomic information that captures4

the neutral and adaptive processes behind intra-population genetic variation. We used �ve clonal5

common gardens containing 34 provenances (523 genotypes) of maritime pine (Pinus pinaster6

Aiton) to determine whether models combining climatic and genomic data capture the underly-7

ing drivers of height-growth variation, and thus improve predictions at large geographical scales.8

�e plastic component explained most of the height-growth variation, probably resulting from9

population responses to multiple environmental factors. �e genetic component stemmed mainly10

from climate adaptation, and the distinct demographic and selective histories of the di�erent mar-11

itime pine gene pools. Models combining climate-of-origin and gene pool of the provenances,12

and positive-e�ect height-associated alleles (PEAs) captured most of the genetic component of13

height-growth and be�er predicted new provenances compared to the climate-based population14

response functions. Regionally-selected PEAs were be�er predictors than globally-selected PEAs,15

showing high predictive ability in some environments, even when included alone in the models.16

�ese results are therefore promising for the future use of genome-based prediction of quantita-17

tive traits.18

Keywords: Climate change, local adaptation, phenotypic plasticity, population response func-19

tions, positive-e�ect alleles, range-wide predictive models, maritime pine.20
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1 Introduction21

Global change is expected to have a profound impact on forests (Franklin et al. 2016, Seidl et al.22

2017), and whether tree populations will be able to migrate or persist across their current range23

is uncertain (Aitken et al. 2008). Assessing the potential of populations to accommodate future24

environmental conditions requires a thorough understanding of the origin of variation in quanti-25

tative traits subject to natural selection (Shaw and E�erson 2012, Alberto et al. 2013). To this aim,26

a necessary �rst step is to quantify the plastic and genetic components of adaptive traits and their27

interaction in multiple environments (Des Marais et al. 2013, Merilä and Hendry 2014), which has28

been done extensively in forest trees (Franks et al. 2014). A second step consists in identifying29

the underlying drivers of these components (Merilä and Hendry 2014). �e plastic component30

corresponds to the ability of one genotype to produce varying phenotypes depending on the envi-31

ronment (Bradshaw 1965). Phenotypic plasticity can help individuals to overcome new conditions32

up to a certain threshold (Nicotra et al. 2010), and can be to some extent genetically assimilated33

and therefore involved in the evolutionary process of adaptation (Pigliucci et al. 2006). �e ge-34

netic component can stem from both neutral (e.g. population demographic history and genetic35

dri�) and adaptive processes (e.g. adaptation to local biotic and abiotic environments), both pro-36

cesses implying changes in allele frequencies. Populations are locally adapted when they have37

higher �tness in their own environment than populations from other environments (Kawecki38

and Ebert 2004). In forest trees, a large amount of work highlighted the importance of climate in39

driving the plastic and genetic responses of quantitative traits to new environmental conditions40

(Savolainen et al. 2007, Valladares et al. 2014b). However, it is still unclear how multiple and41

interacting drivers underlying quantitative trait variation could be combined to improve predic-42

tions of population responses to global change. �e increasing availability of genomic data opens43

new opportunities to boost prediction accuracy, which is critical for breeding (i.e. genomic se-44

lection; Gra�apaglia and Resende 2011), to anticipate future distribution of natural populations45

(e.g. Razgour et al. 2019), or to support the ongoing development of assisted gene �ow strategies46

aiming to help populations adapt to future environments (Browne et al. 2019, Mahony et al. 2020,47

MacLachlan et al. 2021).48

In forest trees, a long history of common gardens (Langlet 1971) has provided a unique frame-49

work to associate population-speci�c quantitative trait variation with large environmental or50

geographical gradients, and thus identify populations at risk under climate change (Rehfeldt et51

al. 1999, 2003, Savolainen et al. 2007, Pedlar and McKenney 2017, Rehfeldt et al. 2018, Fréjaville52

et al. 2020). �e development of population response functions was a step forward to evaluate53

the relative contribution of plasticity -associated to current climatic conditions (i.e. the climate in54

the common gardens)- and genetic adaptation -associated to the past climatic conditions under55

which the populations have evolved (i.e. the climate-of-origin of the provenances tested)- in ex-56

plaining quantitative trait variation (O’Neill et al. 2008, Wang et al. 2010). �ese models have now57

been applied to a large variety of traits (Leites et al. 2012a,b, Benito Garzón et al. 2019, Vizcaı́no-58
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Palomar et al. 2020) and one of their main conclusions is that trait variation across species ranges59

is mostly associated with the climate in the common garden (i.e. related to the plastic component)60

and, only to a much lesser extent, with the climate-of-origin of the provenances (i.e. related to61

the genetic component) (Leites et al. 2012b, Benito Garzón et al. 2019). Importantly, these models62

do not allow to determine to what extent associations between trait variation and provenance63

climate-of-origin, or the higher trait values of local compared to foreign populations, are caused64

by adaptive or neutral processes (Leimu and Fischer 2008, Hereford 2009, Franks et al. 2014). �is65

limits our understanding of the genetic processes that led to the current pa�erns of quantitative66

trait variation, and therefore our ability to predict trait variation of new (untested in common67

gardens) populations under new environments.68

�e advent and generalization of genomic tools have enhanced our understanding of adaptive69

and neutral genetic processes resulting in trait variation, and their relationship with climatic70

gradients (Savolainen et al. 2013, Sork 2018, Leroy et al. 2020). Integrating genomic information71

into quantitative trait prediction would be highly valuable to consider intraspeci�c variability at72

a �ner scale than in current models (Mahony et al. 2020), thereby probably improving model ac-73

curacy, especially for populations not previously planted in commons gardens. More speci�cally,74

rapidly growing knowledge on trait-associated alleles identi�ed by Genome-Wide Association75

Studies (GWAS) is promising for anticipating the genetic response of populations to new envi-76

ronments (Exposito-Alonso et al. 2018, Browne et al. 2019). For example, Mahony et al. (2020)77

used counts of alleles positively associated with the traits of interest (PEAs) to describe pa�erns78

and identify drivers of local adaptation in lodgepole pine. Recent studies have shown that most79

quantitative traits are highly polygenic (see reviews in Pritchard et al. 2010, Barghi et al. 2020;80

and de Miguel et al. 2020 for maritime pine) and that the e�ect of trait-associated alleles may81

vary across environments (Anderson et al. 2013, Ti�n and Ross-Ibarra 2014), which complicates82

the use of genomic information in trait prediction. In addition, pa�erns in allele frequencies83

induced by population demographic history are o�en correlated with environmental gradients84

(La�a 2009, Alberto et al. 2013, Nadeau et al. 2016), which makes di�cult to separate the signature85

of population structure from that of adaptive processes (Sella and N. H. Barton 2019, Sohail et al.86

2019). At the species range scale, population structure hinders the use of genomic relationship87

matrices, which provide more accurate estimates of genetic parameters (e.g. breeding values,88

additive and non-additive variance) within breeding populations than previously used pedigree-89

based approaches (Bouvet et al. 2016, El-Dien et al. 2018). Indeed, admixed populations or distinct90

genetic groups may present di�erent means and variances of their genetic values, which requires91

new statistical methods to estimate them (e.g. Mu� et al. 2019). �us, integrating genomic infor-92

mation into quantitative trait prediction in natural populations, while highly valuable, remains93

challenging.94

Forest trees are remarkable models to study the genetic and plastic components of quantitative95

trait variation. Forest tree populations o�en have large e�ective population size and are dis-96

tributed along a large range of environmental conditions, which makes them especially suitable97
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to study current and future responses to climate (Savolainen et al. 2007, Alberto et al. 2013).98

Moreover, forest trees remain largely undomesticated (including those species with breeding99

programs) and, therefore, genetic variation in natural populations has been li�le in�uenced by100

human-induced selection (Neale and Savolainen 2004). However, forest trees have also large and101

complex genomes (especially conifers; Mackay et al. 2012), that show a rapid decay of linkage dis-102

equilibrium (Olson et al. 2010), and extensive genotyping would be needed to identify all (most)103

relevant polymorphisms underlying (highly polygenic) quantitative traits (Neale and Savolainen104

