A user-friendly tool for cloud-based whole slide image segmentation, with examples from renal histopathology – **Supplemental Material**

SUPPLIMENTAL FIGURES

Supplemental Fig. 1 | Flowchart of the custom DeepLab WSI input pipeline.

The details of the custom input pipeline used by our modified DeepLab code to ingest WSI data during training. The *large_image* python library (<u>https://github.com/girder/large_image/</u>) is used to extract patches from WSIs on-the-fly. This process uses a modified version of our *HistoFetch* pipeline¹, which has been further modified to work for supervised learning tasks. For the network training, pixel locations from the image data corresponding to each data class are randomly selected by exploiting the XML or JSON annotation files. This ensures class balancing for network training by selecting appropriately sampled pixel regions for all the classes. If the background class is selected, a random location within the tissue region (which has been pre-segmented via morphological processing) is selected. During application development, we found that occasionally providing the network with non-tissue patches as background helped the batch normalization parameters to generalize, which reduced error. We therefore added a parameter defining the probability of selection of a non-tissue region, allowing patches within and outside the tissue regions to be included in the analyses. When using a trained model to segment structures (prediction on new slides), a similar pipeline is used. However, image patches to be processed are extracted deterministically from an overlapping grid pattern (excluding non-tissue regions), to ensure the entire tissue region is processed for full segmentation. This input pipeline is predominantly implemented in the following files in the DeepLab codebase available via github: /datasets/wsi data generator.py and /utils/wsi dataset_util large_image.py

Supplemental Fig. 2 | Glomeruli segmentation performance using IFTA segmentation models.

The glomerular segmentation performance using the five models trained for segmenting IFTA and glomeruli (see *IFTA SEGMENTATION – adaptability* under *RESULTS* and *Fig. 4*). The performance is quantified on the *IFTATestSet 1* with 29 holdout renal tissue WSIs, and the independent test set *IFTATestSet 2* with 17 renal tissue WSIs and annotation ground-truth originated from an institution independent of the training dataset and *IFTATestSet 1*. We observe the same trend in performance as IFTA segmentation as shown in *Fig. 4*. Namely, the *Combined full* model delivers the best performance, while the *Combined 1/3rd* model performs better than any of the models trained on a single institution data alone.

Supplemental Fig. 3 | ROC performance for glomeruli and vessel segmentation.

Panel [a] shows the ROC performance for glomerular segmentation on *GlomTestSet 1* with 100 holdout renal tissue WSIs using *glomerular model* (see *GLOMERULI SEGMENTATION – scalability* in *RESULTS* and *Fig. 2*). [b] shows the ROC performance for artery segmentation on the holdout dataset *VessTestSet* with 58 renal tissue WSIs using the four initialization strategies for vessel segmentation (see *VESSEL SEGMENTATION – adaptability* in *RESULTS* and *Fig. 3*). [c] shows the ROC performance for arteriole segmentation on the same holdout dataset with same initialization strategies as used in [b].

Supplemental Fig. 4 | Correlation of percent IFTA estimation between methods.

Pearson correlation coefficient quantifying pairwise agreement between computationally and manually estimated IFTA measures for 26 CKD renal tissue WSIs from Kidney Precision Medicine Project (KPMP) cohort data, *KPMPTestSet*. The full confusion matrix of correlations of computationally estimated and visually manually estimated percent IFTA for the KPMP test cohort. Pairwise correlations were measured for each pair of the three KPMP pathologists and the five computational models trained for IFTA segmentation (see *IFTA SEGMENTATION – adaptability* under *RESULTS*). This result is an extension of *Fig. 4c*. Pearson correlation coefficients with *p*-value < 0.05 are shown.

Quantifying UMAP separability - murine models study

Supplemental Fig. 5 | Quantifying UMAP separability for the murine model studies.

K-nearest neighbors (KNN) classifier performance plotting the *Cohen's Kappa* measure as a function of *K* neighbors for classifying the unsupervised UMAP features with respect to disease vs control status for the murine kidney disease models (see *Fig. 5*). This analysis was done using 10-fold cross validation using a similar method as formalized in a previous work².

