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Abstract 15 

The ecological conditions experienced by wildlife reservoir hosts affect the amount of pathogen 16 

they excrete into the environment. This then shapes pathogen pressure, the amount of pathogen 17 

available to recipient hosts over space and time, which affects spillover risk. Few systems have 18 

data on both long-term ecological conditions and pathogen pressure, yet such data are critical for 19 

advancing our mechanistic understanding of ecological drivers of spillover risk. To identify these 20 

ecological drivers, we here reanalyze shedding data from a spatially replicated, multi-year study 21 

of Hendra virus excretion from Australian flying foxes in light of 25 years of long-term data on 22 

changing ecology of the bat reservoir hosts. Using generalized additive mixed models, we show 23 

that winter virus shedding pulses, previously considered idiosyncratic, are most pronounced after 24 

recent food shortages and in bat populations that have been displaced to novel habitats. We next 25 

derive the area under each annual shedding curve (representing cumulative virus excretion) and 26 

show that pathogen pressure is also affected by the ecological conditions experienced by bat 27 

populations. Finally, we illustrate that pathogen pressure positively predicts observed spillover 28 

frequency. Our study suggests that recent ecological conditions of flying fox hosts are shifting 29 

the timing, magnitude, and cumulative intensity of Hendra virus shedding in ways that shape the 30 

landscape of spillover risk. This work provides a mechanistic approach to understanding and 31 

estimating risk of spillover from reservoir hosts in complex ecological systems and emphasizes 32 

the importance of host ecological context in identifying the determinants of pathogen shedding.  33 
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Introduction 34 

Cross-species transmission can be conceptualized as a series of hierarchical barriers that must be 35 

overcome for a pathogen to move from a reservoir host to recipient hosts such as humans [1]. At 36 

the beginning of this cascade, the ecological conditions experienced by reservoir hosts shape 37 

susceptibility to infection and the likelihood of pathogen shedding (i.e., excretion) [2,3]. For 38 

example, droughts have been associated with increased nematode shedding in ungulates [4], and 39 

Salmonella shedding by ibis is more likely in urban than rural habitats [5]. This in turn 40 

determines pathogen pressure, or the amount of pathogen available to recipient hosts over space 41 

and time, which affects the force of infection and the ultimate probability of spillover [6]. 42 

Identifying the ecological conditions that drive pathogen pressure could accordingly improve 43 

reservoir host surveillance efforts and help predict where and when spillover is most likely [7,8].  44 

 Multiple challenges restrict our ability to establish the ecological drivers of pathogen 45 

pressure. On the one hand, many host populations must be repeatedly sampled to capture spatial 46 

and temporal variation in shedding [9]. This presents logistical difficulties and often necessitates 47 

optimized allocation of sampling effort [10,11]. On the other hand, the complex ecological 48 

dynamics used as predictors are best characterized with long-term research [12,13]. For example, 49 

more than two decades of annual monitoring were necessary to identify the ecological conditions 50 

that predict the density of infected nymphal ticks and human Lyme disease risk [14]. As such, 51 

the general sparsity of long-term, ecological data in many wildlife pathogen systems limits 52 

inference about the possible factors that shape pathogen pressure from reservoir hosts. Systems 53 

with data on pathogen pressure and long-term ecological conditions are critical for advancing our 54 

mechanistic understanding of spillover and to identify likely drivers in less studied systems.  55 
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 Hendra virus (HeV) shedding from Australian flying foxes (Pteropus spp.) provides an 56 

ideal system to identify the ecological conditions that predict pathogen pressure [15]. HeV 57 

emerged in 1994, causing an outbreak of a lethal disease in horses and then humans that has been 58 

followed by over 60 spillovers through 2019 across eastern Australia [16,17]. Flying foxes are 59 

the natural reservoirs of HeV [18], and transmission to horses likely occurs via contact with 60 

pasture, feed, or water contaminated with urine, saliva, or feces [19]. Spatiotemporal sampling of 61 

bat roosts has revealed shedding pulses during the Austral winter in subtropical regions, yet their 62 

occurrence varies both spatially and interannually [20]. This suggests that seasonal processes 63 

such as births and climate shifts cannot solely drive pathogen pressure [21]. The mechanisms 64 

underlying shedding pulses remain poorly understood but have been hypothesized to stem from 65 

synchronous ecological conditions that affect bat behavior and within-host processes [22–25]. 66 