2004, Jaramillo-Correa et al. 2015). In addition, although early results have been convincing in105

predicting trait variation within tree breeding populations (i.e. using populations with relatively106

low e�ective population size; Resende Jr et al. 2012, Resende et al. 2012, Jarquı́n et al. 2014), pre-107

dicting the genetic component of trait variation across populations or geographical regions of108

forest trees remains poorly explored.109

In the present study, we aim to identify the potential drivers of the plastic and genetic compo-110

nents of height growth in distinct maritime pine gene pools (i.e. genetic clusters) and investigate111

how common garden data can be combined with genomics to e�ciently predict height-growth112

variation across the species range. We compared Bayesian hierarchical mixed models that in-113

ferred height-growth variation in maritime pine as a function of climatic and genomic-related114

variables, using a clonal common garden network (CLONAPIN) consisting of �ve sites and 34115

provenances (523 genotypes and 12,841 trees). First, we evaluated the relative importance of116

potential drivers underlying height-growth variation. We expected that: (i) the plastic compo-117

nent explains most trait variation and is associated with climate in the common gardens, (ii) the118

genetic component is driven by both adaptive processes, such as adaptation to climate, and neu-119

tral processes, such as population demographic history. Second, we compared the out-of-sample120

predictive ability (on unknown observations or provenances) of models based exclusively on the121

common garden design and models including (either separately or jointly) potential predictors122

of the genetic component of trait variation, notably those related to climate and positive-e�ect123

height-associated alleles (PEAs). We expected that the distinct demographic history of maritime124

pine gene pools, the provenance climate-of-origin and the counts of PEAs, either combined or125

alone, may improve height-growth predictions of unknown provenances. We also expected that126

height-associated alleles selected regionally, i.e. in particular environments, would have a be�er127

predictive ability than globally-selected alleles. Our study is a step towards integrating the recent128

knowledge brought by large genomic datasets to the modeling of quantitative trait variation in129

forest trees. Combining common gardens with genomic tools hold great promise for speeding130

up and improving trait predictions at large scales and for a wide range of species and popula-131

tions. However, a robust framework is needed to make reliable predictions and to determine132

when and to what extent genomics can help in making decisions in conservation strategies or in133

anticipating population responses to climate change.134
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2 Materials & Methods135

2.1 Plant material and phenotypic measurements136

Maritime pine (Pinus pinaster Ait., Pinaceae) is an economically important forest tree, largely137

exploited for its wood (Viñas et al. 2016). It has also an important ecological function stabilizing138

coastal and fossil dunes and as keystone species supporting forest biodiversity. Native to the139

western part of the Mediterranean Basin, the Atlas mountains in Morocco, and the south-west140

Atlantic coast of Europe, its natural distribution spans from the High Atlas mountains in the south141

(Morocco) to French Bri�any in the north, and from the coast of Portugal in the west to western142

Italy in the east. Maritime pine is a wind-pollinated, outcrossing and long-lived tree species that143

can grow on a wide range of substrates, from sandy and acidic soils to more calcareous ones. It144

can also withstand many di�erent climates: from the dry climate of the Mediterranean Basin to145

the highly humid climate of the Atlantic Europe region, and the continental climate of central146

Spain. Maritime pine populations are highly fragmented and can be grouped into six gene pools147

(Alberto et al. 2013, Jaramillo-Correa et al. 2015; see �g. 1), that is genetic clusters that cannot be148

di�erentiated on the basis of neutral genetic markers and that probably derive from a common149

glacial refuge (Bucci et al. 2007, Santos-del-Blanco et al. 2012).150

Height growth is a key adaptive trait in forest trees, including maritime pine. Height can be seen151

as the end-product of multiple ecophysiological processes that are both genetically regulated and152

a�ected by multiple environmental e�ects (Gra�apaglia et al. 2009). As such, taller trees compete153

more e�ciently for light, water and nutrients, and are also more likely to have high fecundity154

(Rehfeldt et al. 1999, Wu and Ying 2004, Aitken and Bemmels 2015). We obtained height data from155

the clonal common garden network CLONAPIN, consisting of �ve common gardens located in156

di�erent environments (also referred as test sites; �g. 1). �ree sites are located in the Atlantic157

Europe region, with mild winters, high annual rainfall and relatively wet summers: Bordeaux158

in the French part, and Asturias and Portugal in the Iberian part, the Portugal site experiencing159

slightly colder winters and half the summer precipitation than the site in Asturias. �e two other160

sites, Cáceres and Madrid, are located in the Mediterranean region with high temperatures and161

intense summer drought, as well as large precipitation di�erences between summer and winter.162

In 2010 or 2011 depending on the test site, clonal replicates from 34 provenances were planted163

in a randomized complete block design with eight blocks. For each provenance, trees represent164

between 2 and 28 genotypes (clones), on average about 15 (see Rodrı́guez-�ilón et al. 2016 for165

details). Genotypes were originally sampled from natural populations, with enough distance166

among trees (over 50 m) to avoid sampling related individuals. Depending on the site, height was167

measured from one to four times, when the trees were between 13 and 41 month old (Table S1).168

Only survivors were measured for height, which resulted in a strongly unbalanced design as 92%169

and 75% of the trees died in Cáceres and Madrid, respectively (partly due to the clay soils and a170

strong summer drought). A�er removing genotypes for which we had no genomic information,171
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we analyzed 33,121 height observations from 12,841 trees and 523 genotypes (Table S2).172

Figure 1. �e �ve common gardens and 34 provenances of maritime pine (CLONAPIN common garden
network) used in this study. �e distribution of maritime pine is also shown (based on EUFORGEN map,
http://www.euforgen.org/). Pie charts represent the proportions belonging to each gene pool for each
provenance (see legend) as estimated in Jaramillo-Correa et al. (2015). Provenance names can be found in
Table S2.

.

2.2 Gene pool assignment and positive-e�ect alleles (PEAs)173

DNA was extracted from leaves collected in the Asturias common garden and genotyped with a174

9k Illumina In�nium SNP assay (described in Plomion et al. (2016)), resulting in 5,165 high-quality175

polymorphic SNPs scored on 523 genotypes. �ere were on average only 3.3 missing values per176

genotype (ranging between 0 and 142). For each genotype, the proportion belonging to each gene177

pool was estimated in Jaramillo-Correa et al. (2015), using nine nuSSRs as well as a subset of the178

same SNPs as in our study (1,745 SNPs) and the Bayesian approach available in Structure v. 2.3.3179

(Pritchard et al. 2000; Table S3). �is gene pool assignment aimed at re�ecting the neutral genetic180

structure in maritime pine, which results from population demographic history and genetic dri�,181

but may also arise from di�erent selective histories across gene pools.182
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Based on the 523 genotypes for which there were both genotypic and phenotypic data, we per-183

formed four GWAS following the Bayesian variable selection regression (BVSR) methodology184

implemented in the piMASS so�ware (Guan and Stephens 2011), correcting for population struc-185

ture and using the height BLUPs reported in de Miguel et al. (2020), that accounted for site and186

block e�ects. First, a global GWAS was performed to identify SNPs that have an association187

with height at range-wide geographical scales, thus using the combined phenotypic data from188

the �ve common gardens. Second, three regional GWAS were performed to identify SNPs that189

have a local association with height in a particular geographical region r (i.e. in a particular190

environment), thus using separately data from the Iberian Atlantic common gardens (Asturias191

and Portugal), the French Atlantic common garden (Bordeaux) and the Mediterranean common192

gardens (Madrid and Cáceres). For each of the four GWAS, we selected the 350 SNPs (∼7% top193

associations) with the highest absolute Rao-Blackwellized estimates of the posterior e�ect size,194

corresponding approximately to the estimated number of SNPs with non-zero e�ects on height195

in a previous multi-trait study using the same SNP marker set (de Miguel et al. 2020). �ese SNPs196

were used to compute the counts of global and regional positive-e�ect alleles (gPEAs and rPEAs)197

for each genotype (see section 2.1 of the Supplementary Information for more details).198

