Highly scaled measurements of C. elegans development suggest that physical

2 constraints guide growth trajectories and animal shape

3

4
5 Mangan ${ }^{3}$, and Sasha Shirman ${ }^{3}$

1. Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
2. Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
3. Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL

60208, USA

12 Emails and ORCIDs:
13 JN: JoyNyaanga2024@u.northwestern.edu, 0000-0002-1402-9213
14 CG: christinagoss2021@u.northwestern.edu, 0000-0002-5715-3337
15 GZ: gaotian.zhang@northwestern.edu, 0000-0001-6468-1341
16 HNA: hannahahmed02@gmail.com
17 EJA: elliotjandersen@gmail.com
18 IRM: miller.ir18@gmail.com
19 JKR: justine.rozenich@icloud.com
20 ILS: IrisSwarthout2023@u.northwestern.edu
21 JAV: JordanVaughn2023@u.northwestern.edu
22 ECA: erik.andersen@gmail.com, 0000-0003-0229-9651
23 NMM: niallmm@gmail.com, 0000-0002-3491-8341
24 SS: shirman.sasha@gmail.com, 0000-0001-5855-9470

35 larval stages. These results suggest how physical constraints control developmental timing and growth rate in

36 C. elegans.

37

Introduction

Growth is a complex process fundamental to development. Individual cells and whole animals must reach an appropriate size to remain competitive in their environment. A larger body size conveys many selective advantages to an organism, including increased predation success or defense against predation, increased success in mating, and increased success in intraspecific as well as interspecific competition. Offsetting these advantages, larger organisms require more food resources to grow, take longer to develop, and produce fewer offspring (Hone and Benton, 2005). Therefore, it is critical for multicellular organisms to effectively coordinate the growth of both individual cells and the whole body. Additionally, growth at both of these scales must be coupled with developmental progression to ensure the proper timing of irreversible developmental events.

In recent years, efforts have focused on understanding how organisms control growth to achieve size homeostasis (Björklund, 2019; Turner et al., 2012; Willis and Huang, 2017). Many of these studies are motivated by the decades-long debate about whether growth is linear or exponential; two separate models each having unique implications for size regulation. In a linear model with constant growth rate, smaller organisms must grow proportionally more than larger organisms to maintain size homeostasis. In this paradigm, organism size can be controlled simply by specifying growth duration. Subsequently, this method of growth control was named the 'Timer' model (Donnan and John, 1983; Wang et al., 2000). Instead of regulating growth duration, organisms can monitor size and adjust duration of growth to reach an optimal size, often named the 'Sizer' model (Pavelescu et al., 2018; Sveiczer et al., 1996; Tzur et al., 2009). In an exponential model, growth rate is proportional to size. Here, a time-based control mechanism alone would fail to maintain size homeostasis because larger organisms would grow proportionally more during a specified period of time. This difference in growth requires a size-based control mechanism to ensure that growth is halted once a maximum size is reached. Although 'Timer' and 'Sizer' are the most often proposed size-control models, other models have been suggested, including 'Adder' in which a fixed volume is added to a cell or organism during growth (Campos et al., 2014; Taheri-Araghi et al., 2015), and 'Folder' in which the organism increases in volume by a fixed proportion (Towbin and Grosshans, 2021). It is not trivial to determine which 64 experimental conditions. In unicellular organisms, the development of high-throughput experimental techniques 65 in combination with theoretical models have advanced the understanding of size control (Cadart et al., 2018;

70 The nematode Caenorhabditis elegans presents both a scalable and tractable multicellular animal model to 71 study growth control. With an adult body length of approximately 1 mm , hundreds of thousands of individuals importance of growth regulation during C. elegans larval development.

79 A full description of an organism's development includes the assessment of how growth and body size are

82 These early studies hypothesized that molt events had little effect on continuous growth as the C. elegans 83 cuticle allowed for stretch during larval stages. Later work determined that larval progression was not 84 continuous but rather piecewise in nature (Knight et al., 2002). This study showed that C. elegans volumetric 85 growth rate increased from stage to stage such that L1 animals had the slowest rate of growth and L4 animals 103 2018; Uppaluri and Brangwynne, 2015). In C. elegans, mutations that disrupt the ability to properly consume 104 food also cause individuals to be small and thin, indicating that food intake can act as a physical constraint on growth and body shape (Mörck and Pilon, 2006).

106 To understand C. elegans growth control at the whole-organism level, precise measurements of body size and
107 shape for large numbers of individuals are required. Using a combination of quantitative growth measurements
108 and mathematical modeling, we performed a high-resolution longitudinal study of C. elegans larval progression
had the fastest. This finding suggests that C. elegans have a mechanism for regulating growth rate, potentially at each molt. Next, researchers using single-animal imaging strategies observed that animals did not advance to the next developmental stage until a critical volume was reached (Uppaluri and Brangwynne, 2015). This finding suggests that C. elegans growth follows a 'Sizer' model with each molt decision controlled by a volume threshold and further implies that individual cells are able to communicate information about body size to precisely regulate growth. Most recently, live imaging and characterization of body volume heterogeneity revealed that with respect to the start of a larval stage, C. elegans volume fold change within a stage is nearly invariant thereby preventing rapid divergence in volume between fast and slow growing animals (Towbin and Grosshans, 2021).

Extensive characterization of C. elegans body size mutants has revealed several processes that influence growth rate and body size (Tuck, 2014). A number of genes act through signaling pathways to influence growth and body size (McKeown et al., 1998; Patterson and Padgett, 2000). Some of these pathways contribute to body size control by regulating cuticle collagen genes (Madaan et al., 2018). Alternatively, mutations in some cuticle collagen genes directly disrupt the physical structure of the cuticle (Page and Johnstone, 2007b). These structural changes act as physical constraints on growth as opposed to regulatory mechanisms of growth control. Environmental factors also play a significant role in C. elegans growth control. Food restriction is known to decrease growth rate or, when extreme, induce complete developmental arrest (Baugh, 2013; Hu, and captured high-precision details about animal length, width, volume, and feeding dynamics. By investigating

110 C. elegans feeding and growth in tandem for thousands of individual animals, we found decreases in feeding 111 behavior associated with each larval transition that were also correlated in time with changes in growth. We 112 used our large-scale measurements of body size to further analyze the periods of time surrounding each larval 113 transition. At each molt, we observed simultaneous increases in length, decreases in width, and maintenance 114 of volume, suggesting that body shape in addition to size plays a role in the control of C. elegans growth.

115 Given these data, we propose a "Stretcher" mechanism for growth control whereby C. elegans senses body 116 size through physical constraints on cuticle stretch and undergoes larval-stage transitions when the cuticle 117 reaches its maximum capacity for stretch. Additionally, we propose that C. elegans are able to physically 118 constrain growth rate by modulating food intake. We used quantitative models of eating and growth to evaluate 119 our data and predicted that the rate of volumetric growth is controlled by animal feeding rate and metabolic 120 regulation. Food allocated toward growth reached maxima and minima at larval transitions, indicating 121 increased metabolic control at these points in development.

Results

Quantitative measurements of C. elegans growth

We have optimized a quantitative growth assay that reliably measures small changes in C. elegans body size throughout development (Fig 1). Our method provides both high-throughput and high-precision assessment of developmental growth. In brief, populations of 100,000 animals were cultured in flasks. We cultured six replicate populations of C. elegans for a total of 600,000 synchronized and growing animals. Every hour after feeding, a sample of the population from each flask (~ 300 animals/flask) was collected to measure animal length, width, and feeding rate. Feeding rate, examined using fluorescent microspheres, and body size were measured using the COPAS BIOSORT (Union Biometrica). Then, the ImageXpress system (Molecular Devices) was used to collect images of sampled animals. This platform allowed for the further analysis of life stage and body size, contributing added precision to our measurements.

Fig 1. An overview of the quantitative growth assay.
Schematic of the experimental workflow was created with BioRender.com. Synchronized animals were cultured in flasks where six flasks contained replicate populations of nematodes, one flask had a population of unfed animals, and one flask only contained bacterial food. At each hour of the experiment, all eight flasks were sampled. In step 1, animals were transferred from each flask to a single well of a 96 -well microtiter plate. In step 2, fluorescent beads were added to each well. Following a 10-minute incubation period, animals from each well of the deep-well plate were transferred to several wells of a 96 -well microtiter plate for step 3 . In step 4, animals in each well of the microtiter plate were imaged. In step 5, the same animals were measured using the COPAS BIOSORT. This process was repeated every hour after feeding for 72 consecutive hours (see Methods).

143 The raw data from the quantitative growth assay provides measurements of body size and feeding behavior, 144 which are traits related to animal growth. Two measurements of body size were collected from raw data taken 145 from the COPAS BIOSORT: time of flight (TOF) and optical extinction (EXT) (S1 Fig). Time of flight is a 146 measurement of body length, and optical extinction corresponds to optical density, a measurement influenced 147 by body length, thickness, and composition (Andersen et al., 2015; Pulak, 2006). We investigated whether

153 (S2 Fig). We also observed an equally strong correlation between manual measurements of animal area and 154 EXT as well as animal width and EXT normalized by body length (norm.EXT). We then approximated animal 155 volume using measurements from the COPAS BIOSORT by using a cylindrical approximation for C. elegans 156 shape (see Methods). This result expanded the number of body size parameters that we were able to assess 157 using the COPAS BIOSORT data, allowing us to investigate growth dynamics in length, width, and volume (Fig 158 2A-C). To disentangle nematode objects from non-animal objects (bacteria clumps, detritus, shed cuticles), we 159 employed model-based clustering to remove unwanted objects and better examine growth of animals (S3 Fig). 160 Lastly, we converted COPAS BIOSORT measurements into microns (see Methods).

Fig 2. Quantitative measurements of animal size.
COPAS BIOSORT data of animal length (A), width (B), and volume (C) after the removal of non-animal objects using model-based clustering methods (see Methods).

164 We report body length, width, and volume of animals at each hour of development from L1 to adult (S1 Fig and
165 Fig 2). Historically, growth of C. elegans has been shown as a sigmoidal curve where exponential growth 166 during larval stages reaches a maximum rate in adulthood (Byerly et al., 1976). More recently, researchers

167 have identified that growth curves are discontinuous during development punctuated by larval transitions
168 (Knight et al., 2002; Uppaluri and Brangwynne, 2015). Using our quantitative growth assay, we captured these
169 small-scale discontinuities in larval growth as well as an apparent growth maximum during early adulthood. We
170 noticed that all size variables (length, width, and volume) displayed these dynamics. Objects identified as
171 animals appear to grow in size. However, in particular time windows during development, growth dynamics
172 visibly shift, producing discontinuities in animal growth rate. With these data, we were able to further
173 investigate C. elegans growth and size control.

