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Abstract  
 

Chemicals, including some systemically administered xenobiotics and their biotransformations, 

can be detected noninvasively using skin swabs and untargeted metabolomics analysis. We 

sought to understand the principal drivers that determine whether a drug taken orally or 

systemically is likely to be observed on the epidermis by using a random forest classifier to 

predict which drugs would be detected on the skin. A variety of molecular descriptors 

describing calculated properties of drugs, such as measures of volume, electronegativity, bond 

energy, and electrotopology, were used to train the classifier.  The mean area under the ROC 

curve was 0.71 for predicting drug detection on the epidermis, and the SHapley Additive 

exPlanations model interpretation technique was used to determine the most relevant molecular 

descriptors. Based on the analysis of 2,561 FDA approved drugs, we predict that therapeutic 

drug classes such as nervous system drugs are more likely to be detected on the skin. Detecting 

drugs and other chemicals noninvasively on the skin using untargeted metabolomics could be 

a useful clinical advancement in therapeutic drug monitoring, adherence, and health status. 

 

Introduction 
 

The skin provides a physical and chemical barrier to environmental insults and supports 

immunological function and thermoregulation. Additionally, the bacteria, viruses, and fungi 

that comprise the skin microbiome provide an essential function in protection against microbial 

pathogens and educating the immune system1. Traditionally, topical formulations of drugs are 

desired in certain medical conditions to either deliver drugs from the skin to the systemic 

circulation (e.g. transdermal scopolamine) or to deliver drugs locally to the skin and minimize 

the systemic toxicity of these drugs (e.g. topical corticosteroids). Interestingly, a recent study 

demonstrated systemic concentrations above the Food and Drug Administration (FDA) safety 

threshold of the sunscreen compounds avobenzone, oxybenzone, and octocrylene up to 21 days 

post administration, despite the widespread assumption that these commonly used topical 

products are considered “safe” 2. 

 

An individual’s chemistry of their skin, including topically applied chemicals, such as 

avobenzone, octocrylene, as well as others found in soap, lotions, cosmetics, and anti-mosquito 

sprays and lotions can be detected in non-invasively obtained skin swab samples 3. We have 

recently demonstrated that systemically administered drugs, such as citalopram, 

diphenhydramine, and the N-acetyl metabolite of sulfamethoxazole, can be detected in skin 

swab samples of the hands, forearm, forehead, and axilla 4. Utilizing public untargeted human 

mass spectrometry metabolomics data and re-analysis of this data using the Global Natural 

Products Social Molecular Networking (GNPS)5 infrastructure, we achieved the detection of  

these compounds on the epidermis of patients that were prescribed these drugs, thus concluding 

that systemically administered drugs can be detected on the skin surface. Additionally, our 

recent study in healthy humans demonstrated a delayed time course between plasma and skin 

concentrations of diphenhydramine and its metabolites ranging from 1.5 to 10 hours 

(Panitchpakdi et al., in preparation).  

 

The mechanism and pathways of chemicals and drugs moving from the systemic circulation to 

the epidermis are unknown. Additionally, not all xenobiotics can be detected on the skin. A 

notable example is the immunosuppressive drug tacrolimus, which was not detected in our skin 

swab samples 4. We sought to understand the physicochemical and pharmacokinetic properties 

that allow some systemically administered drugs to be detected on the epidermis and not others. 
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Using existing skin swab data, we trained a random forest classifier to predict whether a 

compound will be observed on the epidermis. 

 

Methods 
 

Data Origin 

 

No human subjects were recruited for this study and all data were assessed retrospectively (all 

data were anonymous and obtained from public metabolomics repositories). Publicly available 

tandem mass spectrometry (MS/MS) data on GNPS/MassIVE were accessed via ReDU 

(redu.ucsd.edu; 6 on March 24, 2019, as well as sample information (i.e. metadata) for the 

30,626 files available at the time. Skin files were selected in the ReDU File Selector using the 

Uberon anatomy ontology 7 (Supplementary Table 1). This resulted in a list of 5,629 files, which 

were analyzed using MS/MS library searching (version 2.0; GNPS task ID: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=53e265f8f6994f0196bf9bccd8d1b513). 

