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University, Linköping, Sweden
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Abstract

Lipolysis and the release of fatty acids to supply energy fuel to other organs, such as between
meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intra-
cellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited
by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms be-
hind this elevation are not fully known, and to increase the knowledge a link between the systemic
circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in
vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here,
we use mathematical modelling to provide such a link. We examine mechanisms of insulin action
by combining in vivo and in vitro data into an integrated mathematical model that can explain all
data. Furthermore, the model can describe independent data not used for training the model. We
show the usefulness of the model by simulating new and more challenging experimental setups in
silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference
in such simulations between individuals with and without type 2 diabetes. Our work provides a
new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and
type 2 diabetic conditions.
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Introduction

Lipolysis, the breakdown of triacylglycerol to glycerol and fatty acids, and the subsequent release of
fatty acids and glycerol as energy fuel for other organs, is one of the main functions of the adipose
tissue. Because of the critical role of fatty acids as a fuel for the body, this function is also central to
energy homeostasis. Interest in lipolysis has gained more traction as the prevalence of obesity, type
2 diabetes and its sequelae have increased dramatically over the last decades. Lipolysis is stimulated
in the body mainly by the catecholamine noradrenaline, which is released locally in the adipose tis-
sue, and adrenaline, which is elevated in the circulation. The two catecholamines signal through α2-
and β-adrenergic receptors. The beta-adrenergic receptors stimulate lipolysis by increasing intracel-
lular levels of cyclic AMP (cAMP). An increased concentration of cAMP results in the activation
of adipose triacylglycerol lipase (ATGL) and hormone sensitive lipase (HSL), the two rate-limiting
lipases responsible for lipolysis. Insulin counteracts the stimulation of lipolysis in adipocytes by
activation of phosphodiesterase 3B (PDE3B) that degrades cAMP and thereby reduces the rate of
lipolysis [1–3]. The two catecholamines can also inhibit lipolysis by inhibiting the activation of ad-
enylate cyclase through the α2-adrenergic receptor. Lipolysis is thus under tight positive and negative
hormonal control.

The signalling pathways involved in the control of lipolysis are highly complex, and numerous
crosstalks between different pathways and branches are emerging. Jönsson et al. [3] provide detailed
elucidation of the pathways controlling lipolysis in adipocytes from human subcutaneous adipose
tissue and show a new β-adrenergic – insulin crosstalk, where β-adrenergic signalling, in addition
to stimulation, also inhibits lipolysis via parts of the insulin signalling pathway. They also demon-
strate an additional stimulatory lipolytic action of insulin at high concentrations. Beyond the actions
mentioned in [3], Stich et al. also suggest an anti-lipolytic action of insulin involving α2-adrenergic
receptors [4]. This action was observed during microdialysis experiments, in situ in human subcu-
taneous adipose tissue, stimulated with adrenaline, isoproterenol, insulin and phentolamine. The high
degree of crosstalk and the different actions at different concentrations of the hormones controlling
lipolysis make it hard to successfully grapple with experimental data by mere reasoning. To under-
stand the role and relative importance of these different actions of insulin and the catecholamines in
the control of lipolysis, a next step therefore is to test the suggested mechanisms in a formalized way
using mathematical modelling.

We have earlier, in several steps, developed mathematical models for insulin signalling in human
adipocytes: first in isolation and later connected to models of systemic glucose control, and used the
models to unravel key alterations in type 2 diabetes [5–8]. These models, however, do not include
lipolysis and the control of lipolysis by insulin. We have also studied systemic whole-body effects
of fatty acids on glucose uptake and release, using modelling [9], but with no link to intracellular
lipolysis. There have also been other efforts to understand adipose tissue lipolysis in more detail, for
example experimentally in [10] and using mathematical modelling in [11, 12], but without detailed
intracellular components. In summary, none of the existing models have been developed to elucidate
the mechanisms of control of intracellular lipolysis.

Here, we develop a new minimal model for lipolysis and the release of fatty acids based on both in
vitro and in vivo experimental data from humans (Fig. 1). The model includes all three suggested
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insulin actions to control lipolysis: two direct actions, one anti-lipolytic via protein kinase B (PKB)
activation of phosphodiesterase 3B (PDE3B) (action-1), one lipolytic via inhibition of PDE3B (action
2), and a third indirect anti-lipolytic action via α-adrenergic receptors (action-3). Using mechanistic
modelling, we can evaluate the impact of these actions individually. The model accurately predicts
independent validation data and is therefore useful to simulate new in silico experiments, such as the
release of fatty acids in vivo, under both non-diabetic and type 2 diabetic conditions. The developed
model is, to the best of our knowledge, the first model for the hormonal control of lipolysis, and it
opens for new research and drug discovery related to type 2 diabetes.
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Figure 1: The system under study. Data from both in vitro and in vivo experiments of lipolysis control by
insulin, adrenergic stimulus, and phentolamine were combined to create a first mechanistic model of lipolysis,
under both non-diabetic and type 2 diabetic conditions. The model responds to stimuli with adrenaline (adr),
isoproterenol (iso), insulin (ins), and phentolamine (phe), initiating signalling cascades through key proteins
leading to release of fatty acids (FA) and glycerol. Adrenaline affects both β-adrenergic receptors (β-AR) and
α-adrenergic receptors (α-AR), while iso only affects β-AR. Ins gives rise to three different insulin actions:
action-1) an anti-lipolytic effect of insulin via protein kinase B (PKB) and phosphodiesterase 3B (PDE3B),
action-2) a positive lipolytic effect via PDE3B at high insulin concentrations, and action-3) an anti-lipolytic
effect of insulin via α-adrenergic receptors.

Results

To connect data from several sources in a common framework, we use mechanistic modelling. In
mechanistic modelling, available knowledge about a system is formulated as a model by constructing
a set of ordinary differential equations. The validity of such models can be tested by comparing model
simulations to experimental data. Typically, the values of the model parameters, e.g. kinetic rate
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constants and initial concentrations of substances, are unknown and need to be estimated by training
the model to experimental data. Other experimental data are then used for testing and validating the
predictive power of the model.