174 Fluorescence provides a quantitative measurement of animal feeding behavior and 175 developmental progression

176 In addition to body size and shape, the raw data from the quantitative growth assay described above measured 177 fluorescence of each animal object. To readily assess the thousands of measurements acquired at each hour, 178 we generated summary statistics of median well measurements (S1 Table). With these summarized data, we 179 investigated the relationship between feeding behavior and developmental stage. It is well established that 180 temporary suspensions of C. elegans feeding occur during each molt (Byerly et al., 1976; Cassada and 181 Russell, 1975). As such, active feeding is frequently used to distinguish growing animals from individuals in a 182 molt. We quantified feeding behavior by exposing animals to fluorescent beads the approximate size of 183 bacteria and measuring fluorescence of animals (Nika et al., 2016). Because larger animals are able to 184 consume more food and therefore contain more ingested food, we normalized fluorescence by animal area to 185 account for increases in body size (S4 Fig). The resulting fluorescence data showed a dynamic pattern (Fig 186 3A). At approximately 15 hours, fluorescence steadily increased to a peak before decreasing back to initial 187 levels at approximately hour 27. This pattern, repeated three additional times, established clear time windows 188 of local minimal fluorescence. These local minima represent periods of time where a large proportion of the

200 Fig 3. Fluorescence dynamics outline larval stages.

201 (A) Median normalized red fluorescence (y-axis) over time (x-axis) is shown. The blue line represents the represent the transition between larval stages. Median length (B), median width (C), and median log volume (D) are shown with larval-stage transitions as well. Upper and lower bounds of the box plots correspond to the first and third quartiles. The upper and lower whiskers extend to 1.5 times the value of the interquartile range.

206
 Changes in C. elegans body shape occur at larval-stage transitions

207 Adult body size is ultimately determined by the coordination of developmental progression and rate of growth.
208 To understand how C. elegans achieve final size, we must first examine how C. elegans grow. Quantitative
209 studies of C. elegans growth frequently assess changes in length or volume over time; however, to fully
210 characterize changes associated with growth, it is also important to consider the dynamics of width. Two
211 general models were proposed for C. elegans growth in volume: linear and exponential (Byerly et al., 1976;
212 Knight et al., 2002; Uppaluri and Brangwynne, 2015). Notably, these volume growth models require different
213 dynamics in length and width. To achieve linear volume growth, length and width must increase at precise
214 sublinear rates that together result in a linear increase in volume. If animal length and width increased at a 215 constant linear rate, then volume would increase at a cubic rate. Alternatively, if both length and width grew 216 exponentially, then volume would fit an exponential model. We sought to identify which model best described 217 C. elegans growth behavior but were unable to consistently distinguish between linear, exponential, and cubic 218 models using statistical information criterion because of the similarity in the shapes of the growth curves (S6

219 Fig and S2 Table). This result is not surprising because computational simulations have shown that increases in experimental noise, above 2\% added noise, limit the correct identification of growth models (Vuaridel-Thurre 221 et al., 2020).

Growth has important implications for how animals regulate size. Size homeostasis requires that growth rate and developmental rate are coordinated. C. elegans reach a similar volume at each larval transition despite significant variation in individual growth rates (Uppaluri and Brangwynne, 2015). Because individuals in a population maintain similar sizes despite differences in growth rate, a control mechanism to regulate developmental progression must exist. Early work proposed a size-based growth control model in C. elegans
(Uppaluri and Brangwynne, 2015), while recent work suggests that size homeostasis is achieved through a folder mechanism where growth rate and development are coupled (Towbin and Grosshans, 2021). To assess changes in body size and shape during a larval transition, we examined the dynamics of animal length, width, and volume in the hours before, during, and after each molt. We find that for each shape variable, larger animals enter molt first (Fig 4). We also observe differences in the distributions of lengths during a larval transition compared to widths and volumes. Measurements of animal width and volume remain unimodal throughout a molt, but length does not. As larger animals begin to exit the molt, an increase in body length occurs that leads to the appearance of bimodality of lengths across the population. This length increase occurs simultaneously with a decrease in widths across the population. Importantly, volume remains constant while length increases and width decreases, indicating a change in body geometry not size (Fig 3 and Fig 4). These changes in the physical dimensions at each larval transition suggests that body shape, in addition to size, is involved in the control of C. elegans growth.

239 Fig 4. Density plots of population size dynamics during a single larval transition.
Population density curves of length (A), width (B) and volume (C) for the hours surrounding the L3-L4 larval transition (red horizontal line at 36 hours corresponds to the molt). Each distribution was divided into five quantiles. The percentage of quiescent animals present within each quantile was calculated (see Methods), and each quantile was colored to reflect this percentage. In all shape variables, quantiles that contain the largest animals displayed an increase in quiescence earlier than quantiles that contain the smallest animals. These dynamics were consistent across all larval-stage transitions (S7 Fig).

Measurements of body shape suggest that cuticle stretch determines the timing of

247 larval-stage transitions

Previous studies theorized that the internal mechanism for sensing body size and triggering molts in C. elegans is driven, in part, by the properties of the collagen-rich cuticle (Towbin and Grosshans, 2021; Uppaluri

250 and Brangwynne, 2015). Many cuticle collagen mutations cause morphological defects in nematode shape 251 some of which cause animals to be shorter but do not impact animal width, implying that the cuticle affects 252 length and width independently (Brenner, 1974). The C. elegans cuticle does not grow through the addition of 253 new material, but rather stretches to accommodate increases in animal body size. Cuticle stretch is likely 254 limited by the material properties of the cuticle. The C. elegans cuticle is primarily made of cross-linked 255 collagens organized into lateral ridges and circumferential bands (Page and Johnstone, 2007b). Commonly 256 found in many biological systems, collagen-based materials are fairly flexible under low stress conditions. 257 However, as stress increases, collagen fibrils may become elongated and orient in the load bearing direction 258 leading to a decrease in elasticity (Holzapfel, 2017). Previous work using atomic force microscopy revealed a

260 speculate that mechanical strain on these structures is likely adjusted as internal body pressure changes 261 (Dodd et al., 2018). Additionally, in nekl-3(sv3) molting mutants, the cuticle is not properly removed from the 262 middle part of their body, leaving the free head and tail to grow normally while the encased middle is 263 constricted by the old cuticle to pre-molt dimensions (Yochem et al., 2015). Given this body restriction, we 264 speculate that the old cuticle stretches beyond its tolerance, becomes stiff, and constricts the center of the 265 nematode relative to the growing head and tail size. We hypothesize that C. elegans sense when the cuticle determine when to initiate a molt.

268 To explain the initialization of molt behavior, we developed a "Stretcher" model for a cuticle-stretch-based distinct regimes related to cuticle stretch: linear stretch dynamics, non-linear stretch dynamics, and larval stage 271 transition (Fig 5). The cuticle structure is anisotropic, possibly leading to distinct properties in the length and width directions (Cox et al., 1981; Petzold et al., 2011). We approximated the cuticle as a hollow cylinder of negligible thickness filled by the body of the nematode. Growth was modelled as internal pressure evenly applied to the cuticle in all directions. We hypothesized that the cuticle responds differently during linear stretch, nonlinear stretch, and post-molt relaxation.

276 Fig 5. Cuticle stretch determines larval-stage transitions

277 The "Stretcher" model describes each larval stage as a cycle. Nematodes are modeled as a cylindrical object

In the linear stretch regime (Fig 5), the cuticle would be linearly elastic in both the length and width directions, stretching proportionally to the pressure exerted on the cuticle. Previous work found evidence for a linearly

286 elastic cuticle (Gilpin et al., 2015; Park et al., 2007) in animals expanded in a negative external pressure direction and ΔW stretch in the width direction, each related to growth-applied pressure Δp by

$$
\begin{align*}
& \Delta L=a_{L} \Delta p \tag{1}\\
& \Delta W=a_{W} \Delta p \tag{2}
\end{align*}
$$

293 The "stretch coefficients" in length, a_{L}, and width, a_{W}, measure the stiffness of the cuticle (S5 File, Eq. 294 S14-S23). Smaller values correspond to a stiffer material, which is less able to stretch in response to pressure.

$$
\begin{equation*}
\frac{\Delta W}{\Delta L}=\frac{a_{W}}{a_{L}}=\text { constant. } \tag{3}
\end{equation*}
$$

302 In the non-linear stretch regime (Fig 5), growth continues to apply pressure to the cuticle uniformly in all hypothesized that this shift from linear to nonlinear regimes provides a mechanism for size-sensing and cues the larval-stage transition (Fig 5). In principle, this transition could occur in either the width or length directions. For ease of presentation, we assume a transition from linear to non-linear stretch in the length direction and
maintains linear stretch in the width direction. In the nonlinear regime, the stretch in the length direction in response to pressure becomes

$$
\begin{equation*}
\Delta L \approx \tilde{a}_{L}(p) \Delta p \tag{4}
\end{equation*}
$$

311 The nonlinear "stretch coefficient," $\tilde{a}_{L}(p)$, is no longer constant and decreases with increasing pressure. It is 312 smaller than a_{L} because the cuticle has become less elastic than in the linear regime. If the length-direction 313 enters the nonlinear regime and has reduced stretch response, while width has the same constant stretch 314 response then, we expect the $\frac{\Delta W}{\Delta L}$ ratio to increase

$$
\begin{equation*}
\left.\frac{\Delta W}{\Delta L}\right|_{\text {non-linear }}=\frac{a_{W}}{\tilde{a}_{L}(p)}>\frac{a_{w}}{a_{L}}=\left.\frac{\Delta W}{\Delta L}\right|_{\text {linear }} \tag{5}
\end{equation*}
$$

316 During the larval-stage transition (Fig 5), a new, larger cuticle is formed beneath the old cuticle that is shed

317 during ecdysis. Because the old cuticle constrained growth in length, we predict a rapid increase in the length 318 direction when the constraint is removed. Nematode volume is conserved as growth does not occur during this process. Therefore, the relaxation in length is accompanied by a corresponding decrease in width.

320 Fig 6. Stretcher model analysis of replicate 2 COPAS BIOSORT data consistent with a length trigger for 321 molting
322 (A) A grayscale histogram of the width (y-axis) vs length (x-axis) of all sampled animals in replicate 2. The 323 range of all bootstrap regressions is in gold. (B) Demonstration of calculating the ratio of width-to-length stretch 324 as the local slope using L3. Left panel is a repetition of L3 data from Fig 6A. Right panel is a repetition of 325 results from Fig 6C. (C) Within a larval stage, the ratio of width to length stretch varies over time. The standard 326 deviation captures population variation (grey) (S5 File, Eq. S26, S28).