2.3 Climatic data199

In forest trees, large-scale pa�erns of allele frequencies or quantitative trait variation are known200

to be associated with climatic variables related to mean temperature and precipitation (e.g. Eckert201

et al. 2010, McLane et al. 2011, Leites et al. 2019, Fréjaville et al. 2020, Mahony et al. 2020), or202

episodic climatic conditions, such as summer aridity or maximum temperatures (Rehfeldt et al.203

2003, Grivet et al. 2011, McLane et al. 2011, Jaramillo-Correa et al. 2015, Fréjaville et al. 2020).204

As climate change will cause major changes in temperature and precipitation in the near future,205

particularly in the Mediterranean basin, there is a need to understand the complex in�uence of206

climatic variables on quantitative trait variation. We extracted monthly and yearly climatic data207

from the EuMedClim database with 1 km resolution (Fréjaville and Benito Garzón 2018). �e208

climatic similarity among test sites was described by a covariance matrix Ω including six variables209

related to both extreme and average temperature and precipitation in the test sites during the year210

preceding the measurements, and with at most a correlation coe�cient of 0.85 among each other211

(see section 3.1 in the Supplementary Information for more details). �e climatic similarity among212

provenances was described by a covariance matrix Φ including four variables related to the mean213

temperature and precipitation in the provenance locations over the period from 1901 to 2009 (i.e.214

representing the climate under which provenances have evolved), and with at most a correlation215

coe�cient of 0.77 among each other (see section 3.2 in the Supplementary Information for more216

details).217
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2.4 Hierarchical height-growth models218

Twelve height-growth models were compared. We �rst built two baseline models relying exclu-219

sively on the common garden design and aimed at quantifying the relative contribution of the220

genetic and plastic components of height-growth variation (models M1 and M2; Table 1). Second,221

we used climatic and genomic data to detect association of height-growth variation with potential222

underlying drivers related to plasticity, adaptation to climate or gene pool assignment (i.e. a proxy223

of the population demographic history and genetic dri� experienced by the populations), and es-224

timated gene pool-speci�c total genetic variances (models M3 toM6; Table 1). �ird, we built mod-225

els either including separately or combining potential drivers of the genetic component of height-226

growth variation to predict unknown observations and provenances without relying on the com-227

mon garden design (models M7 to M12; Table 1). In every model, the logarithm of height (log(h))228

was used as a response variable to stabilize the variance. Tree age at the time of measurement i229

was included as a covariate to account for the average height-growth trajectory. �is implies that230

all models shared the form log(hi) = f(agei) + m(covariates), where m(covariates) is the rest231

of the model. �erefore, all models can also be wri�en hi = exp(f(agei)) exp(m(covariates)),232

which explains why covariates in our models a�ect height growth (i.e. modulate the height-233

growth trajectory) rather than simply height. We used a second-degree polynomial to account234

for tree age (f(agei + age2i )) because the logarithm of height �rst increases linearly with age and235

then reaches a threshold (�g. S11). Each tree was measured between one and four times (14%236

of the trees were measured only once), but we did not include a varying intercept for each tree237

as it resulted in model miss-speci�cation warnings and strong over��ing. A description of each238

model speci�cation follows.239

2.4.1 Baseline models M1 and M2: separating the genetic and plastic components of240

height-growth variation241

In the baselinemodelM1, height hwas modeled as a function of tree age, varying intercepts for the242

sites Ss and blocks nested within sites Bb(s) (i.e. the plastic component), and varying intercepts243

for the provenances Pp and genotypes within provenances Gg(p) (i.e. the genetic component):244

log(hisbpg) ∼ N (Xβ + µsbpg , σ
2)

Xβ = β0 + βageagei + βage2age2i
µsbpg = Ss +Bb(s) + Pp +Gg(p)

(1)

where X is the 3-column design matrix and β is a vector including the intercept β0 and the245

coe�cients βage and βage2 of the �xed e�ect variables (age and age2, respectively). µsbpg is the246

vector of varying intercepts. Model M2 was based on model M1 but including an interaction term247
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Table 1: Variables included in the height-growth models. Baseline models M1 and M2 separate the ge-
netic and plastic components of height-growth variation via varying intercepts relying exclusively on the
common garden design. Explanatory models (models M3 to M6) test di�erent hypotheses regarding the
potential drivers underlying height-growth variation. Predictive models (models M7 to M12) are used to
compare the predictions on new observations and provenances when combining or including separately
genomic and climatic drivers of height-growth variation. �e provenance climate-of-origin is evaluated
using the precipitation of the driest month, min.pre, and the maximum temperature of the warmest month,
max.temp. gPEAs and rPEAs correspond to the counts of height-associated positive-e�ect alleles, selected
either globally (across all common gardens) or regionally (in speci�c common gardens). �e provenance
climate-of-origin and the PEAs were included in the predictive models with site-speci�c slopes. All models
also contained the age e�ect, not shown in the table.

Variables Baseline Explanatory models Predictive models

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
Site/Block × × × × × × × × × × × ×
Provenance × × × × × ×
Genotype × × × × ×
Site × Provenance ×
Climatic similarity among sites × × × ×
Proportion belonging to each gene pool × × × × × ×
Gene pool-speci�c genetic variance ×
Climatic similarity among provenances ×
Provenance climate-of-origin × × ×
Global PEAs (gPEAs) × ×
Regional PEAs (rPEAs) × ×

between provenance and site (SsPp). We also performed a model without the genetic component248

(called M0) whose outputs are reported in the Supplementary Information.249

2.4.2 Explanatory models M3 to M6: potential drivers underlying height-growth vari-250

ation251

In model M3, we hypothesized that the plastic component of height growth was in�uenced by the252

climatic similarity among test sites during the year preceding the measurements. �is model can253

be expressed with the same likelihood as M1 but with the vector of varying intercepts equal to:254

µisbpg = Ss +Bb(s) + Pp +Gg(p) + csis

csis ∼ N (0,Ωσ2
csis

)
(2)

where Ω is the covariance matrix describing the climatic similarity between test sites s during255

the year i preceding the measurements (�g. S6) and csis are varying intercepts associated with256

the climatic conditions in each test site s during the year i. In M3, the plastic component was257

partitioned between the regression on the climatic covariates (csis) and the deviations related to258

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2020.11.13.382515doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382515


block and site e�ects due to the local environmental conditions that are not accounted for by the259

selected climatic covariates.260

In models M4, M5 and M6, we investigated the drivers of the genetic component of height growth.261

In M4, we hypothesized that the genetic component was in�uenced by the proportion belonging262

to each gene pool j. M5 extends M4 by estimating di�erent total genetic variances in each gene263

pool while accounting for admixture among gene pools, following Mu� et al. (2019). Equations264

for M4 and M5 can be found in section 4 of the Supplementary Information. In M6, we hypoth-265

esized that populations are genetically adapted to the climatic conditions in which they evolved.266

�us, we quanti�ed the association between height growth and the climatic similarity among267

provenances, while still accounting for the gene pool assignment, such as:268

µijsbpg = Ss +Bb(s) + Pp +Gg(p) + csis + cpp +
6∑

j=1

qgjgj

cpp ∼ N (0,Φσ2
cpp)