TABLE OF ABBREVIATIONS

Supplementary Table 1 | Features measured on each glomerulus.

AUC	Area under the curve
CKD	Chronic kidney disease
CNN	Convolutional neural network
DSA	Digital slide archive
eGFR	Estimated glomerular filtration rate
FSGS	Focal segmental glomerulosclerosis
GPU	Graphics processing unit
GTEx	Genotype-tissue expression
H-AI-L	Human – Artificial Intelligence – Loop
H&E	Hematoxylin and eosin (stain)
HIVAN	HIV-associated nephropathy
IFTA	Interstitial fibrosis and tubular atrophy
loU	Intersection over Union (Jaccard index)
JSON	JavaScript object notation
KD	Knockdown
KPMP	Kidney precision medicine project
MCC	Matthews correlation coefficient
PAS	Periodic acid–Schiff (stain)
PNG	Portable network graphics
RAM	Random access memory
ROC	Receiver operating characteristic
STZ	Streptozotocin
T2DN	Type 2 diabetic nephropathy
uACR	Albumin to creatinine ratio
UMAP	Uniform manifold approximation and projection
uPCR	Urinary protein to creatinine ratio
VRAM	Video RAM
WSI	Whole slide image
XML	Extensible markup language

GLOMERULAR FEATURES

Supplementary Table 2 | Features measured on each glomerulus.

Note that each segmented glomerulus is further computationally sub-compartmentalized for PAS+ area, nuclei, and luminal white spaces, and the features are subsequently quantified from these sub-compartments using a method as discussed in our previous work3. In the list below C represents the color features, D the distance features, M the morphological features, T the textural features, and PAS+ the periodic acid-Schiff positive features.

Index	Feature Name	Туре
1	Mean of red values in PAS+ regions	С
2	Mean of green values in PAS+ regions	С
3	Mean of blue values in PAS+ regions	С
4	Standard deviation of red values in PAS+ regions	С
5	Standard deviation of green values in PAS+ regions	С
6	Standard deviation of blue values in PAS+ regions	С
7	Mean of red values in luminal regions	С
8	Mean of green values in luminal regions	С
9	Mean of blue values in luminal regions	С
10	Standard deviation of red values in luminal regions	С
11	Standard deviation of green values in luminal regions	С
12	Standard deviation of blue values in luminal regions	С
13	Mean of red values in nuclear regions	С
14	Mean of green values in nuclear regions	С
15	Mean of blue values in nuclear regions	С
16	Standard deviation of red values in nuclear regions	С
17	Standard deviation of green values in nuclear regions	С
18	Standard deviation of blue values in nuclear regions	С
19	Mean distance of luminal object centroids from glomerular centroid	D
20	Mean of mean distances of luminal object centroids from glomerular boundary	D
21	Mean of maximum distances of luminal object centroids from glomerular boundary	D
22	Mean of minimum distances of luminal object centroids from glomerular boundary	D
23	Mean of mean distances of luminal object centroids from themselves	D
24	Mean of maximum distances of luminal object centroids from themselves	D
25	Mean of minimum distances of luminal object centroids from themselves	D
26	Mean distance of PAS+ object centroids from glomerular centroid	D
27	Mean of mean distances of PAS+ object centroids from glomerular boundary	D
28	Mean of maximum distances of PAS+ object centroids from glomerular boundary	D
29	Mean of minimum distances of PAS+ object centroids from glomerular boundary	D
30	Mean of mean distances of PAS+ object centroids from themselves	D
31	Mean of maximum distances of PAS+ object centroids from themselves	D
32	Mean of minimum distances of PAS+ object centroids from themselves	D
33	Mean distance of nuclear object centroids from glomerular centroid	D
34	Mean of mean distances of nuclear object centroids from glomerular boundary	D
35	Mean of maximum distances of nuclear object centroids from glomerular boundary	D
36	Mean of minimum distances of nuclear object centroids from glomerular boundary	D
37	Mean of mean distances of nuclear object centroids from themselves	D
38	Mean of maximum distances of nuclear object centroids from themselves	D
39	Mean of minimum distances of nuclear object centroids from themselves	D
40	Average luminal object solidity	М
41	Average PAS+ region contained in luminal object boundaries	М