327 To verify the shape dynamics predicted by the Stretcher model, we analyzed the relationship between 328 nematode length and width over developmental time. All three regimes, linear stretch, non-linear stretch, and 329 relaxation, predicted by the Stretcher model are detectable in the COPAS BIOSORT data (Fig 6). In all larval

330 stages, the instantaneous ratio $\frac{\Delta W}{\Delta L}$ was approximately constant for the majority of the time, consistent with a 331 linear stretch regime (Fig 6C). We observed a large slope decrease during the L1 stage, which could

332 correspond in time to the metabolic decision for entry into the dauer stage (Golden and Riddle, 1984) or

348 Mechanical control of feeding and allocation of food energy likely constrain growth dynamics

349 We have shown that changes in physical properties of the C. elegans cuticle precede the decision to initiate 350 molt and might serve as a cue for developmental timing. C. elegans must have mechanisms to control growth

351 throughout development, particularly in response to these cues. Like most species, C. elegans do not increase 352 their growth rate indefinitely in response to increased food availability (Uppaluri and Brangwynne, 2015). The 353 animals could control growth entirely using feeding rate, as they actively control the feeding rate (Fang-Yen et

354 al., 2009) and stop feeding at the initiation of a molt (Singh and Sulston, 1978). In addition to this mechanical 355 control, they could use metabolic control to preemptively divert ingested resources toward or away from 356 growth. Metabolic processing of stored resources could be especially useful if animals complete their molt and ingested food toward volumetric growth.

Fig 7. Visualization and analysis of Feeding Model
Schematics for food intake and utilization models are shown. (A) The buccal cavity is the opening through which food enters. The pharyngeal lumen is the cavity opened and closed by pharyngeal muscles that drives food intake. (B) Product of pumping frequency and pharyngeal lumen fraction, $f(t) g(t)$.

366 Fig 8. Visualization and analysis of Food Utilization model.
367 (A) Dynamics of volume growth rate. (B) Dynamics of the estimated food utilization towards growth ($\alpha(t)$). (C) 368 Dynamics of red fluorescence. (D) Dynamics of food allocation breakdown. Food allocated toward 369 maintenance is proportional to animal size (pink). Food allocated toward growth is calculated from food intake 370 (B) and utilization (C) to produce low (dark green) and high (combined green) estimates (S5 File). Food 371 allocated to other metabolic processes consists of remaining food resources (grey). In panels A-C, the solid blue line represents the mean bootstrap regression. Standard deviation on the regression is marked by the shaded blue region. In panels A-D, Vertical red lines mark molt times. Green regions correspond to times during which volumetric growth rate and red fluorescence are both increasing, red regions correspond to times during which volumetric growth rate and red fluorescence are both decreasing, and white regions correspond to times during which volumetric growth rate and red fluorescence do not vary together. Errors on shaded regions are ± 0.7 hours. These data are from replicate 2 and are representative of all replicates (S11 Fig). period, defined as the length of time of one full pumping cycle, translates to changes in the rate of food uptake.

384 A single cycle in which animals take up and transport food to the gut consists of four general steps (Fig 7A).
385 The cycle begins with relaxed pharyngeal muscles and a closed pharyngeal lumen (step 1). The animal opens food intake rate, $\frac{d V_{\text {food }}}{d t}$, over a single pumping period (S5 File, Eq. S1-S6) to obtain

$$
\begin{equation*}
\frac{d V_{\text {food }}}{d t}=C f(t) g(t) V_{\text {worm }} . \tag{6}
\end{equation*}
$$

401 Here, C is the concentration of bacteria in the culture where animals are grown and $f(t)$ is the pumping 402 frequency and the inverse of the period of a single pump. Both pumping frequency, $f(t)$, and the fractional 403 pharyngeal lumen size, $g(t)$, vary over the animal's life cycle. Though any individual bacterium may take 404 multiple pumps to travel down to the gut, we assume that, once food has entered the pharyngeal lumen, it will 406 do not model the dynamics of food traveling through the gut.

407 We verify that red fluorescence (denoted as "Red") can be treated as a proxy measurement for food intake rate 408 given defecation rates (S9 Fig, S5 File). We use red fluorescence and calculated volume as the product of 409 pumping rate and pharyngeal lumen fraction, $f(t) g(t) \propto \frac{R e d}{V_{\text {worm }}}$, over time. The product oscillated within a larval 410 stage and decreased across larval stages (Fig 7B). The minima of the product of pumping frequency and 411 pharyngeal lumen fraction occurred during molt times, consistent with prior knowledge (Byerly et al., 1976; 412 Singh and Sulston, 1978). The relative length of the pharynx to animal length has been shown to decrease 413 over development (Avery, 2003) and a similar trend in the volume of the pharyngeal lumen could explain the 414 slow decrease in the product of pumping frequency and pharynx fraction.

415 Changes in food utilization coincide with molts

416 To understand whether animals control growth rate primarily using the mechanical feeding process or 417 metabolic regulation, we describe how food is utilized once it is ingested by C. elegans. We assumed three 418 general categories of food utilization: maintenance, observed volumetric growth, and all other processes. We 419 assume that resources required for maintenance are proportional to the volume of the animal. Other processes 420 may include the development of tissues and structures, such as reproductive components, within the worm 421 which are resource intensive, but are not detected during the measurements of the width, length, or volume.

422 The rate of food conversion to growth can be described by:

$$
\begin{equation*}
\frac{d V_{\text {worr }}}{d t}(t)=\eta(t) \alpha(t) \frac{d V_{\text {food }}}{d t}(t) . \tag{7}
\end{equation*}
$$

424 Here, $\frac{d V_{\text {food }}}{d t}$ is the instantaneous rate of food intake (averaged over a single pump), $\eta(t)$ is the metabolic 425 efficiency of converting food to growth, and $\alpha(t)$ is food utilization, meaning the fraction of food used for 426 volumetric growth as opposed to maintenance or other metabolic processes. If both $\eta(t)$ and $\alpha(t)$ are constant, 428 would be equivalent to controlling growth through feeding with no changes in metabolic regulation (through 429 enzyme expression or other direction of flux between pathways). Efficiency captures the maximum efficiency of 430 metabolism, and we assume it does not vary significantly when the food source is constant, $\eta(t)=\eta$. 431 Therefore, utilization captures the dynamics of metabolic regulation. If the fraction of food utilized for growth is 432 not constant, then volumetric growth rate is no longer proportional to food consumption rate and metabolic 433 control must play a role in driving the growth rate.

434 We calculate the value of the product of metabolic efficiency and food utilization, $\alpha(t) \eta$, from the data by 435 manipulating Eq. (7): $8 B$). Because only utilization varies in time, it captures the dynamics of metabolic regulation:

$$
\begin{equation*}
\alpha(t) \propto\left(\frac{d V_{\text {worr }}}{d t}(t)\right) / \text { Red. } \tag{9}
\end{equation*}
$$

441 Feeding rate (using red fluorescence as a proxy) and volume growth rate (numerically differentiated from the 442 volume regression) follow similar dynamics throughout much of C. elegans development (Fig 8A, Fig 8C). The 443 regressions for volume growth rate and food intake rate (as measured through red fluorescence) demonstrate 444 a greater than 90\% correlation when using synchronized populations (through the end of L4). Each larval stage

445 consists of three types of dynamics: steady growth during which food intake and growth rate are both 446 increasing (green), preparation for molt during which food intake and growth rate are both decreasing (red), 447 and transition regions where food intake and growth rate do not vary together (white). To illustrate how the 448 dynamics of food intake rate and growth rate (Fig. 8A, 8C) correspond to the progression within a larval stage, 449 consider the L3 larvae in replicate 2. At hour 24.5, both growth rate and food intake rate increased 450 corresponding to the start of the third larval stage for the population average. Until hour 29.8, the population 451 grew steadily, and food intake and growth rate both increased (green). Between hour 29.8 and 30.8 (white), 452 food intake decreased and growth rate increased, marking a transition from the steady growth (green) to the 453 molt preparation regime (red). Between hours 30.8 and 32.1, the animals prepared to initiate molts, and both 454 the growth rate and food intake rate decreased (red). Between hours 32.1 and 34.4 (white), the animals' 456 the molt and start of the L4 larval stage. Similar dynamics occurred in the L2 and L3 larval stages. The L1 457 larval stage followed different dynamics, likely due to the dauer decision or divisions of the seam cells.

458 During steady growth (green) and molt initiation (red), mechanical food intake rate and allocation of food resources towards observable growth have similar dynamics. At transition points (white) the allocation of food 460 resources towards growth, $\alpha(t)$, reaches a local minimum or maximum (Fig 8B). These local extrema in $\alpha(t)$) 461 at transition points likely indicate large changes in metabolic regulation. One might expect growth rate to lag

464 intake rate lagged behind growth rate (with correlation ~94\%) (S14 Fig). The switch to food intake lagging 465 growth rate at later larval stages might be indicative of increased regulation of resource allocation. (Fig. 8C) imply that animals control their growth rate entirely through the control of mechanical food intake rate 468 with no variation in how food resources are allocated. Instead we saw variation in food allocated toward
growth, $\alpha(t)$, both between larval stages and within individual larval stages. We examined the dynamic range 470 of total food intake (Fig. 8C) and the dynamic range of food allocated toward growth (combined green Fig. 8D) 471 to quantify whether control through food intake or control through metabolic regulation play a larger role in 472 growth regulation. Across a larval stage, both methods of regulation had dynamic ranges of the same order of 473 magnitude. We also calculated the dynamic range within each period of steady growth (green), molt initiation 474 (red), and transition (white) (Fig. 8). Within each region, the dynamic range of food intake and food allocated 475 toward growth differed by a factor of 0.5 to 5 , but we found no noticeable trends by region (S3 Table). It is 476 possible that the interpolation and smoothing required to calculate derivatives necessary to this analysis are 477 masking some sharper transitions, which could be resolved with higher resolution temporal experiments. 478 These results suggested that both the total intake rate (governed by mechanical feeding behavior) and 479 metabolic regulation of food resources are crucial for growth control in all regions of development. Additionally, 480 we compared the food allocated toward other metabolic processes with food allocated toward growth over the 481 four larval stages. Using the low growth utilization estimate, food allocated toward growth increases with an

483 increase. Resource requirements for other metabolic processes such as development of new tissues and 484 animal mobility might vary much less during development than the resource requirements for volumetric 485 growth.