(3)

where qgj corresponds to the proportion belonging of each genotype g to the gene pool j,269

gj is the mean relative contribution of gene pool j to height growth, Φ is the covariance matrix270

describing the climatic similarity between provenances p (�g. S9) and cpp are varying intercepts271

associated with the climate in each provenance p. �erefore, in M6, the genetic component was272

partitioned among the regression on the climatic covariates (cpp), the gene pool covariates (gj),273

and the deviations related to the genotype (Gg(p)) and provenance (Pp) e�ects (resulting, for ex-274

ample, from adaptation to environmental variables not measured in our study).275

2.4.3 Predictive models M7 to M12: combining climatic and genomic information to276

improve predictions277

In this last set of models, we replaced the provenance and genotype intercepts by di�erent po-278

tential drivers of height-growth variation that do not rely directly on the common garden de-279

sign, namely the gene pool assignment (as in M4), two variables describing the climate in the280

provenance locations (min.pre the precipitation of the driest month and max.temp the maximum281

temperature of the warmest month) and either global or regional PEAs. �is allowed us to deter-282

mine whether these potential drivers were able to predict the height-growth genetic component283

as accurately as the provenance and genotype intercepts (i.e. the variables relying directly on the284

common garden design). Inmodels M7 andM8, the potential predictors were all included together285

in the models to quantify their predictive performance conditionally to the other predictors, and286
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were expressed as follows (here for M7 ):287

µjsbpg =Ss +Bb(s) +
6∑

j=1

qgjgj + βmin.pre,smin.prep

+ βmax.temp,smax.tempp + βgPEA,sgPEAg

(4)

wheremin.prep andmax.tempp are the climatic variables in the provenance locations, βmin.pre,s288

and βmax.temp,s their site-speci�c slopes, gPEAg the counts of global PEAs and βgPEA,s its site-289

speci�c slopes. M8 is identical to M7, except that the counts of gPEAs were replaced by counts of290

rPEAs (i.e. regionally-selected alleles, with positive e�ects in speci�c geographical regions/environments).291

We also performed models in which the potential predictors were included individually to deter-292

mine their speci�c predictive performance: the gene pool assignment in M9, the provenance293

climate-of-origin in M10 and the counts of gPEAs and rPEAs, in M11 and M12, respectively.294

All models were inferred in a Bayesian framework as this approach be�er handles unbalanced295

and multilevel designs (Clark 2005) and also to be�er propagate sources of uncertainty from296

data and parameter values into the estimates (de Villemereuil 2019). Priors used in the models297

were weakly informative and are provided in section 4.2 of the Supplementary Information. To298

build the models, we used the brms package (Bürkner 2017), based on the no-U-turn sampler299

algorithm. Models were run with four chains and between 2,000 and 3,000 iterations per chain300

depending on the models (including 1,000 warm-up samples not used for the inference). All301

analyses were undertaken in R version 3.6.3 (R Core Team 2020) and scripts are available at https:302

//github.com/JulietteArchambeau/HeightPinpinClonapin.303

2.5 Comparing model goodness-of-�t and predictive ability304

�ree partitions of the data (P1, P2 and P3) were used to evaluate model goodness-of-�t (i.e.305

in-sample explanatory power, using training datasets) and predictive ability (out-of-sample pre-306

dictive power, using test datasets). In P1, we aimed to predict new observations, an observation307

being a height-growth measurement in a given year on one individual. P1 corresponds to a ran-308

dom split of the data between 75% of observations used to �t the models (the training dataset of309

24,840 observations) and 25% of observations used to evaluate model predictions (the test dataset310

of 8,281 observations). Notice that the test dataset of the P1 partition was not totally independent311

from the training dataset as it belongs to the same genotypes/provenances and blocks/sites. In312

P2 and P3, we aimed to predict new provenances. P2 corresponds to a random split between a313

training dataset of 28 provenances and a test dataset containing the remaining 6 provenances. P3314

corresponds to a non-random split between a training dataset of 28 provenances and a test dataset315

containing 6 provenances with at least one provenance from each under-represented gene pool316

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2020.11.13.382515doi: bioRxiv preprint 

https://github.com/JulietteArchambeau/HeightPinpinClonapin
https://github.com/JulietteArchambeau/HeightPinpinClonapin
https://github.com/JulietteArchambeau/HeightPinpinClonapin
https://doi.org/10.1101/2020.11.13.382515


(i.e. northern Africa, south-eastern Spain and Corsican gene pools; see section 6.3 of the Supple-317

mentary Information for details). �erefore, the test datasets of the P2 and P3 partitions represent318

fully independent sets of provenances.319

To evaluate the model goodness-of-�t, we calculated the in-sample (in the training dataset) pro-320

portion of the variance explained by each model m in each common garden s, conditional on the321

age e�ect, such as: R2
ms|age = (Vpredms

−Vage2s)/(Vys−Vage2s), where Vpredms
is the variance of the322

modeled predictive means from model m in site s, Vys the phenotypic variance in the site s and323

Vage2s the variance explained by the age e�ect in the model M2 in site s. We used Vage2 of model324

M2 and not of model m because the variance predicted by the di�erent �xed e�ects of some of325

the models (M7 to M12) could not be properly separated. Moreover, as M2 is the model with the326

highest predictive ability among the models relying only on the common garden design (Table327

S4), it constitutes an adequate baseline for model comparison. In addition, for baseline models M1328

and M2, we also calculated the in-sample proportion of the variance explained by the di�erent329

model components (i.e. genetic, environment and genetic× environment) conditional on the age330

e�ect, e.g. for the genetic component in M1: R2
1,gen|age = (Vpred1,gen − Vage1)/(Vy − Vage1) where331

Vpred1,gen is the variance explained by the genetic component (including the provenance and clone332

e�ects) in M1, Vy the phenotypic variance and Vage1 the variance explained by the age e�ect in333

M1.334

Finally, to evaluate the model predictive ability, we calculated the out-of-sample (in the test335

dataset) proportion of the variance predicted by each model m in each common garden s condi-336

tional on the age e�ect, that we called prediction R2
ms|age. Details about calculating prediction337

R2
ms|age and some supplementary indexes used for model comparison are presented in section338

5 of the Supplementary Information.339

3 Results340

3.1 Underlying drivers of height-growth variation341

In this part, we disentangled the di�erent components of height-growth variation and provided342

insights on their underlying drivers. Baseline and explanatory models (i.e. models M1 to M6)343

explained∼81.5% of height-growth variation, including 57% due to the age e�ect (Table S4). Based344

on M1, ∼47% (45-48% CIs) of the variation that was not explained by the age e�ect (i.e. deviating345

from the growth trajectory) came from the plastic component,∼11% (11-12% CIs) from the genetic346

component and∼43% (42-44% CIs) remained unexplained (�g. 2A & Table S5). InM2 (same model347

as M1 but adding the provenance-by-site interaction), the proportion of variance explained by348

the provenance-by-site interaction was not di�erent from zero (Table S5). �erefore, we mostly349

interpret parameter estimates of M1 (�g. 3), whose results are very similar to M2, but with smaller350
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credible intervals (Tables S15 & S18). �e plastic component was largely driven by the variance351

among sites (σ2
S), with very li�le contribution of the variance among blocks (σ2

B ; S15). Trees grew352

the least in Madrid and the most in Asturias (�g. 3 & Table S16). �e genetic component was353

equally a�ributed to the variance among provenances (σ2
P ) and genotypes (σ2

G; Table S15), with354

the average height of the provenances appearing to be in�uenced by their belonging to particular355

gene pools (�g. 3; and more details in section 6.1.1 of the Supplementary Information).356

Based on M3, the plastic component of height-growth came only marginally from the variance357

associated with climate similarity among sites, which was more than �ve times lower than the358

variance associated with site intercepts (�g. 2B & Table S19). However, M3 may be unable to359

separate the e�ect of these two components (see section 6.1.2 in the Supplementary Information).360

Indeed, when estimating the e�ect of the climate similarity among sites in a model that did not361

include varying intercepts for the sites, we found that height growth was positively associated362

with the climatic conditions in Bordeaux and Asturias, and negatively with those in Madrid and363

Cáceres, the two Mediterranean sites, and to a lesser extent also in Portugal (Table S24).364

