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ABSTRACT 

Adolescence is a time of profound changes in the structural wiring of the brain and maturation of 

large-scale functional interactions. Here, we analyzed structural and functional brain network 

development in an accelerated longitudinal cohort spanning 14–25 years (n = 199). Core to our work 

was an advanced model of cortical wiring that incorporates multimodal MRI features of (i) cortico-

cortical proximity, (ii) microstructural similarity, and (iii) diffusion tractography. Longitudinal 

analyses assessing age-related changes in cortical wiring during adolescence identified increases in 

cortical wiring within attention and default-mode networks, as well as between transmodal and 

attention, and sensory and limbic networks, indicative of a continued differentiation of cortico-

cortical structural networks. Cortical wiring changes were statistically independent from age-related 

cortical thinning seen in the same subjects. Conversely, resting-state functional MRI analysis in the 

same subjects indicated an increasing segregation of sensory and transmodal systems during 

adolescence, with age-related reductions in their functional connectivity alongside with an increase 

in structural wiring distance. Our findings provide new insights into adolescent brain network 

development, illustrating how the maturation of structural wiring interacts with the development of 

macroscale network function. 

 

KEYWORDS: adolescence; multiscale cortical wiring; functional network communication 
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INTRODUCTION 

Adolescence is characterized by ongoing cognitive and biological development, and increasing 

evidence suggests that co-maturation of structural and functional brain networks during that time 

window underpin broad cognitive development [1–9]. With advances in neuroimaging techniques, 

particularly magnetic resonance imaging (MRI) acquisition and modelling, it has become possible to 

chart microstructural and macroscale brain organization in vivo. Prior MRI literature has assessed 

regional changes in brain structure [1–3,10–16], showing age-related widespread decreases in cortical 

thickness [1,13], as well as increases in intracortical myelin [15–17]. Complementing these regional 

changes, diffusion and functional MRI studies showed an ongoing maturation of both the 

microstructure of inter-connecting white matter tracts as well as large-scale developmental changes 

in functional network organization, indicative of shifts in brain connectivity towards a more 

distributed topology [18–20]. Utilizing multimodal longitudinal MRI analyses, here, we explored 

how adolescent structural network development gives rise to potential shifts in functional network 

architecture.  

Core to our work is a comprehensive and recently introduced model of cortical wiring, which 

integrates several in vivo features of structural connectivity i.e., diffusion MRI tractography, geodesic 

distance mapping, and microstructural covariance analysis [21]. Diffusion MRI tractography maps 

white matter fibers, showing increasing validity in approximating deeper tracts, but some limitations 

in the proximity of cortical grey matter regions [22,23]. On the other hand, geodesic distance analysis 

measures the spatial proximity of areas across the cortical sheet, tapping into short range cortico-

cortical connectivity and wiring cost [24]. Finally, a recent extension of structural covariance analysis 

[25,26], labelled microstructural profile covariance analysis, identifies networks with similar myelin-

sensitive imaging characteristics across cortical depths in a subject-specific manner [27,28]. By 

integrating the complementary connectivity measures from diffusion MRI tractography, geodesic 

distance, and microstructural covariance via unsupervised machine learning, we can generate a 

multiscale cortical coordinate system, and arrange cortical regions with respect to their similarity in 

structural wiring [21]. In a prior evaluation in healthy adults, we demonstrated that this approach 

captures spatial gradients of (i) cortical cytoarchitecture, (ii) cell-type specific gene expression, and 

(iii) intrinsic functional connectivity and signal flow measured from resting-state functional MRI and 

intracranial electrical recordings [21], supporting neurobiological and functional validity. Here, we 

adopted this wiring model to chart adolescent development of structural brain networks longitudinally. 

As brain structure ultimately scaffolds brain function [29–35], it is not surprising that multiple 

functional networks also change in parallel throughout adolescence. Prior analyses based on resting-

state functional MRI connectivity analysis in youth have shown shifts in connectivity patterns in 

higher order cortical networks, particularly the default mode and frontoparietal networks, both known 

to be spatially distributed [3,36,37]. In one recent study, it was furthermore shown that different 

cortical areas undergo variable trajectories of functional maturation, differentiating sensory and motor 

systems that follow a more ‘conservative’ functional trajectory from transmodal systems that show a 

more ‘disruptive’ mode, reflected by reconfiguration of their functional connectivity patterns towards 

a more distributed, long-range connectional architecture [37]. Benefitting from an increasing 

availability of multimodal datasets, several studies have begun to examine how brain structure and 

function co-mature. For example, a prior study showed that structural network modules become more 

segregated with advancing age, and that this process reflects ongoing development of executive 