42	Average nuclear region contained in luminal object boundaries	Μ
43	Sum total luminal objects' areas	М
44	Mean of luminal objects' areas	М
45	Median of luminal objects' areas	М
46	Average PAS+ object solidity	М
47	Average lumina region contained in PAS+ object boundaries	М
48	Average nuclear region contained in PAS+ object boundaries	М
49	Sum total PAS+ objects' areas	М
50	Mean of PAS+ objects' areas	М
51	Median of PAS+ objects' areas	М
52	Mean ratio of PAS+ pixels lying just outside nuclear perimeter to length of perimeter Mean ratio of luminal pixels lying just outside nuclear perimeter to length of	M
53	perimeter	IVI
54	Mean nuclear perimeter pixel count	M
55	Sum total nuclear area	M
56	Mean nuclear areas	M
57	Mode nuclear areas	M
58	Total glomerular area	Μ
59	Total PAS+ object number	Μ
60	Total luminal object number	Μ
61	Total nucleus number	Μ
62	Sum of PAS+ distance transform values $0\mu m < d \le 2.5\mu m$	Μ
63	Sum of PAS+ distance transform values $2.5\mu m < d \le 5\mu m$	Μ
64	Sum of PAS+ distance transform values $5\mu m < d \le 250\mu m$	Μ
65	Maximum PAS+ distance transform value $2.5\mu m < d \le 5\mu m$	Μ
66	Number of connected objects with PAS+ distance transform value $0\mu m < d \le 2.5\mu m$	Μ
67	Number of connected objects with PAS+ distance transform value 2.5 μm < d \leq 5 μm	Μ
68	Mean of PAS+ distance transform values $0\mu m < d \le 2.5\mu m$	Μ
69	Mean of PAS+ distance transform values $2.5\mu m < d \le 5\mu m$	Μ
70	Median of PAS+ distance transform values $0\mu m < d \le 2.5\mu m$	Μ
71	Median of PAS+ distance transform values $2.5\mu m < d \le 5\mu m$	Μ
72	Mean area of objects with PAS+ distance transform value $0\mu m < d \le 2.5\mu m$	Μ
73	Median area of objects with PAS+ distance transform value $0\mu m < d \le 2.5\mu m$	Μ
74	Maximum area of objects with PAS+ distance transform value $0\mu m < d \le 2.5\mu m$	Μ
75	Mean area of objects with PAS+ distance transform value $2.5\mu m < d \le 5\mu m$	Μ
76	Median area of objects with PAS+ distance transform value $2.5\mu m < d \le 5\mu m$	Μ
77	Count of pixels with PAS+ distance transform value 0.25 μ m < d \leq 0.75 μ m	Μ
78	Count of pixels with PAS+ distance transform value 0.75 μ m < d \leq 1.25 μ m	Μ
79	Count of pixels with PAS+ distance transform value $1.25\mu m < d \le 1.75\mu m$	Μ
80	Count of pixels with PAS+ distance transform value 1.75 μ m < d \leq 2.25 μ m	М
81	Count of pixels with PAS+ distance transform value 2.25 μ m < d \leq 2.75 μ m	М
82	Count of pixels with PAS+ distance transform value 2.75 μ m < d \leq 3.25 μ m	Μ
83	Count of pixels with PAS+ distance transform value $3.25\mu m < d \le 3.75\mu m$	Μ
84	Count of pixels with PAS+ distance transform value 3.75 μ m < d \leq 4.25 μ m	Μ
85	Count of pixels with PAS+ distance transform value 4.25 μ m < d \leq 4.75 μ m	Μ
86	Count of pixels with PAS+ distance transform value 4.75 μ m < d \leq 5.25 μ m	Μ
87	Count of pixels with PAS+ distance transform value $5.25\mu m < d \le 5.75\mu m$	М
88	Count of pixels with PAS+ distance transform value $5.75\mu m < d \le 6.25\mu m$	М