Based on M6, the genetic component of height growth was mostly determined by the climatic365

similarity among provenances and to a lesser extent by the gene pool assignment (�g. 2C &366

Table S29). However, the e�ects of the gene pools and climatic similarity among provenances367

were partially confounded, so that the association between height growth and the gene pools368

was stronger when the climatic similarity among provenances was not included in the models369

(i.e. model M4; Table S25). Populations from climatic regions neighboring the Atlantic Ocean, and370

mainly belonging to the French and Iberian Atlantic gene pools, were generally the tallest (e.g.371

CAD, SIE, PUE, LAM and CAS in northwestern Spain; all provenances along the French Atlantic372

coast; Figs. 2 & 3). Interestingly, the Leiria (LEI) provenance, which has a strong Iberian Atlantic373

component (Table S3) and had the highest climate intercept estimate (similar to that of the French374

Atlantic provenances; �g. 2C), was not among the tallest provenances (�g. 3), probably due to375

its mixed ancestry with the central Spain gene pool (Table S3). Also, the Corsican provenances376

showed contrasted climate intercepts (�g. 2), with a positive in�uence on height growth for Pinia377

(PIA) but not for Pineta (PIE), located under more Mediterranean conditions, which could explain378

their large di�erences in height growth (�g. 3). Finally, the four provenances from south-eastern379

Spain and northern Africa gene pools, under harsh Mediterranean climates, showed all negative380

climate intercepts (�g. 2). Noticeably, the total genetic variance of the Iberian and French Atlantic381

gene pools were likely to be lower than that of the Corsican and south-eastern Spain gene pools,382

and to a lesser extent the central Spain gene pool, thus resulting in gene pool-speci�c heritabilities383

(model M5; Table S28 and �g. S13A).384
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Figure 2. Understanding the genetic and plastic bases of height-growth variation and their potential
underlying drivers. A) shows the variance partitioning conditional on age from model M1 in the P1
partition. B) displays the partitioning of the plastic (i.e. environment) component in model M3 among the
intercepts of the sites (common gardens) (Ss) and the intercepts associated with the climatic similarity
among sites during the year preceding the measurements (csis). C) displays the partitioning of the
genetic component in model M6 among the intercepts of the provenances (Pp), the intercepts associated
with the climatic similarity among provenances (cpp) and the intercepts of the the gene pools (gj). �e
median and 0.95 credible intervals shown in B) and C) were obtained by ��ing the models M3 and M6 on
the P1 partition. Provenance names can be found in Table S2.
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Figure 3. Posterior distributions of the site and provenance intercepts (Ss and Pp) in model M1 on a map
representation. Provenances are colored according to the main gene pool they belong to. �e exact
values of the median, standard deviation and 0.95 credible interval of the posterior distributions of the
site and provenance intercepts are shown in Tables S16 and S17, respectively. �e top right picture shows
the height di�erence in 2019 between one tree from Coca in central Spain (COC) and another from
Puerto de Vega in the Iberian Atlantic region (PUE) growing next to each other in the Bordeaux common
garden. �e bo�om picture shows the height di�erence between the trees growing in Madrid and
Asturias, under highly contrasted environments, three years a�er plantation (2013). Provenance names
can be found in Table S2.

3.2 Improved prediction of new observations and provenances by com-385

bining climatic and genomic data386

In this part, we compared the baseline model M2 (relying exclusively on the common garden387

design) to the predictive models that either combine genomic and climatic drivers of height-388

growth variation (i.e. modelsM7 andM8) or include each driver separately (i.e. modelsM9 toM12).389

Models combining genomic and climatic data generally explained in-sample variation almost as390

well as M2, and sometimes even be�er; e.g. model M8 (which includes regional PEAs, rPEAs) in391

the Mediterranean sites (Madrid and Cáceres) (�g. S10). Models including each driver of height-392

growth variation separately had a lower goodness-of-�t (for all common gardens) than both M2393

and the models combining the genomic and climatic data, except for M12 (the model including394

only rPEAs), which explained in-sample variation almost as well as M2 and even be�er than M7395
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in Madrid (�g. S10).396

Model di�erences in their predictive ability on new observations (observations not used to �t the397

models; test dataset of the P1 partition) showed similar pa�erns than for the goodness-of-�t (Table398

4), which was expected as the new observations were sampled among the same provenances and399

genotypes. However, importantly, models combining genomic and climatic data provided much400

be�er predictions of height-growth on new provenances (provenances not used to �t the models;401

test datasets of the P2 and P3 partitions) than did M2, with M8 having a be�er predictive ability402

than M7 in the Mediterranean sites in the P2 partition and in the Atlantic sites in the P3 partition403

(Table 4). Models including each driver of height-growth variation separately had also a higher404

predictive ability on new provenances than M2, albeit lower than models combining genomic and405

climatic data, except model M12 that showed a higher predictive ability than M7 in the Mediter-406

ranean sites in the P2 partition (Table 4). In model M12, one standard deviation increase in rPEAs407

was associated, on average, with 19.0% increase in height in Madrid, 12.7% in Cáceres, 13.0% in408

Portugal, 10.4% in Asturias and 9.6% in Bordeaux (section 6.4 of the Supplementary Information).409

More details on model comparisons are given in section 5 of the Supplementary Information.410

4 Discussion411

We combined genomic, climatic and phenotypic data from �ve common gardens and 34 prove-412

nances of maritime pine (over 30,000 observations) to predict range-wide variation in height413

growth, a key adaptive trait in forest trees. �e plastic component explained the largest part of414

the deviation from the mean height-growth trajectory (∼47%), probably due to multiple (con-415

founded) environmental factors, including climate. �e genetic component explained ∼11% of416

the deviation from the mean height-growth trajectory and was mainly associated with the prove-417

nance climate-of-origin (a proxy of adaptation to climate), whose e�ect was partially confounded418

with the proportion belonging to distinct gene pools (a proxy for population demographic his-419

tory and genetic dri�, probably re�ecting also the di�erent selective histories of the gene pools).420

Importantly, we showed that models combining climatic drivers of adaptation, gene pool as-421

signment and counts of height-associated positive-e�ect alleles (PEAs) captured well the genetic422

component underlying height-growth variation. �ey also be�er predicted height growth of new423

provenances than models relying exclusively on the common garden design or models includ-424

ing separately climatic and genomic information (e.g. the widely used climate-based population425

response functions). Interestingly, PEAs that show a regional association with height growth426

(rPEAs) had a higher predictive ability than PEAs identi�ed globally across the species range427

(gPEAs). �ese results pave the way towards integrating genomics into large-scale predictive428

models of quantitative trait variation.429
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Figure 4. Model predictive ability on new observations (P1 partition) or new provenances (P2 and P3
partitions) based on the out-of-sample proportion of predicted variance conditional on the age e�ect
(predictionR2

ms|age) in the test datasets (data not used to �t the models). In the P1 partition, the training
dataset was obtained by randomly sampling 75% of the observations and the test dataset contains the
remaining 25% observations. In the P2 partition, the training dataset was obtained by randomly sampling
28 provenances and the test dataset contains the remaining 6 provenances. �e P3 partition corresponds
to a non-random split between a training dataset of 28 provenances and a test dataset containing 6
provenances with at least one provenance from each under-represented gene pool. �e exact values of
the predictionR2

ms|age estimates and their associated credible intervals can be found in Tables S4 (P1
partition), S9 (P2 partition) and S12 (P3 partition).
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4.1 Predominant role of height-growth plasticity430

Plants are known for their remarkable phenotypic plasticity to changing environments (Bradshaw431

1965). In long-lived forest trees, the plastic component of quantitative trait variation estimated432

based on the common garden design is generally higher than the genetic component (Franks et433

al. 2014, Benito Garzón et al. 2019), e.g. in maritime pine (Chambel et al. 2007, Corcuera et al.434