function from 8 to 22 years [38]. In a follow-up study, the authors showed increases in structure-

function coupling, particularly in transmodal cortices [3]. Another recent study showed consistent 

findings that the correspondence of structural and functional networks is preserved in transmodal 

regions across the adult lifespan, while sensorimotor systems showed a decreasing trend of structure-

function coupling [39]. In the current work, we built on this growing literature to assess how 

adolescent changes in multiscale cortical wiring are associated with changes in brain network function.  
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Our study was based on the Neuroscience in Psychiatry Network (NSPN) 2400 cohort, an accelerated 

longitudinal dataset that enrolled healthy individuals between 14–25 years [16,40]. Structural wiring 

models were derived for each subject time point [41], and we estimated longitudinal trajectories in 

structural network maturation using linear mixed effect models. We assessed whether age-effects on 

structural wiring were similar to cortical thickness changes in the same subjects [1,11,13,42], and 

whether wiring changes were consistent after controlling for thickness changes. To study how 

developmental shifts in structural wiring reflect adolescent functional network maturation, we 

associated age-effects on structural wiring with those on functional connectivity based on resting-

state functional MRI. Multiple sensitivity analyses assessed robustness of our findings with respect 

to several analysis parameter variations.   

 

RESULTS 

We studied 199 healthy participants obtained from the NSPN 2400 cohort, who were part of the 

accelerated longitudinal design and had imaging data available [16,40]. Included participants had two 

measurement time points (mean inter-scan interval was 0.94 years, range = 0.5–1), with a mean age 

of 18.84 (range = 14–25) years at baseline and 19.96 (range = 15–26) years at follow-up. Participants 

were uniformly distributed across the entire age range, with a similar sex ratio (52/48% 

males/females). Participant demographics, image processing, and analysis are further detailed in the 

Methods. 

 

Tracking adolescent changes in multiscale cortical wiring 

Following a recently developed approach in healthy adults [21], we built cortico-cortical wiring 

models by combining geodesic distance (GD), microstructural profile covariance (MPC), and tract 

strength (TS) for every subject time point (Fig. 1A). We integrated these three complementary 

features into a common low-dimensional space using non-linear manifold learning techniques (see 

Methods) [41]. Two eigenvectors (E1, E2) explained approximately 37.8 ± 0.01% (mean ± SD) of 

information across ten iterations with different non-overlapping subsets within the NSPN cohort (Fig. 

1A–B; see Methods). The first eigenvector (E1) depicted a sensory-fugal gradient, and the second 

eigenvector (E2) differentiated anterior and posterior cortices.  

We calculated Euclidean distance between all brain regions in the wiring-derived manifold space as 

a measure of wiring differences between them (Fig. 1C; see Methods). While within-network 

connectivity showed overall low wiring distance, connections between sensory and transmodal 

regions showed higher values, indicating overall integration of the nodes involved in the same 

networks and segregated patterns between networks, sensory and transmodal in particular, in 

multiscale cortical wiring space. After summarizing node-by-node wiring distance according to 

functional communities [43], we assessed age-effects on this wiring distance using linear mixed effect 

models controlling for sex, site, head motion, and subject-specific random intercepts [44]. We found 

increased wiring distance within ventral attention and default mode networks with advancing age 

(false discovery rate (FDR) < 0.05; Fig. 1D). 
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Fig. 1 | Adolescent development of multiscale cortical wiring. (A) Our approach combined three cortical wiring features 

i.e., geodesic distance (GD), microstructural profile covariance (MPC), and tract strength (TS). Matrices were normalized 

and concatenated prior to applying non-linear manifold learning, which identifies a coordinate system informed by 

cortical wiring. The scree plot shows eigenvalues of each estimated component, with error bars indicating the SD across 

ten repetitions. (B) We estimated two eigenvectors (E1, E2) from cortical wiring features. Averaged maps across ten 
repetitions are reported. The scatter plot represents each brain region projected onto the two-dimensional wiring space 

with different colors, mapped onto the cortical surface. Solid dots indicate mean across ten repetitions, and transparent 

dots with lines indicate results from each repetition. (C) Nodes in the wiring space were assigned to seven intrinsic 

functional communities [43]. Multiscale cortical wiring distance, i.e., the Euclidean distance between different nodes in 

the wiring space, was calculated at a node-level and summarized for intrinsic functional communities. (D) The t-statistics 

of age-effects on cortical wiring distance within- and between-networks are reported, with significant (FDR < 0.05) results 

marked with asterisks on the lower triangular matrix. The within-network effects are represented with radar plots, and 

significant networks are reported with asterisks. Significant between-network effects are reported with circular plots. 

Abbreviation: FDR, false discovery rate. 