Experimental observations and model development
We developed a mechanistic model focused on the regulation of intracellular lipolysis and the release
of fatty acids and glycerol from the adipose tissue. The model is based on data from both in vitro
measurements on isolated adipocytes, and in vivo microdialysis measurements, in both cases from
non-diabetic individuals. More specifically, to develop the model we used experimental data from
two sources: i) isolated adipocytes treated in vitro with the β-adrenergic agonist isoproterenol to stim-
ulate lipolysis, and additionally with insulin to inhibit the isoproterenol-stimulated lipolysis, from [3],
and ii) microdialysis measurements of lipolysis in vivo, stimulated with adrenaline/isoproterenol and
inhibited by insulin and phentolamine, from [4]. We have taken three previously suggested mechan-
isms of crosstalk for the actions of insulin to explain the observed behaviour in the experimental data:
1) an anti-lipolytic effect of insulin via protein kinase B (PKB) and PDE3B [3, 13] – action-1, 2) a
positive lipolytic effect of insulin via PDE3B at high concentrations of insulin [3] – action-2, and 3) an
anti-lipolytic effect of insulin via α-adrenergic receptors [4] – action-3. We have also included other
known signalling steps in the control of lipolysis in adipocytes as indicated in Fig. 1 and detailed in
the Methods section. To avoid overfitting, the model was kept ”minimal” in the sense that we focused
on a few key proteins, and not every protein known to be involved in the control of lipolysis.

To further support the claim that the model is minimal, we performed a parameter identifiability ana-
lysis as detailed in the Methods - Uncertainty estimation section. Any rate-determining parameter
(kx) that appeared to be (downwards) non-identifiable was removed from the model, with the ex-
ception of the parameter determining the reesterification (k8c) since that parameter was necessary to
implement the effect of the diabetic condition later. The parameter uncertainty bounds for the final
minimal model is shown in Fig. 2 and Table S1. In total, 23 parameters were found to be identifiable.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2020.12.18.423229doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423229
http://creativecommons.org/licenses/by-nc-nd/4.0/


kd
rif

t
k4

a
k4

a2 k4
b

k3
b

k3
a

k3
a2 k5
a

k5
b

k1
a

k1
a2 k1
b

k2
a

k2
b

k6
a

k6
b

k7
a

k7
b

k8
a

k8
c

k8
b

ph
e_

ef
fe

ct
iso

sc
ale

m
in3

m
in1

m
in2

EC50
3

EC50
1

EC50
2 n3 n1 n2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
N

on
-r

ej
ec

te
d 

pa
ra

m
et

er
 v

al
ue

s,
re

la
tiv

e 
to

 th
e 

th
re

sh
ol

d 
fo

r 
no

n-
id

en
tif

ia
bi

lit
y

Figure 2: Parameter identifiability analysis. The minimal and maximal values of a parameter was found
using the optimization approach detailed in the Methods - Uncertainty estimation section. The parameter
values are expressed as relative values with respect to threshold for non-identifiability, where -1 represents
a parameter value at the lower threshold, and 1 represents a parameter at the upper threshold. x represent the
optimal parameter values and yellow dashed lines represent the bounds for a specific parameter when estimating
parameter values. Bounds, thresholds and parameter values are shown in Table S1 and Table S2.

Comparisons between model simulations and data
The model was trained to in vitro dose-response data for the phosphorylation of PKB at Ser-473 and
the release of glycerol and fatty acids in response to isoproterenol and insulin stimulation, as well as
in vivo microdialysis data of glycerol release in response to adrenaline and insulin (Fig. 3; solid lines
represent the model simulation with the best agreement to data, shaded areas represent the model
uncertainty, and experimental data are represented as mean values with error bars (SEM)). Here, the
model uncertainty refers to the most extreme simulations, while still requiring the model to pass a χ2-
test. The best model simulation clearly has a good agreement with the experimental data (Fig. 3). This
visual assessment is supported by a statistical χ2-test, where the cost of the model (v∗ for the optimal
cost, see Methods), given the optimal parameter values (θ ∗, see Table S2), is below the threshold of
rejection given by the χ2-test (v∗ = 130.8 < χ2(0.05,137) = 165.3) for a significance level of 0.05.
The optimal parameter values are shown in Table S2 and in the set of scripts used to reproduce the
results (see Data and model availability). The model uncertainty was estimated in the same way as
in [14], by maximizing/minimizing the simulation in all experimental data points while requiring the
cost to not exceed the χ2-threshold for a significance level of 0.05.
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Figure 3: Model agreement with experimental data. In all panels, solid lines represent the model simulation
with the best agreement to data, the shaded areas represent the model uncertainty, and experimental data points
are represented as mean values with error bars (SEM). (A-D), in vivo time-series experiments. (E-G),in vitro
dose-response experiments. In all subfigures, horizontal bars indicate where stimulations were given. In detail,
light/dark grey bars indicate stimulation with: 1/10 µM, respectively, adrenaline in (A,B), 0.1/1 µM isoproter-
enol in (C), and 1/10 µM adrenaline with 100 µM phentolamine. Black bars in (B-D) indicates stimulation
with 0.6 nM insulin. In (E-G) grey bars indicate stimulation with isoproterenol (10 nM). In the in vivo exper-
iments, experiments with adrenaline are shown in light blue (A-C), with isoproterenol in purple (B), and with
the combined stimulation with adrenaline and phentolamine in green (C). In the in vitro experiments (D-F),
increasing doses of insulin were given together with 10 nM isoproterenol in all points except one. The point
without isoproterenol got no stimulus and is shown to the right in the graphs. An alternative visualization is
available in Fig. S1 show the difference by overlaying the experiments.

Model testing: predicting intracellular phosphorylation of HSL
For a model to be of practical use, it should be able to perform reasonable predictions. To test this,
we used the model to predict the dose-response for phosphorylation of HSL (HSLp), an intracellular
state in the model (Fig. 1) that was not used when training the model to data. We estimated the
uncertainty of the model prediction in the same way as described in the comparison between model
and data, i.e. we maximized/minimized the prediction simulation, while requiring the agreement to
the estimation data to be acceptable (keeping the cost below the threshold, see Statistical analysis
in Methods). When compared to the experimental data (Fig. 4), the model prediction overlaps well.
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This is statistically supported using a χ2-test (v∗ = 10.7 < χ2(0.05,10) = 18.3).
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Figure 4: Prediction of intracellular extent of HSL phosphorylation. The shaded area represents the model
uncertainty, and the experimental data are represented as mean values with error bars (SEM). The horizontal
grey bar indicates where stimulation with isoproterenol (10 nM) have been given. Increasing doses of insulin
were given together with 10 nM isoproterenol in all points except one. The point without isoproterenol got no
stimulus and is shown to the right in the graph.

