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Abstract1

Understanding the main determinants of species coexistence across space and time is a central question2

in ecology. However, ecologists still know little about the scales and conditions at which biotic interactions3

matter and how these interact with the environment to structure species assemblages. Here we use recent theory4

developments to analyze plant distribution and trait data across Europe and find that plant height clustering is5

related to both evapotranspiration and gross primary productivity. This clustering is a signal of interspecies6

competition between plants, which is most evident in mid-latitude ecoregions, where conditions for growth7

(reflected in actual evapotranspiration rates and gross primary productivities) are optimal. Away from this8

optimum, climate severity likely overrides the effect of competition, or other interactions become increasingly9

important. Our approach bridges the gap between species-rich competition theories and large-scale species10

distribution data analysis.11

Keywords: Ecological community dynamics Plant diversity Species coexistence Biogeographic patterns12

Null hypotheses testing Stochastic Markov processes in continuous time.13
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Introduction14

Biodiversity theory in community ecology heavily relies on the pioneering work of Volterra (1926) and Lotka15

(1925). These authors provided a general framework to mathematically describe the interacting dynamics of nat-16

ural populations. These seminal ideas have been extensively developed mostly focusing on the analysis of simple17

ecological communities. For instance, Chesson and colleagues (Chesson, 2000, Ellner et al., 2019, HilleRisLam-18

bers et al., 2011, Mayfield & Levine, 2010) introduce a general framework —the modern coexistence theory for19

competitive communities— to understand species coexistence in natural communities based on pair-wise species20

differences and their interplay to determine effective competitive (biotic) interactions. According to this frame-21

work, the balance between stabilizing trait differences and species dominance among competitors is crucial to22

understand species coexistence. In communities driven by fitness differences, species turn out to be clustered23

around similar trait values selected through competitive dominance. However, trait clustering may arise through24

two radically different mechanisms. Independent adaptation of non-interacting species to the same environmental25

conditions can lead to trait clustering. The alternative explanation would say that competitive interactions leading26

to fitness equalization end up producing more similar species, with, therefore, more similar traits. Therefore, trait27

clustering may be interpreted as a fingerprint of competition even in the absence of environmental filtering (Kraft28

et al., 2015, Mayfield & Levine, 2010). These ideas have been proved challenging to apply to large ecological29

communities. Rather than focusing on whether (or not) and why ecological similarity among species should arise30

(or not) in natural communities, Hubbell and colleagues assumed ecological equivalence as a first principle and31

studied the consequences of this assumption for species coexistence and community-level patterns in species-rich32

systems (Alonso et al., 2006, Hubbell, 2001, Rosindell et al., 2011). Other authors, building on the May’s sem-33

inal work (1972), have used a random matrix approach to advance understanding on species coexistence in large34

communities through mathematical analysis (Allesina & Grilli, 2020, Allesina & Tang, 2012, 2015, Serván et al.,35

2018). Statistical physics has also helped to understand how pair-wise species interactions scale up to determine36

the type of dynamic stability and potential species coexistence in species-rich large systems (Bunin, 2017).37

Although the role of local interactions at determining large-scale diversity patterns is still controversial (Rick-38

lefs, 2008), community ecology lacks a comprehensive theoretical framework able to explore quantitatively to39

what extent the role of biotic, species-to-species interactions is relevant to determine species composition and40

diversity across large spatial scales. Empirical studies, while they may be able to independently assess environ-41

mental stress and species competitive abilities, are often limited to small community sizes (Violle et al., 2011) or42

restricted to single habitats (Kunstler et al., 2012). Very few studies have explored the idea of competition as a43

driver of community assembly across biogeographic regions (Kunstler et al., 2016, Swenson et al., 2012). Here we44

attempted a continent-wide macro-ecological study of species assemblage patterns based on theoretical predictions45

from a trait-driven theory of competitive dominance, based on extensions of a type of Lotka-Voleterra models. Our46

theory applies to large ecological communities at large geographical scales where species can be ranked in their47
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competitive ability according to certain species trait values (Capitán et al., 2020).48

Light and water availability (Fig. 1) impose significant limitations on gross primary productivity which is re-49

flected in actual evapotranspiration rates (Garbulsky et al., 2010). These two resources vary at regional scales,50

placing strong, sometimes opposing constraints on how tall a plant can grow. Plant height is a fundamental trait51

that reflects the ability of the individual to optimize its own growth within its local biotic environment and regional52

physical constraints (see Falster & Westoby (2003), Holmgren et al. (1997) and references therein). How plant53

height adapts to these opposing constraints has been studied in trees (King, 1990, Law et al., 1997, Midgley, 2003)54

and herbaceous plants (Givnish, 1995, 1982). Here we analyzed presence-absence matrices of floral herbaceous55

taxa across different European ecoregions to determine if competitive ability (reflected in maximum stem height)56

could help explain assemblage patterns at local scales across gradients of relevant environmental factors such as57

evapotranspiration. We examined how well observed plant assemblages at macro-ecological scales match theoreti-58

cal predictions generated by a synthetic, stochastic framework of community assembly (Capitán et al., 2015, 2017,59