Traditionally, flying foxes move nomadically to find ephemeral sources of nectar in 67 

native forests [26,27]. However, few dietary plants reliably flower in the Austral winter [27,28]. 68 

These plants occur in forests that have been mostly cleared for agriculture and urbanization, 69 

making native winter feeding habitat scarcer and more dispersed [29]. Eucalypt flowering is 70 

especially vulnerable to disruption from temperature and rainfall variability [28,30], and 71 

occasionally winter or spring nectar fails, leading to acute food shortages and periods of 72 

nutritional stress [27,31,32]. Bats have responded to these changes by splitting into smaller 73 

roosts that are closer to reliable, often introduced, food in agricultural areas and urban gardens 74 

[27,33]. Bats in these newly established and continually occupied roosts supplement their diet 75 

with non-native plants [34,35]. This change in behavior has expanded the winter distribution of 76 

flying foxes in subtropical Australia into areas that do not provide native winter food [36,37].  77 
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Reliance on agricultural and urban dietary resources when native plants are unavailable 78 

could combine with other energetic stressors, such as seasonal reproduction and the more 79 

extreme temperatures that bats can experience in these newly established roosts outside their 80 

historic wintering range [38–40]. These stressors could alter bat within-host dynamics (e.g., 81 

immunosuppression) in ways that increase susceptibility to HeV or facilitate reactivation from 82 

chronic infections [22,24,25,41]. Periods of nutritional stress have been associated with poor 83 

body condition and elevated HeV seroprevalence in little red flying foxes (P. scapulatus) [31]; 84 

moreover, poor condition was a correlate of HeV infection in black flying foxes (P. alecto) but 85 

was negatively correlated with HeV seroprevalence in P. alecto and grey-headed flying foxes (P. 86 

poliocephalus) [42,43]. The relationships between food shortages and HeV shedding therefore 87 

remain poorly understood, especially in the context of the changing ecological conditions 88 

experienced by these bat hosts. Recent work suggests such ecological changes have increased the 89 

frequency of HeV spillovers (Eby et al., in review) [17,44], but the mechanisms linking food 90 

shortages and dramatic shifts in bat behavior with virus shedding dynamics remain unresolved.  91 

Here, we reanalyze shedding data from a spatially replicated, multi-year study of HeV in 92 

flying foxes in light of long-term data on bat ecology to test whether food shortages and recent 93 

shifts in flying fox behavior amplify pathogen pressure. We first ask whether these ecological 94 

conditions can explain seemingly idiosyncratic seasonal shedding pulses while also accounting 95 

for underlying spatiotemporal variation in infection dynamics and roost composition, including 96 

species with high competence (e.g., P. alecto) [45–47]. We next quantify pathogen pressure per 97 

year and per roost and test whether bat ecology also predicts cumulative seasonal shedding 98 

intensity across the landscape. Finally, we assess the relationship between pathogen pressure and 99 

the frequency of realized spillover events. Our work thus provides a mechanistic approach to 100 
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understanding bat-borne virus spillover risk as well as a new method for estimating these risks 101 

from multiple ecological predictors. Bats throughout the eastern hemisphere are experiencing 102 

similar stressors owing to land conversion [23,48], underscoring the general need to better 103 

understand the likely consequences for pathogen shedding and subsequent spillover risk. 104 

 105 

Materials and methods 106 

Spatiotemporal data on HeV shedding 107 

We reanalyzed a previously published longitudinal dataset of HeV shedding from flying foxes 108 

spanning July 2011 to November 2014 across New South Wales and Queensland [20]. Sampling 109 

consisted of urine collection from quadrants of 3.6 m x 2.6 m plastic sheets placed under roosts 110 

at primarily monthly intervals [49]. Urine was pooled per quadrant and screened by quantitative 111 

RT-PCR targeting the HeV M gene to determine presence or absence of viral shedding in a roost 112 