Investigating the different actions of insulin
With the validated model, we continued to investigate the impact of the three different insulin ac-
tions (Fig. 1, the three blue arrows) by excluding one action at a time. We excluded an action by
keeping the corresponding Insx variable (see Eq. (1)) at basal levels throughout the simulation (in-
stead of increasing with increased concentration of insulin). Firstly, by removing action-1 (the anti-
lipolytic effect of insulin via PKB-mediated activation of PDE3B), the model is unable to explain
the decline in glycerol release in response to increased levels of insulin in vitro: compare Fig. 5A
with Fig. 5C. Secondly, by removing action-2 (the positive lipolytic effect of insulin via inhibition
of PDE3B), the model is unable to explain the recovery in glycerol release at high insulin concentra-
tions in vitro: compare Fig. 5A with Fig. 5E. Finally, by removing action-3 (the anti-lipolytic effect
of insulin via α-adrenergic receptors), the model is unable to explain the decrease in glycerol release
in the second set of adrenergic stimuli in vivo: compare Fig. 5B with Fig. 5D. The removal of in-
sulin action-1 and -2 renders the model unable to agree with the experimental data sufficiently well
(v∗1 = 501.1 > χ2(0.05,137) = 165.3 and v∗2 = 181.8 > χ2(0.05,137) = 165.3 for the removal of
action-1 and -2 respectively). With the removal of action-3 the model can still quantitatively explain
the data sufficiently well (v∗3 = 126.4 > χ2(0.05,137) = 165.3), but not qualitatively. In the exper-
imental data, the release of glycerol is similar when comparing the first stimulation with adrenaline
to the stimulation with both adrenaline and phentolamine. In the second stimulation with both adren-
aline and insulin (and phentolamine), the release of glycerol is markedly lower when phentolamine
is present. This decrease in the release of glycerol is absent in simulations of the model without in-
sulin action-3.The best agreement between the model without insulin action-3 and experimental data
is shown in Fig. S2. Consequently, all three actions of insulin are required for the model to explain
the available experimental data.
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Figure 5: Effects of excluding either of the three insulin actions. In panels (A-E), data points with error
bars represent mean and SEM values and solid lines represent the model simulation with the best agreement
to data. (A, B), model simulations with all insulin actions present (same as Fig. 3C, F), see Fig. 1 for a
graphical representation of the three insulin actions. (C-E), the model simulations when either of the actions
are excluded. In all subfigures, horizontal bars indicate where stimulations were given. In (A, C, E) grey
bars indicate stimulation with isoproterenol (10 nM) and in (B, D) light/dark grey bars indicate stimulation
with low/high dose of adrenaline (1/10 µM) with or without phentolamine (100 µM), and black bars indicate
stimulation with insulin (0.6 nM). In the in vitro experiments (A, C, E), increasing doses of insulin were given
together with 10nM isoproterenol in all points except one. The point without isoproterenol got no stimulus and
is shown to the right in the graphs. In the in vivo experiments, experiments with adrenaline are shown in light
blue (B, D) and with the combined stimulation with adrenaline and phentolamine in green (D).

Estimating the extent of altered reesterification in type 2 diabetes
We then used the validated model to gain new biological insights. As demonstrated in [3, Fig. 14] at
the cellular level, essentially only the release of fatty acids, but not of glycerol and hence not lipolysis,
is affected in type 2 diabetes. The authors conclude that this is due to reduced reesterification, i.e. a
decreased reuse of fatty acids to re-form triacylglycerol, in the diabetic state. We therefore added
a single parameter representing a decrease in reesterification to the model to represent the type 2
diabetic condition (diab in Eq. (9)). In addition to extending the model, we also extended the set
of experimental data beyond the data used so far (see e.g Fig. 3). The set of experimental data
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now also includes the phosphorylation of HSL previously used for validation (Fig. 4), as well as
reesterification under type 2 diabetic conditions ( [3, Fig. 14F]). We then trained the extended model
with the extended set of experimental data and quantified the maximal range of reesterification under
both normal and type 2 diabetic conditions. The model agrees well with the experimental data (Figs. 6
and S3), supported by a χ2-test (v∗ = 164.1 < χ2(0.05,152) = 181.8), and accurately shows that only
the release of fatty acids and thus reesterification is affected under type 2 diabetic conditions (Fig. 6).
With the trained model, we found the range of reesterification to be altered from 66.7 - 74.3 % under
normal conditions to 39.6 - 64.1% under diabetic conditions.
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Figure 6: Model agreement when trained to the extended set of experimental data. In all panels, dots and
error bars represent mean and SEM values, solid/dashed lines represent the model simulation with the best
agreement to data, and the shaded areas represent the model uncertainty. (A), phosphorylation of HSL. (B),
release of glycerol. (C), release of fatty acids (FA). (D), percentage of fatty acids being reesterified. Blue
data/simulations correspond to normal conditions, and orange data/simulations correspond to type 2 diabetic
conditions. The data for diabetic conditions in (A-C) and the data for normal conditions (D) were not used to
train the model. In all panels, horizontal grey bars indicate where stimulation with isoproterenol (10 nM) was
given. Furthermore, increasing concentrations of insulin were given together with 10nM isoproterenol in all
points except one in all panels. The point without isoproterenol got no stimulus and is shown to the right in the
graphs. The agreement with the rest of the original dataset (in vitro experiments) is shown in Fig. S3.

In vivo model simulations of fatty acid release, under both non-diabetic and type 2 diabetic con-
ditions
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In addition to predicting dose-response data or quantifying the range of impairment of the reesterific-
ation of fatty acids, we can also use the model to predict temporal changes in vivo. During lipolysis
both glycerol and fatty acids are released from the adipocytes (Fig. 1). However, only the time series
for glycerol release were measured in the in vivo data used to train the model parameters. We can now
use the model to not only predict the release of fatty acids in vivo in response to e.g. treatment with
adrenaline, we can also predict the fatty acid release in vivo under diabetic conditions. As expected,
the release of fatty acids in vivo in response to adrenaline temporally mimics the release of glycerol
(Fig. 7, cf. Fig. 3). Furthermore, in line with the finding that the reesterification is impaired under
the diabetic condition, resulting in an increased release of fatty acids from the adipocytes, the model
predicts that the adipose tissue release of fatty acids in vivo is increased under diabetic conditions.
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Figure 7: Simulations of fatty acid release in vivo, under both non-diabetic (blue) and type 2 diabetic conditions
(orange). In both panels, the shaded areas represent the model simulation uncertainty. In both panels (A-B)
horizontal light grey bars indicate where stimulation with 1 µM adrenaline was given, dark grey bars indicate
where stimulation with 10 µM adrenaline was given, and horizontal black bars indicate where stimulation with
0.6 nM insulin was given. (A), model prediction without insulin, and (B), with insulin.

Discussion

We examined the role of adipose tissue in the storage and release of fuel in the form of fat under
normal conditions and when disturbed by insulin resistance and type 2 diabetes. We present a math-
ematical model of hormonal control of lipolysis in human adipose tissue (Fig. 1), a model that links
molecular events at the cellular level with corresponding responses at the tissue level. The model
can explain both in vivo temporal data from microdialysis experiments in adipose tissue (Fig. 3A-C
and Fig. S3A-C) and in vitro dose-response data from isolated adipocytes (Fig. 3D-F, Fig. 6, and
Fig. S3D-F), as well as accurately predict independent validation data (Fig. 4).