89	Count of pixels with PAS+ distance transform value $6.25\mu m < d \le 6.75\mu m$	Μ
90	Count of pixels with PAS+ distance transform value 6.75 μ m < d \leq 7.25 μ m	Μ
91	Count of pixels with PAS+ distance transform value 7.25 μ m < d \leq 7.75 μ m	М
92	Count of pixels with PAS+ distance transform value 7.75 μ m < d \leq 8.25 μ m	М
93	Count of pixels with PAS+ distance transform value $8.25\mu m < d \le 8.75\mu m$	М
94	Count of pixels with PAS+ distance transform value 8.75 μ m < d \leq 9.25 μ m	М
95	Count of pixels with PAS+ distance transform value $9.25\mu m < d \le 9.75\mu m$	М
96	Count of pixels with PAS+ distance transform value 9.75 μ m < d \leq 10.25 μ m	м
97	Count of pixels with PAS+ distance transform value $10.25\mu m < d \le 10.75\mu m$	м
98	Count of pixels with PAS+ distance transform value $10.75\mu m < d \le 11.25\mu m$	М
99	Count of pixels with PAS+ distance transform value $11.25\mu m < d \le 11.75\mu m$	М
100	Count of pixels with PAS+ distance transform value $11.75\mu m < d \le 12.25\mu m$	М
101	Count of pixels with PAS+ distance transform value $12.25\mu m < d \le 12.75\mu m$	М
102	Count of pixels with PAS+ distance transform value $12.75\mu m < d \le 13.25\mu m$	М
103	Count of pixels with PAS+ distance transform value $13.25\mu m < d \le 13.75\mu m$	М
104	Count of pixels with PAS+ distance transform value $13.75\mu m < d \le 14.25\mu m$	м
105	Count of pixels with PAS+ distance transform value $14.25\mu m < d \le 14.75\mu m$	М
106	Count of pixels with PAS+ distance transform value $14.75\mu m < d \le 15.25\mu m$	м
107	Count of pixels with PAS+ distance transform value $15.25\mu m < d \le 15.75\mu m$	м
108	Count of pixels with PAS+ distance transform value $15.75\mu m < d \le 16.25\mu m$	м
109	Count of pixels with PAS+ distance transform value $16.25\mu m < d \le 16.75\mu m$	м
110	Count of pixels with PAS+ distance transform value $16.75\mu m < d \le 17.25\mu m$	м
111	Count of pixels with PAS+ distance transform value $17.25\mu m < d \le 17.75\mu m$	м
112	Count of pixels with PAS+ distance transform value $17.75\mu m < d \le 18.25\mu m$	м
113	Count of pixels with PAS+ distance transform value $18.25\mu m < d \le 18.75\mu m$	м
114	Count of pixels with PAS+ distance transform value $18.75\mu m < d \le 19.25\mu m$	м
115	Count of pixels with PAS+ distance transform value $19.25\mu m < d \le 19.75\mu m$	м
116	Count of pixels with PAS+ distance transform value $19.75\mu m < d \le 500\mu m$	м
117	Count of pixels with luminal distance transform value $0.25\mu m < d \le 0.5\mu m$	м
118	Count of pixels with luminal distance transform value $0.5\mu m < d \le 0.75\mu m$	м
119	Count of pixels with luminal distance transform value 0.75 μ m < d \leq 1 μ m	м
120	Count of pixels with luminal distance transform value $1\mu m < d \le 1.25\mu m$	м
121	Count of pixels with luminal distance transform value $1.25\mu m < d \le 1.5\mu m$	м
122	Count of pixels with luminal distance transform value $1.5\mu m < d \le 1.75\mu m$	м
123	Count of pixels with luminal distance transform value $1.75\mu m < d \le 2\mu m$	М
124	Count of pixels with luminal distance transform value $2\mu m < d \le 2.25\mu m$	М
125	Count of pixels with luminal distance transform value 2.25 μ m < d \leq 2.5 μ m	М
126	Count of pixels with luminal distance transform value $2.5\mu m < d \le 2.75\mu m$	М
127	Count of pixels with luminal distance transform value 2.75 μ m < d \leq 3 μ m	М
128	Count of pixels with luminal distance transform value $3\mu m < d \le 3.25\mu m$	М
129	Count of pixels with luminal distance transform value $3.25\mu m < d \le 3.5\mu m$	М
130	Count of pixels with luminal distance transform value $3.5\mu m < d \le 3.75\mu m$	М
131	Count of pixels with luminal distance transform value 3.75 μ m < d \leq 4 μ m	м
132	Count of pixels with luminal distance transform value $4\mu m < d \le 4.25\mu m$	м
133	Count of pixels with luminal distance transform value 4.25 μ m < d \leq 4.5 μ m	м
134	Count of pixels with luminal distance transform value $4.5\mu m < d \le 4.75\mu m$	м
135	Count of pixels with luminal distance transform value 4.75 μ m < d \leq 5 μ m	м
136	Count of pixels with luminal distance transform value $5\mu m < d \le 5.25\mu m$	М