[50]. We aggregated data to the scale of week and determined HeV prevalence as the proportion 113 

of positive urine pools. Similarly, we calculated the median number of all flying foxes and for 114 

each Australian Pteropus species per roost per time interval. We restricted HeV data to an area 115 

of subtropical eastern Australia (i.e., mid-to-northeast New South Wales, southeast Queensland) 116 

that represents our study region for long-term data on bat ecology (see below) and includes the 117 

locations of almost all subtropical HeV spillovers [15]. We further restricted analyses to 2012 118 

through 2014, as 2011 sampling mostly occurred at a single roost [20]. We also limited analyses 119 

to roosts sampled in at least two of the three years and in at least three timepoints per year. We 120 

thus analyzed prevalence data from nine roosts sampled in 2012–2014 (n=196 weeks; Fig. 1). 121 

 122 

Roost-level ecological conditions 123 
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We paired HeV prevalence data within our study region with long-term data on flying fox 124 

behavior. As described in full in Eby et al. (in review), we used data held by Australian state 125 

governments, flying fox surveys conducted between 1998–2005 and 2012–2019, records held by 126 

local land managers and experienced observers, and direct observation by the authors to 127 

characterize the ecological conditions experienced by bat populations over time [27,28,37]. 128 

Roosts were classified as belonging to their historic winter range (and thus where bats rely on 129 

native winter dietary plants) or to newly established overwintering regions (and thus where 130 

native food is unavailable). We also used these data to identify regional food shortages, acute 131 

periods associated with reduced flowering of native dietary plants or no flowering (Table 1).  132 

 133 

Analyses of HeV shedding 134 

To test if roost type (i.e., historic or new overwintering regions) and regional food shortages 135 

affect seasonal HeV shedding, we fit generalized additive mixed models (GAMMs) with a 136 

binomial response to urine pool prevalence with the mgcv package in R [51,52]. GAMMs can 137 

flexibly approximate the temporal dynamics of infectious diseases, even when underlying 138 

transmission mechanisms are unknown [53,54]. Our fixed effects included a cyclic cubic spline 139 

for week, ordered factors of roost type and regional food shortage, and all possible interactions. 140 

We used regional food shortages from the prior year (i.e., October 2012 and October–November 141 

2013; Fig. 1) owing to previously observed associations between spring and summer food 142 

shortages and subsequent winter spillovers of HeV in 2010–2011 and in 2016–2017 [44].  143 

We also adjusted for occupancy of P. alecto using its relative abundance per roost from 144 

weekly median flying fox counts. We did not account for co-roosting P. poliocephalus and P. 145 

scapulatus, as P. alecto is the only species that has been associated with HeV shedding in our 146 
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study region [45,46]. As flying foxes roost in aggregations of up to hundreds of thousands of 147 

individuals, counts and resulting species proportions are estimates. We thus derived a binary 148 

variable denoting if the weekly proportion of P. alecto per roost was below or above 25%, the 149 

lowest maximum proportion of this species across all roosts in this dataset (Fig. S1) [20]. This 150 

cutoff accordingly indicates the upper occupancy bound of this species when it is rare. Our 151 

GAMMs also controlled for spatial dependence through a bivariate smooth of longitude and 152 

latitude [55]. To account for residual variation in spatiotemporal shedding, we included a random 153 

factor smooth of week per roost per year [56]. We set the random effect such that all groups can 154 

differ in weekly shedding but are penalized if they deviate too strongly from the global trend.  155 

Given the complexity of our GAMM relative to our sample size, we used an information 156 

theoretic approach to select among competing nested fixed effects. We considered (i) our full 157 

model alongside two simplified GAMMs: (ii) without the three-way interaction between week, 158 

roost type, and prior year food shortage and (iii) without the two-way interaction between the 159 

latter categorical predictors. We fit GAMMs with maximum likelihood (ML) and compared 160 

models using corrected Akaike information criterion (AICc) and Akaike weights (wi). We 161 

considered models within two ΔAICc to be competitive [57]. We then refit our most supported 162 

models with restricted ML (REML) for parameter estimation and visualizing fitted values. 163 

