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 2 

Abstract 26 

  27 

CRISPR knockout screens in hundreds of cancer cell lines have revealed a substantial number 28 

of context-specific essential genes that, when associated with a biomarker such as lineage or 29 

oncogenic mutation, offer candidate tumor-specific vulnerabilities for targeted therapies or novel 30 

drug development. Data-driven analysis of knockout fitness screens also yields many other 31 

functionally coherent modules that show emergent essentiality or, in rarer cases, the opposite 32 

phenotype of faster proliferation. We develop a systematic approach to classify these suppressors 33 

of proliferation, which are highly enriched for tumor suppressor genes, and define a network of 34 

145 genes in 22 discrete modules. One surprising module contains several elements of the 35 

glycerolipid biosynthesis pathway and operates exclusively in a subset of AML lines, which we 36 

call Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells. The proliferation suppressor activity 37 

of genes involved in the synthesis of saturated fatty acids, coupled with a more severe fitness 38 

phenotype for the desaturation pathway, suggests that these cells operate at the limit of their 39 

carrying capacity for saturated fatty acids, which we confirmed biochemically. Overexpression of 40 

genes in this module is associated with a survival advantage in an age-matched cohort of AML 41 

patients, suggesting the gene cluster driving an in vitro phenotype may be associated with a novel, 42 

clinically relevant subtype. 43 

 44 

   45 
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 46 

Introduction 47 

 48 

Gene knockouts are a fundamental tool for geneticists, and the discovery of CRISPR-based 49 

genome editing1 and its adaptation to gene knockout screens has revolutionized mammalian 50 

functional genomics and cancer targeting2–8. Hundreds of CRISPR/Cas9 knockout screens in 51 

cancer cell lines have revealed background-specific genetic vulnerabilities9–13, providing guidance 52 

for tumor-specific therapies and the development of novel targeted agents. Although lineage and 53 

mutation state are powerful predictors of context-dependent gene essentiality, variation in cell 54 

growth medium and environment can also drive differences in cell state, particularly among 55 

metabolic genes14,15, and targeted screening can reveal the genetic determinants of metabolic 56 

pathway buffering16,17.  57 

 58 

The presence and composition of metabolic and other functional modules in the cell can also be 59 

inferred by integrative analysis of large numbers of screens. Correlated gene knockout fitness 60 

profiles, measured across hundreds of screens, have been used to infer gene function and the 61 

modular architecture of the human cell18–21. Data-driven analysis of correlation networks reveals 62 

clusters of functionally related genes whose emergent essentiality in specific cell backgrounds is 63 

often unexplained by the underlying lineage or mutational landscape21. Interestingly, in a recent 64 

study of paralogs whose functional buffering renders them systematically invisible to monogenic 65 

CRISPR knockout screens22,23, it was shown that the majority of context-dependent essential 66 

genes are constitutively expressed in cell lines23. Collectively these observations suggest that 67 

there is much unexplained variation in the genetic architecture, and emergent vulnerability, of 68 

tumor cells. 69 

 70 

Building human functional interaction networks from correlated gene knockout fitness profiles in 71 

cancer cells is analogous to generating functional interaction networks from correlated genetic 72 

interaction profiles in S. cerevisiae24–27. The fundamental difference between the two approaches 73 

is that, in yeast, a massive screening of pairwise gene knockouts in a single yeast strain was 74 

conducted in order to measure genetic interaction - a dual knockout phenotype more or less 75 

severe than that expected by the combination of the two genes independently. In coessentiality 76 

networks, CRISPR-mediated single gene knockouts are conducted across a panel of cell lines 77 

that sample the diversity of cancer genotypes and lineages. Digenic perturbations in human cells, 78 

a more faithful replication of the yeast approach, are possible with Cas9 and its variants, but 79 
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library construction, sequencing, and positional biases can be problematic16,28–34. Recently, we 80 

showed that an engineered variant of the Cas12a endonuclease, enCas12a35, could efficiently 81 

perform multiplex gene knockouts34, and we demonstrated its effectiveness in assaying synthetic 82 

lethality between targeted paralogs23. These developments in principle enable researchers to 83 

measure how biological networks vary across backgrounds, a powerful approach for deciphering 84 

complex biology24,36,37. 85 

 86 

CRISPR perturbations in human cells can result in loss of function alleles that increase as well as 87 

decrease in vitro proliferation rates; faster proliferation is an extreme rarity in yeast knockouts. 88 