There exist other models of lipolysis in humans. For example [15] modelled insulin levels and fatty
acid release in response to glucose intake on a systemic level, but do not model any adrenergic stimu-
lus or have a detailed intracellular compartment. A more extensive model of lipid metabolism [12], is
also missing a detailed intracellular compartment and adrenergic stimulus. Conversely, [16] modelled
lipolysis in response to adrenergic stimulus with a detailed intracellular compartment, but lacked in-
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sulin signalling. Tangentially, there also exist models of glucose homeostasis with insulin signalling,
but lacking both lipolysis and adrenergic hormonal control [7,17]. The model of hormonal control of
lipolysis presented here is the first, to our knowledge, that includes insulin and adrenergic signalling,
as well as an intracellular compartment. Some of the existing models are more detailed for certain
aspects of lipolysis. We have chosen to only include sub-systems directly supported by experimental
data, and the presented model can therefore be considered ”minimal”.

The presented model is in agreement with the experimental data (Figs. 3, 6 and S3). Furthermore, the
estimated uncertainty of the model is reasonably large compared to data uncertainty. This indicates
that we have been successful in estimating the uncertainties of the model parameters and simulations.

Insulin action-3 – the anti-lipolytic effect of insulin via α-adrenergic receptors – was needed to explain
the combined effect of adrenaline, insulin, and phentolamine seen in the in vivo estimation data, as
become clear when the action was removed (Fig. 5D, notably in the second peak). It should be noted
that insulin action-3, via the α-receptor, is also only observed at high concentrations of insulin, and
may therefore be a secondary effect elicited by insulin in other cells or tissues.

In addition to investigating the contributions of the different insulin actions, we used the model to
examine changes under type 2 diabetic conditions. The model shows that the reesterification is altered
from 66.7 - 74.3 % under normal conditions to 39.6 - 64.1 % under type 2 diabetic conditions. We also
used the model to predict the temporal release of fatty acids in vivo in response to adrenaline in both
non-diabetic and type 2 diabetic conditions (Fig. 7). Type 2 diabetes and obesity have traditionally
been associated with elevated levels of circulating fatty acids, an issue both challenged and affirmed
[10, 18]. Our model predicts an in vivo increase in the release of fatty acids in diabetic conditions
versus in non-diabetic conditions. However, our model does not include mechanisms for fatty acid
clearance due to uptake by other organs and therefore cannot predict the systemic levels of fatty acids
or possible changes to the clearance in type 2 diabetes.

We used data from two different sources [3, 4] to develop the model, which can be seen both as a
strength and as a weakness. The use of internally consistent data, from the same laboratory under the
same experimental conditions, is potentially important to test hypotheses to unravel new biological
mechanisms. For the purpose herein, to develop a first intracellular model of lipolysis that includes
key observations and that later can be further built upon when more data become available, we believe
it is a strength to use data from multiple sources. This means that the model is more general, and
therefore more likely to be useful together with other human data from studies of adipose tissue
lipolysis.

Desensitization, that cells decrease their response to continued or repeated stimuli with time, is a
known phenomenon of β-adrenergic signalling. Stich et al [4] controlled for desensitization by using
multiple repeats of the stimulus paradigm. We decided to only include the first two rounds of stimu-
lation of lipolysis, as we think there is a tendency to desensitization in the third stimulation, and we
decided not to include this behaviour in this first model. There are other studies that show a clear
desensitization in the release of glycerol in response to adrenaline [19,20]. These studies have shorter
intervals between stimuli (30 min, 1 h), and also reveal desensitization due to exercise-induced stimu-
lation of lipolysis [20]. We have previously studied desensitization in heart cells using modelling and
found that dose-response curves need to be adjusted for this phenomenon before important paramet-
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ers such as the EC50 are computed [21]. Desensitization is an important phenomenon in β-adrenergic
signalling that should not be overlooked and should be addressed in later models of lipolytic control.

Furthermore, in the in vivo data there were two different sets of data from the same experimental
condition (adrenaline with insulin, Figs. 2A and 3A in [4]). Since the model can only produce one
simulation for identical conditions, we decided to not use two datasets for identical conditions to
compute the cost. At the same time, we needed to scale the model states to be comparable to the
experimental data. Therefore, we used the adrenaline with insulin data from Fig. 2A in [4] to both
compute optimal scaling parameters and the cost of the model, and only used the data from Fig. 3A
in [4] (shown in Fig. S1C) to compute scaling parameters.

During the modelling, we constrained insulin action-2 (Fig. 1) so that the EC50 in response to insulin
stayed between 0.5 and 1.1 nM. The reasoning behind this constraint is that known upstream signalling
intermediaries, such as the autophosphorylation of the insulin receptor, has an EC50 in that range [5].
We also included a slightly delayed response to changes in adrenaline and isoproterenol stimulus
in vivo when developing the model. Such a delay was observed in the microdialysis data [4], but
not as obviously present in primary adipocytes [3]. In effect, we delayed the time for all changes
of adrenaline and isoproterenol concentrations with 5 min when simulating the in vivo data (e.g. in
Fig. 3A-C). The agreement between model simulations and data became substantially better with this
delay. The underlying cause behind the observed delay in the microdialysis setup could be pooling
of data or a delay in the microdialysis probe – or a biological tissue effect. We have chosen not to
include the mechanisms of the delay in the model, instead we explicitly added the time delay.

The model developed herein can be further developed in several directions. First, on the intracellular
side, we aim to combine the model with our extensive work on the modelling of insulin signalling
pathways in both non-diabetic and type 2 diabetic conditions [5–8]. With such a connection, we
will reach a first comprehensive model for the human adipocyte that is based on extensive data from
both non-diabetic and type 2 diabetic patients. Such a model would be able to simulate the major
functions of the adipocyte: the control of lipolysis, as well as insulin control of glucose uptake, pro-
tein synthesis, and transcription. Second, on the systemic regulation of fatty acid release, the work
herein opens up for a first connected model where intracellular components of lipolysis are connec-
ted to whole-body changes in fatty acid release. This connected model can also be combined with
other models, for example models for intake of meals. Such a connected model is key to understand
mechanisms of ectopic fat storage, i.e. where liver and muscle tissue increase their storage of lip-
ids – a condition that is linked to disease development such as in type 2 diabetes, liver failure, and
cardiovascular disease [22].

Methods

Data processing
In vitro experiments with isolated human adipocytes were performed by us and were previously pub-
lished (Fig. 14D in [3]). In the in vitro data, two points (for 10−7 and 10−6 M insulin in the non-
diabetic fatty acid release data) had only two repeats, and we therefore set the data uncertainty for
those two points to the average uncertainty of the non-diabetic fatty acid release. In vivo data from
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human microdialysis experiments were extracted from Figs. 1A, 2A, and 3A in [4].