Haegeman & Loreau, 2011, McKane et al., 2000, Solé et al., 2000), which we described in full detail in Capitán60

et al. (2020). By assuming that competition between hetero-specifics is driven by signed height differences, we61

found a significant positive correlation between the degree of clustering and actual evapotranspiration rates (or62

gross primary productivity, GPP). Across Europe, actual evapotranspiration (and GPP) is lower at more southern63

latitudes (due to reduced precipitation levels) as well as at more northern latitudes (due to colder temperatures64

and low levels of sunlight). Herbaceous plant height clustering is significant only over a latitudinal band where65

environmental constraints to plant growth are weaker, which suggests that the signature of competitive dominance66

can only be detected in the assemblage patterns of mid-latitude ecoregions.67

Theoretical predictions68

Recently, we presented a stochastic framework of community assembly (Capitán et al., 2020). This framework69

provides a stochastic extension of Lotka-Voleterra competition models. While other extensions consider only70

symmetric competition on theoretical grounds (Haegeman & Loreau, 2011), our approach relates specifically71

measurable species traits and competitive dominance. In order to make this contribution self-contained, we first72

provide a summary of the main predictions from our theory (Capitán et al., 2020). We developed first a single-trait73

driven, spatially-implicit species-competition model. Then, we extended this model into space and incorporated a74

second trait controlling species competition. Both models together provided us with rich predictions that can be75

tested with appropriate species assembly data. Below we summarize these predictions.76
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Two predictions from the implicit model77

Species coexistence decays with competition intensity78

Recent theoretical approaches have focused on predicting analytically the expected fraction of species that survive79

in competitive scenarios (Serván et al., 2018). A spatially-implicit model of Lotka-Volerra type (Capitán et al.,80

2020) allowed us to predict on average how many species are expected to survive as a function of mean competitive81

strengths. We observed that the fraction of extant species pc, which we called “coexistence probability”, decays82

with the average competitive strength 〈ρ〉 as a power law above a certain threshold in competition, and curves for83

different pool sizes S can be collapsed into the same curve following the mathematical dependence,84

pc ∼ (〈ρ〉S)−γ , (1)

which was observed numerically and justified analytically (see Capitán et al. (2020)). We showed that the exponent85

γ is controlled by the immigration rate µ. This is the first prediction of the spatially implicit model.86

Species clustering under competitive dominance87

In order to explore the significance of competitive dominance in empirical communities, we applied first random-88

ization tests to model communities. In this way, we established a second prediction for this model. Null models89

for community assembly (Chase et al., 2011, Gotelli et al., 2010, Webb et al., 2002) compare the properties of90

actual communities against random samples of the same size extracted from a species pool (observed diversity at91

the ecoregion level). This approach assumes that realized communities are built up through the independent ar-92

rival of equivalent species from the pool (Alonso et al., 2015, MacArthur & Wilson, 1967, Ontiveros et al., 2019)93

regardless of species preferences for particular environments or species interactions. Our randomization tests were94

based on a single statistic, the competitive strength averaged over species present in realized model communities,95

which were then compared to random samples of the same size drawn from the species pool. The null hypothesis96

(i.e., empirical communities are built as random assemblages from the ecoregion) can be rejected in both sides of97

the distribution, implying signals of ‘significant trait overdispersion’ (‘clustering’) if average trait differences are98

larger (smaller) than expected at random. In the low immigration regime, the model predicts a significant signal99

of clustering. This regime is characterized by a low non-dimensional immigration rate (λ = µ/(αK) much lower100

than 0) —here α stands for the average species growth rate in isolation, and K is the carrying capacity of the101

environment.102

Two predictions from the explicit model103

The spatially-explicit model incorporates a trade-off between potential growth and the production of allelopathic104

compounds. This alternative mechanism would allow shorter individuals to overcome being out-competed by taller105
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plants (see Capitán et al. (2020)). Our models explores how taller species, which are better competitors for light,106

and shorter ones, which allocate more energy in allelopathic compounds, coexist in a single interacting community107

on a given area (Fig. 1).108

Competitive dominance may select for shorter plants109

Height hierarchies alone, as assumed in our spatially-implicit model, lead to the selection of taller plants in species110

assemblages. In the more realistic spatially-explicit model, species processes take place on a lattice where locally111

taller plants grow faster than neighbors because they are less shaded, but in the presence of heterospecific neigh-112

bors, they are also more prone to die. Computer simulations show that the balance of these two mechanisms can113

end up selecting plant sizes characterized by an optimal potential height that can be either shifted toward lower114

or higher values depending on the choice of model parameters. This is the first prediction of the spatially-explicit115