These fast-growers can complicate predictions of genetic interaction29 and confound pooled 89 

chemoresistance screens38. However, there is no broadly accepted method of identifying these 90 

genes from CRISPR screens. Here we describe the development of a method to systematically 91 

classify genes whose knockout provides a proliferation advantage in vitro. We observe that genes 92 

which confer proliferation advantage are typically tumor suppressor genes, and that they show 93 

the same modularity and functional coherence as context-dependent essential genes. Moreover, 94 

we discover a novel module that includes several components of the glycerolipid biosynthesis 95 

pathway that slows cell proliferation in a subset of acute myeloid leukemia (AML) cell lines. We 96 

show a rewired genetic interaction network using enCas12a multiplex screening, and find strong 97 

genetic interactions corroborated by clinical survival data. A putative tumor-suppressive role for 98 

glycerolipid biosynthesis is surprising and disconcerting, since this process is thought to be 99 

required to generate biomass for tumor cell growth, and inhibitors targeting this pathway are 100 

currently in clinical trials39,40. 101 

  102 

Results 103 

 104 

Identifying Proliferation Suppressor Signatures 105 

 106 

We previously observed genes whose knockout leads to overrepresentation in pooled library 107 

knockout screens. These genes, which we term proliferation suppressor genes (PSG), exhibit 108 

positive selection in fitness screens, a phenotype opposite that of essential genes. As expected, 109 

many PSG are known tumor suppressor genes; for example, TP53 and related pathway genes 110 

CDKN1A, CHEK2, and TP53BP1 show positive selection in select cell lines (Figure 1a). 111 

Detection of these genes as outliers is robust to the choice of CRISPR analytical method, as we 112 

tested BAGEL241,42, CERES10, JACKS43, and mean log fold change (LFC) of gRNA targeting each 113 
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gene (Supplementary Figure 1a-d). Unlike core-essential genes, PSG are highly context-114 

specific: TP53 knockout shows positive LFC only in cell lines with wild-type TP53 (Figure 1b), 115 

and PTEN knockout shows the PS phenotype only in PTENwt backgrounds (Figure 1c). These 116 

observations are consistent with the knockout phenotypes of known tumor suppressor genes 117 

(TSG) in cell lines: in wildtype cells, TSG knockout increases the proliferation rate in cell culture, 118 

but when cell lines are derived from tumors where the TSG is already lost or non-functional, gene 119 

knockout has no effect. TSG are therefore context-specific PSG, but it is not necessarily the case 120 

that genes with a proliferation suppressor phenotype in vitro act as TSG in vivo; proliferation 121 

suppressors are at best putative tumor suppressors in the absence of confirmatory data from 122 

tumor profiling. 123 

  124 

Though detection of PSG is possible using existing informatics pipelines, several factors 125 

complicate a robust detection of these genes. There is no accepted threshold for any algorithm 126 

we considered to detect PSG, since all were optimized to classify essential genes. A related 127 

second issue is that cell line screens show a wide range of variance in LFC distributions, making 128 

robust outlier detection challenging (Supplementary Figure 1e-f). Third, the signatures are 129 

strongly background-dependent, as demonstrated by PTEN and TP53. Finally, there is no 130 

consistent expectation for whether or how many putative tumor suppressor genes are present in 131 

a given cell line. 132 

  133 

To address this gap, we developed a method to account for variability in fold-change distributions 134 

between screens. Our approach uses a Gaussian mixture model (K=2) to estimate each screen’s 135 

distribution of gene-level LFC scores (Figure 1a). Mixed distribution models have previously been 136 

used to identify distinctions between populations of essential and nonessential fitness genes in 137 

CRISPR screens44. For the K = 2 mixture model, the more negative distribution (Figure 1a, red) 138 

is generally essential genes, while the higher, narrower peak around zero (Figure 1a, blue), 139 

models the large population of knockouts with no fitness phenotype. We used this second model 140 

to calculate a Z-score (hereafter referred to as the ‘mixed Z-score’) for all gene-level mean fold 141 

changes in each cell line. This approach normalizes variance (Supplementary Figure 1e-f) 142 

across LFC distributions in different cell lines, with negative Z-scores indicating essential genes 143 

and positive Z-scores representing PSG phenotypes.  144 

  145 

To evaluate the effectiveness of this mixed Z-score approach, we used COSMIC45,46 tumor 146 

suppressor genes as a true positive reference set, and we combined COSMIC-defined oncogenes 147 
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(removing dual-annotated tumor suppressors) with our previously-specified set of nonessential 148 

genes as a true negative reference set7,47. Since there is no expectation for the presence of a 149 

consistent set of PSG across cell lines, we analyzed each of the 808 cell lines from the Avana 150 