 

Increases in between-network wiring distance were also observed between nodes of default mode and 

attention/transmodal regions, as well as between sensory and attention/limbic networks (FDR < 0.05). 

We additionally assessed age-effects on each cortical feature (i.e., GD, MPC, and TS) to quantify how 

wiring distance captures age-related changes on cortical organizations relative to change in single 

features (Fig. S1). When analyzing wiring distance, the effect size (i.e., mean of absolute t-statistics 

across network pairs) was 21.25 ± 12.46% higher than when studying only GD across ten repetitions 

(see Methods), 6.34 ± 5.99% higher than when studying MPC, and 5.49 ± 9.08% higher than when 

studying TS, indicating that wiring distance describes adolescent cortical reorganization more 

sensitively than each modality separately. When associating age-effects on wiring distance with those 

on each feature, wiring distance was strongly related to reductions in MPC (r = -0.75, FDR < 0.001), 

but not very much to TS (r = -0.11, FDR = 0.58) nor GD (r = 0.003, FDR = 0.99), supporting the 
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notion that increases in multiscale wiring distance reflected mostly an increased intracortical 

microstructural differentiation. As the overall manifold size (i.e., mean of wiring distance across all 

networks) was significantly associated with age (r = 0.19 ± 0.02, p < 0.001 across ten repetitions), we 

repeated linear mixed effect models after additionally controlling for mean wiring distance (Fig. S2). 

Despite decreases in the effect size, we observed overall consistent results, confirming that age-effects 

on wiring distance were not driven by the expansion in manifold space itself.  

 

Morphological associations 

In light of adolescent changes in cortical thickness reported previously [1,11,13,42], we first assessed 

the similarity of the spatial distribution of age-effects on cortical wiring to age-effects on thickness 

in our NSPN cohort. As expected, cortical thickness decreased in widespread cortical regions with 

advancing age (FDR < 0.05; Fig. 2A). Thickness effects only showed weak spatial association to 

changes in wiring measures, with a trend-level association to between-network wiring distance (r = -

0.12 ± 0.04 across ten repetitions, spin-test p followed by FDR = 0.06), but not with within-network 

measure (r = -0.02 ± 0.05, spin-test p followed by FDR = 0.27; Fig. 2B). Furthermore, mixed effect 

models assessed age-effects on wiring distance after controlling for cortical thickness at a node-level. 

This analysis, thus, examined wiring changes above and beyond morphological changes across age. 

Importantly, while age-effects on wiring distance within the ventral attention network decreased 

slightly, patterns remained consistent (Fig. 2C). The results suggest that the wiring related changes 

cannot be just explained by morphological alterations despite subtle spatial similarity of the changes 

in cortical topography.  

 

Fig. 2 | Cortical thickness effects. (A) The t-statistics of the identified regions that showed significant (FDR < 0.05) age-

related changes in cortical thickness. (B) Linear correlations between time-related changes in cortical thickness and 
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within/between-network wiring distance. (C) The t-statistics of age-effects on multiscale cortical wiring distance after 

controlling for cortical thickness, with significant (FDR < 0.05) results marked with asterisks. The within-network effects 

are represented with radar plots, and significant networks are reported with asterisks. Significant between-network effects 

are reported with circular plots. Abbreviation: FDR, false discovery rate. 

 

Associations with macroscale functional network maturation 

To evaluate functional associations of these changes in multiscale cortical wiring, we first assessed 

developmental shifts in functional connectivity patterns based on resting-state functional MRI 

obtained in the same subjects at equivalent time points. When we charted the development of 

functional connectivity across age, we found decreases in sensory-default mode network connectivity 

and increases in connectivity between sensory networks (FDR < 0.05; Fig. 3A). We then examined 

associations between structural and functional measures in two ways (Fig. 3B). Firstly, we associated 

structural cortical wiring distance and functional connectivity across intrinsic functional networks at 

a cross-sectional level and found strong negative structure-function coupling (r = -0.74, spin-test p < 

0.001). In other words, regions with increased wiring distance generally show weaker functional 

connectivity. Secondly, we assessed how the age-related changes in structural and functional 

measures were inter-related. To this end, we correlated the age-effects on wiring distance controlled 

for cortical thickness with the age-effects on functional connectivity. Here, we found a tendency for 

a negative association (r = -0.21, spin-test p = 0.09). The results indicate that cross-sectionally, weaker 

inter-connectivity in brain function between sensory and transmodal networks is coupled with higher 

cortical wiring distance between these networks. Moreover, age-related functional differentiation 

between sensory and default mode networks also tends to be reflected in increased differentiation in 

structural wiring during adolescence.  

 

Fig. 3 | Association between functional connectivity and wiring distance. (A) Age-effects on functional connectivity. 