model: species abundance distributions are not necessarily biased towards taller individuals, and they can peak at116

species at intermediate or even shorter heights. In any case, and consistently, in this more complex scenario, a117

balance between the gains of potential growth and the gains of energy allocation in allelopathy (as an example of a118

non-size-related, alternative mechanism) may result in a selection for plants exhibiting significant height clustering119

at stationarity.120

Clustering patterns hold across aggregation scales121

A second result that can be derived from the spatially-explicit model is related to the persistence of trait clustering122

when species are aggregated over spatial scales larger than local interaction distances. Our spatially-explicit model123

can help explain why clustering patterns persist over large scales. The distributions of species within a region may124

reveal more information about the underlying assembly processes than the co-occurrence of species at any given125

location (Ricklefs, 2008). As species are aggregated over lattice cells of increasing size, clustering patterns hold126

even at scales much larger than local interaction distances. The model predicts consistent clustering patterns127

regardless of the aggregation scale used to define species communities. This was the second prediction, derived128

and carefully analyzed in Capitán et al. (2020), from our spatially-explicit model.129

Materials and methods130

Plant community data were drawn from Atlas Florae Europaeae (Jalas & Suominen, 1964–1999). The distribution131

of flora is geographically described using equally-sized grid cells (∼ 50×50 km) based on the Universal Transverse132

Mercator projection and the Military Grid Reference System, see Fig. 2. Each cell was assigned to a dominant133

habitat type based on the WWF Biomes of the World classification (Olson et al., 2001), which defines different134

ecoregions, i.e., geographically distinct assemblages of species subject to similar environmental conditions. We135

consider each cell in an ecoregion to represent a species aggregation.136

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2020.01.20.913277doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.913277


Each herbaceous species in an ecoregion was characterized by its maximum stem heightH , an eco-morphological137

trait that relates to several critical functional strategies among plants (Dı́az et al., 2015). It represents an optimal138

trade-off between the gains of accessing light (King, 1990, Law et al., 1997), water and nutrient transport from139

soil (Midgley, 2003, Ryan & Yoder, 1997), and additional constraints posed by the local biotic environment of140

each individual plant, such as competition, facilitation, or herbivory.141

Mean height values were obtained from the LEDA database (Kleyer et al., 2008) for as many species as there142

were available in the database. Missing values were taken from (Ordonez et al., 2010) or inferred using a MICE143

(Multivariate Imputation by Chained Equations) approach (Buuren & Groothuis-Oudshoorn, 2011) together with144

a predictive mean matching algorithm based on other available traits (leaf and seed traits), genus, and growth145

forms as predictors. Based on plant growth forms, 2610 herbaceous species (aquatic, herbs, or graminoid) were146

considered in this work.147

Maximum stem height values spanned several orders of magnitude, so we used a log-transformed variable148

(h = logH) to measure species differences (using non-transformed heights yielded comparable results, here not149

shown). The values of h were standardized within ecoregions as t = (h−hmin)/(hmax−hmin) so that 0 ≤ t ≤ 1.150

For all the species reported in an ecoregion, we formed an empirical competition matrix with pairwise ρij151

signed height differences ρij = ρ̂(tj − ti), where ti are height values standardized across ecoregions and sorted152

in increasing order. The advantage of having these values represent trait differences between pairs of species is153

that any trend in competitive strengths can be immediately translated into patterns of functional trait clustering or154

overdispersion. As suggested in Capitán et al. (2020), we calculated the average pair-wise competitive strength as155

〈ρ〉 = 2

S(S − 1)

S∑
i=1

S∑
j=i+1

|ρij |, (2)

where S stands for ecoregion richness.156

In an ecoregion with richness S, a number sk ≤ S of species will form a species assemblage at cell k. The157

coexistence probability was calculated from data as the average fraction of species that survive per cell,158

pc =
〈s〉
S

=
1

SNC

NC∑
k=1

sk, (3)

with NC representing the number of cells in the ecoregion. This quantity, together with the distribution of trait159

differences in cells, was used to compare model predictions with real data.160

Evapotranspiration maps were obtained from data estimated through remote sensing. Evapotranspiration161

data at different spatial and temporal resolutions were taken from the MODIS Global Evapotranspiration Project162

(MOD17), a part of the NASA/EOS project to estimate terrestrial ET from land masses by using satellite remote163

sensing information (http://www.ntsg.umt.edu/project/modis/mod17.php). Available datasets estimate ET using the164

improved algorithm by Mu et al. (2011).165
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Randomization tests166

Following Triadó-Margarit et al. (2019), our randomization tests applied to empirical communities were based on167

the average competitive strength observed in a cell C formed by s species,168

〈ρ〉C =
2

s(s− 1)

s∑
i=1

s∑
j=i+1

|ρCij |, (4)

where (ρCij) is the submatrix of the ecoregion competition matrix restricted to the species present in the cell.169

