Paspalum genome assembly and annotation supplemental methods:

Sequencing

We sequenced *Paspalum vaginatum* using a whole genome shotgun sequencing strategy and standard sequencing protocols. Sequencing reads were collected using Illumina and PacBio platforms. Illumina and PacBio reads were sequenced at Department of Energy (DOE) Joint Genome Institute (JGI) in Walnut Creek, California. Illumina reads were sequenced using the Illumina HiSeq-2500 platform, and the PacBio reads were sequenced using the SEQUEL I platform. One 400bp insert 2x150 Illumina fragment library (102.4x) was used (See Table S1). Prior to assembly, Illumina fragment reads were screened for phix contamination. Reads composed of >95% simple sequence were removed. Illumina reads <50bp after trimming for adapter and quality (q<20) were removed. The final read set consists of 266,209,446 reads for a total of 102.4x of high quality Illumina bases. For the PacBio sequencing, a total of 14 PB chemistry 2.0 chips (10 hour movie time) were sequenced with a sequence yield of 52.01 Gb, with a total coverage of 74.30x (See Table S2).

Genome assembly and construction of pseudomolecule chromosomes

The version 1.0 assembly was generated by assembling the 5,012,142 PacBio reads (74.30x sequence coverage) using the MECAT assembler (Xiao et al., 2017) and subsequently polished using QUIVER (Chin et al., 2013). This produced an initial assembly of 5,358 scaffolds (5,358 contigs), with a contig N50 of 771.9 Kb, 1,099 scaffolds larger than 100 Kb, and a total assembled size of 838.4 Mb (Table S3).

Two genetic maps totaling 7,680 markers (provided by the Katrien Devos group, University of Georgia), combined with primary transcripts from the version 2 release of *Panicum hallii* var. HAL2 were used to identify misjoins in the initial assembly. Misjoins were characterized as a discontinuity in the *P. vaginatum* linkage group. A total of 15 misjoins were identified and resolved. The resulting broken contigs were then oriented, ordered, and joined together into 10 chromosomes using both the map, as well as the *P. hallii* primary transcripts. A total of 347 joins were made during this process. Each chromosome join is padded with 10,000 Ns. Significant telomeric sequence was

identified using the $(TTTAGGG)_n$ repeat, and care was taken to make sure that it was properly oriented in the production assembly. The remaining scaffolds were screened against bacterial proteins, organelle sequences, GenBank nr and removed if found to be a contaminant.

Heterozygous snp/indel phasing errors were corrected using the 74.3x raw PACBIO data. A total of 102,526 (4.2% of the 2,317,409 heterozygous SNPS/InDels) were corrected. Finally, homozygous SNPs and InDels were corrected in the release consensus sequence using 78x of Illumina reads (2x150, 400bp insert) by aligning the reads using bwa mem (Li, 2013) and identifying homozygous SNPs and InDels with the GATK's UnifiedGenotyper tool (McKenna et al., 2010). A total of 1,591 homozygous SNPs and 233,333 homozygous InDels were corrected in the release. The final version 1.0 release contains 652.7 Mb of sequence, consisting of 2,274 contigs with a contig N50 of 1.5 Mb and a total of 75.0% of assembled bases in the 10 chromosomes.

Construction of the scaffold assembly

A total of 5,012,142 PacBio reads (74.30x) were assembled using MECAT assembler (Xiao et al., 2017), and formed the starting point of the version 1.0 release. The 266,209,446 Illumina fragment reads (102.40x sequence coverage) was used for fixing homozygous snp/indel errors in the consensus.