To quantify cumulative annual shedding intensity, we fit univariate GAMs with binomial 164 

response and cyclic cubic splines for week to our HeV prevalence data per year for each of our 165 

nine roosts (n=25; Fig. S2). In rare cases with few (e.g., n=3) sampling events and where 166 

prevalence was uniformly zero (i.e., as occurred in two annual time series; Fig S2), we used thin 167 

plate splines to improve convergence. We then calculated the area under each annual shedding 168 

curve (i.e., pathogen pressure; AUC) by integrating the fitted values and confidence intervals 169 
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using the Bolstad2 package [53,58]. This measure summarizes the magnitude and duration of 170 

shedding in a single metric, and thus greater pathogen pressure suggests more cumulative HeV-171 

positive pools per roost per year. We used the metafor package to assess heterogeneity in AUC 172 

through a random-effects model weighted by sampling variance, which we derived from the 173 

number of sampling events per time series [59]. We then used REML to quantify I2, which 174 

measures the contribution of true heterogeneity rather than noise to the variance in AUC [60].  175 

We then assessed the ecological drivers of pathogen pressure using another set of GAMs. 176 

We modeled annual AUC as a Tweedie-distributed response and again weighted these estimates 177 

by the number of sampling events per annual time series. We included roost type and prior food 178 

shortage as categorical predictors alongside a bivariate smooth of longitude and latitude. We also 179 

controlled for the mean annual proportion of P. alecto per roost with a thin plate spline and 180 

assessed sensitivity of our results to two alternative measures of annual relative abundance (e.g., 181 

median, winter maximum). Lastly, because a small number of our annual time series had short 182 

sampling durations that did not include the Austral winter (Fig. S2), we reran our GAMs after 183 

excluding four annual AUC estimates derived from 20 or fewer weeks of flying fox sampling.   184 

 185 

HeV spillover analyses 186 

To assess relationships between pathogen pressure and spillover, we collated data on the location 187 

and date of all known HeV cases in horses in our study region between 2012–2014 [15]. As 188 

described in full in Eby et al. (in review), these data were obtained from government notices (i.e., 189 

New South Wales Department of Primary Industries, Queensland Department of Agriculture and 190 

Fisheries; Business Queensland), ProMED, local media reports, and personal communications. 191 

We aggregated all HeV case locations to the nearest town or regional center for confidentiality.  192 
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 We derived spatial buffers using the rgeos package to collate the total number of HeV 193 

spillover events near each of our nine roosts per sampled year. Australian Pteropus are highly 194 

mobile [32,61], and prior analyses have shown weak spatial synchrony in HeV shedding among 195 

flying fox roosts up to approximately 500 km [21]. We therefore used spatial buffers of 50, 100, 196 

200, 300, 400, and 500 km. We modeled counts of spillovers within each buffer through a set of 197 

GAMs that used Poisson distributions and penalized splines for pathogen pressure [62]. As in 198 

our GAM analyses of AUC, we also included a bivariate smooth of longitude and latitude. 199 

  200 

Results  201 

Ecological predictors of seasonal HeV shedding pulses 202 

Our GAMMs revealed that previously observed seasonality in HeV shedding [e.g., 26] is 203 

markedly explained by recent changes in bat behavior and by food shortages. The most 204 

parsimonious model explained 71% of the deviance and only included interactions between week 205 

and both roost type and recent food shortages (wi=0.59; Table S1). Ordered factor smooths 206 

indicated that roosts in newly established overwintering regions had distinct seasonal shedding 207 

patterns compared to roosts in the historic wintering range (χ2=23.61, p<0.001); roosts that 208 

experienced a recent food shortage also displayed distinct shedding seasonality compared to 209 

roosts without recent food shortages (χ2=14.33, p<0.001; Table 2). In the absence of recent food 210 

scarcity, historic roosts had negligible seasonality in shedding, while new overwintering roosts 211 

exhibited shedding pulses in winter (Fig. 2A). Yet when food shortages occurred in the spring 212 

prior to sampling (Fig. 2B), both historic and new overwintering roosts displayed stronger 213 

shedding seasonality and amplitude the following winter. Further, the winter shedding amplitude 214 
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for new roosts was greater than historic roosts. Such patterns held after accounting for relative 215 

Pteropus alecto occupancy (Fig. 2C–D), which positively predicted HeV prevalence (Table 2).  216 