Compared to ecoregion samples, the lower (higher) the empirical community average 〈ρ〉C is, the higher (lower)170

is the degree of species clustering in the cell. For each cell we calculated the probability p = Pr(〈ρ〉Q ≤ 〈ρ〉C)171

that the the competition average 〈ρ〉Q randomly-sampled from the pool is smaller than the empirical average. At172

a 5% significance level, if p > 0.95 the empirical competition average is significantly larger than the average173

measured for random pool samples, which implies that average trait differences in realized communities are larger174

than would be expected at random. On the other hand, if p < 0.05, observed trait differences are significantly175

smaller than would be expected at random. Therefore, if p > 0.95, the community exhibits ‘significant trait176

overdispersion’, whereas if p < 0.05, there is evidence for ‘significant trait clustering’ in the observed species177

assemblage.178

Results179

If larger plants capture more resources, evolution should favor investment in potential growth (maximum height) as180

a competitive mechanism. However, investment in alternative mechanisms, such as allelopathy, may help smaller181

plants stave off competitors, reducing local heterospecific plant cover and giving them a competitive advantage182

over potentially taller plant species. As a consequence, the maximum species stem height can be regarded as the183

outcome of an evolutionary game (Givnish, 1982) that balances opposing constraints, both physical (Craine &184

Dybzinski, 2013, Falster & Westoby, 2003) and biotic (King, 1990, Law et al., 1997). To explore these opposing185

constraints, we analyzed plant data in the light of the two community assembly models. The first one is a spatially-186

implicit model of Lotka-Volterra type, and the second one is a straightforward spatially-explicit extension including187

height-driven competition and allelopathic effects. Both have been carefully defined and studied in Capitán et al.188

(2020).189

Two predictions from the implicit model tested against data190

Species coexistence decays with competition intensity191

The collapse of curves predicted by Eq. (1) helps eliminate the variability in S, so that empirical coexistence192

probabilities, which arise from different ecoregion sizes, can be fitted together (Fig. 3). Confirming the first193
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prediction of the spatially-implicit model, we found a significant correlation between the probability of coexistence194

and the scaled competitive overlap based on empirical data (Fig. 3), indicating that a model driven solely by195

dominant competitive interactions reliably predicts the average richness of plant communities across ecoregions.196

In addition, this theoretical prediction allowed an indirect estimation of the relative importance ρ̂ of average inter-197

vs. intraspecific effects: the average ratio of inter- to intraspecific competition strength is about 5% (see Supporting198

Information, section A for details on the estimation procedure).199

Species clustering under competitive dominance200

As a second prediction, the implicit model predicts species clustering under competitive dominance under certain201

parameter regime. High levels of trait clustering are only found for low immigration rates and high carrying202

capacity values. Importantly, this is the parameter regime that seems to precisely emerges from the data. In Capitán203

et al. (2020) we derived a deterministic prediction for the exponent, γ = 1, under no immigration, which does not204

match the one obtained from data (γ = 0.61). As we showed (Capitán et al., 2020), it is a non-zero (but small)205

value of the immigration rate that determines the value of the power-law exponent γ that becomes lower than 1 in206

the case of non-zero immigration. Indeed, for a realistic fit in Fig. 3, the exponent of the empirical power law is207

obtained for µ/α ∼ 0.1 individuals per generation. Since plant communities operate in a low-immigration regime,208

the non-dimensional immigration rate λ = µ/(αK) must satisfy λ = 0.1/K � 1, hence the carrying capacity209

must be large. Indeed, in the same parameter regime where empirical coexistence probabilities are best predicted,210

this is, low immigration rate and high carrying capacity, the implicit model predicts a significant degree of species211

clustering [see Fig. 3 in Capitán et al. (2020)].212

Testing this second prediction against empirical observations yields a mixed picture. We calculated p-values for213

randomization tests applied to every cell in each ecoregion, which represent the empirical distribution of p-values214

(Fig. 4). At the parameter values that make plant data consistent with the first prediction, the spatially-implicit215

model predicts significant trait clustering. We observe that some ecoregions are consistent with this theoretical216

expectation. However, other ecoregions clearly do not comply with this prediction. In addition, no ecoregion is217

consistent with trait overdispersion (Fig. 4). Selecting species in randomization tests according to species dispersal218

abilities portrays the same picture (results not shown).219

Ecoregion clustering and actual evapotranspiration rates220

We explored whether there is a geographic signal in the propensity of an ecoregion to exhibit clustering in maxi-221

mum stem height. For a better quantification, we defined a clustering index q for an ecoregion as the fraction of its222

cells that lie within the 5% range of significant clustering (randomization tests yield p-values smaller than 0.05 for223

those cells). An ecoregion for which significant clustering is found in most of its cells will tend to score high in the224

q index. We examined how the clustering index varied across the continent in terms of the geographical location225
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of ecoregion centroids as well as with actual evapotranspiration (Fig. 5).226