MS/MS library searching resulted in 175 drugs that were identified in the human skin files 

(level 2 annotation according to the Metabolomics Standards Initiative 8), filtered using a list 

of curated drugs and drug metabolites as they are recorded in the GNPS MS/MS reference 

libraries. 

 

Duplicate annotations were removed and drugs available in topical formulations were excluded, 

resulting in a final list of 95 compounds. Based on the empirical measurement of these drugs 

or drug metabolites in publicly available MS data we presume that these 95 compounds are 

“positive” examples of drugs that appear on the epidermis. Additionally, we utilized the 

prescription records available in conjunction with data from a previous kidney transplant study 
4 to define “negative” examples of drugs, i.e. drugs which were prescribed to individuals but 

were not observed in skin samples in that study. Skin samples were obtained from these 

individuals at two different visits for clinical evaluation. The subjects of that study were 

prescribed many (>5) medications simultaneously. Out of the 58 different medications in that 

study, 50 drugs were not detected in skin samples and offer “negative” examples for which we 

have experimental data. Negative examples will include both the lack of transport to the 

epidermis, but also the lack of detection due to sample preparation (e.g. some drugs might not 

be detected due to the chosen extraction conditions). The eight drugs or drug metabolites that 

were detected in skin swabs in that study are part of the presumed “positive” compounds. 

Further, these particular examples are supported with experimental data and matching 

prescription records (i.e. the drugs were detected in the subjects to whom they were prescribed). 

 

Hence, 145 unique compounds were retained for the machine learning, of which 95 positive 

examples and 50 negative examples. The full list of compounds and information on whether 

they were observed on the epidermis or not is available in Supplementary Table 2. 

 

Machine Learning Epidermis Prediction 
 

A random forest classifier was used to predict whether drugs are expected to be observed on 

the epidermis. First, Mordred 9, a cheminformatics software tool to efficiently compute a large 

variety of molecular descriptors, was used to generate molecular descriptors for all 145 

compounds, such as calculated measures of volume, electronegativity, bond energy, and 

electrotopology (see Supplementary Table 3 for relevant descriptor examples). Molecular 

descriptors that were missing for one or more drugs were omitted, resulting in a feature table 

consisting of 929 unique descriptors per compound. Next, a classification pipeline was built to 
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predict the probability of observing a drug on the epidermis. The classification pipeline 

consisted of preprocessing steps to remove irrelevant features and a random forest classifier. 

Preprocessing steps included removing all features whose variance was below 0.05 and 

removing one of the features for which their pairwise Pearson correlation exceeded 0.95. Next, 

a random forest classifier 10 using 1000 trees was trained to predict the epidermis probability. 

 

Evaluation and hyperparameter tuning of the random forest was done using nested cross-

validation. Two levels of stratified shuffle splitting consisting of 100 iterations of random 

splitting in 80% training data and 20% test data were performed. In the inner cross-validation 

loop, hyperparameter optimization was performed to determine the optimal depth of the trees 

in the random forest. Using grid search, tree depths between 5 and 9 (inclusive) were evaluated. 

The random forest classifier with the optimal tree depth was subsequently evaluated in the outer 

cross-validation loop. Trees with depth 8 were most frequently found to be optimal. For each 

split, the balanced accuracy, true positive rate, false positive rate, and precision were computed 

for both the training data and test data. Model performance was assessed based on the receiver 

operating characteristic (ROC) curve and precision–recall curve. 

 

Important features for epidermis prediction were determined using SHAP (SHapley Additive 

exPlanations) 11, a model interpretability method founded in game theory. Briefly, SHAP 

explains machine learning predictions by using interpretable local models to approximate a 

complex black box model.  Kernel SHAP was used to explore the trained classification pipeline. 

To determine the important features, 50 training samples determined by K-means clustering, 

with the cluster centroids weighted by the number of samples assigned to them, were used as 

the background dataset. To investigate the feature importances of individual compounds, if they 

were part of the training dataset, the random forest classifier with optimal hyperparameters was 

retrained using a leave-one-out strategy prior to SHAP analysis. 