137	Count of pixels with luminal distance transform value $5.25\mu m < d \le 5.5\mu m$	Μ
138	Count of pixels with luminal distance transform value $5.5\mu m < d \le 5.75\mu m$	М
139	Count of pixels with luminal distance transform value 5.75 μ m < d \leq 6 μ m	Μ
140	Count of pixels with luminal distance transform value $6\mu m < d \le 6.25\mu m$	М
141	Count of pixels with luminal distance transform value $6.25\mu m < d \le 6.5\mu m$	М
142	Count of pixels with luminal distance transform value $6.5\mu m < d \le 6.75\mu m$	М
143	Count of pixels with luminal distance transform value 6.75 μ m < d \leq 7 μ m	М
144	Count of pixels with luminal distance transform value $7\mu m < d \le 7.25\mu m$	М
145	Count of pixels with luminal distance transform value 7.25 μ m < d \leq 7.5 μ m	М
146	Count of pixels with luminal distance transform value 7.5 μ m < d \leq 7.75 μ m	М
147	Count of pixels with luminal distance transform value 7.75 μ m < d \leq 8 μ m	М
148	Count of pixels with luminal distance transform value $8\mu m < d \le 8.25\mu m$	М
149	Count of pixels with luminal distance transform value 8.25 μ m < d \leq 8.5 μ m	М
150	Count of pixels with luminal distance transform value $8.5\mu m < d \le 8.75\mu m$	М
151	Count of pixels with luminal distance transform value 8.75 μ m < d \leq 9 μ m	М
152	Count of pixels with luminal distance transform value $9\mu m < d \le 9.25\mu m$	М
153	Count of pixels with luminal distance transform value 9.25 μ m < d \leq 9.5 μ m	М
154	Count of pixels with luminal distance transform value $9.5\mu m < d \le 9.75\mu m$	М
155	Count of pixels with luminal distance transform value 9.75 μ m < d \leq 10 μ m	М
156	Count of pixels with luminal distance transform value $10\mu m < d \le 10.25\mu m$	М
157	Count of pixels with luminal distance transform value $10.25 \mu m < d \le 10.5 \mu m$	М
158	Count of pixels with luminal distance transform value $10.5\mu m < d \le 10.75\mu m$	М
159	Count of pixels with luminal distance transform value $10.75\mu m < d \le 11\mu m$	М
160	Count of pixels with luminal distance transform value $11\mu m < d \le 11.25\mu m$	М
161	Count of pixels with luminal distance transform value $11.25\mu m < d \le 11.5\mu m$	М
162	Count of pixels with luminal distance transform value $11.5\mu m < d \le 11.75\mu m$	М
163	Count of pixels with luminal distance transform value $11.75\mu m < d \le 12\mu m$	М
164	Count of pixels with luminal distance transform value $12\mu m < d \le 12.25\mu m$	М
165	Count of pixels with luminal distance transform value $12.25\mu m < d \le 12.5\mu m$	М
166	Count of pixels with luminal distance transform value $12.5\mu m < d \le 12.75\mu m$	М
167	Count of pixels with luminal distance transform value $12.75\mu m < d \le 13\mu m$	М
168	Count of pixels with luminal distance transform value $13\mu m < d \le 13.25\mu m$	М
169	Count of pixels with luminal distance transform value $13.25 \mu m < d \le 13.5 \mu m$	М
170	Count of pixels with luminal distance transform value 13.5 μ m < d \leq 13.75 μ m	М
171	Count of pixels with luminal distance transform value 13.75µm < d \leq 14µm	М
172	Count of pixels with luminal distance transform value $14\mu m < d \le 14.25\mu m$	М
173	Count of pixels with luminal distance transform value $14.25 \mu m < d \le 14.5 \mu m$	М
174	Count of pixels with luminal distance transform value 14.5 μ m < d \leq 14.75 μ m	М
175	Count of pixels with luminal distance transform value 14.75 μ m < d \leq 15 μ m	М
176	Count of pixels with luminal distance transform value $15\mu m < d \le 500\mu m$	М
177	Count of pixels with nuclear distance transform value $0.25\mu m < d \le 0.5\mu m$	М
178	Count of pixels with nuclear distance transform value $0.5\mu m < d \le 0.75\mu m$	М
179	Count of pixels with nuclear distance transform value $0.75\mu m < d \le 1\mu m$	М
180	Count of pixels with nuclear distance transform value $1\mu m < d \le 1.25\mu m$	M
181	Count of pixels with nuclear distance transform value $1.25 \mu m < d \le 1.5 \mu m$	M
182	Count of pixels with nuclear distance transform value $1.5 \mu m < d \le 1.75 \mu m$	M
183	Count of pixels with nuclear distance transform value $1.75 \mu m < d \le 2 \mu m$	М
184	Count of pixels with nuclear distance transform value $2\mu m < d \le 2.25\mu m$	M