Water availability acts as a factor limiting plant growth at geographical scales (Fig. 1a). However, water has to227

be channeled up through stems and leaves for effective growth to take place. Therefore, at large geographic scales,228

growth primary productivity posititively correlates with evapotranspiration (Garbulsky et al., 2010), see Fig. 5d.229

Therefore, for a given region, mean annual evapotranspiration is a reliable measure of environmental constraints230

on plant growth (Garbulsky et al., 2010). Panels a and b of Fig. 5 show a clear latitudinal trend: there is an in-231

termediate range of ecoregion latitudes where both clustering indices and evapotranspiration are large, indicating232

that evapotranspiration measures can robustly predict clustering indices (Fig. 5c). The same pattern can also be233

seen in the relation between mean relative height differences and actual evapotranspiration across individual grid234

cells. The intensity of the clustering pattern increases with actual evapotranspiration rates across Europe, not only235

at the ecoregional level (Fig. 5c), but also at the lower spatial scale of grid cells (see Fig. C1, Supporting Infor-236

mation). More importantly, since evapotranspiration is a powerful proxy of environmental constraints on plant237

growth, this clustering in maximum stem height appears to be stronger at ecoregions less limited by environmental238

conditions. As environments become harsher and less optimal for plant growth, these clustering patterns disappear.239

This is particularly true for the severe climatic conditions characteristic in the Mediterranean (with erratic rainfall,240

limited water availability and drought), as well as of boreal zones (with low radiation incidence and cold temper-241

atures). According to model predictions, the overall clustering patterns found at middle-range latitudes appear to242

be consistent with species competitive dominance shaping species height differences.243

Two predictions from the explicit model tested against data244

Competitive dominance may select for shorter plants245

The spatially-explicit model allows for either the dominance of tall, mid-sized or short plants, as a consequence246

of the trade-off between investment in either potential growth or alternative mechanisms other than growth (see247

Fig. 5 in Capitán et al. (2020)). We have tested whether taller or shorter plants are most commonly represented248

in ecoregions via the correlation of cell-averaged heights and evapotranspiration (Fig. 6a), which shows a mixed249

picture. With few exceptions, mid-latitude ecoregions exhibit positive correlation (taller plants are selected in250

regions favoring plant growth), whereas negative dependencies are often observed in latitudinal extremes (Fig. 6b).251

Correlations are significant but, in some cases, very weak. These results are consistent with our interpretation in252

terms of a signal of competitive dominance in mid-latitude ecoregions.253

Clustering patterns hold across aggregation scales254

Our spatially-explicit model predicts the persistence of trait clustering as species are aggregated at larger spatial255

scales (much larger than the typical range of species interactions). This is important because real individual plants256

interact at much lower spatial scales (1 to 1000ha) compared to the spatial resolution of our dataset (grid cell sizes257
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about 50 km). To assess the robustness of our results, we further investigated the effect of aggregation scales258

on clustering patterns using plant data. In line with the spatially-explicit model, the analysis of herbaceous plant259

communities from mid-latitude ecoregions reveals that our results are robust to both up- and down-scaling com-260

munity sizes (see Fig 6c). Height clustering remains significant in a range of aggregated scales, and extrapolates to261

smaller areas (under a random placement hypothesis, communities of smaller sizes were built by randomly select-262

ing a number of species as predicted by the empirical species-area relation, see Supporting Information, section263

B). We conclude that clustering patterns at large scales is an emerging pattern that can be interpreted as a signature264

of competitive dominance operating at much smaller spatial scales.265

Discussion266

In this work we have tested predictions from a model of species-rich interacting communities under competitive267

dominance (Capitán et al., 2020). Our work is based on spatial and stochastic extensions of a type of Lotka-Volterra268

models where competitive dominance is linked to species traits (Capitán et al., 2020). This piece of theory was ini-269

tially inspired by the competition-similarity paradigm (Mayfield & Levine, 2010). We used macro-ecological trait270

data at large spatial scales (Kunstler et al., 2016) to show that, while potential evapotranspiration decreases with271

latitude, actual evapotranspiration peaks at intermediate latitudes, and is strongly associated with higher levels of272

trait clustering. Critically, actual evapotranspiration is positively correlated with gross primary productivity (GPP)273

across terrestrial ecosystems [see Fig. 5d and Garbulsky et al. (2010)], which also peaks at intermediate latitudes274

across Europe. Consistently, our results were reproduced using GPP instead of ET, although both variables yield275

similar results. The agreement of model predictions with plant community data can be interpreted as a signature of276

competitive dominance in empirical communities in the environmentally conducive middle-range latitudes. Sig-277

nificant height clustering would be the trace that competition leaves on community assembly pattern by filtering278

out subdominant species. If species tend to be similar in maximum stem heights at mid-latitudes, we suggest that279

this height equalization is a signature of competitive dominance. This mechanism would have played a key role in280

shaping local species assemblages through years and year of common eco-evolutionary history. This result does281

not necessarily mean that competition is the main driver of community assembly. It rather highlights the potential282

role of competitive dominance, along with other processes, in the assembly of herbaceous communities at inter-283

mediate latitudes. On the contrary, as environmental conditions get increasingly extreme, no significant clustering284

in plant height is observed. Although the interplay between facilitation and competition is far from simple (Hart &285