Spatial maps are represented on brain surfaces, and t-statistics of age-effects are reported. The within-network effects are 
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represented with radar plots, and significant networks are reported with asterisks. Significant between-network effects are 

reported with circular plots. (B) (left) Cross-sectional and (right) longitudinal structure-function coupling between 

functional connectivity and cortical wiring distance. Histograms indicate distribution of correlation coefficients, and the 

actual r-values are represented with red bars. Abbreviation: FDR, false discovery rate. 

 

Sensitivity analysis 

We assessed whether our findings were robust with respect to several methodological variations.  

a) Parcellation scales. We repeated assessing age-effects using different parcellation scales (i.e., 100 

and 300 regions) and revealed consistent results (Fig. S3), indicating the robustness of our findings 

across different scales.  

b) Structural manifold generation using principal component analysis. Our main analysis estimated 

structural manifolds using diffusion map embedding [45], in keeping with a previous approach to 

study structural manifolds in healthy young adults [21,46]. We repeated our analysis after 

alternatively estimating structural manifolds using principal component analysis [47], and the 

manifolds and age-effects were similar (Fig. S4), confirming robustness.  

c) Parcellation scheme. We generated connectome manifolds and assessed adolescent remodeling 

using a functional (i.e., Schaefer) parcellation [48] instead of structural parcellation scheme [49], and 

found consistent results (Fig. S5), indicating the robustness of our analyses across different 

parcellations. 

 

 

DISCUSSION 

The current work longitudinally assessed adolescent maturation of cortical networks based on a 

comprehensive in vivo model that encompasses several dimensions of cortical wiring within a 

compact coordinate system [21]. Charting typical development from late childhood to early adulthood 

longitudinally, we observed marked increases in within- and between-network wiring distances in 

both sensory and transmodal association networks. Findings occurred rather independently of parallel 

changes in MRI-based cortical thickness measures, suggesting that cortical wiring changes occurred 

above and beyond commonly observed morphological maturation. Moreover, associating cortical 

structural wiring features with intrinsic functional connectivity obtained in the same subjects, we 

observed that functional network reconfigures in parallel with structural reorganization. Collectively, 

our work offers a novel perspective on how structural brain networks reconfigure during typical 

adolescence and how these changes give rise to ongoing functional maturation.  

Our work centered on a comprehensive model of structural wiring that integrated multiple dimensions 

of cortico-cortical connectivity [21], namely diffusion MRI tractography strength (TS), geodesic 

distance (GD), and microstructure profile covariance (MPC). Each feature taps into different aspects 

of structural wiring, grounded in seminal neuroanatomical work on the multiple facets of the cortical 

wiring scheme [50]. Synergistic integration of these features is hypothesized to comprehensively 

describe structural connectivity, and to thus shine a light into structure-function relationships in the 

developing brain. In fact, TS is an established measure of short- and long-range fibers in the white 

matter [51,52], whereas GD is computed within the cortical ribbon, approximating horizontal 

connectivity between adjacent cortical regions [24,53]. Similarity of intracortical microstructural 

profiles, quantified as MPC [28], is also recognized as an indicator of inter-regional connectivity 

[21,27,54,55]. In fact, the structural model of brain connectivity formulated in non-human animals 

predicts that areas with similar microstructure are more likely to be connected than areas with 

different connectivity profiles [56]. These findings were recently expanded to in vivo human 
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neuroanatomy by relating microstructural similarity to diffusion MRI-derived streamline strength 

[55,57] and to resting-state functional connectivity [28,58]. Here, we fused and mapped the three 

above cortical wiring features into a 2D coordinate system using manifold learning techniques 

[21,41,45]. By translating this approach previously formulated in adults [21] to adolescents, we 

demonstrated that the wiring space in youth overall resembles the one previously seen in adults. 

Indeed, the two principal dimensions of the wiring space represented sensory-fugal and anterior-

posterior gradients – both major axes of adult macroscale cortical topography [59–63]. On the other 

hand, we could obtain new insights into adolescent reconfigurations of structural networks via 

longitudinal analyses. The NSPN dataset follows an accelerated longitudinal design ranging from late 

childhood to young adulthood [16,40]. Compared to cross-sectional studies, longitudinal designs 

measure intra-individual changes in cortical features and chart developmental trajectories directly 