 217 

Heterogeneity in pathogen pressure 218 

Cumulative HeV pathogen pressure (i.e., area under each annual shedding curve) varied 219 

substantially across roosts and years (Fig. 3A). Our meta-analysis identified significant 220 

heterogeneity among AUC estimates (I2=0.93, Q24=339.59, p<0.001). When testing the 221 

ecological drivers of this variation, our GAM explained 40% of the deviance in pathogen 222 

pressure (Table 3). Whereas recent food shortages had little effect on AUC (β=0.15, t=1.38, 223 

p=0.19), newly established overwintering roosts had significantly greater pathogen pressure than 224 

historic roosts (β=0.76, t=4.33, p<0.001; Fig 3B). Similar results were obtained when adjusting 225 

for median annual and maximum winter fractions of P. alecto per roost (Table S2 & S3). In our 226 

primary model, the mean annual proportions of P. alecto also significantly and largely positively 227 

predicted AUC (F=7.88, p<0.001); similar results were obtained with median annual proportions 228 

of P. alecto but not winter maximum occupancy (Fig. S3; Table S2 & S3). Lastly, excluding the 229 

four AUC estimates from truncated time series mostly strengthened the associations between 230 

predictors (roost type, food shortage, P. alecto) and pathogen pressure (Fig. S4; Table S4–6). 231 

 232 

Pathogen pressure and HeV spillover 233 

Within the period of flying fox sampling (2012–2014), 12 spillover events occurred within 500 234 

km of our nine study roosts (Fig. 4A, Table S7). When aggregating spillovers within 50 km of 235 

each roost, our GAM explained 53% of the deviance and was primarily driven by spatial 236 

patterns, as AUC had a weak, nonlinear relationship with spillover (χ2=4.74, p=0.11). However, 237 
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when expanding the buffers between 100 and 500 km from each roost, our GAMs explained 29–238 

45% of the deviance and predicted stronger associations between AUC and spillover (Table S8–239 

S13). Generally, GAMs suggested a generally positive relationship between pathogen pressure 240 

and spillovers that was either maximized or saturated at intermediate-to-high AUC (Fig. 4B). 241 

 242 

Discussion  243 

Mechanistic understanding of cross-species transmission risk remains hindered by limited 244 

information on the relationships between reservoir host ecology, pathogen pressure, and 245 

observed spillover events [1,6,7,15]. By combining data on long-term ecology with the spatial 246 

and temporal distribution of infection, we here demonstrate that the ecological conditions 247 

experienced by reservoir hosts shape pathogen shedding. Prior work has shown that pulses of 248 

HeV excretion from flying foxes often occur in the Austral winter and that drier conditions in 249 

prior seasons are associated with peak annual shedding [20,21]. However, contextualizing these 250 

seasonal and climatic patterns with bat ecology here reveals that these periods of intensive virus 251 

shedding predominantly occur after food shortages and in new overwintering roosts in urban and 252 

agricultural habitats. By quantifying an aggregate metric of pathogen pressure, we also show that 253 

the accumulated intensity of HeV shedding provides distinct insights into these ecological 254 

drivers, as pathogen pressure is governed more by whether the roost is located in regions with 255 

native winter resources than by periods of recent food scarcity. Lastly, pathogen pressure was 256 

positively associated with cases of HeV in horses at a regional scale, which provides support for 257 

the spatiotemporal intensity of virus shedding as a mechanistic determinant of spillover risk.  258 

 Foremost, our findings emphasize that the ecological conditions experienced by reservoir 259 

hosts predict pronounced pulses of virus shedding and overall pathogen pressure. Across eastern 260 
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Australia, habitats for the winter-flowering plants that drive flying fox nomadism have been 261 

reduced through land clearance, in turn driving nutritionally stressed bats into novel urban and 262 

agricultural environments outside their typical overwintering range (Eby et al., in review) 263 

[27,32,36,37]. Prior work has proposed, but not tested, that HeV shedding from flying foxes is 264 

driven by this process [23–25,63]. Acute food shortages could produce cumulative effects with 265 

other energetic and seasonal stressors (e.g., pregnancy, thermoregulation), as well as reliance on 266 

poor-quality, non-native food in agricultural and urban habitats, to alter within-host dynamics of 267 

viruses in bats [22,23]. Prior work has suggested that the physiological demands of winter 268 

thermoregulation in parts of the P. alecto range could drive observed negative correlations 269 

between minimum temperature and urinary cortisol excretion [40]. Our results support the idea 270 

of cumulative stressors, as HeV shedding was greatest not only in winter but also in roosts that 271 

were established in novel overwintering habitats and after a food shortage in the prior spring.  272 