Marshall, 2013), the harshness of extreme conditions likely override the effects of competition, and other processes286

such as species tolerances and facilitation (Maestre et al., 2009, Valiente-Banuet & Verdú, 2007) may be critical287

community drivers at climatic extremes.288

Although we introduced our conceptual framework based on “ideal plant growth conditions” (see Fig. 1a), the289

patterns presented for light and water availability are not necessarily unimodal nor universal for all plant species.290
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In general, many herbaceous plants grow efficiently when water availability is high, and temperatures are not291

extremely low. We acknowledge that there are exceptions to this rule. For example, environments that are too292

wet can lead plants to drown if their roots are saturated, which can cause early mortality and fast turnover (due293

to fungal infections, for instance). Likewise, high night time temperatures can lead to increases in respiration294

rates, thereby reducing overall growth. Many of these relationships are discussed in Lambers & Oliveira (2019).295

Climatic drivers can induce a variety of effects on plant growth different from the generic trend we used here to296

frame our contribution.297

Throughout this work, species assemblages within each grid cell (∼ 50× 50 km) have been defined as distinct298

communities. Current consensus about the concept of ecological community emphasizes the importance of biotic299

interactions. An ecological community is defined as a set of species that live in the same area and can potentially300

interact (Stroud et al., 2015). In spite of the size and heterogeneity within each grid cell at the 50× 50 km spatial301

scale, cells are much smaller than the ecoregion they belong to, and are, of course, much more homogeneous, both302

in species composition and in environment, than the the ecoregion itself. Therefore, in principle, grid cells could303

be regarded as communities in an operational and relative sense. In addition, we assumed that the European Flora304

database represents species composition at a steady state, this is, we examined the stationary patterns resulting305

from eco-evolutionary processes associated to long time scales. Although real individual plants interact at much306

lower spatial scales, two species from the same ecoregion will eventually interact within a grid cell given enough307

time. The larger the temporal scale, the larger is the area where two species will have a chance to interact through308

generations and repeated dispersal events. The scale at which a set of local communities reveal information309

about underlying assembly processes is very often the regional scale (Diniz-Filho et al., 2009, Olalla-Tárraga &310

Rodrı́guez, 2007, Ricklefs, 2015), which has led to the “regional community concept” (Ricklefs, 2008, 2011).311

It is important to make a clear distinction between actual plant size and the species-level trait, “maximum stem312

height”. While a species-level trait is shaped by evolutionary constraints at longer temporal scales, actual plant size313

is determined by a host of contingent ecological constraints operating over shorter temporal scales. Although there314

is a large body of theory and experiments positively co-relating actual plant size and individual plant competition315

ability (Gaudet & Keddy, 1988, Weiner, 1993), there has been considerably less attention paid to the evolutionary316

establishment of functional trade-offs between different species-level traits (Adler et al., 2014, Stearns, 1989).317

The common wisdom that competition favors taller plants may not always hold [for instance, in low-nutrient,318

competition-intensive, undisturbed habitats, see Tilman & Wedin (1991)]. Our analysis shows that height cluster-319

ing (and not height per se) at middle-range latitudes is a fingerprint of a balance between energy invested in either320

potential growth or other mechanisms that may help plants overcome competitors. For instance, when competitors321

are close relatives in dense herbaceous communities, selection may favor the evolution of a low leaf height. In322

these situations, “for short conspecific herbs to exclude competitors from a highly productive site, they must pos-323

sess alternative mechanisms to overcome competition, such as root competition or allelochemics” (Givnish, 1982).324
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More generally, we would argue that functional trade-offs tend to evolve in regions of higher primary productivity,325

where the relative role of biological interactions (competition, parasitism, herbivory) is expected to be higher.326

Competitive hierarchies have been theoretically investigated (Tilman, 1982, 2004), and empirically demon-327

strated in herbaceous plant communities at much smaller spatial scales (Stanley Harpole & Tilman, 2006, Tilman,328

1994, Tilman & Wedin, 1991). Other hierarchies have been also investigated in tree communities (Muller-Landau,329

2010). In some of these studies, particular trade-offs have been shown to maintain plant diversity and limiting330

similarity, which involves that competitive dominance may also lead to trait over-dispersion. However, these331

theoretical results arise as a consequence of a particular tradeoff definition. We believe our theoretical models332

are more general (Capitán et al., 2020), and, in their diverse formulations, invariably lead to the opposite pat-333

tern: trait clustering. Interestingly, the relevant role of competitive dominance driven by species trait hierarchies334

has been also reported at much smaller spatial scales for forest trees along an altitudinal gradient in the French335