In all in vivo experiments [4], three sets of consecutive adrenergic stimuli were given. We have chosen
to only include the first two sets of stimuli in the present study. The third set of stimuli was essentially
a repeat of the second set of stimuli at a later time point - yet showed a different response than the
second set of stimuli (not shown). The difference in the response can be technical and/or biological
differences at this later time, differences not included in the model in the present study. Furthermore,
we used only one of the two datasets with identical stimuli (adrenaline and insulin) for the calculation
of the cost. However, we kept the other dataset when calculating the experimental scaling parameters.
Details of these decisions are discussed in the Discussion section.

Mathematical modelling
A system of ordinary differential equations (ODEs) was used to model lipolysis and the release of
fatty acids in vitro and in vivo. The equations are visualized in the interaction graph in Fig. 1. The
full model with all described equations can be found in the supplementary files (see Data and model
availability).

Equations for insulin actions
We modelled the three different actions of insulin described in [3, 4] (see Fig. 1) as three separate
sigmoidal functions, all dependent on the concentration of insulin. These three insulin functions
affect downstream signalling proteins on PKB, PDE3B and the α2-adrenergic receptor. The equation
for these sigmoidal functions is described in Eq. (1).

Insx = 100+
minx−100

1+(ins/EC50x)
nx , x ∈ {1,2,3} (1)

Insx is a function that is dependent on the given concentration of insulin (ins); minx is the minimum
value the function has at ins=0; EC50x is the concentration of insulin at which the function reaches
half of the maximal response (which is set to 100). The steepness of the function is determined by nx.

Equations for insulin signalling
When IR is stimulated with insulin, a signalling cascade is initiated which leads up to the activ-
ation of PKB, through insulin receptor substrate 1 (IRS1), phosphoinositide 3-kinase (PI3K), and
Phosphoinositide-dependent kinase-1 (PDK1). In our model, we have simplified this cascade as a
direct action from insulin to the activation of PKB. PKB can also be activated by cAMP. We model
PKB as either being in an inactive or an active configuration. The ODEs for PKB are given by Eq. (2)

d/dt(PKB) =−(k1a · cAMP+ k1a2 · Ins1) ·PKB+ k1b ·PKBp
d/dt(PKBp) = (k1a · cAMP+ k1a2 · Ins1) ·PKB− k1b ·PKBp

(2)

Here, PKB and PKBp are the two model states for the inactive and active form of PKB, Ins1 is the
effect of insulin action-1, cAMP is the levels of cAMP, and k1a k1a2, and k1b are rate determining
parameters.

Downstream, PKB will directly activate PDE3B. Beyond the direct activation by PKB, PDE3B will
also be inactivated by insulin action-2. The detailed mechanism for this activation is currently un-
known. We model PDE3B as being in either an inactive or an active state. The ODEs for PDE3B are
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given in Eq. (3).

d/dt(PDE3B) =−k2a ·PKBp ·PDE3B+ k2b ·PDE3Ba · Ins2

d/dt(PDE3Ba) = k2a ·PKBp ·PDE3B− k2b ·PDE3Ba · Ins2
(3)

Here, PDE3B and PDE3Ba are the two model states for the inactive and active form of PDE3B,
PKBp is the model state for activated PKB, Ins2 is the effect of insulin action-2, and k2a and k2b are
rate determining parameters.

Equations for α2-adrenergic receptor signalling
In the model, the α2-adrenergic receptor can switch between two different configurations: activated
or inactivated. This balance is offset towards the activated state when the α2-adrenergic receptor is
stimulated with adrenaline. The activated receptor will passively return to the inactive configuration.
The activation of the α2-adrenergic receptor is also augmented by insulin and inhibited by the addition
of phentolamine. The ODEs for the α2-adrenergic receptor are given in Eq. (4).

d/dt(ALPHA) =−(k3a · Ins3 ·adr+ k3a2) · (1− phe e f f ect · phe) ·ALPHA+ k3b ·ALPHAa
d/dt(ALPHAa) = (k3a · Ins3 ·adr+ k3a2) · (1− phe e f f ect · phe) ·ALPHA− k3b ·ALPHAa

(4)

Here, ALPHA and ALPHAa are the two model states for the inactive and active α2-adrenergic receptor,
adr and phe are the stimulation given as inputs, Ins3 is insulin action-3, k3a, k3a2 and k3b are rate
determining parameters, and phe e f f ect is a parameter determining the effect of the phentolamine
stimulation. In practice, adr corresponds to the concentration of adrenaline (in nM), and phe is a
simplified boolean input (set to 1 if phentolamine is present, and 0 else).

Equations for β-adrenergic receptor signalling
The β-adrenergic receptor, similarly to the α2-adrenergic receptor, is also switching between two
configurations. In contrast to the α2-adrenergic receptor, the β-adrenergic receptor is also activated by
adrenaline. Due to the uncertainty in difference in activation between adrenaline and isoproterenol,
we added a scaling factor on isoproterenol. Furthermore, the activation of the β-adrenergic receptor
is not increased by insulin or inhibited by phentolamine. The ODEs for the β-adrenergic receptor are
given in Eq. (5).

d/dt(BETA) =−(k4a · (iso · isoscale+adr)+ k4a2) ·BETA+ k4b ·BETAa
d/dt(BETAa) = (k4a · (iso · isoscale+adr)+ k4a2) ·BETA− k4b ·BETAa

(5)

Here, BETA and BETAa are the two model states for the inactive and active β-adrenergic receptor, adr
and iso are inputs corresponding to stimulation with adrenaline and isoproterenol, and k4a, isoscale,
k4a2, and k4b are rate determining parameters. adr and iso corresponds to the concentration (in nM)
of adrenaline and isoproterenol respectively.

Equations for lipolysis
Both the β-adrenergic receptor and the α2-adrenergic receptor are G-protein coupled receptors. The
G-proteins is made of multiple subunits, which will disassociate when the receptors are activated.
These subunits will then go on and trigger another downstream effector. One such effector is adenylyl
cyclase, which catalyse the conversion of ATP into cAMP. Through the G-proteins, β-adrenergic
receptor will increase the activity of adenylyl cyclase, and α2-adrenergic receptor will decrease the
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activity. In the model, we have simplified this interaction by ignoring the G-proteins, letting the β-
adrenergic receptor and α2-adrenergic receptor directly affect the adenylyl cyclase. Furthermore, we
model the adenylyl cyclase as being either inactive or active, where the active version leads to an
increased production of cAMP. The model equations are given in Eq. (6).

d/dt(AC) =−k5a · (BETAa) ·AC+ k5b · (ALPHAa) ·ACa
d/dt(ACa) = k5a · (BETAa) ·AC− k5b · (ALPHAa) ·ACa

(6)

Here, AC and ACa are the two model states for inactive and active adenylyl cyclase respectively,
BETAa and ALPHAa are the model states for active β- and α-receptor, and k5a and k5b are rate
determining parameters.