486 Feeding rate and volumetric growth rate share a complex relationship with C. elegans development; food 487 intake and growth rate vary together, except at larval stage transitions and possible key developmental 488 transitions. Notably, the changes in metabolic resource allocation at the transition from increasing to 489 decreasing growth and food intake rates (Fig 8A, 8C) occurred at approximately the same times as the 490 increase in slope predicted as a cue for molt initiation by the Stretcher model (Fig 6). This correlation suggests that the cuticle reaches its maximum stretch in length and a metabolic decision to reallocate food resources growth occurs at the same time, supporting the hypothesis that a physical threshold in stretch triggers metabolic decisions to enter a molt (S10 Fig).

Discussion

495 Using an integrated image-based and flow-based phenotyping strategy to precisely evaluate feeding, growth, 496 and molt dynamics at high replication, we detected oscillations in feeding behavior consistent with larval 497 progressions and used these dynamics to define larval stages. We observed changes in body shape at each 498 larval-stage transition that are consistent with differences in physical cuticle properties along length or width 499 (anisotropy). These results suggest that animals sense their size and control molt timing by detecting the 500 physical stretch of the cuticle. To understand whether C. elegans control growth using the moderation of the 501 physical uptake of nutrients or through metabolic regulation of the allocation of consumed resources, we applied mathematical models of feeding-limited growth to our data. We predicted that the volumetric growth 503 rate was controlled by both C. elegans feeding rate and other metabolic regulation and provided a modeling 504 framework to decouple the relative effects. These results demonstrate two mechanisms by which physical 505 constraints can influence developmental timing and growth rate.

506 Cuticle stretch controls the timing of larval-stage transitions

507 Measurement of both animal length and width allowed us to observe changes in body shape as well as body
508 size. We propose that a stretch threshold along the body length axis acts as a trigger to larval-stage
509 transitions. Importantly, mechanical stretch sensing could also provide organisms a way to couple the rate of
510 growth and development to maintain a constant volume fold change within a larval stage and achieve size
511 homeostasis within a population. In this way, smaller animals would reach a stretch limit at a smaller size as
512 the cuticle would only stretch a percentage of its original size before reaching a threshold. A folder mechanism
513 for C. elegans growth has been previously suggested (Towbin and Grosshans, 2021). For cuticle stretch to
514 trigger larval-stage transitions, animals must either have the ability to measure the amount the cuticle has
515 stretched or the stiffness of the cuticle. Across biological systems, cells can respond to the stiffness of their
516 environment using mechanosensitive components (Schiller and Fässler, 2013; Wolfenson et al., 2011), but few
517 examples in tissues or whole-organisms are known. In C. elegans, it has been demonstrated that

518 hemidesmosomes, which connect the cuticle and the epidermis, are mechanosensitive during embryogenesis
519 (Suman et al., 2019; Zhang et al., 2011). Additionally, dense bodies, which connect the epidermis and muscles, 520 are hypothesized to be mechanosensitive as well (Broday et al., 2007; Costa et al., 1997; Moerman and 521 Williams, 2006; Zaidel-Bar et al., 2010). Changes in cuticle composition, and presumably stiffness, have been 522 shown to also affect well known growth controlling pathways such as the BMP signaling pathway (Madaan et 523 al., 2020). These possible mechanosensitive components could monitor the stiffness of the cuticle and be part 524 of the signaling pathways that regulate larval-stage transitions. Further experiments are required to explicitly 525 test whether these components control larval-stage transitions.

526 Our analysis of width-to-length ratio variation over larval stages provides a first approximation of the timing of 527 larval-stage transition cues and cuticle stretch properties (Fig 8). The sudden increase we observed in the 528 width-to-length ratio suggests a length stretch threshold. Interestingly, when observing the L4 to adult 529 transition, others have detected anisotropic constriction on the transverse (width) axis followed by gradual 530 relaxation driven by rearrangements in cortical actin networks (Katz et al., 2018). Single-worm, high frequency 531 measurements targeting hours surrounding the sudden width-to-length ratio increase, are needed to better resolve cuticle shape dynamics. Higher time resolution would also minimize edge effects (S12 Fig), which likely 533 caused the unpredicted width-to-length ratio increase observed at the start of larval stage L2 (Fig 8C). 534 Measurements of animal length and width provide a total stiffness estimate but do not allow us to distinguish 535 the contributions of cuticle stiffness from other tissues. To investigate cuticle properties, independent of other 536 nematode tissues and organs, experiments must probe the stiffness of free cuticles.

Physical constraints on feeding influence growth dynamics

538 Our mechanical feeding model defines a relationship between food availability, food intake rate, food utilization, 539 and growth rate. We distinguished between food intake rate and pumping rates by modeling the physical 540 process of feeding. The results of our analysis are consistent with both an oscillation in pumping rates (Singh and Sulston, 1978) and a slow change in pharyngeal lumen size throughout development (Avery, 2003).

542 Previous research suggested that pumping frequencies within a larval stage are constant with sudden
543 transitions between lethargus and pumping (Nika et al., 2016). However, we were unable to resolve sudden 544 transitions because of the continuous smoothing of the kernel regression method used and population effects 545 (Fig 7B). Previous work has shown that growth rate increases with increasing food availability up to a 546 saturation limit (Uppaluri and Brangwynne, 2015). Varying bacterial concentration levels in future experiments 547 would allow us to distinguish whether mechanical control of food intake or metabolic control of food utilization 548 determine the upper bound on growth rate.

549 Our analysis of the relationship between growth rate and food intake rate quantified the interplay of metabolic 550 regulation and mechanical food intake. Mechanical food intake provides the upper bound of available food 551 resources for growth, but metabolic regulation substantially changes how much of this available food is utilized 552 for volumetric growth across development. Local extrema in metabolic regulation dynamics coincide with the 553 start of transition times. Within the L2 and L3 stages we observed a decoupling between growth rate and food 554 intake dynamics (Fig. 8 white region) twice. The first of these time periods corresponds to the times at which 555 the width-to-length ratio drastically changes and the second corresponds to ecdysis (S10 Fig). We estimated 556 that throughout larval stages metabolic resources allocated to non-growth processes varies much less than 557 food resources required for growth and maintenance. The oscillatory behavior of food utilization motivates the 558 need for further metabolomic experiments to probe metabolic regulatory dynamics. Higher time resolution 559 experiments on single animals in future experiments may be able to better resolve the existence of sudden 560 changes in metabolic regulation.

561 In the analysis of both the Stretcher and feeding models, we found that the L1 larval stage has different 562 dynamics than other larval stages. We observed a decrease in growth rate with no associated decrease in 563 feeding rate, corresponding to a mid-stage resource reallocation, that does not occur in any other larval stage, 564 possibly showing the dauer decision (Golden and Riddle, 1984) or the divisions of seam cells. Additionally, 565 within the L1 stage, the relative stretch measured in width and length did not follow the pattern observed in

566 other larval stages. We observed a mid-stage dip in the width-to-length ratio that is otherwise approximately 567 constant throughout the L1 stage. As animals reallocate food resources in mid-L1, they also undergo a change 568 in shape suggesting either directed growth or structural changes to either the cuticle or animal body (Fig 3, Fig 569 6, S8 Fig). Future experiments exploring the structural properties of cuticles at all larval stages may help to 570 determine where the L1 shape changes originate.

571 Development comprises complex interactions of growth regulation across diverse scales

572 Our results demonstrate that C. elegans may use physical constraints on animal size and feeding rate to 573 control growth rate and determine developmental transitions. This type of regulation could be applicable to 574 organisms with stiff cuticles or other physical barriers to growth, like many species of Ecdysozoa. The control 575 of whole-organism growth requires cells, tissues, and organs to orchestrate final size and cell number. In C. 576 elegans, cell number is precisely defined and invariant from animal to animal (Horvitz and Sulston, 1980), so 577 the final adult size of an individual must come from cell size as opposed to number. Future studies should 578 focus on how whole-organism size is determined by the integration of cell, tissue, and organ size. By 579 incorporating these different developmental scales, the Stretcher model can be refined to completely describe 580 how physical constraints on parts of the organism impact the whole. C. elegans gives investigators a method to 581 investigate animal-to-animal variation in developmental trajectories across each of these scales.

582
 Methods

583 Worm culture

584 The canonical laboratory strain N2 was obtained from the C. elegans Natural Diversity Resource (Cook et al., 585 2016). Animals were cultured at $20^{\circ} \mathrm{C}$ on 6 cm plates of modified nematode growth media (NGMA), which

586 contained 1\% agar and 0.7\% agarose seeded with E. coli OP50 bacteria (Andersen et al., 2014).

587 Bacterial food

588 E. coli HB101 bacteria were prepared from cultures grown for 15 hours in Superbroth and then pelleted by 589 centrifugation. HB101 bacteria were diluted to OD100 in K medium ($51 \mathrm{mM} \mathrm{NaCl}, 32 \mathrm{mM} \mathrm{KCl}, 3 \mathrm{mM} \mathrm{CaCl}$, 590 and 3 mM MgSO4 in distilled water) and stored at $-80^{\circ} \mathrm{C}$. Bacteria were thawed and fed to animals at a 591 concentration sufficient to sustain population growth from hatching to adulthood (OD20).

592 Growth of the animals

593 Populations of animals were propagated on NGMA plates for two generations without starvation. In the third 594 generation, gravid adults were bleach-synchronized (Stiernagle, 2006). Embryos were resuspended in K 595 medium, aliquoted into a 500 mL flask at a concentration of one embryo per $\mu \mathrm{L}$, and allowed to hatch 596 overnight. The following day, arrested L1s were fed HB101 bacteria at a final concentration of OD20 in a final 597 flask volume of 100 mL K medium and HB101 food. Animals were grown for three days at $20^{\circ} \mathrm{C}$ with constant 598 shaking. Following these three days, adult animals were bleach-synchronized once more and embryos were 599 aliquoted to seven replicate 500 mL flasks at a concentration of one embryo per $\mu \mathrm{L}$ in 100 mL . The following 600 morning, six flasks were fed HB101 bacterial food at a final concentration of OD20 in a final flask volume of 601100 mL K medium and HB101 food. Two additional flasks were included to control for L1 animal size and 602 possible clumping of bacterial food: one flask contained L1 larvae but did not have food added and one flask 603 contained no larvae but the same concentration of HB101 bacteria as the six flasks containing L1 larvae. All 604 replicate flasks were kept in an incubator at $20^{\circ} \mathrm{C}$ with shaking for the duration of the experiment. A small 605 temperature gradient of $1.25^{\circ} \mathrm{C}$ was recorded in the shaking incubator with the highest temperature readings 606 on the right side and lowest temperature readings on the left side (S1 File). This slight variation in temperature 607 contributed to variation in developmental rate among replicates based on position within the incubator 608 (replicates were placed in numerical order with replicate 1 positioned on the far right side of the incubator).