2010, de la Mata et al. 2012, Vizcaı́no-Palomar et al. 2020). �is plastic component is also generally435

associated with the climatic conditions experienced by the trees (Franks et al. 2014, Benito Garzón436

et al. 2019), allowing them to overcome changing climate up to a certain threshold (Matesanz et437

al. 2010, Nicotra et al. 2010, Valladares et al. 2014a). In our study, the plastic component of height438

growth was largely higher than the genetic component (�g. 2) and, although climate plays a role,439

was likely to be driven by multiple and interacting drivers including the biotic environment, soil440

quality, and other factors not considered in our study.441

Plants also present an important genetic variation in plasticity (i.e. the genotype-by-environment442

interaction, G×E; Des Marais et al. 2013, Sork 2018), o�en approximated by the family or provenance-443

by-site interaction in forest tree common gardens, as is the case in our study. G×E is particularly444

prevalent for growth traits in trees (Li et al. 2017), as already shown in maritime pine (Alı́a et al.445

1997, Corcuera et al. 2010, Correia et al. 2010, de la Mata et al. 2012; but see Chambel et al. (2007)446

where no provenance-speci�c responses were observed under two di�erent watering regimes).447

In our study, provenance-by-site interaction was only weakly associated with height growth and448

the proportion of variance it explained was not di�erent from zero (model M2; Table S5). Pre-449

vious work in the context of tree breeding argued that G×E may hinder model transferability450

across sites and populations (Resende Jr et al. 2012, Resende et al. 2012). In maritime pine, our451

results suggest that large-scale predictions of height-growth variation will be only marginally452

impacted by not accounting for provenance-by-environment interaction. However, further work453

is necessary to assess the importance of the genetic variation of plasticity at the genotype level.454

4.2 Potential drivers underlying height-growth genetic component455

Our study shows that the height-growth genetic component in maritime pine is mostly associ-456

ated with adaptation to climate, whose e�ect is partially confounded with the e�ect of gene pool457

assignment, re�ecting both adaptive (di�erent selective histories) and neutral processes (popu-458

lation demographic history and genetic dri�) (�g. 2; see also Jaramillo-Correa et al. 2015). For459

example, the higher growth of most provenances from the French Atlantic gene pool (known460

for their high growth under a wide range of conditions, including Mediterranean sites in our461

study; see also Alı́a et al. 1997, Corcuera et al. 2010, de la Mata et al. 2012) was both associated462

with the provenance climate-of-origin and the gene pool assignment. As another example, in463

the northern Africa gene pool, the Madisouka (MAD) provenance was taller than the Tamrabta464
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(TAM) provenance, which could be both explained by its noticeable ancestry proportion (23.3%)465

from the south-eastern Spanish gene pool (Jaramillo-Correa et al. 2015) or its adaptation to lower466

elevation (300 m lower than TAM). As a last example, the Leiria (LEI) provenance grew well in As-467

turias and Bordeaux as was the case for French Atlantic provenances (that share similar climates)468

but unlike them, it did not maintain growth in drier and warmer sites, probably due to a di�erent469

genetic background (this provenance has a strong central Spain gene pool component; Table S3).470

Nevertheless, in contrast to the three examples above, for some provenances, the e�ects of the471

gene pool assignment and adaptation to climate on height growth could be clearly separated.472

�is was the case, for example, for the Corsican provenances: the higher growth of Pinia (PIA)473

than Pineta (PIE) can only be explained by adaptation to di�erent environmental conditions (and474

in particular climate), as both belong to the same gene pool. Indeed PIA is at the sea level un-475

der a climate similar to that of provenances from Central and south-eastern Spain whereas PIE476

is located at an altitude of 750 m a.s.l. in the mountains under a climate similar to that of the477

Atlantic provenances (�g. S9). �ese di�erent adaptations within a same gene pool calls for a478

more targeted investigation of the Corsican gene pool. More generally, a QST − FST analysis479

supported adaptive di�erentiation of height growth in maritime pine (see details in section 7 of480

the Supplementary Information).481

�e entanglement of the e�ect of climate adaptation and gene pool assignment to explain the ge-482

netic component of height-growth variation may partly stem from the distinct selective histories483

experienced in di�erent parts of maritime pine range, despite gene pools being identi�ed using484

genetic markers considered neutral (Jaramillo-Correa et al. 2015). �is is supported by the esti-485

mation of gene pool-speci�c heritabilities in our study (model M5): the Corsican gene pool, and486

to a lesser extent the south-eastern Spain gene pool, have higher heritabilities than the French487

and Iberian Atlantic gene pools (Fig. S13; and see section 6.1.3 for a potential explanation of this488

pa�ern).489

Overall, maritime pine proved to be a particularly suitable model species to study the joint in-490

�uence of genetic neutral (population demographic history, genetic dri�) and adaptive (climate491

adaptation) processes on quantitative traits. Further work on provenances that have di�erent492

demographic histories but are exposed to similar climates (e.g. the LEI provenance and prove-493

nances from the Atlantic gene pools) would be relevant for understanding how a given genetic494

background guides population adaptation. Conversely, targeting provenances that have a similar495

demographic history but are found in highly contrasted environments (e.g. the Corsican prove-496

nances) would be valuable to identify signatures of adaptation while avoiding common issues497

due to confounding population structure (Berg et al. 2019, Sella and N. H. Barton 2019, Sohail498

et al. 2019). Likewise, investigating trait genetic architecture will also help be�er understand499

how adaptive and neutral processes have shaped the genotype-phenotype map and how this will500

in�uence future responses to selection (e.g. Kardos and Luikart 2021; see de Miguel et al. 2020501

for maritime pine). Finally, it would also be critical to consider drivers of adaptation other than502

climate, such as resistance to pathogens or other biotic-related traits.503
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4.3 Towards integrating genomics into population response functions504

Anticipating how provenances will grow in new environments is key to guide forest conserva-505

tion strategies and population translocations to compensate for rapid climate change (Aitken and506

Whitlock 2013). To date, population response functions based on the climate in the provenance507

location have been the most widely used method for anticipating trait values when transplanting508

provenances in new environments (Rehfeldt et al. 1999, 2003, O’Neill et al. 2008, Wang et al. 2010,509

Pedlar and McKenney 2017, Rehfeldt et al. 2018, Fréjaville et al. 2020). Genome-informed pre-510

dictive modeling of key adaptive traits is highly promising as it may provide a mean to further511

integrate adaptive or neutral genetic variation in the predictions, and to consider intraspeci�c512

variability at a �ner scale than current models, thus gaining in prediction accuracy (Holliday et513

al. 2017). In valley oak, Browne et al. (2019) used genomic estimated breeding values (GEBVs; sum514

of the marker predicted e�ects, also known as polygenic scores) to identify genotypes that will515

grow faster under future climates. In lodgepole pine, Mahony et al. (2020) showed that phenotype-516

associated positive-e�ect alleles (PEAs, as used in our study) can predict phenotypic traits (e.g.517

cold injury) as well as climatic or geographical variables. In our study, we investigated whether518

including genomic information related to past demographic and selective processes resulting in519

distinct gene pools and counts of trait-associated alleles could improve range-wide height-growth520

predictions in maritime pine. Models combining climatic conditions in the provenance location,521

gene pool assignment, and PEAs captured most of the genetic component of height-growth vari-522

ation (see �g. S10) and be�er predicted height growth of new provenances, compared to models523

relying exclusively on the common garden design or models including separately climatic or ge-524

nomic information (see �g. 4). �is suggests that range-wide trait prediction would bene�t from525

jointly considering di�erent sources of information (i.e. climatic and genomic), even though526

they may have overlapping e�ects (e.g. confounded e�ects of provenance climate-of-origin and527

gene pool assignment), as it may help to embrace the complexity and multidimensionality of the528

genetic component underlying quantitative traits. Noticeably, regional PEAs were generally bet-529

ter predictors of height growth in new provenances than gene pool assignment or provenance530

climate-of-origin as, when they were included alone in the models, they made be�er predictions531

in the driest common gardens (Madrid, Cáceres and Portugal) and similar ones to models com-532

bining multiple drivers of height growth variation in all common gardens except Bordeaux (P2533

partition in �g. 4). Although this highlights the major role that trait-associated alleles identi�ed534

using GWAS may play in predictive modeling, predicting traits of new provenances depends also535

on the number of provenances used to �t the models and the strength of the genetic relation-536

ship among them (Resende et al. 2012, Jarquı́n et al. 2014, Moghaddar et al. 2014, Hidalgo et al.537