Alps (Kunstler et al., 2012). Moreover, a study of the assembly of forest communities across East Asia shows336

that a phylogenetic-based species similarity index tends to be smaller the higher the minimum temperature of the337

coldest month is (Feng et al., 2015). Although traits are not generally related to competitive abilities, and they338

are diverse in their functionality and in their response to environmental stress, these studies, together with our339

results, suggest that trait clustering is generally likely to occur where conditions for plant growth are less restric-340

tive. Our models indicate that the process underlying this pattern is competitive dominance rather than Darwin’s341

competition-similarity hypothesis, although it is likely that community assembly for other taxa may be driven by342

other biotic or environmental filters. For instance, phytoplankton communities from estuarine ecosystems (Segura343

et al., 2012) are more consistent with Darwin’s seminal hypothesis since they appear to be driven by limiting344

similarity creating clumpy species coexistence (Pigolotti et al., 2007, Scheffer & van Nes, 2006). Competitive hi-345

erarchies are, of course, not hard-wired in nature. Intransitivities may still play a key role in maintaining diversity346

in some systems (Allesina & Levine, 2011, Soliveres et al., 2015, Zhang & Lamb, 2012).347

In Capitán et al. (2020) we demonstrated how different coexistence vs. competition curves can be collapsed348

into a single curve. Here we showed that model predictions were quantitatively consistent with the observed349

decaying behavior of the probability of local coexistence as overall competition intensity increases. This general350

scaling behavior is typical for stochastic community models in the presence of both symmetrical (Capitán et al.,351

2015, 2017) and asymmetrical competition, as we showed in our previous publication (Capitán et al., 2020). Here352

we tested this pattern at large geographical scales. The scaling allowed us to give a rough estimate of ρ̂, an average353

ratio of inter- vs. intraspecific competition (see Fig 3a). Our indirect method is only able to estimate an average354

ρ̂ across ecoregions. This average estimate is a highly aggregated parameter calculated from the whole data set,355

and therefore, characterizing European herbaceous plant communities. Although we expect high variability in356

its value between ecoregions, in a given ecoregion, the ratio of inter- vs. intra-competition is expeced to be, on357

average, about 0.05. Whenever direct empirical estimates of the ratio of inter- vs. intra-competition are obtained, a358
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few similar species are typically studied using small-scale field experiments (Goldberg & Barton, 1992, Schoener,359

1983). It is, therefore, unsurprising that empirical estimations of this parameter tend to be higher than ours (Kraft360

et al., 2015), but see also Volkov et al. (2009) and Wang et al. (2016). Being able to provide rough estimates of361

this parameter at regional scales is also a novel result from our analysis. Our results are in agreement with a recent362

study of trees across six forest biomes where the authors found that trait variation is mostly related to competitive363

imbalances tending to drive inferior competitors to extinction (Kunstler et al., 2016). Further work is required to364

better relate the average ratio of inter- vs. intraspecific competition, which stabilizes species co-existence, to plant365

traits, and analyze how this aggregated parameter changes at increasing spatial scales and across taxa.366

In this paper we have explored several predictions from theoretical models aimed at describing plant dynam-367

ics, which have been derived and carefully studied in Capitán et al. (2020). In total, we have contrasted four368

model predictions against reported herbaceous plant diversity across Europe. Our theoretical models represent369

a strong over-simplification of real plant community dynamics. However, in spite of disregarding the true com-370

plexity of these communities, our theory approach is useful, not only because it can reproduce macro-ecological,371

observational patterns with a small number of meaningful aggregated variables, but also because it provides new372

quantitative or qualitative predictions than may lead to new both empirical and observational studies. We look for-373

ward to seeing our simple trait-driven theory of competitive dominance being falsified (or not) in other ecological374

contexts. We humbly believe our message should be discussed within the context of the full scientific community375

interested in biodiversity research. Finding a theoretically robust and ecologically meaningful rapprochement be-376

tween theory and data at relevant scales remains a challenge for ecology, and we trust that our work will inspire377

new contributions in this direction.378
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Adler, P. B., Salguero-gómez, R., Compagnoni, A., Hsu, J. S., Ray-mukherjee, J., Adler, P. B., Salguero-gómez,389
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Schulze, E. D., Fischer, M. & Allan, E. (2015). Intransitive competition is widespread in plant communities and588

maintains their species richness. Ecology Letters, 18, 790–798.589

65.590

Stanley Harpole, W. & Tilman, D. (2006). Non-neutral patterns of species abundance in grassland communities.591

Ecology Letters, 9, 15–23.592

66.593

Stearns, S. C. (1989). Evolution in life-history Trade-offs. Functional Ecology, 3, 259–268.594