Increased viral shedding associated with suboptimal habitats or food shortages could be 273 

driven by immunosuppression, such that cumulative stressors may impair HeV tolerance and 274 

facilitate replication or allow latent infections to reactivate [25,64]. Recrudescent infection of 275 

henipaviruses in bats has been proposed to explain shedding pulses that coincide with stressors 276 

[24,25] and for seroconversions in captivity [65]. The mechanism driving the time lag between 277 

acute food shortages, which typically occur in spring, and increased HeV shedding in the 278 

following winter (i.e., in the subsequent 6–9 months; Fig. 1) remain unknown; however, the 279 

cumulative impact of multiple stressors (e.g., long-term nutritional stress, cold temperature, 280 

pregnancy) offers a potential explanation. Future studies, including immune assessments of wild 281 

bats and factorial experiments, will be critical to mechanistically understand the causal effect of 282 

spring food shortages, bat residency outside their winter range, dietary reliance on non-native 283 
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plants, and other energetic stressors (e.g., pregnancy) on subsequent winter pulses of HeV 284 

shedding. Such work would also provide foundational insights into how bats control zoonotic 285 

viruses more broadly, given likely effects of stressors on immunity and tolerance [66,67]. 286 

 Pathogen pressure has been suggested to be a critical determinant of spillover risk in 287 

recipient hosts [1,6], but quantifying the spatial and temporal distribution of shedding in ways 288 

that facilitate downstream analyses has remained challenging. Here, we propose the area under 289 

annual shedding curves (i.e., AUC) as a meaningful metric to summarize pathogen output into 290 

the environment. AUC has previously been used to summarize the cumulative pathogen output 291 

from within-host dynamics (e.g., Mycoplasma agassizii intensity across individual tortoises [68]) 292 

and number of infected individuals (e.g., fungal infections across Daphnia populations [69,70]), 293 

which capture host infectiousness and local epidemic size, respectively, rather than the explicit 294 

infectious dose available to recipient hosts. For the latter, epidemic size has in turn been linked to 295 

local ecological conditions, such as lake temperature and host community composition [69,70]; 296 

however, such metrics have not been applied to replicate reservoir host populations to identify 297 

predictors of pathogen pressure. In one case study of a zoonotic pathogen reservoir, data on 298 

avian influenza virus prevalence in ducks were used to derive AUC across three regions of North 299 

America, but inference on its underlying ecological drivers was limited by few replicates [53].  300 

In our analyses, AUC not only displayed substantial heterogeneity, but also varied with 301 

roost ecology in ways that differed from seasonal GAMMs. Whereas the timing and amplitude of 302 

shedding was driven both by roost type and prior food shortages, AUC was exclusively driven by 303 

roost type. This contrast could relate to the tension between a short but intense shedding pulse 304 

and a smoldering shedding dynamic with lower intensity. Short but intense shedding pulses 305 

observed after food shortages could produce similar AUC to the lower amplitude shedding that 306 
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occurred year-round in roosts without acute food scarcity. Such results emphasize how pathogen 307 

pressure can offer distinct insights into infection dynamics relative to shedding seasonality alone. 308 

High pathogen pressure should theoretically have a pronounced effect on shaping the 309 

force of infection and the ultimate probability of spillover, given the hierarchical nature of cross-310 

species transmission [1,6]. However, empirical support for pathogen pressure from reservoir 311 

hosts influencing disease cases in recipient hosts has been restricted by the rarity of spillover in 312 

many systems, such that evidence is mostly from temporal overlap between shedding events and 313 

outbreaks or broad-scale, regional analyses of reservoir infection and human disease data. For 314 

example, Marburg virus spillover to humans coincide with seasonal birth pulses of Egyptian fruit 315 

bats, when host shedding is most pronounced [71], and the density of bank voles seropositive for 316 

Puumala virus can also explain regional human incidence of nephropathia epidemica [72].  317 