609
 High-throughput measurements of body size and fluorescence

610 Flasks were sampled each hour beginning one hour after feeding and continuing for 72 consecutive hours. At 611 each hour, $500 \mu \mathrm{~L}$ was removed from each flask and transferred to a well of a deep 96 -well plate. Each flask 612 was sampled at each time point. Fluorescent polychromatic beads (Polysciences, 19507-5) with a $0.5 \mu \mathrm{~m}$ 613 particle size were added to each well at a final concentration of 3.64×10^{8} beads $/ \mathrm{mL}$ and incubated at $20^{\circ} \mathrm{C}$ for 61410 minutes with shaking. Following the bead incubation, $30 \mu \mathrm{~L}$ from each well of the deep 96 -well plate was 615 aliquoted to a 96 -well microtiter plate. The process was repeated 11 times to 11 separate wells of the same 616 microtiter plate with pipetting to mix the well contents from the deep 96-well plate. Animals were then treated 617 with sodium azide at a final concentration of 50 mM to paralyze and prevent defecation of the ingested beads. 618 The 96-well plate was imaged with an ImageXpress Nano (Molecular Devices, SanJose, CA) using both $2 x$ 619 (Nikon MRD00025) and 10x (Nikon MRH00101) objectives. The ImageXpress Nano acquires brightfield 620 images using a 4.7 megaPixel CMOS camera. Images are stored in 16-bit TIFF format. Finally, animals were 621 scored using a large-particle flow cytometer (COPAS BIOSORT, Union Biometrica, Holliston MA). The COPAS 622 BIOSORT sheath flow rate was kept at a constant $10.3 \pm 0.1 \mathrm{~mL}$ per minute to reduce variability in length 623 measurements.

624 Image processing

625 Manual measurements of animal size were performed using the free Java image-processing program ImageJ 626 (Abràmoff et al., 2004). Well images for the six replicate flasks, excluding controls were loaded into ImageJ 627 software. Length was measured from head to tail, and width was measured at the widest point of the animal.

628 Five animals were measured per well across thirty total wells for each hour. Measurements were repeated for 629 all 72 time points in the assay. Body length and width were used to estimate cross-sectional area 630 (length*width). This metric was used to describe animal area for the extent of the text. Volume was calculated 631 from body length and width by approximating the animal as a cylinder. Pixels were converted to $\mu \mathrm{m}$ using a 632 conversion factor of 3.2937 pixels $/ \mu \mathrm{m}$.

Data processing

634 The COPAS BIOSORT was used to collect measurements of animal length (TOF), optical extinction (EXT), 635 and fluorescence for every animal in each well. These traits measure properties of nematode development 636 and, as such, increase as animals progress to adulthood (Andersen et al., 2015). Optical extinction 637 measurements correspond to the amount of light absorbed over the full length of an animal as it passes 638 through the instrument. An additional measurement (norm.EXT) can be calculated by normalizing optical 639 extinction by length. The raw data collected were imported and processed using the easysorter R package 640 (Shimko and Andersen, 2014).

641 The COPAS BIOSORT data were analyzed further using Gaussian finite mixture modeling as implemented in 642 the mclust R package (Scrucca et al., 2016). These probabilistic models assume that data are generated from 643 a mixture of multivariate normal distributions and, therefore, can be used to classify unstructured data into 644 meaningful groups. Specifically, the mclust package fits a mixture model to data and selects the optimal 645 number of clusters using an expectation-maximization algorithm and Bayes Information Criteria. For 646 model-based clustering, log transformed animal length (logTOF) and log transformed optical extinction 647 (logEXT) were used as inputs for the Mclust function. Data from each hour of the experiment was analyzed by 648 replicate and clusters that did not appear to include majority animal objects were identified and removed as 649 described previously (Smith et al., 2009). This processing removed non-animal objects such as bacterial 650 clumps, shed cuticles, and next generation larval animals from the time-course data.

651 We used a numpy polyfit regression of well-median data from the COPAS BIOSORT and image measurements 652 to convert TOF and norm.EXT data to microns (S5 File, Eq. S7-S9). Only the unit-corrected BIOSORT data 653 were used for further analysis.

Molt analysis

655 Fluorescence data obtained from the COPAS BIOSORT was used as a proxy for feeding behavior to 656 distinguish animals in a molt from growing animals. First, fluorescence was normalized by EXT to account for 657 the ability of larger animals to consume more food and beads. Next, an analysis of variance statistical model 658 was fit to the fluorescence data normalized by EXT to determine the amount of variance contributed by 659 replicate and well (Table S1). A local kernel regression smoothing method was then applied to the residuals of 660 the variance analysis using the lokern R package (Hermann, 2016). Residuals were used to address only the 661 differences over time and ignore minor variation among replicates and wells. The local minima of the 662 regression function were found by solving for where the first derivative of this function equaled zero. The time 663 associated with each local minimum was used to represent the timing of each molt. Molts occurred at 14, 25, 66436 , and 48 hours.

665 To identify periods of time that contained a majority of growing animals, the inflection points of the regression 666 function were calculated by solving for where the second derivative of the function equaled zero. Time points

669 Each molt is initiated when animals enter lethargus: a behavioral state where animals cease active feeding. To 670 classify individual animals as in a molt or growing, we set a quiescence threshold using fluorescence 671 measurements at each local minimum. The fluorescence measurement at each local minimum was as follows: $6720.07,0.06,0.06,0.06$. The average of these measurements (0.06) was used as the fluorescence threshold 673 signifying quiescent behavior. Any individual animals that fell below this threshold fluorescence value were 674 designated as in a molt and animals above this threshold value were classified as growing.

675 Comparison of model fits

676 To determine the volume growth model, we fit linear, exponential, and cubic functions to data designated as 677 growth periods for each larval stage. Both linear and nonlinear functions were fitted using least-squares 678 regression. Akaike's information criterion (AIC) (Sakamoto et al., 1986) and Bayesian information criterion 679 (BIC) (Schwarz, 1978) were goodness of fit criteria used to evaluate candidate models. To assess the strength 680 of evidence for each candidate model, we identified the model with the smallest AIC/BIC value and assessed 681 the difference between this value and the AIC/BIC of the other two models. The magnitude of the difference 682 was used to determine the level of support for each candidate model as previously described (Burnham and 683 Anderson, 2007; Kass and Raftery, 1995). All model fits and analysis were performed using the stats R 684 package.

685 Stretcher and feeding model analysis

686 To analyze shape dynamics, length and width data from growth time periods were extracted from the full 687 COPAS BIOSORT population data and analyzed from each replicate separately to avoid issues with replicate 688 variability. For replicate 2 , the hours defining growth periods were 1-13, 16.37-22.39, and 26.93-32.96; 689 corresponding to L1, L2, and L3. Hours defining larval stages were rounded as data was collected at exact 690 hour increments. The L4 stage was excluded from the analysis because of the high variability within the local or global plug-in bandwidth," n.d.), to smooth the population dynamics of length and width. To calculate 693 mean and standard deviation, the smoothed population measurements were bootstrapped using 2,000 694 samples with replacement (S5 File, Algorithm S1). To determine cuticle properties throughout larval stages, we 695 calculated the mean ratio of derivatives of regression width and length. Error for this ratio was calculated using 696 error propagation to pass the bootstrap variation through the ratio (S5 File, Eq. S24-28).

697 To analyze volumetric growth dynamics and feeding dynamics, volume regression was calculated using a 698 cylindrical approximation for animal shape (S5 File, Eq. S7-S9) and the same local kernel regression

699 previously described was applied to red fluorescence data. Volume growth rate was calculated using the 700 python numpy gradient function applied to the volume regressions. An additional moving time window average 701 (1.4 hours) was applied to smooth numerical errors in the derivative when determining feeding and growth regime transition points (S13 Fig).