67.595

Stroud, J. T., Bush, M. R., Ladd, M. C., Nowicki, R. J., Shantz, A. A. & Sweatman, J. (2015). Is a community still596

a community? Reviewing definitions of key terms in community ecology. Ecology and Evolution, 5, 4757–4765.597

68.598

Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A. J., Boyle, B., Weiser, M. D., Elser, J. J., Fagan, W. F.,599

Forero-Montaña, J., Fyllas, N., Kraft, N. J. B., Lake, J. K., Moles, A. T., Patiño, S., Phillips, O. L., Price, C. A.,600

Reich, P. B., Quesada, C. A., Stegen, J. C., Valencia, R., Wright, I. J., Wright, S. J., Andelman, S., Jorgensen,601
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Figure captions643

Figure 1. Conceptual framework for maximum height resulting from a trade-off between investing energy

either in potential growth, or in any other alternative, non-size-related strategy. In panel a, we illustrate

latitudinal patterns of potential light and water availability. The latitudinal gradient of actual evapotranspiration

(ET) is also shown along with the expected role of biotic interactions in determining community dynamics. At

middle-range latitudes, we expect competitive hierarchies to be at their maximum due to a greater relative role of

species interactions. Panel b shows how the trade-off between potential growth and any alternative mechanism

not related to size can be included in a spatially-explicit model: species that are either good at growing taller or

in investing energy in allelopathy remain short, but cause incremental death of their heterospecific neighbors. As

an outcome of this trade-off, the model predicts the dominance of taller, mid-sized, or shorter plants at stationarity

(panel c).

Figure 2. Geographical description of plant data across European ecoregions. a, 25 different habitats covering

most of Europe are shown in the map and listed below. Ecoregions are regarded as a pool comprising all plant

species observed in that region. b, The Military Grid Reference System divides ecoregions in grid cells, each one

considered as an assemblage formed by a species sample of the pool.

Figure 3. The implicit model predicts a power-law decay regardless of the ecoregion size S, which permits

fitting a power law to data (r2 = 0.51, p < 10−3, 95% confidence lines are shown). In order to match the

empirical exponent γ we need to choose the immigration rate µ = 5, the net growth rate α = 50 and the carrying

capacity K = 1000. To match the starting point of the decay we need to set ρ̂ = 0.04 in the calculation of ρij . For

completeness, we have reproduced here model expectations (triangles) for different pool sizes. Data colors match

ecoregion codes in Fig. 2.
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Figure 4. Empirical randomization tests.. Over half of the ecoregions are consistent with model predictions

as the distributions (Tukey boxplots) lie in the 5% range of significant clustering (Methods). We present here

distributions of p-values across local communities in every ecoregion. Shaded areas would represent threshold

p-values for two one-tailed tests where the hypothesis of trait clustering and over-dispersion, in blue and pink,

respectively, are represented on the same plot. Data colors in panels a and c match codes in Fig. 2.

Figure 5. Linking height clustering to geographical and environmental variables. a, Variation in the clustering

index (q) with latitude (ϕ). Quadratic fit: r2 = 0.63, p < 10−3. b, Latitudinal variation in mean annual actual

evapotranspiration (ET) data. Quadratic weighted regression: r2 = 0.63, p < 10−3. The shaded areas in panels a

and b represent the latitudinal range for which the adjusted dependence q(ϕ) ≥ 0.7, where both height clustering

and evapotranspiration are maximal. c, Linear weighted regression for ET as a function of the clustering index;

r2 = 0.49, p < 10−3. d, Correlation between mean gross primary productivity (GPP) and mean annual ET; linear

weighted fit: r2 = 0.73, p < 10−3. In the first four panels, the radius of each circle is proportional to the clustering

index. Symbol colors refer to ecoregions (Fig. 2). All the fits show the 95% confidence bands. e, Geographical

distribution of clustering indices for ecoregions across Europe.

Figure 6. Two predictions of the explicit model tested against data. a, Correlation of cell-averaged height

(relative to ecoregion means) and mean annual ET by ecoregion (colors used for data match codes in Fig. 2). b,

Correlation coefficient obtained in a vs. latitude. Circle radii are proportional to clustering indices. Observe that

positive correlations tend to associate with high clustering index (with some exceptions) and middle-range latitude

(quadratic fit: r2 = 0.44, p = 0.001). c, Clustering patterns of an ecoregion characterized by high clustering

index (Atlantic mixed forests) were analyzed at increasing aggregation scales. Communities were defined by

increasingly aggregating contiguous 50 × 50 km cells. Below a critical aggregation scale (eleventh log-area bin,

which corresponds to 105 km2), randomization tests show strong signals of clustering. The inset in c represents a

down-scaling of randomization tests. Clustering patterns robustly persist at smaller spatial scales.
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Figure 1
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