The relatively high frequency of HeV spillovers compared to less-frequent spillover in 318 

many other systems provides a tractable system for linking pathogen pressure and cross-species 319 

transmission [73]. Our analyses show that pathogen pressure (i.e., annual AUC) positively 320 

predicts observed spillovers within the broad, regional scales of flying fox movements (i.e., up to 321 

500 km). As a caveat, no spillovers were recorded within typical nightly foraging ranges (i.e., 25 322 

km) of the roosts monitored in our study region during the period of HeV surveillance [26,32]. 323 

Our findings therefore assume that the ecological conditions experienced by unsampled roosts in 324 

closer proximity to spillover events may be similar to those of our sampled roosts up to 500 km. 325 

As our patterns were consistent across a broad span of spatial scales relevant to flying fox 326 

mobility, our results suggest that the association between AUC and spillover are likely more 327 

affected by interannual variation in pathogen pressure, such as that driven by acute food 328 

shortages. Associations between pathogen pressure and spillovers were also mostly positive and 329 
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monotonic but generally not exclusively linear. Importantly, our measure of pathogen pressure 330 

accumulates processes in the spillover hierarchy—including reservoir host distribution, reservoir 331 

host density, infection prevalence, and infection intensity—up to and including shedding into the 332 

environment [1]. Downstream factors such as HeV survival in the environment and recipient host 333 

distribution and susceptibility may moderate effects of high pathogen pressure on spillover risk 334 

[6,74]. Additionally, short but high amplitude pulses of virus shedding, such as those observed in 335 

the year following acute food shortages, may ultimately provide a more sufficient HeV dose to 336 

horses, thus resulting in roughly equivalent spillover risks from moderate and high AUC [1,75].  337 

Because summarizing the spatiotemporal intensity of infection both provided distinct 338 

insights into ecological drivers of pathogen shedding and predicted spillover at broad regional 339 

scales, we suggest quantifying pathogen pressure would be particularly tractable and useful in 340 

systems where recipient host exposure occurs following pathogen release into the environment. 341 

Such systems include but are not limited to bat filoviruses and coronaviruses, avian influenza 342 

viruses, and helminths, protozoa, and fecal-oral bacteria of various wildlife [4,71,76,77]. Careful 343 

sampling designs for these environmentally shed pathogens, such as under-roost sampling 344 

methods for bats, could facilitate estimating pathogen pressure and, in turn, spillover risks [78].  345 

 In conclusion, we show that the ecological conditions experienced by bat reservoir hosts 346 

shape the timing, magnitude, and cumulative intensity of zoonotic virus shedding in ways that 347 

subsequently predict observed spillover events. Importantly, such inferences were only possible 348 

by integrating both spatiotemporal data on infection with long-term studies of host ecology and 349 

behavior, which demonstrates the importance of long-term, spatially replicated studies of 350 

reservoir hosts for linking environmental change and zoonotic pathogen dynamics. Despite a 351 

long-standing recognition of spatial and temporal scale in ecological research [79], replication 352 
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across both axes remains challenging, particularly over relevant time intervals [80]. 353 

Spatiotemporal sampling is especially critical in the study of infectious disease [9,11], because 354 

pathogen shedding and transmission are both inherently spatial and temporal processes [63,81]. 355 

Connecting such data with changing ecology of wildlife further requires studies of abiotic and 356 

biotic correlates and host behavior and demography at similar or biologically meaningful spatial 357 

and temporal scales [7,14,82]. Here, the ecological conditions that predict HeV shedding from 358 

flying foxes were derived from behavioral data collected over approximately 25 years and from 359 

diverse sources [27,28,37] (Eby et al., in review). Although collecting this kind of ecological 360 

data will accordingly present logistical difficulties, the growth of national research networks, 361 

global community consortiums, and remote sensing, among other large-scale efforts, should 362 

facilitate similar approaches to link spatiotemporal data on both host ecology and infection [83].  363 

In turn, careful attention to the ecology of reservoir hosts through long-term monitoring could 364 

facilitate improved early detection and preemptive management of zoonotic spillover events.  365 
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Tables 618 

Table 1. Spatiotemporal ecological conditions of flying fox roosts included in the analysis. 619 