References

Abràmoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with ImageJ. Biophotonics international 11:36-42.
Andersen EC, Bloom JS, Gerke JP, Kruglyak L. 2014. A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 10:e1004156.
Andersen EC, Shimko TC, Crissman JR, Ghosh R, Bloom JS, Seidel HS, Gerke JP, Kruglyak L. 2015. A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains. G3 5:911-920.
Avery L. 2003. Food transport in the C. elegans pharynx. Journal of Experimental Biology. doi:10.1242/jeb. 00433
Baugh LR. 2013. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics 194:539-555.
Björklund M. 2019. Cell size homeostasis: Metabolic control of growth and cell division. Biochim Biophys Acta Mol Cell Res 1866:409-417.
Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71-94.
Broday L, Hauser CA, Kolotuev I, Ronai Z 'ev. 2007. Muscle-epidermis interactions affect exoskeleton patterning in Caenorhabditis elegans. Dev Dyn 236:3129-3136.
Burnham KP, Anderson DR. 2007. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science \& Business Media.
Byerly L, Cassada RC, Russell RL. 1976. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol 51:23-33.
Cadart C, Monnier S, Grilli J, Sáez PJ, Srivastava N, Attia R, Terriac E, Baum B, Cosentino-Lagomarsino M, Piel M. 2018. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat Commun 9:3275.
Campos M, Surovtsev IV, Kato S, Paintdakhi A, Beltran B, Ebmeier SE, Jacobs-Wagner C. 2014. A constant size extension drives bacterial cell size homeostasis. Cell 159:1433-1446.
Cassada RC, Russell RL. 1975. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46:326-342.
Cook DE, Zdraljevic S, Tanny RE, Seo B, Riccardi DD, Noble LM, Rockman MV, Alkema MJ, Braendle C, Kammenga JE, Wang J, Kruglyak L, Félix M-A, Lee J, Andersen EC. 2016. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length. Genetics 204:371-383.
Costa M, Draper BW, Priess JR. 1997. The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Dev Biol 184:373-384.
Cox GN, Staprans S, Edgar RS. 1981. The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev Biol 86:456-470.
Dodd W, Tang L, Lone J-C, Wimberly K, Wu C-W, Consalvo C, Wright JE, Pujol N, Choe KP. 2018. A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans. Genetics 208:1467-1482.
Donnan L, John PC. 1983. Cell cycle control by timer and sizer in Chlamydomonas. Nature 304:630-633.
Essmann CL, Elmi M, Shaw M, Anand GM, Pawar VM, Srinivasan MA. 2017. In-vivo high resolution AFM topographic imaging of Caenorhabditis elegans reveals previously unreported surface structures of cuticle mutants. Nanomedicine 13:183-189.
Fang-Yen C, Avery L, Samuel ADT. 2009. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106:20093-20096.
Gilpin W, Uppaluri S, Brangwynne CP. 2015. Worms under Pressure: Bulk Mechanical Properties of C. elegans Are Independent of the Cuticle. Biophysical Journal. doi:10.1016/j.bpj.2015.03.020
Golden JW, Riddle DL. 1984. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 102:368-378.
Hermann E. 2016. lokern: Kernel Regression Smoothing with Local or Global Plug-in Bandwidth. R package
version 1.1-8. https://CRAN.R-project.org/package=lokern
Holzapfel GA. 2017. Similarities between soft biological tissues and rubberlike materials. Constitutive Models for Rubber IV 607-617.
Hone DWE, Benton MJ. 2005. The evolution of large size: how does Cope's Rule work? Trends Ecol Evol 20:4-6.
Horvitz HR, Sulston JE. 1980. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96:435-454.
Hu PJ. 2018. Dauer. WormBook.
Jorgensen P, Tyers M. 2004. How cells coordinate growth and division. Curr Biol 14:R1014-27.
Kass RE, Raftery AE. 1995. Bayes Factors. J Am Stat Assoc 90:773.
Katz SS, Maybrun C, Maul-Newby HM, Frand AR. 2018. Non-canonical apical constriction shapes emergent matrices in C. elegans. bioRxiv. doi:10.1101/189951
Knight CG, Patel MN, Azevedo RBR, Leroi AM. 2002. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol Dev 4:16-27.
Lokern: Kernel regression smoothing with local or global plug-in bandwidth. n.d. https://CRAN.R-project.org/package=lokern
Madaan U, Faure L, Chowdhury A, Ahmed S, Ciccarelli EJ, Gumienny TL, Savage-Dunn C. 2020. Feedback regulation of BMP signaling by cuticle collagens. Mol Biol Cell 31:825-832.
Madaan U, Yzeiraj E, Meade M, Clark JF, Rushlow CA, Savage-Dunn C. 2018. BMP Signaling Determines Body Size via Transcriptional Regulation of Collagen Genes in Caenorhabditis elegans. Genetics 210:1355-1367.
McKeown C, Praitis V, Austin J. 1998. sma-1 encodes a betaH-spectrin homolog required for Caenorhabditis elegans morphogenesis. Development 125:2087-2098.
Moerman DG, Williams BD. 2006. Sarcomere assembly in C. elegans muscle. WormBook 1-16.
Monsalve GC, Van Buskirk C, Frand AR. 2011. LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Curr Biol 21:2033-2045.
Mörck C, Pilon M. 2006. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol 6:39.
Moss-Taylor L, Upadhyay A, Pan X, Kim M-J, O'Connor MB. 2019. Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinß in Drosophila melanogaster. Genetics 213:1447-1464.
Nika L, Gibson T, Konkus R, Karp X. 2016. Fluorescent Beads Are a Versatile Tool for Staging Caenorhabditis elegans in Different Life Histories. G3 6:1923-1933.
Osella M, Nugent E, Cosentino Lagomarsino M. 2014. Concerted control of Escherichia coli cell division. Proc Natl Acad Sci U S A 111:3431-3435.
Page AP, Johnstone IL. 2007a. The cuticle. WormBook 1-15.
Page AP, Johnstone IL. 2007b. The cuticle. WormBook.
Park S-J, Goodman MB, Pruitt BL. 2007. Analysis of nematode mechanics by piezoresistive displacement clamp. Proc Natl Acad Sci U S A 104:17376-17381.
Patterson GI, Padgett RW. 2000. TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet 16:27-33.
Pavelescu I, Vilarrasa-Blasi J, Planas-Riverola A, González-García M-P, Caño-Delgado AI, Ibañes M. 2018. A Sizer model for cell differentiation in Arabidopsis thaliana root growth. Mol Syst Biol 14:e7687.
Petzold BC, Park S-J, Ponce P, Roozeboom C, Powell C, Goodman MB, Pruitt BL. 2011. Caenorhabditis elegans body mechanics are regulated by body wall muscle tone. Biophys J 100:1977-1985.
Pulak R. 2006. Techniques for Analysis, Sorting, and Dispensing of C. elegans on the COPAS ${ }^{\top \mathrm{M}}$ Flow-Sorting System In: Strange K, editor. C. Elegans: Methods and Applications. Totowa, NJ: Humana Press. pp. 275-286.
Sakamoto Y, Ishiguro M, Kitagawa G. 1986. Akaike information criterion statistics. Dordrecht, The Netherlands: D Reidel 81:26853.
Schiller HB, Fässler R. 2013. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14:509-519.
Schwarz G. 1978. Estimating the Dimension of a Model. aos 6:461-464.

Scrucca L, Fop M, Murphy TB, Raftery AE. 2016. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R J 8:289-317.
Shimko TC, Andersen EC. 2014. COPASutils: An R Package for Reading, Processing, and Visualizing Data from COPAS Large-Particle Flow Cytometers. PLoS ONE. doi:10.1371/journal.pone. 0111090
Singh RN, Sulston JE. 1978. Some Observations On Moulting in Caenorhabditis Elegans. Nematologica 24:63-71.
Smith MV, Boyd WA, Kissling GE, Rice JR, Snyder DW, Portier CJ, Freedman JH. 2009. A discrete time model for the analysis of medium-throughput C. elegans growth data. PLoS One 4:e7018.
Soifer I, Robert L, Amir A. 2016. Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy. Curr Biol 26:356-361.
Spence AJ. 2009. Scaling in biology. Curr Biol 19:R57-61.
Stiernagle T. 2006. Maintenance of C. elegans. WormBook.
Sulston JE, Horvitz HR. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110-156.
Suman SK, Daday C, Ferraro T, Vuong-Brender T, Tak S, Quintin S, Robin F, Gräter F, Labouesse M. 2019. The plakin domain of VAB-10/plectin acts as a hub in a mechanotransduction pathway to promote morphogenesis. Development 146. doi:10.1242/dev. 183780
Sveiczer A, Novak B, Mitchison JM. 1996. The size control of fission yeast revisited. J Cell Sci 109 (Pt 12):2947-2957.

Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S. 2015. Cell-size control and homeostasis in bacteria. Curr Biol 25:385-391.
Towbin BD, Grosshans H. 2021. A folder mechanism ensures size uniformity among C. elegans individuals by coupling growth and development. bioRxiv.
Tuck S. 2014. The control of cell growth and body size in Caenorhabditis elegans. Exp Cell Res 321:71-76.
Turner JJ, Ewald JC, Skotheim JM. 2012. Cell size control in yeast. Curr Biol 22:R350-9.
Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW. 2009. Cell growth and size homeostasis in proliferating animal cells. Science 325:167-171.
Uppaluri S, Brangwynne CP. 2015. A size threshold governs Caenorhabditis elegans developmental progression. Proc Biol Sci 282:20151283.
Uppaluri S, Weber SC, Brangwynne CP. 2016. Hierarchical Size Scaling during Multicellular Growth and Development. Cell Rep 17:345-352.
Vuaridel-Thurre G, Vuaridel AR, Dhar N, McKinney JD. 2020. Computational Analysis of the Mutual Constraints between Single-Cell Growth and Division Control Models. Adv Biosyst 4:e1900103.
Wang P, Hayden S, Masui Y. 2000. Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stage in Xenopus laevis. J Exp Zool 287:128-144.
Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S. 2010. Robust growth of Escherichia coli. Curr Biol 20:1099-1103.
Willis L, Huang KC. 2017. Sizing up the bacterial cell cycle. Nat Rev Microbiol 15:606-620.
Wolfenson H, Bershadsky A, Henis YI, Geiger B. 2011. Actomyosin-generated tension controls the molecular kinetics of focal adhesions. J Cell Sci 124:1425-1432.
Wood WB. 1988. The Nematode Caenorhabditis Elegans. Cold Spring Harbor Laboratory.
Yochem J, Lažetić V, Bell L, Chen L, Fay D. 2015. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Dev Biol 398:255-266.
Zaidel-Bar R, Miller S, Kaminsky R, Broday L. 2010. Molting-specific downregulation of C. elegans body-wall muscle attachment sites: the role of RNF-5 E3 ligase. Biochem Biophys Res Commun 395:509-514.
Zhang H, Landmann F, Zahreddine H, Rodriguez D, Koch M, Labouesse M. 2011. A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471:99-103.

Data availability

852 The authors state that all data necessary to confirm the conclusions of this work are within the text, figures, 853 and supporting information files. All files and code for analysis and generation of figures and tables are 854 archived on GitHub (https://github.com/AndersenLab/C.elegans-growth-manuscript).

Acknowledgements

E.C.A and N.M.M conceived the project. J.N., G.Z., and E.C.A designed, optimized, and performed the experiments. J.N., H.N.A, E.J.A, I.R.M, J.K.R, I.L.S., and J.A.V. collected manual size measurements of animals from images. J.N. processed the COPAS BIOSORT data to remove non-animal objects. J.N, C.G., and S.S. analyzed the results. C.G. and S.S. developed the theory and tested the models. E.C.A and N.M.M supervised the research and the development of the manuscript. J.N, C.G, and S.S. wrote the first draft of the manuscript; J.N., C.G., G.Z, N.M.M, E.C.A., and S.S. edited the manuscript. We thank Jiping Wang and Keren Li for helpful advice about statistical data analysis. We would like to thank members of the Andersen laboratory and the Mangan group for their helpful comments on the manuscript. For this work, J.N., C.G., G.Z., E.C.A., N.M.M, and S.S. received support from the NSF-Simons Center for Quantitative Biology at Northwestern University (awards Simons Foundation/SFARI 597491-RWC and the National Science Foundation 1764421). C.G., S.S., and N.M.M. received support from the National Science Foundation RTG: Interdisciplinary Training in Quantitative Biological Modeling, award 1547394). C.G. was supported in part by the Murphy Scholars Program of the Robert R. McCormick School of Engineering and Applied Science at Northwestern University. Competing interests: The authors have no competing interests.

Supporting Information Captions

S1 Fig. Raw measurements of animal size. Raw COPAS BIOSORT data of animal length (A), width (B), and volume (C) are shown here. After 60 hours, animals have developed to the adult stage. Smaller objects observed after 65 hours were the next generation of newly hatched L1 larvae laid by the animals that developed during the time course.