185	Count of pixels with nuclear distance transform value $2.25\mu m < d \le 2.5\mu m$	Μ
186	Count of pixels with nuclear distance transform value $2.5\mu m < d \le 2.75\mu m$	М
187	Count of pixels with nuclear distance transform value 2.75 μ m < d \leq 3 μ m	М
188	Count of pixels with nuclear distance transform value $3\mu m < d \le 3.25\mu m$	М
189	Count of pixels with nuclear distance transform value $3.25\mu m < d \le 3.5\mu m$	М
190	Count of pixels with nuclear distance transform value $3.5\mu m < d \le 3.75\mu m$	М
191	Count of pixels with nuclear distance transform value $3.75\mu m < d \le 4\mu m$	М
192	Count of pixels with nuclear distance transform value $4\mu m < d \le 4.25\mu m$	М
193	Count of pixels with nuclear distance transform value 4.25 μ m < d \leq 4.5 μ m	М
194	Count of pixels with nuclear distance transform value $4.5\mu m < d \le 4.75\mu m$	М
195	Count of pixels with nuclear distance transform value 4.75 μ m < d \leq 5 μ m	М
196	Count of pixels with nuclear distance transform value $5\mu m < d \le 500\mu m$	М
197	Count of pixels with glomerular distance transform value 0.5 μ m < d \leq 6.75 μ m	М
198	Count of pixels with glomerular distance transform value 6.75 μ m < d \leq 13 μ m	М
199	Count of pixels with glomerular distance transform value $13\mu m < d \le 19.25\mu m$	М
200	Count of pixels with glomerular distance transform value $19.25\mu m < d \le 25.5\mu m$	М
201	Count of pixels with glomerular distance transform value $25.5\mu m < d \le 31.75\mu m$	М
202	Count of pixels with glomerular distance transform value $31.75\mu m < d \le 38\mu m$	М
203	Count of pixels with glomerular distance transform value $38\mu m < d \le 44.25\mu m$	М
204	Count of pixels with glomerular distance transform value 44.25 μ m < d \leq 50.5 μ m	М
205	Count of pixels with glomerular distance transform value $50.5\mu m < d \le 56.75\mu m$	М
206	Count of pixels with glomerular distance transform value 56.75 μ m < d \leq 63 μ m	М
207	Count of pixels with glomerular distance transform value $63\mu m < d \le 69.25\mu m$	М
208	Count of pixels with glomerular distance transform value 69.25 μ m < d \leq 75.5 μ m	М
209	Count of pixels with glomerular distance transform value 75.5 μ m < d \leq 81.75 μ m	М
210	Count of pixels with glomerular distance transform value 81.75µm < d ≤ 88µm	М
211	Count of pixels with glomerular distance transform value $88\mu m < d \le 94.25\mu m$	М
212	Count of pixels with glomerular distance transform value 94.25 μ m < d \leq 100.5 μ m	М
213	Count of pixels with glomerular distance transform value 100.5 μ m < d \leq 106.75 μ m	М
214	Count of pixels with glomerular distance transform value 106.75 μ m < d \leq 113 μ m	М
215	Count of pixels with glomerular distance transform value $113\mu m < d \le 119.25\mu m$	М
216	Count of pixels with glomerular distance transform value $119.25\mu m < d \le 125.5\mu m$	М
217	Count of pixels with glomerular distance transform value $125.5\mu m < d \le 131.75\mu m$	М
218	Count of pixels with glomerular distance transform value $131.75\mu m < d \le 138\mu m$	М
219	Count of pixels with glomerular distance transform value $138\mu m < d \le 144.25\mu m$	М
220	Count of pixels with glomerular distance transform value $144.25\mu m < d \le 5000\mu m$	М
221	Number nuclear pixels contained radius $0\mu m < R \le 25\mu m$	М
222	Number nuclear pixels contained radius $25\mu m < R \le 50\mu m$	М
223	Number nuclear pixels contained radius 50µm < R ≤ 75µm	М
224	Number nuclear pixels contained radius 75µm < R ≤ 100µm	М
225	Number nuclear pixels contained radius 100µm < R ≤ 125µm	М
226	Number nuclear pixels contained radius 125µm < R ≤ 150µm	М
227	Number nuclear pixels contained radius 150µm < R ≤ 175µm	М
228	Number nuclear pixels contained radius 175µm < R ≤ 200µm	М
229	Number nuclear pixels contained radius 200µm < R ≤ 225µm	М
230	Number nuclear pixels contained radius 225µm < R ≤ 250µm	М
231	Number nuclear pixels contained radius 250µm < R ≤ 325µm	М
232	Number luminal pixels contained radius 0µm < R ≤ 25µm	М