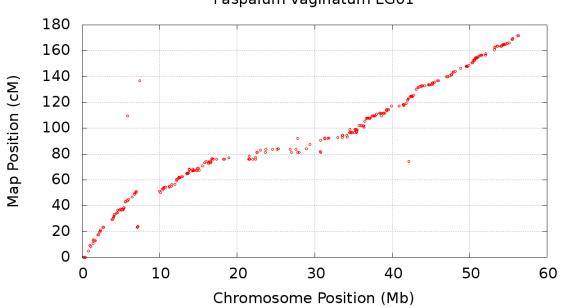
Library	Sequencing Platform	Average Read/Insert Size	Read Number	Assembled Sequence Coverage (x)
USGX	Illumina	400	266,209,446	102.4
	PacBio	9,523*	5,012,142	74.30
Total		N/A	271,221,588	176.70

Table S3.1. Genomic libraries included in the *Paspalum vaginatum* genome assembly and their respective assembled sequence coverage levels in the final release.

*Average read length of PacBio reads.

Cutoff	Number of Reads	Basepairs	Average Read Length	Coverage
0	5,021,142	52,011,227,922	9,523	74.30x
1,000	4,598,012	51,803,193,177	10,358	74.00x
2,000	4,284,360	51,337,470,200	10,963	73.34x
3,000	4,011,480	50,660,511,262	11,490	72.38x
4,000	3,772,204	49,824,505,385	11,967	71.19x
5,000	3,545,694	48,806,129,176	12,435	69.72x
6,000	3,326,274	47,599,675,919	12,908	68.00x
7,000	3,100,356	46,130,347,947	13,419	65.91x
8,000	2,871,056	44,410,763,109	13,968	63.44x
9,000	2,637,734	42,426,702,674	14,563	60.61x
10,000	2,390,849	40,080,198,809	15,239	57.26x
11,000	2,132,551	37,367,664,499	16,009	53.38x
12,000	1,878,010	34,441,849,335	16,844	49.20x
13,000	1,642,413	31,498,764,753	17,705	45.01x
14,000	1,429,052	28,620,342,486	18,575	40.89x
15,000	1,238,057	25,852,785,076	19,449	36.93x
16,000	1,067,747	23,214,688,325	20,327	33.16x
17,000	916,859	20,726,586,386	21,209	29.61x
18,000	784,038	18,403,847,127	22,088	26.29x
19,000	666,673	16,233,960,809	22,979	23.19x

Table S3.2. PacBio library statistics for the libraries included in the *Paspalum vaginatum*


 genome assembly and their respective assembled sequence coverage levels.

Minimum Scaffold Length	Number of Scaffolds	Number of Contigs	Scaffold Size	Basepairs	% Non-gap Basepairs
5 Mb	4	4	30,869,566	30,869,566	100.00%
2.5 Mb	54	54	202,593,315	202,593,315	100.00%
1 Mb	165	165	377,268,994	377,268,994	100.00%
500 Kb	296	296	472,159,561	472,159,561	100.00%
250 Kb	444	444	524,257,651	524,257,651	100.00%
100 Kb	1,009	1,009	604,765,225	604,765,225	100.00%
50 Kb	3,282	3,282	755,766,926	755,766,926	100.00%
25 Kb	5,279	5,279	836,810,963	836,810,963	100.00%
10 Kb	5,358	5,358	838,436,451	838,436,451	100.00%
5 Kb	5,358	5,358	838,436,451	838,436,451	100.00%
2.5 Kb	5,358	5,358	838,436,451	838,436,451	100.00%
1 Kb	5,358	5,358	838,436,451	838,436,451	100.00%
0 bp	5,358	5,358	838,436,451	838,436,451	100.00%

Table S3.3. Summary statistics of the initial output of the QUIVER polished MECAT assembly. The table shows total contigs and total assembled basepairs for each set of scaffolds greater than the size listed in the left hand column.

Plots of Marker Maps

Plots of the marker placements for the 10 chromosomes are shown in Figures S3.1-**S3.10**.

Paspalum vaginatum LG01

Figure S3.1: Marker map placements on the *Paspalum vaginatum* chromosome 1.