S2 Fig. Correlation analysis of body size measurements. Manual measurements of animal length, width, and estimated area were compared to COPAS BIOSORT measurements of TOF, norm.EXT, and EXT. Kendall correlation value is shown in each plot.

S3 Fig. Mixture modeling of COPAS BIOSORT data was used to prune data. Mixture models of Gaussian distributions were fit to log transformed animal length (x-axis) and log transformed optical extinction (y-axis). Data from each hour of the experiment was analyzed and processed to remove clusters that did not include animal objects. All replicates were pruned independently; a subset of data from replicate 2 is shown here. Panels indicate experimental hours from which data were taken.

S4 Fig. Fluorescence measurements normalized by body size. Red fluorescence beads were fed to animals during experimentation and fluorescence data was collected by the COPAS BIOSORT. Fluctuations in fluorescence indicate fluctuations in feeding behavior. Fluorescence data was normalized by body size measurements to account for increases in body size. Dividing fluorescence by area was most successful in normalizing fluorescence dynamics to account for changes in animal size over time.

A

C

S5 Fig. Cuticles identified during periods of decreased feeding. Images of wells collected during the experiment were examined for evidence of shed cuticles. (A) Experimental hours where cuticles were identified from images overlap with hours where population feeding behavior is low. Cuticles shed from the L4-Adult molt persisted longer than previous larval stage cuticle debri. (B) Example image of animal without visible cuticle during a period of elevated feeding. (C) Example image of an animal with visible cuticle indicating completion of molt during a period of decreased feeding.

E L4

S6 Fig. Volume growth data fit with linear, exponential, and cubic models. Volume data of individuals in time points defined as growth periods are analyzed for each stage. L1 stage was further separated into two periods to account for the volume dip that occurs mid-stage.

903 S7 Fig. Density plots of population size dynamics across all larval transitions. Density curves of length 904 (A), width (B) and volume (C). Curves are divided into five quantiles and colored by the percentage of 905 quiescent animals present within that quantile. Molts are estimated to occur at experimental hours 14, 25, 36, 906 and 48 (see Methods).

908 Animals in all replicates, measured from images. Animal length and width over C. elegans development captured from image data. Higher noise levels in these measurements preclude accurate regressions to individual larval stages. Length jumps and width dips are still apparent. Compare with Fig 6.

912 S9 Fig. Comparison of red fluorescence regression and food intake rate with defecation calculation.
913 Regression of red fluorescence (dashed pink) is compared to the intake rate of red beads accounting for defecation rate (blue). Overlap of these two curves validates the use of red fluorescence as a proxy for food

916 S10 Fig. Timeline of Food Utilization and Stretcher events. In the first row (grey and white), we mark the slope corresponding to a stiffening cuticle in the length direction. White regions denote time between larval stages. L2 and L3 are the only stages at which we have useful slope information due to the change in slope observed during L1 making transitions difficult to determine and the high level of population desynchronization in L4. In the second row (green, red, and white), we mark the food and growth correlations found in Fig 5B. Green corresponds to times at which both growth rate and food rate are increasing. Red corresponds to times at which both growth rate and food rate are decreasing. White corresponds to times at which growth rate and food rate are uncorrelated. Transitions from green to red regions occur at roughly the same times as the transition to a stiffer cuticle in the length direction.

927 S11 Fig. Analysis of Food intake and growth rate correlation for all replicates. Summary of analysis in 928 Fig. 8 for all replicates. Until larval stage L4, most replicates followed the same pattern of transitions from one 929 growth regime to the next. The time delay at transitions in later replicates can be explained by the temperature 930 gradient and differences in growth between replicates.

Fit to Replicate 2

932 S12 Fig. Stretcher model analysis of replicate 2 COPAS BIOSORT data for different stage thresholding.
Compare to Fig 5. Larval hours were defined by taking the ceiling of the lower boundary and the floor of the upper boundary. This rounding method for larval stage definition demonstrates the sensitivity of the analysis to edge effects. The unexpected step in the L2 larval stage (Fig 5) was significantly reduced with this rounding method.

938 S13 Fig. Sensitivity analysis to moving average window size. Varying lengths of window sizes (0.14 to 2.16 hours) were calculated for the lokern growth rate regression. Window size was increased until the growth rate regression was smoothed. A window size of 1.44 hours (or 0.72 hours on either side of each time point) 941 was chosen to calculate the start and end times of each regime (Fig 8). Continued increase of window size 942 past 1.44 hours did not change the pattern of regimes or their boundaries significantly.

943 S14 Fig. Time Lag Analysis. Subsections of food intake rate and growth rate regressions were compared to determine the existing time lag between the two curves. The time shift is applied to the volume growth rate. A correlation coefficient was calculated for the new volume growth rate curve and the untouched red fluorescence regression curve for each bootstrap regression. The solid line corresponds to the mean of all the correlation coefficients over the bootstrapping iterations and the shaded regions correspond to the standard deviation. The blue curve corresponds to hours containing L1 and L2, the orange curve corresponds to hours containing L2 and L3, and the green curve corresponds to hours containing L3 and L4. The time lag at which the correlation between Red fluorescence and volume growth rate is at a maximum corresponds to the apparent time lag between the two curves. No single time lag captures the entirety of development.

S15 Fig. Time Lag Analysis. Dynamics over all development for food intake rate and growth rate regressions were compared to determine the existing time lag between the two curves. The time shift was applied to the volume growth rate. A correlation coefficient was calculated for the new volume growth rate curve and the untouched red fluorescence regression curve for each bootstrap regression. The solid line corresponds to the mean of all the correlation coefficients over the bootstrapping iterations and the shaded regions correspond to the standard deviation. Due to the qualitatively different dynamics in L1, we calculated correlation for L1-L4 (blue), the second half of L1 -L4 (orange), and L2-L4 (green). All curves show that there is an overall time shift of +1 hour (meaning changes in volume growth rate precede changes in food intake rate), matching the L3-L4 curve in S14 Fig but still a <90\% correlation with no time lag.

Response $=$ Norm.Red

Terms	$D f$	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	\% Var Explained
hour	1	439.46	439.46	217762.01	0	54.34
replicate	6	165.82	27.64	13694.48	0	20.51
well	10	0.32	0.03	15.62	0	0.04
Residuals	100619	203.06	0	NA	NA	25.11

Response $=$ Length

Terms	$D f$	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	$\%$ Var Explained
hour	1	86190107879	86190107879	8223506	0	98.4
replicate	6	349438944	58239824	5557	0	0.4
well	10	834970	83497	8	0	0
Residuals	100619	1054582098	10481	NA	NA	1.2

Response $=$ Width

Terms	$D f$	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	\% Var Explained
hour	1	209090438.47	209090438.47	6950760.3	0	97.99
replicate	6	1266985.87	211164.31	7019.7	0	0.59
well	10	1495.32	149.53	4.97	0	0
Residuals	100619	3026786.99	30.08	NA	NA	1.42

Response $=$ Volume

Terms	Df	Sum $S q$	Mean q	F value	$\operatorname{Pr}(>F)$	\% Var Explained
hour	1	621712474191714688	621712474191714688	843342	0	84.08
replicate	6	43356968850687072	7226161475114512	9802	0	5.86
well	10	152458715405862	15245871540586	21	0	0.02
Residuals	100619	74176459811167296	737201321929	NA	NA	10.03

961 S1 Table. Results of analysis of variance models fit to COPAS BIOSORT data. Analysis of variance tests 962 were used to quantify the amount of variance in our data contributed by the sampling technique. The sampling 963 technique involved unbiased sampling of animals from six replicate populations and subsequent distribution 964 into multiple wells of a microtiter plate for analysis. We quantified the amount of variance contributed by
replicate and well. We find that the variance explained by well is nearly negligible whereas replicate contributes minor variance in some measurements. Given this information, we deem the generated summary statistics an appropriate representation of the population.

Stage	$\triangle A I C$			$\triangle B I C$			Best model by AIC Best model by BIC	
	Linear	onent	Cubic	Linear	pone	仡		
L1_1	17	21	0	4	9	0	Cubic	Likely Cubic
L1_2	2	4	0	0	2	12	Can't distinguish	Can't distinguish
L2	142	43	0	128	28	0	Cubic	Cubic
L3	374	145	0	360	131	0	Cubic	Cubic
L4	4	44	0	0	40	10	Likely Cubic	Linear

S2 Table. Model fit criteria used to assess candidate growth models. To determine the level of support for each model, the candidate model with the smallest raw AIC/BIC was identified and compared to other AIC/BIC values. If the delta value was greater than 6 , the model with the smallest AIC/BIC value was denoted as the best model. If the delta value was less than 6 but greater than 2 , the model with the smallest AIC/BIC value was determined to likely be the best model. If the delta value was less than 2 , we are unable to distinguish the model of best fit.
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438121; this version posted August 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Green Regions

| Stage |
| :--- | :---: | :---: | :---: | | Food Intake Dynamical Range |
| :---: |
| $($ AFU $)$ |\quad Food to Growth Dynamical Range - Lower | Estimate $($ AFU $)$ |
| :---: | | Food to Growth Dynamical Range - Higher |
| :---: |
| L1 |
| (1) |

Red Regions

Stage	Food Intake Dynamical Range $(A F U)$	Food to Growth Dynamical Range - Lower Estimate $(A F U)$	Food to Growth Dynamical Range - Higher Estimate $(A F U)$
L1	--	-	--
L2	1	4	5
L3	6	3	4
L4	16	27	35

White Regions Preceding Molt

Stage	Food Intake Dynamical Range $(A F U)$	Food to Growth Dynamical Range - Lower Estimate $(A F U)$	Food to Growth Dynamical Range - Higher Estimate $($ AFU $)$
L1 -> L2	2	3	4
L2 - > L3	3	1	2
L3 -> L4	5	2	3
L4 ->	5	2	3
Adult			

Whole Larval Stage

Stage	Food Intake Dynamical Range $(A F U)$	Food to Growth Dynamical Range - Lower Estimate $(A F U)$	Food to Growth Dynamical Range - Higher Estimate $(A F U)$
L1	4	2	3
L2	19	12	15
L3	29	21	28
L4	70	52	67

used for the growth experiment. (CSV)
S2 File. COPAS BIOSORT growth data. Raw growth data collected from the COPAS BIOSORT and processed using the easysorter R package to compile information from each well. (CSV) 979 S3 File. Pruned COPAS BIOSORT growth data. Processed data from the COPAS BIOSORT following 980 implementation of the mclust R package and removal of clusters containing non-animal objects. (CSV) S4 File. Image growth data. Manual measurements of animal size acquired from images. (CSV) 982 S5 File. Model derivations.