 

FDA-Approved Drugs and Biotransformations 
 

Drug names, SMILES representations, and ATC codes for 2,561 FDA approved drugs were 

retrieved from DrugBank (version 5.1.7) 12 on December 23rd, 2020. Mordred was used to 

generate the same features for these drugs as used during model training, and the probability of 

observing these drugs on the epidermis was determined using the trained classification pipeline. 

Additionally, potential biotransformation products of the drugs were generated using the 

BioTransformer tool 13. The human super transformer mode; which combines an Enzyme 

Commission-based transformer, a CYP450 (phase I) transformer, a phase II transformer, and a 

human gut microbial transformer; was used to predict potential biotransformation products after 

a single transformation step. This resulted in 23,693 putative biotransformation metabolites 

derived from the FDA approved drugs, for which similarly the probability of observing them 

on the epidermis was predicted using the trained classification pipeline. 

 

Code Availability 
 

All analyses were performed in Python 3.8. RDKit (version 2020.09.3) 14 and Mordred (version 

1.2.0) 9 were used to generate molecular descriptors. A GPU-accelerated version of the random 

forest algorithm, available as part of the cuML library (version 0.18.0) 15 was used in 

combination with Scikit-Learn (version 0.24.1) 16 for data preprocessing and model evaluation. 

SHAP (version 0.39.0) 11 was used to compute feature importances. BioTransformer (version 

2.0.1) 13 was used to generate biotransformation products. Additionally, NumPy (version 

1.20.1) 17, SciPy (version 1.6.0) 18, and Pandas (version 1.1.5) 19 were used for scientific 
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computing, and matplotlib (version 3.3.4) 20 and Seaborn (version 0.11.1) 21 were used for 

visualization purposes. 

All code is available at https://github.com/bittremieux/drugs_epidermis as open source under 

the permissive BSD license. 

 

Results 
 

Occurrence of Drugs on the Epidermis 
 

Based on the rich metadata associated with the MS/MS data, we were able to select 5,629 

publicly available MS/MS peak files that contain samples collected from human body sites. For 

our secondary analysis, we extracted 145 curated drugs to build a machine learning model to 

predict whether drugs occur on the epidermis. Additionally, based on the Uberon anatomy 

ontology 7, these drugs were mapped to the body site on which they were detected (Figure 1). 

The different rates of drug occurrence throughout the body suggest that there will be distinct 

detection of chemicals and xenobiotics in skin. As an example, our previous study showed that 

the N-acetyl metabolite of sulfamethoxazole was detected in armpit skin samples but not in 

other skin sites sampled such as forehead, palms, and forearm 4. More polar compounds may 

be more likely detected in more aqueous areas of the skin where sweat is more concentrated, 

such as the armpit. 

 

Machine Learning to Predict Whether Drugs Occur on the Epidermis 
 

Using a random forest classifier we were able to predict whether drugs will be observed on the 

epidermis with an area under the ROC curve (AUC) obtained during cross-validation of 0.71 ± 

0.10 (Figure 2) and an area under the precision–recall curve of 0.82 ± 0.07 (Supplementary 

Figure 1). This performance indicates that machine learning can be used to successfully 

approximate the complex underlying biochemical processes leading to drugs being observed on 

the epidermis. As we were constrained by the limited availability of ground truth data in this 

study, we hypothesize that as more training data becomes available it will be possible to produce 

even more accurate machine learning models (Supplementary Figure 2). 

 

 

We tried to gain insight into the molecules’ physical properties that results in drugs being 

present on the epidermis. The SHAP model interpretation technique was used to determine the 

most relevant features, consisting of molecular descriptors generated by Mordred, for the 

classifier performance (Figure 3). The top-ranked features are computed measures of volume 

(ATSC7v), electronegativity (PEOE_VSA1, PEOE_VSA9), bond energy (ATSC6d), and 

electrotopology (EState_VSA1). By investigating the SHAP values for individual features, we 

can derive that in general smaller compounds (Van der Waals volume) with a smaller bonding 

potential (electronegativity) are more likely to be observed on the epidermis. We can 

hypothesize that through heterogeneous biochemical processes such molecules diffuse faster 

and thus will be secreted to the epidermis. 