233	Number luminal pixels contained radius $25\mu m < R \le 50\mu m$	Μ
234	Number luminal pixels contained radius $50\mu m < R \le 75\mu m$	М
235	Number luminal pixels contained radius 75μm < R ≤ 100μm	М
236	Number luminal pixels contained radius 100µm < R ≤ 125µm	М
237	Number luminal pixels contained radius 125µm < R ≤ 150µm	М
238	Number luminal pixels contained radius 150μm < R ≤ 175μm	М
239	Number luminal pixels contained radius 175µm < R ≤ 200µm	М
240	Number luminal pixels contained radius $200\mu m < R \le 225\mu m$	м
241	Number luminal pixels contained radius $225\mu m < R \le 250\mu m$	м
242	Number luminal pixels contained radius $250\mu m < R \le 325\mu m$	М
243	Number PAS+ pixels contained radius $0\mu m < R \le 25\mu m$	М
244	Number PAS+ pixels contained radius $25\mu m < R \le 50\mu m$	М
245	Number PAS+ pixels contained radius $50\mu m < R \le 75\mu m$	М
246	Number PAS+ pixels contained radius $75\mu m < R \le 100\mu m$	М
247	Number PAS+ pixels contained radius $100\mu m < R \le 125\mu m$	М
248	Number PAS+ pixels contained radius $125\mu m < R \le 150\mu m$	М
249	Number PAS+ pixels contained radius 150µm < R ≤ 175µm	М
250	Number PAS+ pixels contained radius 175µm < R ≤ 200µm	М
251	Number PAS+ pixels contained radius $200\mu m < R \le 225\mu m$	М
252	Number PAS+ pixels contained radius $225\mu m < R \le 250\mu m$	М
253	Number PAS+ pixels contained radius 250µm < R ≤ 325µm	М
254	Number nuclear pixels contained between theta $-180 < R \le -162$	М
255	Number nuclear pixels contained between theta $-162 < R \le -144$	М
256	Number nuclear pixels contained between theta $-144 < R \le -126$	М
257	Number nuclear pixels contained between theta $-126 < R \le -108$	М
258	Number nuclear pixels contained between theta $-108 < R \le -90$	М
259	Number nuclear pixels contained between theta $-90 < R \le -72$	М
260	Number nuclear pixels contained between theta $-72 < R \le -54$	М
261	Number nuclear pixels contained between theta -54 < R \leq -36	М
262	Number nuclear pixels contained between theta $-36 < R \le -18$	М
263	Number nuclear pixels contained between theta $-18 < R \le 0$	М
264	Number nuclear pixels contained between theta $0 < R \le 18$	М
265	Number nuclear pixels contained between theta $18 < R \le 36$	М
266	Number nuclear pixels contained between theta $36 < R \le 54$	М
267	Number nuclear pixels contained between theta $54 < R \le 72$	М
268	Number nuclear pixels contained between theta $72 < R \le 90$	М
269	Number nuclear pixels contained between theta $90 < R \le 108$	М
270	Number nuclear pixels contained between theta $108 < R \le 126$	М
271	Number nuclear pixels contained between theta $126 < R \le 144$	М
272	Number nuclear pixels contained between theta $144 < R \le 162$	М
273	Number nuclear pixels contained between theta $162 < R \le 180$	М
274	0.1 quantile of nuclear pixels from the boundary line	М
275	0.2 quantile of nuclear pixels from the boundary line	М
276	0.3 quantile of nuclear pixels from the boundary line	М
277	0.4 quantile of nuclear pixels from the boundary line	М
278	0.5 quantile of nuclear pixels from the boundary line	М
279	0.6 quantile of nuclear pixels from the boundary line	М
280	0.7 quantile of nuclear pixels from the boundary line	М