[3,20,64–66]. Our multiscale approach gathered evidence for developmental shifts in cortical wiring, 

indicative of increased wiring distances in multiple systems of the cortical mantle, with highest effects 

in default mode and ventral attention networks. These findings indicate a continued differentiation of 

cortico-cortical structural networks, which most markedly take place in transmodal systems at the 

apex of the cortical hierarchy [3,37,67,68]. Notably, wiring space analysis revealed increased effects 

compared to analysis of single features, suggesting that our compact multiscale approach may offer 

additional sensitivity in the study of adolescent development. These findings could thus recapitulate 

prior work in adolescence more generally and the NSPN dataset specifically, including our recent 

work showing overall changes in cortical myelination [16,69] as well as depth-dependent shifts in 

intracortical myeloarchitecture [17]. Moreover, several studies have described structural connectivity 

changes based on diffusion MRI tractography, reporting general increases in streamline strength in 

transmodal areas in adolescence [20,70], together with enhanced within-module integration and 

strengthening of structural hubs, sometimes alongside a weakening of more local connections [71,72]. 

In our work, different constituent wiring features contributed in a graded manner to our overall 

findings, with a marked association wiring distance increases and ongoing microstructural 

differentiation of transmodal areas from the rest of the brain [17]. 

Alterations in cortical morphology during adolescence are well established, and the prevailing 

findings in literature indicate widespread cortical thickness reductions with advancing age, a finding 

likely reflecting ongoing synaptic pruning and cortical myelination [10,16,73,74]. Here, by analyzing 

longitudinal cortical thickness changes in the same NSPN participants, we could confirm widespread 

cortical thinning in youth with advancing age. What’s more, we showed that wiring space changes 

were only partially attributable to these changes in cortical thickness, despite subtle resemblances in 

the overall spatial distribution of findings, suggesting that age-related structural wiring changes likely 

occurred above and beyond maturational effects on cortical morphology per se. In prior work in 

healthy adults [21], we could identify associations between in vivo cortical wiring space organization 

and intracortical factors, specifically cell-type specific gene expression as well as 

externopyramidization. Although these associations were indirect and based on separate datasets (in 

vivo MRI and histology-based post mortem gene expression information), they nevertheless 

supported a link between multiscale wiring and internal cortical microcircuitry that go beyond the 

changes measurable by cortical thickness measures alone. Such interactions between different scales 

of cortical organization during typical development could be further explored in studies obtaining 

wiring space data and gene expression in the same subjects or model systems.  

During adolescence, the age-related reconfiguration in functional connectome organization has 

recently been shown to mainly follow two distinct trajectories, labeled as conservative and disruptive 

modes [37]. Conservative modes involve the ongoing strengthening of already strong functional 

connectivity and primarily take place in primary cortical regions. On the other hand, disruptive 

functional maturational trajectories have been observed in cortical association areas and subcortical 

nodes, and are characterized by a strengthening of initially weak connections or as a weakening of 

initially strong connections [37]. These results complement our structural wiring space findings of an 
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alteration of functional network topologies in adolescence, which showed increases in wiring distance 

between sensory and transmodal regions. Furthermore, assessing spatial associations between age-

effects on structural wiring and functional connectivity, we observed that adolescent decreases in 

functional connectivity between sensory and association systems are marginally reflected in increased 

cortical wiring distances between these systems. These segregation patterns of sensory-transmodal 

networks echo prior studies in individuals aged 8-23 that has shown marked reconfigurations of 

structure-function coupling during development, particularly in sensory and transmodal regions, 

which further could support increased functional flexibility and cognitive control with advancing age 

during that time window [3,38,75].  

To conclude, we utilized a comprehensive model of cortical structural wiring and showed continued 

shifts in multiple brain networks in adolescence. Despite subtle spatial resemblance, wiring changes 

were relatively independent of changes in cortical morphology that co-occur in this time window. On 

the other hand, functional network trajectories occurred alongside structural wiring reconfigurations. 

Our multimodal framework, thus, provides novel insights into the coordination of structural and 

functional brain development in adolescence across multiple spatial scales.  

 

 

METHODS 

Participants 

We obtained imaging and phenotypic data from the NSPN 2400 cohort, which contains questionnaire 

data on 2,402 individuals (with MRI data in a subset of ~300) from adolescence to young adulthood 

in a longitudinal setting [16,40]. In this study, we included 199 participants who completed quality-

controlled (see Data preprocessing section) multimodal MRI scans consisting of T1-weighted, 

magnetization transfer (MT), diffusion MRI, and resting-state functional MRI for at least two time 

points (48% female; mean ± SD age = 18.84 ± 2.83 (between 14 and 25) years at baseline and 19.96 

± 2.84 (between 15 and 26) years at follow-up with inter-scan interval of 0.94 ± 0.17 (between 0.5 

and 1) years). Data were collected from three different sites: Wolfson Brain Imaging Centre; MRC 

Cognition and Brain Sciences Unit in Cambridge; and University College London. Participants 

provided informed written consent for each aspect of the study, and parental consent was obtained for 

those aged 14–15 years old. Ethical approval was granted for this study by the NHS NRES Committee 

East of England-Cambridge Central (project ID 97546). The authors assert that all procedures 

contributing to this work comply with the ethical standards of the relevant national and institutional 

committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. 