Roost Longitude Latitude Year Food shortage in prior year Roost type 

Toowoomba 151.954 -27.564 2012 0 New overwintering 2013 0 

Boonah 152.681 -27.992 
2012 0 

New overwintering 2013 0 
2014 1 

Alstonville 153.439 -28.481 2013 0 Historic 2014 1 

Lismore 153.277 -28.807 
2012 0 

Historic 2013 0 
2014 1 

Bellingen 152.897 -30.452 
2012 0 

Historic 2013 1 
2014 1 

Nambucca Heads 153.003 -30.642 
 

2012 0 
New overwintering 2013 1 

2014 1 

Port Macquarie 152.908 -31.431 
2012 0 

Historic 2013 1 
2014 1 

Wingham 152.376 -31.871 
2012 0 

Historic 2013 1 
2014 1 

Singleton 151.175 -32.562 
2012 0 

New overwintering 2013 1 
2014 1 
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Table 2. Results of the most parsimonious GAMM for predicting seasonal HeV shedding from 621 

Australian flying foxes (n=196), fit using REML. Fixed effects are presented as ordered factors 622 

with coefficients (categorical) or the estimated degrees of freedom (EDF) and test statistics. 623 

Term β z EDF χ2 p 
Intercept -3.94 -23.14   <0.001 
New overwintering -0.19 -0.79   0.43 
Prior food shortage -0.16 -0.70   0.49 
Common P. alecto 0.56 3.17   0.002 
s(week)   0.01 0.01 0.04 
s(week) : new overwintering   4.12 23.61 <0.001 
s(week) : prior food shortage   3.19 14.33 <0.001 
s(longitude, latitude)   0.00 0.00 0.38 

 624 

Table 3. Results from the GAM of annual AUC estimates from flying fox roosts (n=25), fit using 625 

REML. Fixed effects are presented as ordered factors with model coefficients (categorical) or the 626 

estimated degrees of freedom (EDF) and test statistics. 627 

Term β t EDF F p 
Intercept 0.03 0.28   0.79 
New overwintering 0.76 4.33   <0.001 
Prior food shortage 0.15 1.38   0.19 
s(mean percent Pteropus alecto)   3.30 7.88 <0.001 
s(longitude, latitude)   3.37 4.56 <0.01 
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Figures and legends 629 

 630 

Figure 1. Spatiotemporal variation in HeV shedding for the nine flying fox roosts. Curves display 631 

the weekly proportion of HeV-positive urine pools, with roosts shown in order of latitude and 632 

colored by roost type. Ticks show sampling timepoints. Grey shading indicates regional acute 633 

food shortage events, and dashed lines indicate the Austral winter (i.e., June through August). 634 
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Figure 2. Fitted HeV urine pool prevalence and 95% confidence intervals from the most 636 

parsimonious GAMM with week, seasonal interactions with roost type and previous food 637 

shortages, the interaction between both factor variables, and an adjustment for categorical 638 

weekly Pteropus alecto occupancy. Weekly data are overlaid and colored by roost type. Thin 639 

lines show the fitted curves from the random factor smooth including each roost per year.  640 
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Figure 3. Variation in HeV pathogen pressure from flying foxes. The forest plot displays annual 642 

AUC estimates and 95% confidence intervals ordered by latitude and year; points are scaled by 643 

the number of sampling events per annual time series as weights. The horizontal axis uses a 644 

modulus transformation to accommodate wide upper bounds of some confidence intervals. Right  645 

displays fitted values and 95% confidence intervals for the GAM, with raw data (scaled by the 646 

number of sampling events per each time series) and modeled means colored by roost type. 647 

Transparency denotes AUC estimates derived from truncated annual time series (≤ 20 weeks). 648 

  649 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.457011doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.457011
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Spatiotemporal variation in regional HeV spillovers during the flying fox surveillance 650 

period (2012–2014) and its relationship with pathogen pressure (AUC). (A) Maps display the 651 

annual distributions of spillovers (colored by year) in relation to the nine analyzed roosts. 652 

Modeled relationships between AUC and spillover counts are shown with fitted values and 95% 653 

confidence intervals from GAMs for 50, 100, 200, 300, 400, and 500 km buffers of each roost. 654 
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