281	0.8 quantile of nuclear pixels from the boundary line	М
282	0.9 quantile of nuclear pixels from the boundary line	М
283	1 quantile of nuclear pixels from the boundary line	М
284	0.1 quantile of luminal pixels from the boundary line	М
285	0.2 quantile of luminal pixels from the boundary line	М
286	0.3 quantile of luminal pixels from the boundary line	М
287	0.4 quantile of luminal pixels from the boundary line	М
288	0.5 quantile of luminal pixels from the boundary line	М
289	0.6 quantile of luminal pixels from the boundary line	М
290	0.7 quantile of luminal pixels from the boundary line	М
291	0.8 quantile of luminal pixels from the boundary line	М
292	0.9 quantile of luminal pixels from the boundary line	М
293	1 quantile of luminal pixels from the boundary line	М
294	0.1 quantile of mesangial pixels from the boundary line	М
295	0.2 quantile of mesangial pixels from the boundary line	М
296	0.3 quantile of mesangial pixels from the boundary line	М
297	0.4 quantile of mesangial pixels from the boundary line	М
298	0.5 quantile of mesangial pixels from the boundary line	М
299	0.6 quantile of mesangial pixels from the boundary line	М
300	0.7 quantile of mesangial pixels from the boundary line	М
301	0.8 quantile of mesangial pixels from the boundary line	М
302	0.9 quantile of mesangial pixels from the boundary line	М
303	1 quantile of mesangial pixels from the boundary line	М
304	Luminal textural contrast	Т
305	Luminal textural correlation	Т
306	Luminal textural energy	Т
307	Luminal textural homogeneity	Т
308	PAS+ textural contrast	Т
309	PAS+ textural correlation	Т
310	PAS+ textural energy	Т
311	PAS+ textural homogeneity	Т
312	Nuclear textural contrast	Т
313	Nuclear textural correlation	Т
314	Nuclear textural energy	Т
315	Nuclear textural homogeneity	Т

SUPPLEMENTAL REFERENCES

- Lutnick, B., Krishna, L. M., Ginley, B. & Sarder, P. Histo-fetch -- On-the-fly processing of gigapixel whole slide images simplifies and speeds neural network training. *arXiv preprint arXiv:2102.11433* (2021).
- 2 McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426* (2018).
- 3 Ginley, B. *et al.* Computational segmentation and classification of diabetic glomerulosclerosis. **30**, 1953-1967 (2019).