 

MRI acquisition 

Imaging data were obtained using a Siemens Magnetom TIM Trio 3T scanner at all sites. The T1-

weighted and MT sequences were acquired using a quantitative multiparameter mapping (MPM) 

sequence (repetition time (TR)/flip angle = 18.7ms/20º for T1-weighted and 23.7ms/6º for MT; six 

equidistance echo times (TE) = 2.2–14.7ms; voxel size = 1mm3; 176 slices; field of view (FOV) = 

256 × 240mm; matrix size = 256 × 240 × 176) [76]. The diffusion MRI data were acquired using a 

spin-echo echo-planar imaging (EPI) sequence (TR = 8,700ms; TE = 90ms; flip angle = 90º; voxel 

size = 2mm3; 70 slices; FOV = 192 × 192mm2; matrix size = 96 × 96 × 70; b-value = 1,000s/mm2; 

63 diffusion directions; and 6 b0 images). The resting-state functional MRI data were collected using 

a multi-echo EPI sequence with three different TEs (TR = 2.43 ms; TE = 13.0/30.55/48.1 ms; flip 

angle = 90º; voxel size = 3.75 × 3.75 × 4.18 mm3; 34 slices; FOV = 240 × 240 mm2; matrix size = 64 

× 64 × 34; and 269 volumes). 
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Data preprocessing 

T1-weighted data were processed using the fusion of neuroimaging preprocessing (FuNP) pipeline 

integrating AFNI, FSL, FreeSurfer, ANTs, and Workbench (https://gitlab.com/by9433/funp) [77–81], 

which is similar to the minimal preprocessing pipeline for the Human Connectome Project [82]. 

Gradient nonlinearity and b0 distortion correction, non-brain tissue removal, and intensity 

normalization were performed. The white and pial surfaces were generated by following the 

boundaries between different tissues [79,83–85]. The midthickness surface was generated by 

averaging the white and pial surfaces, and it was used to generate an inflated surface. Quality control 

involved visual inspection of surface reconstruction of T1-weighted data, and cases with faulty 

cortical segmentation were excluded. Surface-based co-registration between T1-weighted and MT 

weighted scans were performed. We generated 14 equivolumetric cortical surfaces within the cortex, 

especially between inner white and outer pial surfaces, and sampled MT intensity along these surfaces 

[28]. The diffusion MRI data were processed using MRtrix3 [23], including correction for 

susceptibility distortions, head motion, and eddy currents. The resting-state functional MRI data were 

processed using multi-echo independent component analysis (ME-ICA) pipeline 

(https://github.com/ME-ICA/me-ica) [86,87]. The first six volumes were discarded to allow for the 

magnetic field saturation, and slice timing was corrected. Motion correction parameters were 

estimated from the middle TE data by aligning all volumes to the first volume using rigid-body 

transformation. The co-registration transformation parameters from functional to structural image 

were estimated by registering the skull-stripped spatially concatenated multi-echo functional data to 

the skull-stripped anatomical image using affine transformation. The estimated motion correction and 

anatomical co-registration parameters were applied to each slice-timing corrected TE data and then 

temporally concatenated. The noise components were removed using principal component analysis 

followed by independent component analysis [86,87]. The processed functional MRI data were 

mapped to the standard grayordinate space (i.e., 32k Conte69) with a cortical ribbon-constrained 

volume-to-surface mapping algorithm. Finally, data were surface smoothed with 5 mm full width at 

half maximum.  

 

Multiscale cortical wiring features 

We calculated complementary cortical wiring features from different imaging sequences, namely GD 

from T1-weighted, MPC from MT, and TS from diffusion MRI (Fig. 1A). GD is a physical distance 

represented by the shortest paths between two points along the cortical surface [24,46,53]. To 

calculate the GD matrix, we first matched each vertex to the nearest voxel in volume space. Then we 

calculated the distance to all other voxels traveling through a grey/white matter mask using a Chamfer 

propagation (https://github.com/mattools/matImage/wiki/imGeodesics) [88]. Unlike a previously 

introduced approach that calculates only intra-hemispheric distance [24,46,53], this approach allows 

estimating interhemispheric projections [21]. We mapped GD to 200 cortical nodes parcellation 

scheme, which preserves the boundaries of the Desikan Killiany atlas [49]. Following our prior study 

in adults [28], the MPC matrix was constructed by calculating linear correlation of cortical depth-

dependent intensity profiles between different nodes, controlling for the average whole-cortex 

intensity profile based on the 200 parcels. The MPC matrix was thresholded at zero and log-

transformed. We generated the TS matrix from preprocessed diffusion MRI data using MRtrix3 [23]. 