 

Additionally, SHAP can be used to interpret predictions for individual drugs. The antihistamine 

drug diphenhydramine was experimentally observed on the epidermis in a previous healthy 

human clinical study (Panitchpakdi et al. in preparation). Using a leave-one-out training 

strategy to not bias the classifier, it was also strongly predicted to be present on the epidermis 

(Figure 4A). The most relevant features contributing to this prediction are its low 

electrotopological state (EState_VSA1, VSA_EState8) and its low molecular connectivity and 
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valence (Xch-7dv). In contrast, although the related compound diphenhydramine N-hexose is 

structurally similar, it is predicted to not appear on the epidermis (Figure 4B), in part because 

of its higher volume (ATSC7v), electrotopological state (EState_VSA1), polarizability 

(ATSC7p), and charge (GGI10). This is consistent with our experimental results (Panitchpakdi 

et al. in preparation). In a previous study 4, citalopram was detected in the skin samples of the 

only subject to which it was prescribed. This empirical observation is confirmed by the machine 

learning model  (Figure 4C), as citalopram is very strongly predicted to be observed on the 

epidermis due to its low electrotopological state (EState_VSA1) and valence (ATSC7dv). 

Conversely, tacrolimus is very strongly predicted to not appear on the epidermis  (Figure 4D), 

primarily due to its low ionization potential (ATSC8i), high number of double bonds 

(nBondsD), and its high number of Kier–Hall dssC atom types (motif “C(=[*])([*])[*]”) 22. 

This prediction matches its absence in the skin samples of 14 subjects who were prescribed 

tacrolimus 4. This analysis demonstrates how machine learning techniques can be used to obtain 

insights into the complex internal biochemical mechanisms that lead systemically administered 

drugs to be observed on the epidermis. 

 

To expand our knowledge of the variety of drugs that are likely to be observed on the epidermis 

beyond the training data consisting of 145 drugs, we retrieved 2,561 FDA approved drugs from 

DrugBank 12. Furthermore, we utilized BioTransformer 13 to predict potential biotransformation 

products of the FDA approved drugs, resulting in 23,693 putative biotransformation 

metabolites. These biotransformations include phase I metabolism products (e.g. Cytochrome 

P450), enzyme commission-based metabolism products, phase II metabolism products (e.g. 

Uridine 5’-diphospho-glucuronosyltransferase), and gut microbial transformation products, and 

they cover a number of different reaction types, including hydrolysis, oxidation and reduction, 

and conjugation. 

 

The probability of observing both the FDA approved drugs and their potential 

biotransformation products was predicted using the trained random forest model. To investigate 

whether specific types of drugs were more likely to occur on the epidermis, we grouped the 

drugs and the corresponding biotransformation products using the Anatomical Therapeutic 

Chemical (ATC) Classification System (Figure 5). This indicates, for example, that hormonal 

preparations such as corticosteroids are least likely to be observed on the epidermis, while 

nervous system drugs such as analgesics, antiepileptics, antidepressants, and antipsychotics are 

more likely to be detected on skin. 

 

Discussion 
 

So far, little is known about which chemicals and drugs move from the systemic circulation to 

the epidermis. Here, we have demonstrated that machine learning can be used to gain insights 

into these complex processes for the first time. Using publicly available mass spectrometry 

data, we have trained a random forest model to predict whether drugs will occur on the 

epidermis. In addition to these secondary analysis results, the machine learning performance 

can be further improved upon by obtaining and incorporating more relevant experimental data, 

including both positive and negative examples of drugs and other xenobiotics that are 

commonly consumed and their status of being observed on the epidermis. 