Downstream of both adenylyl cyclase and PDE3B is cAMP. An increase in adenylyl cyclase activation
will lead to an increased concentration of cAMP, and an increase in PDE3B activation will lead to a
decreased concentration of cAMP. Together, adenylyl cyclase and PDE3B balance the concentration
of cAMP in the cell. cAMP have negative feedback loop by activating PKB via PI3K, which in turn
activates PDE3B, which leads to a decreased concentration of cAMP. We have also added both a basal
production and degradation of cAMP. The ODEs for cAMP are given in Eq. (7).

d/dt(cAMP) = k6a ·ACa− k6b ·PDE3Ba · cAMP (7)

Here, cAMP is the model state for cAMP, ACa and PDE3Ba are the model states for the active
configurations of adenylyl cyclase and PDE3B, and k6a and k6b are rate determining parameters.

The concentration of cAMP indirectly controls the lipolysis by activation of protein kinase A (PKA),
which in turn will activate the lipid droplet-coating protein perilipin 1 (PLIN1) and hormone-sensitive
lipase (HSL). Activation of PKA leads to the phosphorylation of the lipid droplet-coating protein per-
ilipin 1 (PLIN1) and its subsequent release of the adipose triacylglycerol lipase (ATGL) activator,
comparative gene identification-58. Active ATGL will catalyse the hydrolysis of the first fatty acid of
the triacylglycerol. Phosphorylation of HSL by PKA results in activation and translocation of HSL to
the lipid droplet, where HSL hydrolyses the second fatty acid leaving monoacylglycerol to be hydro-
lysed by a constitutively active monoacylglycerol lipase. HSL is capable to hydrolyse triacylglycerol,
but ATGL is believed to be more important in this rate-limiting step of lipolysis. In the model, we
simplified these interactions by only modelling HSL with an input from cAMP. The ODEs are given
in Eq. (8).

d/dt(HSL) =−k7a · cAMP ·HSL+ k7b ·HSLp
d/dt(HSLp) = k7a · cAMP ·HSL− k7b ·HSLp

(8)

Here, HSL and HSLp are the states for inactive and active HSL, cAMP is the model state for cAMP,
and k7a and k7b are the rate determining parameters.

Once the triacylglycerol has been broken down into three fatty acids and one glycerol, the glycerol
will be transported out of the cell, and the fatty acids will either be transported out or reesterified with
glycerol-3P into new triacylglycerol. This reesterification is reduced in type 2 diabetes. Some of the
fatty acids can also go back into the cell, while the glycerol cannot. Fatty acids and glycerol outside
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of the cell will be cleared in an in vivo setting, but not in vitro. The ODEs are given in Eq. (9).

d/dt(Gly) = k8a ·HSLp− k8b ·Gly
d/dt(FFA) = 3·k8a ·HSLp− (k8b+ k8c ·diab) ·FFA

(9)

Here, Gly and FFA are the states for glycerol and fatty acids, HSLp is the state for activated HSL,
diab is a parameter controlling the reduction of reesterification under diabetic conditions, and k8a,
k8b, and k8c are rate determining parameters. k8a corresponds to the transport of fatty acids and
glycerol from the inside to the outside of cell, k8b is the clearance of fatty acids and glycerol in vivo
(clearance was disabled in vitro by setting k8b = 0), and k8c is the reesterification of fatty acids into
triacylglycerol. To simulate the effect of type 2 diabetes on the reesterification, the parameter diab
was allowed to vary between 0.0 – 1.0. In non-diabetic conditions, the type 2 diabetes effect was
disabled by setting diab = 1 (i.e. no effect of type 2 diabetes).

Translating the model states to experimental data
We constructed measurement equation to translate the model states of our model to the corresponding
in vivo experimental data. In practice, we introduced a linear drift, a scaling constant and an offset
constant. The measurement equation for glycerol is illustrated in Eq. (10).

ŷGly = kscale · (Gly− kdri f t · time)+ ko f f set (10)

Here, Gly and ŷGly are the model state and measurement equation for glycerol, kdri f t · time is the
drift over time, kscale is the scaling constant and ko f f set is the offset constant. The scaling and offset
constants were calculated using MATLABs least squares with known covariance (lscov) function.

For the in vitro experiments we did not use a measurement equation, but we did scale the simulations
to be ”fold over iso stimulation only”, as was done in the experimental data.

Initial values
All states corresponding to activations were represented as per cent of activation, i.e. the sum of the
two states will be 100. All initial values of the ODEs were set to arbitrary non-negative values:

BETA(0) = 80, BETAa(0) = 20, ALPHA(0) = 80, ALPHAa(0) = 20, AC(0) = 80, ACa(0) = 20,
PKB(0) = 80, PKBp(0) = 20, PDE3B(0) = 80, PDE3Ba(0) = 20, cAMP(0) = 0,
HSL(0) = 80, HSLp(0) = 20, Gly(0) = 0, FFA(0) = 0

We then simulated the model without any stimuli to numerically calculate the steady state, which was
used as initial values for the simulations of the experiments with stimuli.

Calculating the percentage of reesterification
We calculate the percentage of reesterification using Eq. (11), the same way as the calculation was
done for the experimental data in [3].

100 · 3 ·glycerol−FFA
3 ·glycerol

(11)
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Quantifying the model agreement to experimental data
In order to evaluate the model’s performance, we quantified the model agreement to data using a
function typically referred to as a cost function. In this case, we used the normalized sum of squared
residual as cost function (Eq. (12)).

v(θ) = ∑
t

(
yt− ŷt(θ)

SEMt

)2

(12)

Here, v(θ) is the cost, equal to the sum of the normalized residual over all measured time points, t;
p is the parameters; yt is the measured data and ŷt(θ) is the model simulations; SEMt is the standard
error of the mean for the measured data.

Statistical analysis
To reject models, we used the χ2-test with a significance level of 0.05. We used 137 degrees of
freedom for the original training data (144 data points, minus 7 scaling parameters) leading to a
threshold for rejection of χ2(0.05,137)≈ 165.3. For the extended set of experimental data, used after
diabetes was introduced (from the section Estimating the extent of altered reesterification in type
2 diabetes in the results), we used 152 degrees of freedom, resulting in a threshold for rejection of
χ2(0.05,152)≈ 181.8. Any combination of model and parameter set that results in a cost (Eq. (12))
above the threshold must be rejected. If no parameter set exists for a model that results in a sufficiently
low cost, the model structure must be rejected.