Anatomical constrained tractography was performed using different tissue types derived from the T1-

weighted image, including cortical and subcortical grey matter, white matter, and cerebrospinal fluid 

[89]. We estimated co-registration transformation from T1-weighted to diffusion MRI data with 

boundary-based registration and applied the transformation to different tissue types to align them onto 

the native diffusion MRI space. The multi-shell and multi-tissue response functions were estimated 

[90], and constrained spherical deconvolution and intensity normalization were performed [91]. 

Seeding from all white matter voxels, the tractogram was generated using a probabilistic approach 
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[23,92] with 40 million streamlines, a maximum tract length of 250, and a fractional anisotropy cutoff 

of 0.06. Subsequently, we applied spherical-deconvolution informed filtering of tractograms (SIFT2) 

to optimize an appropriate cross-section multiplier for each streamline [93], and reconstructed whole-

brain streamlines weighted by cross-section multipliers. Reconstructed cross-section streamlines 

were mapped onto the 200 parcels to build TS matrix, and log-transformed [94,95]. 

 

Structural manifold identification 

We estimated structural manifolds based on the multiscale cortical features calculated above using an 

openly accessible normative manifold map approach (https://github.com/MICA-

MNI/micaopen/tree/master/structural_manifold) [21], which is now integrated in BrainSpace 

(https://github.com/MICA-MNI/BrainSpace) [41]. First, we rank normalized nonzero entries of the 

input matrices, and the less sparse matrices (i.e., GD and MPC) were rescaled to the same numerical 

range as the sparsest matrix (i.e., TS) to balance the contribution of each input measure (Fig. 1A). 

Notably, we rank normalized the inverted GD matrix to represent closer regions with larger values. 

We horizontally concatenated the normalized GD, MPC, and TS matrices and constructed an affinity 

matrix with a normalized angle kernel with 10% density, which quantifies the strength of cortical 

wiring between two regions. Structural manifolds were estimated via diffusion map embedding [45] 

(Fig. 1B), which is robust to noise and computationally efficient compared to other non-linear 

manifold learning techniques [96,97]. It is controlled by two parameters α and t, where α controls the 

influence of the density of sampling points on the manifold (α = 0, maximal influence; α = 1, no 

influence) and t controls the scale of eigenvalues of the diffusion operator. We set α = 0.5 and t = 0 to 

retain the global relations between data points in the embedded space, following prior applications 

[17,20,28,41,46,98,99]. Cortical regions with more similar inter-regional patterns are more proximal 

in this new structural manifold. To assess robustness, we repeated estimating structural manifolds ten 

times with different sets of participants. Specifically, we split the dataset into non-overlapping 

template (1/10) and non-template (9/10) partitions with similar distribution of age, sex, and site. The 

template manifold was generated using the averaged concatenated matrix of template dataset, and 

individual-level manifolds were estimated from the non-template dataset and aligned to the template 

manifold via Procrustes alignment [41,100]. We repeated generating connectome manifolds ten times 

with different template and non-template datasets.  

 

Age-effects on structural manifolds 

To chart age-effects on structural manifolds, we first calculated multiscale cortical wiring distance, 

which is the Euclidean distance between different brain regions in the manifold space (Fig. 1C) 

[21,101]. We stratified the node-level wiring distance based on intrinsic functional communities [43] 

and assessed age-effects on network-level wiring distance using a linear mixed effect model [44]. The 

model additionally controlled for sex, site, head motion (i.e., frame-wise displacement measured from 

diffusion MRI), and included a subject-specific random intercept. We corrected for multiple 

comparisons across all pairs of functional communities with FDR < 0.05 [102]. We repeated the age 

modeling ten times with different non-template individuals and reported only those network pairs 

showing significant effects across all repetitions (Fig. 1D). We additionally implemented mixed effect 

models for each cortical wiring feature separately (i.e., GD, MPC, and TS) to assess how much the 

age-effects improved when we considered multiscale cortical wiring distance (Fig. S1). The age-

effect t-statistics of each feature were correlated with those of wiring distance to assess which features 

are strongly related to adolescent development in wiring distance. To assess the association between 

global manifold effects and age, we calculated linear correlation between age and mean wiring 

distance across the whole network. We also implemented a linear mixed effect model that additionally 

controlled for mean wiring distance to assess whether the age-effects on wiring distance are affected 

by global changes in the size of manifold space (Fig. S2).  
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Association with cortical thickness 