 

To obtain insights into the complex processes that underlie secretion of drugs to the epidermis, 

the SHAP model interpretability method was used to investigate which molecular descriptors 

are most relevant for prediction using the random forest. In general, we observe that smaller 

compounds with a smaller bonding potential are more likely to be observed on the epidermis. 
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Although further studies are needed to fully understand the underlying biochemical processes, 

we hypothesize that through heterogeneous mechanisms such molecules diffuse faster and thus 

will be secreted to the epidermis. Additionally, we used SHAP to investigate predictions for 

drugs with a known experimentally derived ground truth. This demonstrates how detailed and 

individualized insights for specific drugs can be obtained to explore whether they will appear 

on the epidermis or not. 

 

Applying our random forest model to over 2,500 FDA approved drugs and their 

biotransformations gives insight into additional drugs and their metabolites that may be detected 

on the skin surface. For those drugs with low probability of skin detection, we hypothesize that 

either these drugs are fully processed within the body rather than secreted to the epidermis, or 

their physicochemical properties (e.g. high degree of lipophilicity) prevent access to the skin 

surface. Notably, median epidermis prediction values for the different ATC drug classes range 

from ~35% to ~60% of drugs in each category. There is a substantial variation in predicted 

probability; we speculate that this observation reflects that specific physicochemical properties 

of the drugs are the driver of this phenomena rather than the ATC class. Nevertheless, broad 

generalizations can be made; for example, steroid hormones were predicted to not be detected 

on the epidermis, which is consistent with our experimental data for budesonide, 

fludrocortisone, prednisone, and prednisolone; while amitriptyline, citalopram, 

cyclobenzaprine, escitalopram, gabapentin, ketamine, nortriptyline, and venlafaxine were 

detected in our data, consistent with our model prediction for nervous system drugs 

(Supplementary Table 2). 

 

Our machine learning model is the first attempt to predict xenobiotic skin detection using 

physicochemical properties. There will likely be future iterations of this model as we advance 

our understanding of the complex processes governing molecular transport from the systemic 

circulation to the surface of the skin. The use of noninvasive skin swabs in clinical  medicine 

could be a paradigm shift in how health and disease are monitored. Contemporary methods of 

blood draws and tissue biopsies are invasive and inconvenient for patients. In the future, we 

envision the use of noninvasive skin sampling to determine adherence of drugs, for therapeutic 

drug monitoring, extent of metabolism, and to assess organ and health status. 
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Figure 1: Body sites of the drugs found through spectral library searching. Body sites for the identified drugs 

were retrieved from the Uberon annotations specified in ReDU, and drug counts per body site were normalized 

by the total number of ReDU entries for each body site. 
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Figure 2. ROC curve indicating the performance of the random forest classifier to predict whether drugs can be 

observed on the epidermis. The curve is the mean ROC curve over 100 random stratified training (80% of the 

data) and test (20% of the data) splits. The standard deviation over the splits is indicated by the shaded area. The 

mean AUC is 0.707, with a standard deviation of 0.095. 
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Figure 3. SHAP feature importances for the top 20 most important Mordred features from the random forest 

classifier for the 145 training compounds. A positive SHAP feature importance contributes to drugs predicted to 

appear on the epidermis, whereas a negative SHAP feature importance contributes to drugs predicted to not 

appear on the epidermis. The top-ranked features capture information about the volume, electronegativity, bond 

energy, and electrotopology of the molecules. 

  

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.17.456720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456720


14 

 

 
Figure 4. Force plots 23 of the SHAP values to interpret predictions of individual drugs. The most important 

features, their values, and the direction in which they contribute to the predictions (higher/red: observed, 

lower/blue: not observed) are displayed. Prediction values above the base value (indicated in grey) constitute 

positive predictions, values below the base value constitute negative predictions. (A) Diphenhydramine is 

predicted to be observed on the epidermis. (B) Diphenhydramine N-hexose is predicted to not be observed on the 

epidermis. (C) Citalopram is predicted to be observed on the epidermis. (D) Tacrolimus is predicted to not be 

observed on the epidermis. 
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Figure 5. Prediction scores for 2,561 FDA approved drugs and their 23,693 biotransformations, subdivided by 

their drug class in the ATC classification system. 
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