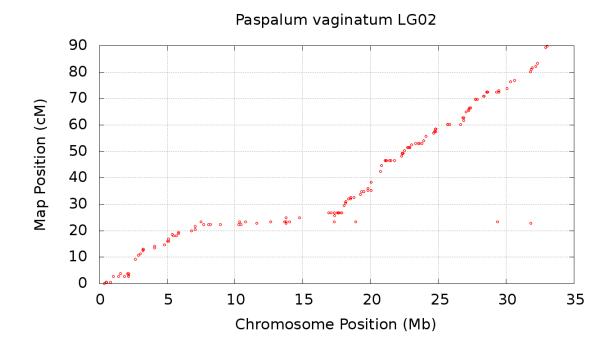


Figure S3.2: Marker map placements on the *Paspalum vaginatum* chromosome 2.

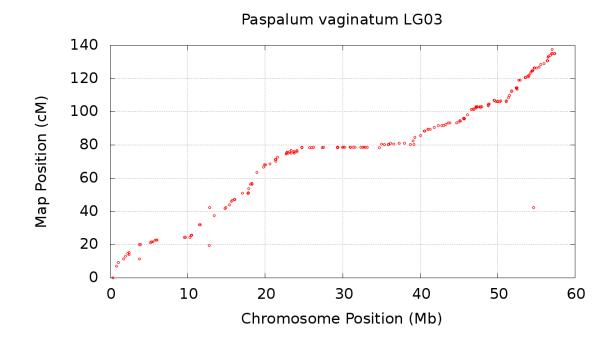


Figure S3.3: Marker map placements on the *Paspalum vaginatum* chromosome 3.

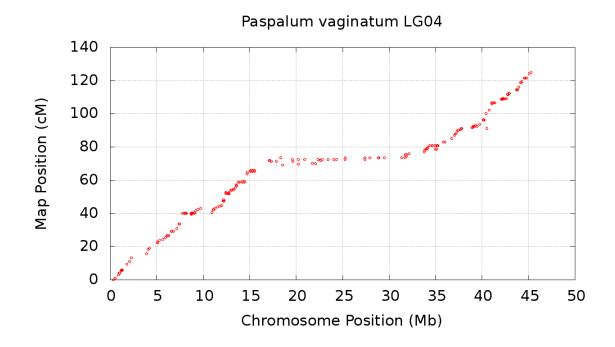


Figure S3.4: Marker map placements on the *Paspalum vaginatum* chromosome 4.

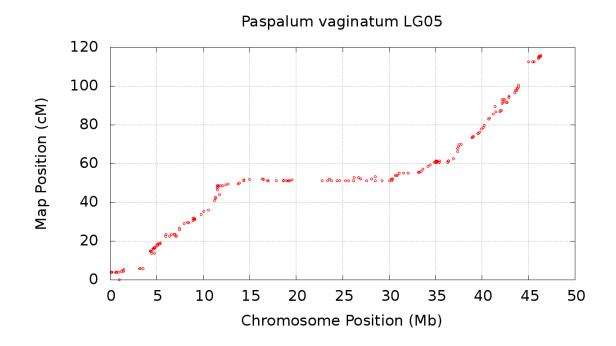


Figure S3.5: Marker map placements on the *Paspalum vaginatum* chromosome 5.

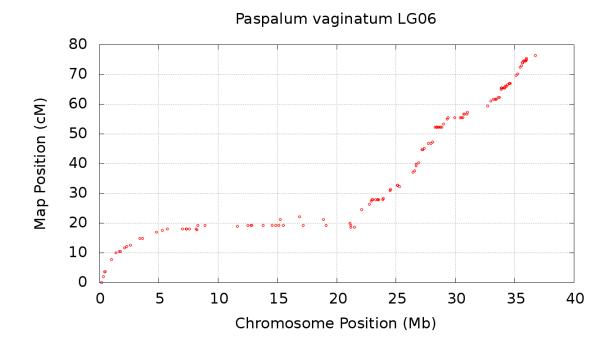


Figure S3.6: Marker map placements on the *Paspalum vaginatum* chromosome 6.