2016). �is was re�ected in our study by be�er predictive ability on new provenances in the P2538

partition (random) compared to the P3 partition (containing provenances from underrepresented539

gene pools) for models including climatic and genomic information separately but not for mod-540

els considering both jointly (�g. 4). �us combining multiple sources of information may also be541

particularly relevant for predicting traits in marginal or di�cult-to-access populations, as they542
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normally belong to underrepresented geographical areas/gene pools in ecological and genetic543

studies.544

�e high predictive ability of PEAs, both alone and combined with climatic and gene pool infor-545

mation, was somehow unexpected given the sparse genomic sampling in our study: 5,165 SNPs546

to cover the 28 Gbp maritime pine genome (Zonneveld 2012). Indeed, conifers have particularly547

huge genomes, generally ranging from 18 to 35 Gbp (Mackay et al. 2012) and thus rendering the548

current cost of whole-genome resequencing prohibitive (Holliday et al. 2017). Targeted geno-549

typing approaches, such as the one used in the present study, select candidate genes based on550

previous population and functional studies, thus allowing to include potential targets of selec-551

tion and climate adaptation, but probably inducing an ascertainment bias (Jaramillo-Correa et al.552

2015). However, as height is a particularly polygenic trait (degree of polygenicity estimated at553

∼7% in de Miguel et al. 2020), we were able to identify a considerable number of PEAs despite554

the weak genome coverage of our study. Further genomic sampling would be highly valuable555

to capture the polygenic architecture of height more broadly, turning PEAs into much be�er556

predictors than the provenance climate-of-origin or the gene pool assignment, and ultimately557

making climatic data redundant, at least for main range populations (see above for marginal pop-558

ulations). �is would also allow to characterize the genetic variation within provenances more559

precisely, thereby increasing the estimation accuracy and reducing the residual variance. Similar560

to Mahony et al. (2020) and MacLachlan et al. (2021) who selected the positive-e�ect alleles as561

the 1% of SNPs that showed the strongest association with phenotypes (estimated via a GWAS562

performed on 18,525 SNPs), we used PEA counts instead of the more commonly used polygenic563

scores (Pritchard et al. 2010, Browne et al. 2019, Fuller et al. 2020). Unlike polygenic scores, PEAs564

do not account for allele e�ect sizes, thus minimizing the circularity of the analysis (i.e. e�ect565

sizes that are estimated based on the same dataset as the one used for the models, only serve566

for PEAs identi�cation) and potentially enhancing the prediction accuracy across genetic groups567

compared to polygenic scores. Indeed, low observed transferability of polygenic scores across568

genetic groups (Martin et al. 2017, N. Barton et al. 2019, Martin et al. 2019) may stem from vary-569

ing e�ect sizes of ”peripheral” alleles (i.e. alleles indirectly a�ecting the phenotype), as suggested570

in Mathieson 2021).571

Although combining climatic and genomic information allowed us to capture most of the genetic572

component of height-growth variation (�g. S10), the residual variance remained high in our573

study. As already mentioned, this may be partly related to the models’ di�culty in accounting574

for genetic variation within provenances, which might be improved by denser genomic sampling.575

However, this unexplained variance may also originate from developmental stochasticity, which576

can play an important role in explaining di�erences between individuals with the same genotype577

(Vogt 2015, Ballouz et al. 2019). Height growth may also be in�uenced by the correlative e�ects of578

other traits. For example, Stern et al. (2020) recently showed that variation in some human traits579

(hair color and educational a�ainment), previously thought to be under selection, can instead580

be explained by indirect selection via a correlated response to other traits. �erefore, multi-trait581

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2020.11.13.382515doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.13.382515


models may be the next necessary step to improve our understanding and predictive ability of582

quantitative trait variation at large geographical scales (e.g. Csilléry et al. 2020).583

A last noticeable results was that rPEAs (positive-e�ect alleles identi�ed in speci�c geograph-584

ical regions, i.e. particular environments) had generally a higher predictive ability than gPEAs585

(positive-e�ect alleles identi�ed range-wide) (Figure 4). Interestingly, only a small proportion of586

rPEAs were shared among geographical regions in our study (20% shared between the Iberian and587

French Atlantic regions, 12% between the French Atlantic and Mediterranean regions, and 24%588

between the Iberian Atlantic and Mediterranean regions; Figure S2), although we cannot exclude589

that the proportion of shared rPEAs among regions is a function of the sample size (see details590

in the section 2.2 of the Supplementary Information). Moreover, those that were shared among591

di�erent regions showed consistently similar e�ects across regions (e.g. positive e�ects in two592

or more regions rather than antagonist e�ects). �is supports the predominance of conditional593

neutrality, i.e. alleles that are advantageous in some environments and neutral in others, over594

antagonistic pleiotropy, i.e. alleles that are advantageous in some environments and disadvanta-595

geous in others (Ti�n and Ross-Ibarra 2014). Such pa�ern has already been reported in plants596

(Prunier et al. 2012, Anderson et al. 2013). Our results show that, despite a high stability in the597

level of polygenicity for height between the Atlantic and Mediterranean regions (de Miguel et al.598

2020), height-growth variation in Mediterranean sites is unlikely to be a�ected by the same loci599

as in the other regions, probably as a result of genetic divergence in separated southern refugia600

during the last glaciation. Overall, identifying positive-e�ect alleles for di�erent geographical601

regions separately has the potential to greatly improve the predictive ability of the models, but at602

the cost of reducing GWAS power (due to lower sample size than in global, wide-range analyses).603

Finally, caution has to be taken when generalizing our results to older trees as the drivers of604

height growth in young trees may di�er from that of adult trees. For example, G×E on tree605

height can be age-dependant (Gwaze et al. 2001, Zas et al. 2003, Rehfeldt et al. 2018) and the plas-606

tic component may be higher in younger trees, especially in maritime pine (Vizcaı́no-Palomar607

et al. 2020). Nevertheless, a recent measurement in the Bordeaux common garden (2018) showed608

a high correlation between young saplings and 10-year old trees for height (Pearson’s correla-609

tion coe�cient of 0.893 based on height BLUPs; see de Miguel et al. 2020 for details on BLUP610

estimation). Moreover, our study remains indicative of how trees respond to varying environ-611

mental conditions during establishment and early-growing stages, a critical phase where most612

mortality (i.e. selection) is expected to take place (Postma and Ågren 2016). In addition to onto-613

genic e�ects, high mortality in the Mediterranean common gardens (Cáceres and Madrid), a�er614

a marked summer drought, may have biased estimates of some parameters of interest. Indeed,615

if this environmental �ltering was not independent of tree height, it could have resulted in an616

underestimation of the genetic variance. Nonetheless, height distributions in Cáceres and Madrid617

were only slightly right-skewed, suggesting uniform selection across height classes (�g. S21), and618

thus no bias due to high mortality in these common gardens.619
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5 Conclusion620

�e present study connects climate-based population response functions that have been exten-621

sively used in predictive models for forest trees (Rehfeldt et al. 1999, 2003, Wang et al. 2010,622

Leites et al. 2012a) with recent genomic approaches to investigate the potential drivers behind623

the genetic and plastic components of height-growth variation and predict how provenances624

will grow when transplanted into new climates. �e integration of genomic data into range-wide625

predictive models is in its infancy and still lacks a well-established framework, especially for non-626

model species such as forest trees. We showed that combining climatic and genomic information627