Model Derivations

[^0]
Derivation of eating model

We begin by defining the instantaneous rate of food intake as a function of the flow rate of media through the buccal cavity and the cross sectional area of the buccal cavity.

$$
\begin{equation*}
\frac{d V_{f o o d}}{d t}=A_{\text {buccal }} \tag{S1}
\end{equation*}
$$

We then make the assumption that the uptake of media fills the pharyngeal lumen we have

$$
\begin{equation*}
\frac{d V_{\text {food }}}{d t}=C \frac{d V_{\text {lumen }}}{d t} \tag{S2}
\end{equation*}
$$

We average both sides of the equation under the assumption that the pumping period is significantly shorter than the time scale of growth

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} \frac{d V_{\text {food }}}{d t} d t=\frac{1}{T} \int_{0}^{T} C A_{b u c c a l} \tag{S3}
\end{equation*}
$$

$$
\begin{align*}
& L=a_{1} T O F+b_{1} \tag{S7}\\
& W=a_{2} \text { norm. } E X T+b_{2} \tag{S8}
\end{align*}
$$

The integral on the right hand side is the total food intake during a single pumping period.

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} \frac{d V_{\text {food }}}{d t} d t=\frac{1}{T} \Delta V_{\text {food }} \tag{S4}
\end{equation*}
$$

We then take into account that food is not transported to the gut in the same step as its uptake. Thus the total food intake during a single pump can be calculated by the amount of food that fills the fully opened pharyngeal lumen

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} \frac{d V_{\text {food }}}{d t} d t=\frac{C}{T} V_{l u m e n: \max } \tag{S5}
\end{equation*}
$$

We then replace the average on the right hand side with the average food intake rate over the pumping period. For simplicity and because we will deal entirely with the average food intake rate, we do not use a different notation for this average rate.

$$
\begin{equation*}
\frac{d V_{f o o d}}{d t}=\frac{C}{T} V_{\text {lumen: } \max }=C f(t) V_{l u m e n: \max } \tag{S6}
\end{equation*}
$$

Transformation of sorter measurements to volume units

To utilize sorter measurements and convert them to meaningful units we define a linear transformation from the correlation plots (S1 Fig)

Using Equations (S7) and (S8) we can approximate the volume of any object that passes through the sorter by the expression

$$
\begin{equation*}
V=\frac{\pi}{4}\left(a_{1} T O F+b_{1}\right)\left(a_{2} \text { norm } \cdot E X T+b_{2}\right)^{2} \tag{S9}
\end{equation*}
$$

${ }_{48}$ (S12) for the average eating rate.

$$
\begin{equation*}
\left.\frac{d V_{\text {red }}}{d t}\right|_{\text {eating }}=\frac{d V_{\text {red:max }}}{d t}+\frac{V_{\text {red:max }} h_{d}}{T_{d}} \tag{SS3}
\end{equation*}
$$

the second term on the right hand side of Equation (S13) and its derivative is used to approximate the first term on the right hand side of Equation (S13). We take the adult values of h_{d} and T_{d} (Liu and Thomas 1994) as a first approximation. Figure (S6) demonstrates a comparison of the red fluorescence and the red intake rate with defecation taken into account at the constant adult rates and quantities. We have scaled both the pink curve denoting red fluorescence and the blue curve denoting red intake rate by their maximum. This scaling allows us to see that the two curves are only a multiplicative factor apart up to error bars. This allows us to use the red measurement as a proxy for both red and food intake rates.

Food Allocation Breakdown Calculation

We calculate an example of resource allocation breakdown. We begin with the expression in Equation (8) of the main text relating food intake rate and animal growth rate and repeated here:

$$
\begin{equation*}
\frac{d V_{w o r m}}{d t}=\eta(t) \alpha(t) \frac{d V_{\text {food }}}{d t} \tag{S14}
\end{equation*}
$$

Here $\eta(t)$ is metabolic efficiency and is characteristic of the nematodes and food source used. $\alpha(t)$ is the fraction of total ingested food allocated towards growth.

We make an additional assumption that food needed to maintain life is proportional to animal volume:

$$
\begin{equation*}
\frac{d V_{\text {food:maint }}}{d t}=\beta V_{\text {worm }}(t) \tag{S15}
\end{equation*}
$$

Here we define $\frac{d V_{\text {foodsmaint }}}{d t}$ as the rate of food intake required to maintain life and β is the constant of proportionality that relates animal size to required maintenance food levels. We assume that β is a constant over developmental time and depends on the food source available.

From the analysis from the previous section we can use red fluorescence as a proxy for food intake rate such that

$$
\begin{align*}
& \frac{d V_{\text {food }}}{d t} \propto \text { Red } \tag{S16}\\
& \frac{d V_{\text {worm }}}{d t} \propto \eta(t) \alpha(t) \text { Red } \tag{S17}\\
& \eta(t) \alpha(t) \propto\left(\frac{d V_{\text {worm }}}{d t}\right) / \text { Red } \tag{S18}
\end{align*}
$$

The constant of proportionality in Equation (S18) is unknown due to the unknown relationship between food volume and red fluorescence. We make the assumption that metabolic efficiency is constant over time

$$
\begin{gather*}
\varepsilon_{L}=\frac{\Delta L}{L_{0}} \tag{S20}\\
\varepsilon_{\text {Circ }}=\frac{\Delta \operatorname{Circ}}{\operatorname{Circ}_{0}} \tag{S21}
\end{gather*}
$$

Here L_{0} and $C i r c_{0}$ are the length and circumference of the cuticle at the onset of stretch, or in other words 88 at the start of a larval stage. Experimentally we measure width, not circumference, but the circumference ${ }_{89}$ of a circle is proportional to the width of the circle, so we can replace the circumference with the measured 90 width:

$$
\begin{equation*}
\frac{\Delta \operatorname{Circ}}{\operatorname{Circ}_{0}}=\frac{\pi \Delta W}{\pi W_{0}}=\frac{\Delta W}{W_{0}} \tag{S22}
\end{equation*}
$$

internal pressure, we can determine the normalized force in terms of pressure and geometric properties:

$$
\begin{gather*}
\sigma_{L}=\frac{r}{2 t} \Delta p \tag{S23}\\
\sigma_{\text {Circ }}=\frac{r}{t} \Delta p \tag{S24}
\end{gather*}
$$

$$
\begin{gather*}
\Delta L=\frac{L_{0} r}{t}\left(\frac{1}{2 E_{L}}-\frac{v_{c l}}{E_{c}}\right) \Delta p=a_{L} \Delta p \tag{S25}\\
\Delta W=\frac{W_{0} r}{t}\left(\frac{1}{E_{C}}-\frac{v_{l c}}{E_{L}}\right) \Delta p=a_{W} \Delta p \tag{S26}
\end{gather*}
$$

Here we compress the coefficients fixed by material and geometric properties into one constant

$$
\begin{align*}
& a_{L}=\frac{L_{0} r}{t}\left(\frac{1}{2 E_{L}}-\frac{v_{c l}}{E_{c}}\right) \tag{S27}\\
& a_{W}=\frac{W_{0} r}{t}\left(\frac{1}{E_{c}}-\frac{v_{l c}}{E_{L}}\right) \tag{S28}
\end{align*}
$$

$$
\begin{align*}
& \Delta W \approx \frac{d W}{d t} \Delta t \tag{S29}\\
& \Delta L \approx \frac{d L}{d t} \Delta t \tag{S30}
\end{align*}
$$

$$
\begin{equation*}
\frac{\Delta W}{\Delta L} \approx \frac{W^{\prime}(t)}{L^{\prime}(t)} \tag{S31}
\end{equation*}
$$

Here $W^{\prime}=\frac{d W}{d t}$ and $L^{\prime}=\frac{d L}{d t}$. We differentiate the time series from the local regressions of length and width data. The ratio of derivatives gives the instantaneous stretch ratio as it changes over time. Due to the numerical difficulty of calculating both derivatives and ratios with accuracy, we expect large error bars for this ratio. To estimate the size of error bars we apply a first order error propagation formula to Equation (S31).

$$
\begin{align*}
& \sigma_{\text {Ratio }}^{2} \approx\left|\frac{\partial \text { Ratio }}{\partial\left(W^{\prime}\right)}\right|^{2} \sigma_{\left(W^{\prime}\right)}^{2}+\left|\frac{\partial \text { Ratio }}{\partial\left(L^{\prime}\right)}\right|^{2} \sigma_{\left(L^{\prime}\right)}^{2}+2 \frac{\partial \text { Ratio }}{\partial\left(W^{\prime}\right)} \frac{\partial \text { Ratio }}{\partial\left(L^{\prime}\right)} \sigma_{\left(W^{\prime}\right)\left(L^{\prime}\right)} \tag{S32}\\
& \sigma_{\text {Ratio }}^{2} \approx\left|\frac{1}{L^{\prime}}\right|^{2} \sigma_{\left(W^{\prime}\right)}^{2}+\left|\frac{-\left(W^{\prime}\right)^{2}}{\left(L^{\prime}\right)^{3}}\right|^{2} \sigma_{\left(L^{\prime}\right)}^{2}-2 \frac{W^{\prime}}{\left(L^{\prime}\right)^{3}} \sigma_{\left(W^{\prime}\right)\left(L^{\prime}\right)} \tag{S33}
\end{align*}
$$

The variance in Equation (S33) is calculated for each time point in the regressions of length and width. We resample the data for each larval stage 2,000 times with replacement (see Methods for larval stage determination). For each of these resampled sets of data, we numerically differentiate the length and width regression to determine an estimate of the length and width derivatives over time. At each time point the mean regression length and width derivatives are used in place of W^{\prime} and L^{\prime}. The covariance matrix for the length and width derivatives is calculated at each time point using the 2,000 resampled regressions in the bootstrap analysis and used as the variance terms in Equation (S33).

[^0]: Algorithm S1 Regression Bootstrapping with Case Resampling
 Ndata $=\#$ animals in sample;
 iterations = \# resamplings;
 for $i=0$ to iterations do
 Resample Ndata points with replacement. Collect Red, Length, Width data;
 Apply lokern regression to resampled Red, Length, Width;
 Calculate desired functions of Red, Length, Width regressions;
 Save Red, Length, Width, and combined regressions;
 end for
 Calculate Standard deviation at each regression time point of saved regressions;