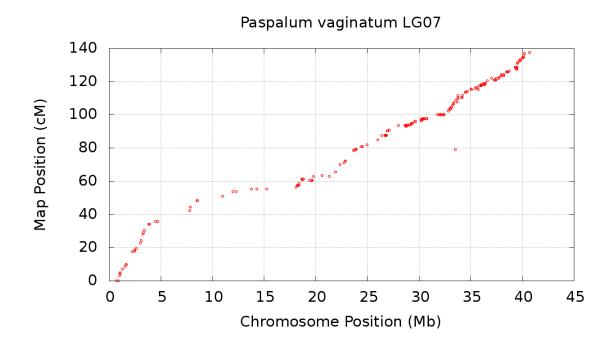


Figure S3.7: Marker map placements on the *Paspalum vaginatum* chromosome 7.

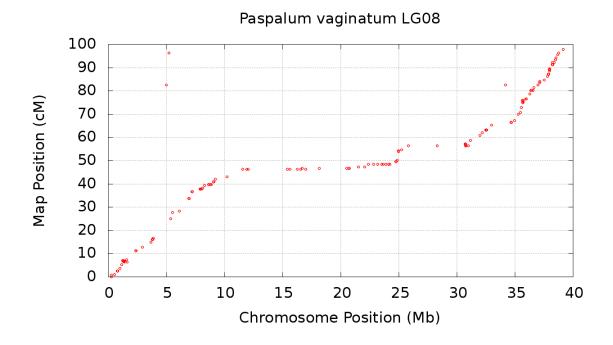


Figure S3.8: Marker map placements on the *Paspalum vaginatum* chromosome 8.

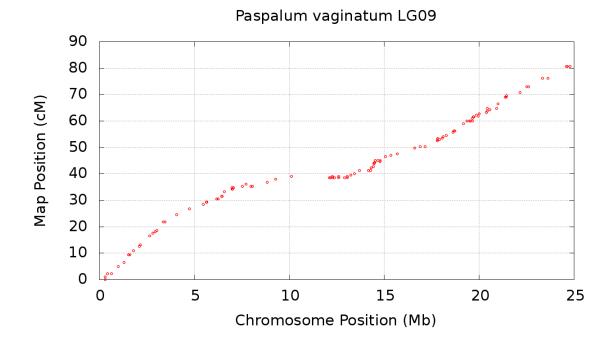


Figure S3.9: Marker map placements on the *Paspalum vaginatum* chromosome 9.

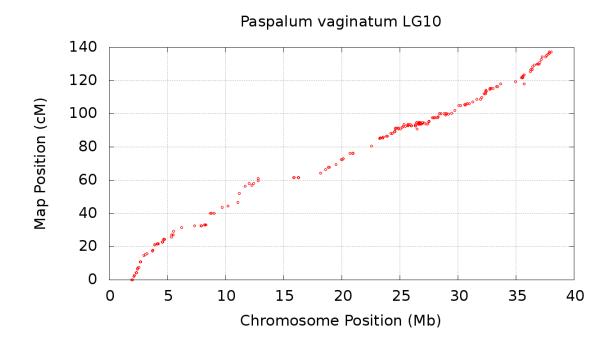


Figure S3.10: Marker map placements on the *Paspalum vaginatum* chromosome 10.

- Chuan-Le Xiao, Ying Chen, Shang-Qian Xie, Kai-Ning Chen, Yan Wang, Yue Han, Feng Luo, Zhi Xie. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nature Methods, 2017, 14: 1072-1074
- 2. Kent, W. J. BLAT--the BLAST-like alignment tool. Genome Res 12, 656-64 (2002).
- 3. Krumsiek J, Arnold R, Rattei T. Gepard: A rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007; 23(8): 1026-8. PMID: 17309896
- 4. Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods 10, 563–569 (2013)
- 5. Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v1 [q-bio.GN]
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 2010, 20:1297-1303.
- Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., Dunn, C., O'Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., Cramer, G. R., Delledonne, M., Luo, C., Ecker, J. R., Cantu, D., Rank, D. R., & Schatz, M. C. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature methods, 13(12), 1050–1054. https://doi.org/10.1038/nmeth.4035