(i.e. provenance climate-of-origin, gene pool assignment and trait-associated positive-e�ect al-628

lele counts) can improve model predictions for a highly polygenic adaptive trait such as height629

growth, despite sparse genomic sampling. Further genomic sampling may help to improve the630

accuracy of the estimates, notably through improved characterization of within-provenance ge-631

netic variation. Moreover, comparative studies between maritime pine and more continuously632

distributed species (e.g. Scots pine; Alberto et al. 2013) and/or living under stronger climatic633

limitations, would be highly valuable to determine whether our �ndings can be generalized to634

species with contrasted population demographic and selective history. Finally, our study focuses635

speci�cally on the height-growth genetic component of standing populations, but considering636

evolutionary processes (e.g. genetic dri� in small populations, extreme selection events, etc.) into637

the predictions would be necessary to anticipate the response of future forest tree generations638

to changing climatic conditions and thus provide a much-needed longer-term vision (Waldvogel639

et al. 2020)640
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Lefèvre, F., Lenormand, T., Yeaman, S., Whe�en, R., and Savolainen, O. (2013). Potential for680

evolutionary responses to climate change – evidence from tree populations. Global Change681

Biology, 19, 1645– 1661. h�ps://doi.org/10.1111/gcb.12181.682

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2020.11.13.382515doi: bioRxiv preprint 

http://dx.doi.org/10.5061/dryad.8d6k1
http://dx.doi.org/10.5061/dryad.8d6k1
http://dx.doi.org/10.5061/dryad.8d6k1
http://www.genfored.es
https://github.com/JulietteArchambeau/HeightPinpinClonapin
https://github.com/JulietteArchambeau/HeightPinpinClonapin
https://github.com/JulietteArchambeau/HeightPinpinClonapin
https://doi.org/10.1111/eva.12293
https://doi.org/10.1146/annurev-ecolsys-110512-135747
https://doi.org/10.1111/j.1752-4571.2007.00013.x
https://doi.org/10.1111/gcb.12181
https://doi.org/10.1101/2020.11.13.382515


Alı́a, R., Moro, J., and Denis, J. B. (1997). Performance of Pinus pinaster provenances in Spain:683

interpretation of the genotype by environment interaction. Canadian Journal of Forest684

Research, 27, 1548– 1559.685

Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colau�i, R. I., and Mitchell-Olds, T. (2013). Genetic686

trade-o�s and conditional neutrality contribute to local adaptation. Molecular Ecology, 22,687

699– 708. h�ps://doi.org/10.1111/j.1365-294X.2012.05522.x.688

Ballouz, S., Pena, M. T., Knight, F. M., Adams, L. B., and Gillis, J. A. (2019). �e transcriptional689

legacy of developmental stochasticity. bioRxiv. h�ps://doi.org/10.1101/2019.12.11.873265.690
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Bucci, G., González-Martı́nez, S. C., Provost, G. L., Plomion, C., Ribeiro, M. M., Sebastiani, F.,712

Alı́a, R., and Vendramin, G. G. (2007). Range-wide phylogeography and gene zones in Pinus713

pinaster Ait. revealed by chloroplast microsatellite markers. Molecular Ecology, 16, 2137–714

2153. h�ps://doi.org/10.1111/j.1365-294X.2007.03275.x.715

Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of716

Statistical So�ware, 80, 1– 28. h�ps://doi.org/10.18637/jss.v080.i01.717

Chambel, M. R., Climent, J., and Alı́a, R. (2007). Divergence among species and populations of718

Mediterranean pines in biomass allocation of seedlings grown under two watering regimes.719

Annals of Forest Science, 64, 87– 97. h�ps://doi.org/10.1051/forest:2006092.720

Clark, J. S. (2005). Why environmental scientists are becoming Bayesians. Ecology Le�ers, 8, 2–721

14. h�ps://doi.org/10.1111/j.1461-0248.2004.00702.x.722

Corcuera, L., Gil-Pelegrin, E., and Notivol, E. (2010). Phenotypic plasticity in Pinus pinaster723

δ13C: environment modulates genetic variation. Annals of Forest Science, 67, 812– 812.724

h�ps://doi.org/10.1051/forest/2010048.725

Correia, I., Alı́a, R., Yan, W., David, T., Aguiar, A., and Almeida, M. H. (2010). Genotype ×726

Environment interactions in Pinus pinaster at age 10 in a multienvironment trial in727

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2020.11.13.382515doi: bioRxiv preprint 

https://doi.org/10.1111/j.1365-294X.2012.05522.x
https://doi.org/10.1101/2019.12.11.873265
https://doi.org/10.1038/s41576-020-0250-z
https://doi.org/10.7554/eLife.45380
https://doi.org/10.1111/nph.15716
https://doi.org/10.7554/eLife.39725
https://doi.org/10.1038/hdy.2015.78
https://doi.org/10.1073/pnas.1908771116
https://doi.org/10.1111/j.1365-294X.2007.03275.x
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1051/forest:2006092
https://doi.org/10.1111/j.1461-0248.2004.00702.x
https://doi.org/10.1051/forest/2010048
https://doi.org/10.1101/2020.11.13.382515


Portugal: a maximum likelihood approach. Annals of Forest Science, 67, 612– 612.728

h�ps://doi.org/10.1051/forest/2010025.729
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Postma, F. M. and Ågren, J. (2016). Early life stages contribute strongly to local adaptation in905

Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 113, 7590– 7595.906

h�ps://doi.org/10.1073/pnas.1606303113.907

Pritchard, J. K., Pickrell, J. K., and Coop, G. (2010). �e Genetics of Human Adaptation: Hard908

Sweeps, So� Sweeps, and Polygenic Adaptation. Current Biology, 20, R208– R215.909

h�ps://doi.org/10.1016/j.cub.2009.11.055.910

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of Population Structure Using911

Multilocus Genotype Data. Genetics, 155, 945– 959.912

Prunier, J., Gérardi, S., Laroche, J., Beaulieu, J., and Bousquet, J. (2012). Parallel and913

lineage-speci�c molecular adaptation to climate in boreal black spruce. Molecular Ecology,914

21, 4270– 4286. h�ps://doi.org/10.1111/j.1365-294X.2012.05691.x.915

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria:916

R Foundation for Statistical Computing.917

Razgour, O., Forester, B., Taggart, J. B., Bekaert, M., Juste, J., Ibáñez, C., Puechmaille, S. J.,918

Novella-Fernandez, R., Alberdi, A., and Manel, S. (2019). Considering adaptive genetic919

variation in climate change vulnerability assessment reduces species range loss projections.920

Proceedings of the National Academy of Sciences, 116, 10418– 10423.921

h�ps://doi.org/10.1073/pnas.1820663116.922

Rehfeldt, G. E., Leites, L. P., Joyce, D. G., and Weiski�el, A. R. (2018). Role of population genetics923

in guiding ecological responses to climate. Global Change Biology, 24, 858– 868.924

h�ps://doi.org/10.1111/gcb.13883.925

Rehfeldt, G. E., Tchebakova, N. M., Milyutin, L. I., Parfenova, E. I., Wyko�, W. R., and926

Kouzmina, N. A. (2003). Assessing population responses to climate in Pinus sylvestris and927

Larix spp. of Eurasia with climate-transfer models. Eurasian Journal of Forest Research -928

Hokkaido University (Japan).929

Rehfeldt, G. E., Ying, C. C., Spi�lehouse, D. L., and Hamilton, D. A. (1999). Genetic Responses to930

Climate in Pinus Contorta: Niche Breadth, Climate Change, and Reforestation. Ecological931

Monographs, 69, 375– 407.932

h�ps://doi.org/10.1890/0012-9615(1999)069[0375:GRTCIP]2.0.CO;2.933
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