It has been shown that cortical thickness shows significant changes across age [1,11,13,42]. We first 

replicated these morphological findings by assessing age-effects on cortical thickness measured using 

T1-weighted MRI (Fig. 2A). Next, we linearly correlated time-related changes in wiring distance and 

those in cortical thickness to assess spatial similarity across the cortex (Fig. 2B). The significance of 

the similarity was assessed based on 1,000 spin tests that account for spatial autocorrelation [41,103], 

and FDR corrected across within and between-network correlations. We then implemented the linear 

mixed effect model using the wiring distance controlled for cortical thickness to assess whether the 

effects are independent of the cortical thickness maturation (Fig. 2C). We repeated these analyses ten 

times with different non-template individuals, and only the network pairs that showed consistent 

results across repetitions were reported.  

 

Association between structural manifolds and functional connectivity 

Structure-function coupling analyses assessed how age-effects on multiscale cortical wiring related 

to functional connectivity. First, we constructed the functional connectivity matrix by calculating 

linear correlations of resting-state functional time series between different brain regions, controlling 

for average whole-cortex signals. After row-wise thresholding remaining 10% of values for each row 

in the connectivity matrix, assessed age-effects on z-transformed functional connectivity to obtain 

node by node t-statistics (Fig. 3A). Then, we assessed structure-function correspondence by 

computing linear correlations between the functional connectivity and wiring distance, as well as age-

effect t-statistics of each measure (Fig. 3B). We calculated correlations 1,000 times with spin test 

[41,103].  

 

Sensitivity analysis 

a) Parcellation scales. Our main analyses were based on the structural atlas of 200 cortical nodes 

defined using Desikan Killiany atlas [49]. To assess robustness across multiple parcellation scales, 

we generated structural manifolds using structural atlases with 100 and 300 parcels and repeated the 

age modeling (Fig. S3).  

b) Structural manifold generation using principal component analysis. Instead of relying on diffusion 

map embedding [45], we generated structural manifolds using principal component analysis [47]. 

Then, we repeated calculating multiscale cortical wiring distance and assessed age-effects to evaluate 

consistency of our findings (Fig. S4). 

c) Functional parcellation. We also repeated structural manifold generation and age modeling using 

the functional Schaefer parcellation scheme with 200 parcels [48] (Fig. S5). 
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DATA AND CODE AVAILABILITY 

The imaging and phenotypic data were provided by the Neuroscience in Psychiatry Network (NSPN) 

2400 cohort. As stated in https://doi.org/10.1093/ije/dyx117, the NSPN project is committed to make 

the anonymised dataset fully available to the research community, and participants have consented to 

their de-identified data being made available to other researchers. A data request can be made to 

openNSPN@medschl.cam.ac.uk. Codes for multimodal connectome manifold generation are 

provided at https://github.com/MICA-MNI/micaopen/tree/master/structural_manifold and 

https://github.com/MICA-MNI/BrainSpace, and those for wiring distance calculation are provided at 

https://github.com/MICA-MNI/micaopen/tree/master/manifold_features.  
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Supporting Information 

 

Fig. S1 | Age-effects on each cortical wiring feature. The spatial maps of GD, MPC, and TS are 

shown on the brain surface. The t-statistics of age-related changes on each cortical feature within- 

and between-networks, with significant (FDR < 0.05) results marked with asterisks. Abbreviation: 

FDR, false discovery rate. 
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Fig. S2 | Age-effects on multiscale cortical wiring distance after controlling for mean wiring 

distance. The t-statistics of age-effects are reported in the matrix, and within- and between-network 

effects are represented with radar and circular plots, respectively. For details, see Fig. 1.  
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Fig. S3 | Structural manifolds and age-effects on multiscale cortical wiring distance using 

different parcellation scales. (A) Results using 100 and (B) 300 parcellations. Two eigenvectors (E1, 

E2) estimated from the cortical wiring features (top) and t-statistics of age-effects within- and 

between-networks (bottom) are reported. For details, see Fig. 1. 
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Fig. S4 | Structural manifolds derived using principal component analysis and age-effects on 

multiscale cortical wiring distance. (A) Two eigenvectors (E1, E2) estimated from the cortical 

wiring features. (B) The wiring distance summarized based on functional communities. (C) The t-

statistics of age-effects on wiring distance within- and between-networks. For details, see Fig. 1. 
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Fig. S5 | Structural manifolds and age-effects on multiscale cortical wiring distance using 

Schaefer 200 parcellation. (A) Two eigenvectors (E1, E2) estimated from the cortical wiring features. 

(B) The wiring distance summarized based on functional communities. (C) The t-statistics of age-

effects on wiring distance within- and between-networks. For details, see Fig. 1. 
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