Uncertainty estimation
The uncertainty of both the parameters and the model simulations for estimation, validation, and
predictions, were gathered as proposed in [23] and implemented in [14]. In short, the desired property
(either a parameter value or a single simulated value) was either maximized or minimized, while
requiring the cost (Eq. (12)) to be below the χ2-threshold. In traditional profile-likelihood analysis
(Eq. (13)),

minimize v(θ)

subject to p̂ = p.
(13)

the cost v(θ) is minimized while the property p̂ is fixed to a value p and stepped through to find the
boundaries of the property. Here, we instead inverse the problem and solve it directly, see Eq. (14):

minimize p̂ (14a)

subject to v(θ)≤ χ
2. (14b)

In practice, the constraint (Eq. (14b)) is relaxed into the objective function as a L1 penalty term with
an offset if V (θ)> χ2.

minimize p̂+ penalty (15a)

subject to penalty =

{
(1+ |p̂|) · (1+ |V (θ)−χ2|), if V (θ)> χ2

0, otherwise
(15b)
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We solved the maximization problem as a minimization problem (same as in Eq. (15)), by changing
sign of the property in the objective function to −p̂.

Optimization and software
We used MATLAB R2020a (MathWorks, Natick, MA) and the IQM toolbox (IntiQuan GmbH, Basel,
Switzerland), a continuation of [24], for modelling. The parameter values were estimated using the
enhanced scatter search (eSS) algorithm from the MEIGO toolbox [25]. eSS were restarted multiple
times, partially run in parallel at the local node of the Swedish national supercomputing centre (NSC).
We allowed the parameter estimation to freely find the best possible combinations of parameter values,
within boundaries. The bounds of the parameter values are given in supplementary Table S2.

Data and model availability
The experimental data as well as the complete code for data analysis and modelling are available
at https://github.com/willov/lipolysis (DOI: 10.5281/zenodo.5070401) and is
mirrored at https://gitlab.liu.se/ISBgroup/projects/lipolysis.
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[14] Lövfors W, Simonsson C, Komai AM, Nyman E, Olofsson CS, Cedersund G. A systems biology
analysis of adrenergically stimulated adiponectin exocytosis in white adipocytes. bioRxiv. 2020;
p. 2020.07.17.203703. doi:10.1101/2020.07.17.203703.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2020.12.18.423229doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423229
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] L Murillo A, Li J, Castillo-Chavez C. Modeling the dynamics of glucose, insulin, and free fatty
acids with time delay: The impact of bariatric surgery on type 2 diabetes mellitus. Mathematical
Biosciences and Engineering. 2019;16(5):5765–5787. doi:10.3934/mbe.2019288.

[16] Kim J, Saidel GM, Kalhan SC. A computational model of adipose tissue metabolism: Evidence
for intracellular compartmentation and differential activation of lipases. Journal of Theoretical
Biology. 2008;251(3):523–540. doi:10.1016/j.jtbi.2007.12.005.

[17] Smith JMD, Maas JA, Garnsworthy PC, Owen MR, Coombes S, Pillay TS, et al. Mathematical
Modeling of Glucose Homeostasis and Its Relationship With Energy Balance and Body Fat.
Obesity. 2009;17(4):632–639. doi:10.1038/oby.2008.604.

[18] Arner P, Rydén M. Fatty Acids, Obesity and Insulin Resistance. Obesity Facts. 2015;8(2):147–
155. doi:10.1159/000381224.
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Figure S1: Model agreement with experimental data, with overlaid in vivo experiments. In all panels, solid
lines represent the model simulation with the best agreement to data, the shaded areas represent the model
uncertainty, and experimental data point are represented as mean values with error bars (SEM). (A-C), in vivo
time-series experiments. (D-F), in vitro dose-response experiments. In all subfigures, horizontal bars indicate
where stimulations were given. In (A-C), light/dark grey bars indicate low/high adrenergic stimulus (1/10
µM adrenaline or 0.1/1 µM isoproterenol) with or without phentolamine (phe; 100 µM), black bars indicate
stimulation with insulin (0.6 nM). In (D-F) grey bars indicate stimulation with isoproterenol (10 nM). In the in
vivo experiments, experiments with adrenaline are shown in light blue (A-C), with isoproterenol in purple (B),
and with the combined stimulation with adrenaline and phentolamine in green (C). In the in vitro experiments
(D-F), increasing doses of insulin were given together with 10nM isoproterenol in all points except one. The
point without isoproterenol got no stimulus and is shown to the right in the graphs.
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Parameter Lower Upper θ min
original θ max

original
threshold threshold

kdri f t 10−9 109 3.4443 ·10−5 9.1549 ·103

k1a 10−9 109 1.5021 ·10−7 6.4646 ·101

k1a2 10−9 109 4.6632 ·10−5 1.6736
k1b 10−9 109 1.5857 ·10−2 4.2019 ·102

k2a 10−9 109 9.6332 ·10−6 1.2044 ·106

k2b 10−9 109 9.1455 ·10−4 1.3983 ·106

k3a 10−9 109 3.4584 ·10−1 9.0966 ·104

k3a2 10−9 109 4.4438 ·10−4 1.0000 ·109

k3b 10−9 109 2.8713 ·10−2 3.4486 ·103

k4a 10−9 109 7.3391 ·10−4 3.0223 ·102

k4a2 10−9 109 2.1891 ·10−6 2.2772
k4b 10−9 109 2.6237 ·10−1 5.6350 ·105

k5a 10−9 109 7.4564 ·10−2 1.6026 ·105

k5b 10−9 109 1.4359 ·10−2 4.2477 ·103

k6a 10−9 109 3.2008 ·10−4 5.4919 ·105

k6b 10−9 109 4.9210 ·10−3 7.2023 ·105

k7a 10−9 109 2.0387 ·10−9 7.5539 ·103

k7b 10−9 109 3.5305 ·10−2 5.4970 ·105

k8a 10−9 109 1.7294 ·10−4 1.6436 ·104

k8b 10−9 109 1.0000 ·10−9 1.8558 ·10−2

k8c 10−9 109 3.0972 ·10−2 1.1554
phe e f f ect 0 1 0.0000 1.0000
isoscale 0 102 4.2267 1.0000 ·102

min1 0 102 1.5179 ·10−1 1.2681 ·101

min2 0 102 1.4806 ·101 3.0239 ·101

min3 0 102 0.0000 2.0000 ·101

EC501 10−6 104 4.3451 ·10−2 1.2152 ·101

EC502 10−6 104 2.3564 3.6085 ·101

EC503 10−6 104 1.0000 ·10−6 1.0000 ·104

n1 0 4 3.8330 ·10−1 1.1091
n2 0 4 5.6093 ·10−1 4.0000
n3 0 4 0.0000 4.0000
diab — — — —

Table S1: All bounds and estimated values for the free parameters. The parameters were allowed to vary
in the range given in Table S2. For the specific parameter being investigated, the bound was relaxed and the
threshold for when a parameter was deemed nonidentifiable was set to the value given in the table in columns
Lower threshold and Upper threshold). The minimum and maximal found values of a parameter is given in
columns θ min

original , and θ max
original respectively.
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Parameter Lower Upper θ ∗original θ ∗extended
bound bound

kdri f t 10−6 106 1.8649 2.6525
k1a 10−6 106 2.5929 ·10−2 8.0752 ·10−2

k1a2 10−6 106 2.7345 ·10−2 1.2840 ·10−2

k1b 10−6 106 6.1169 ·10−1 2.0825 ·10−1

k2a 10−6 106 6.5912 1.2136 ·10−2

k2b 10−6 106 2.0591 ·101 9.4937 ·10−3

k3a 10−6 106 9.2000 ·101 1.2626 ·102

k3a2 10−6 106 9.4628 3.0140 ·101

k3b 10−6 106 1.1379 ·101 1.4944 ·101

k4a 10−6 106 8.1360 ·10−1 1.1020
k4a2 10−6 106 3.9464 ·10−3 1.5750 ·10−2

k4b 10−6 106 5.6524 ·102 1.2609 ·102

k5a 10−6 106 2.6695 ·102 2.8775 ·101

k5b 10−6 106 3.0725 2.0128
k6a 10−6 106 4.0644 ·10−2 4.1938 ·10−1

k6b 10−6 106 8.9551 ·10−3 2.4450 ·10−1

k7a 10−6 106 2.1389 ·10−1 9.7287 ·10−2

k7b 10−6 106 5.6389 ·101 1.8381 ·102

k8a 10−6 106 6.5756 ·101 2.6920 ·103

k8b 10−6 106 5.4205 ·10−3 2.1333 ·10−2

k8c 10−6 106 3.8648 ·10−2 3.4005 ·10−2

phe e f f ect 0.6 1 8.8329 ·10−1 8.4505 ·10−1

isoscale 8 1.2 ·101 9.4266 8.0000
min1 0 2 ·101 1.9994 1.1158
min2 0 2 ·101 2.00000 ·101 2.0000 ·101

min3 0 2 ·101 0.0000 0.0000
EC501 (nM) 0.5 1.1 1.2454 1.2454
EC502 (nM) 10−5 103 1.2853 ·101 1.3356 ·101

EC503 (nM) 10−5 103 2.8643 4.1559
n1 0.5 2 6.1281 ·10−1 6.6829 ·10−1

n2 0.5 2 1.9807 1.7424
n3 0.5 2 2.0000 2.0000
diab 0 1 — 9.4622 ·10−1

Table S2: Bounds used for optimization of the free parameters, and the sets of optimal values. The rate
parameters (kx) were given a free range (10−6 to 106). isoscale was allowed a 20% deviation from the expected
value of 10. For the input functions, the minimum values minx was given a range from zero to 20% of max,
the steepness nx was given a range from 0 to 2, and the EC50x was given a free range for all doses used in the
dataset from [3] (10−5 to 103 nM), except for EC501 which was limited based on the EC50 of IR in [5]. θ ∗original
corresponds to the optimal parameter set for the original dataset. θ ∗extended corresponds to the optimal parameter
set for the extended dataset.
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Figure S2: Model agreement with experimental data, with overlaid in vivo experiments, for the model without
insulin action-3. In all panels, solid lines represent the model simulation with the best agreement to data, the
shaded areas represent the model uncertainty, and experimental data point are represented as mean values with
error bars (SEM). (A-C), in vivo time-series experiments. (D-F), the in vitro dose-response experiments. In
all subfigures, horizontal bars indicate where stimulations were given. In (A-C), light/dark grey bars indicate
low/high adrenergic stimulus (1/10 µM adrenaline or 0.1/1 µM isoproterenol) with or without phentolamine
(phe; 100 µM), black bars indicate stimulation with insulin (0.6 nM). In (D-F) grey bars indicate stimulation
with isoproterenol (10 nM). In the in vivo experiments, experiments with adrenaline are shown in light blue
(A-C), with isoproterenol in purple (B), and with the combined stimulation with adrenaline and phentolamine
in green (C). In the in vitro experiments (D-F), increasing doses of insulin were given together with 10nM
isoproterenol in all points except one. The point without isoproterenol got no stimulus and is shown to the right
in the graphs.
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Figure S3: Model agreement with the extended set of experimental data not shown in Fig. 4. Estimation
data and model simulations, for the original data (e.g. used in Fig. 3). In all panels, solid lines represent the
model simulation with the best agreement to data, and experimental data point are represented as mean values
with error bars (SEM). (A-D), in vivo time-series experiments. (E-G), in vitro dose-response experiments. In
all subfigures, horizontal bars indicate where stimulations were given. In detail, light/dark grey bars indicate
stimulation with: 1/10 µM adrenaline in (A,B), 0.1/1 µM isoproterenol in (C), and 1/10 µM adrenaline with 100
µM phentolamine. Black bars in (B-D) indicates stimulation with 0.6 nM insulin. In (E-G) grey bars indicate
stimulation with isoproterenol (10 nM). In the in vivo experiments, experiments with adrenaline are shown
in light blue (A-C), with isoproterenol in purple (B), and with the combined stimulation with adrenaline and
phentolamine in green (C). In the in vitro experiments (D-F), increasing doses of insulin were given together
with 10 nM isoproterenol in all points except one. The point without isoproterenol got no stimulus and is shown
to the right in the graphs.
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Figure S4: Model agreement with the extended set of experimental data not shown in Fig. 4, with overlaid
in vivo experiments. Estimation data and model simulations, for the original data (e.g. used in Fig. 3). In all
panels, solid lines represent the model simulation with the best agreement to data, the shaded areas represent the
model uncertainty, and experimental data point are represented as mean values with error bars (SEM). (A-C),
in vivo time-series experiments. (D-F), in vitro dose-response experiments. In all subfigures, horizontal bars
indicate where stimulations were given. In (A-C), light/dark grey bars indicate low/high adrenergic stimulus
(1/10 µM adrenaline or 0.1/1 µM isoproterenol) with or without phentolamine (phe; 100 µM), black bars in-
dicate stimulation with insulin (0.6 nM). In (D-F) grey bars indicate stimulation with isoproterenol (10 nM).
In the in vivo experiments, experiments with adrenaline are shown in light blue (A-C), with isoproterenol in
purple (B), and with the combined stimulation with adrenaline and phentolamine in green (C). In the in vitro
experiments (D-F), increasing doses of insulin were given together with 10nM isoproterenol in all points except
one. The point without isoproterenol got no stimulus and is shown to the right in the graphs.
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