2020Q4 data release independently10,48,49 calculating gene-level scores on each cell line 151 

individually and then combining all scores into a master list of 808 x 18k = 14.6 million gene-cell 152 

line observations (Supplementary Table 1). Moreover, since there is also no expectation that all 153 

COSMIC TSG would be detected cumulatively across all cell lines, we judged that traditional recall 154 

metrics (e.g. percentage of the reference set recovered) were inappropriate. We therefore defined 155 

recall as the total number of TSG-cell line observations. Using this evaluation scheme, the mixed 156 

Z-score approach outperforms comparable methods by a substantial margin, classifying more 157 

than 722 PS-cell line instances at a 10% false discovery rate (FDR) (Figure 1d). This is roughly 158 

50% more putative PSG than the closest alternative, a nonparametric rank-based approach, at 159 

the same FDR. BAGEL41,42, a supervised classifier of essential genes, performed worst at TSG, 160 

and the raw mean LFC approach also fared poorly, highlighting the need for variance 161 

normalization across experiments. We applied this 10% FDR threshold for all subsequent 162 

analyses. 163 

  164 

Common tumor suppressor genes PTEN and TP53 were observed in ~15% of cell lines (Figure 165 

1e), with other well-known TSG appearing less frequently. Among 309 COSMIC TSGs for which 166 

we have fitness profiles (representing 1.7% of all 18k genes), we find that 116 (37.5%) of these 167 

genes occur as proliferation suppressors at least once (Supplementary Table 2) and make up 168 

24.4% of total proliferation suppressor calls (Supplementary Figure 2a-b), a 14-fold enrichment. 169 

All of the known TSG hits come from just 504 of the 808 cell lines (62.4%) in which proliferation 170 

suppressor hit calls were identified (Figure 1f), yet we did not observe a bias toward particular 171 

tissues: in every lineage, most cell lines carried at least one PSG (Supplementary Figure 1g).   172 

 173 

To further validate our approach, we compared the set of TSGs in our PSG hits to other molecular 174 

profiling data. When identified as a proliferation suppressor, 53% of the 116 TSGs demonstrate 175 

higher mean mRNA expression relative to backgrounds where the same TSG is not a proliferation 176 

suppressor (Supplementary Table 2). Similarly, 96.6% of the 116 TSGs, when classified as a 177 

proliferation suppressor, demonstrate lower frequency of nonsilent mutations compared to 178 

backgrounds where the TSG is not a hit (Supplementary Table 2). These observations were not 179 

restricted to COSMIC TSGs however, as this was the case for all PSG hit calls of genes against 180 

non-PSG hit calls (Supplementary Figure 2c and 2d). Copy number comparisons did not 181 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2020.10.08.332023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.332023
http://creativecommons.org/licenses/by/4.0/


 

 7 

suggest major distinctions between PSG vs non-PSG calls (Supplementary Figure 2e), however 182 

there did appear to be more variation in PSG observations, possible stemming from smaller 183 

grouped sample sizes. Together, these observations confirm the reliability of our method to detect 184 

genes whose knockout results in faster cell proliferation, and that, analogous to essential genes, 185 

these genes must be expressed and must not harbor a loss-of-function mutation in order to elicit 186 

this phenotype. 187 

  188 

We attempted to corroborate our findings using a second CRISPR dataset of 342 cell line screens 189 

from Behan et al.13, including >150 screens in the same cell lines as in the Avana data. However, 190 

these screens were conducted over a shorter timeframe than the Avana screens (14 vs. 21 days), 191 

giving less time for both positive and negative selection signals to appear (see Methods for a 192 

detailed discussion). As a result, when we compared cell lines screened by both groups, the 193 

Avana data yielded many more TSG hits (Supplementary Figure 3a). While most of these do 194 

not meet our threshold for PSG in the Sanger data, hits at our 10% FDR threshold across all 195 

Avana screens are strongly biased toward positive mixed Z-scores in the Sanger screens 196 

(Supplementary Figure 3b), consistent with a weaker signal of positive selection as a result of 197 

the shorter assays rather than a lack of robustness in the screens49. 198 

  199 

Discovering Pathways Modulating Cell Growth with a Proliferation Suppressor Co-200 

Occurrence Network 201 

  202 

Although known TSG act as PSG in only a subset of cell lines, we observed patterns of co-203 

occurrence among functionally related genes. PTEN co-occurs with mTOR regulators NF250 (P < 204 

3x10-11, Fisher’s exact test) and the TSC1/TSC2 complex (P-values both < 7x10-13)51, as well as 205 

Programmed Cell Death 10 (PDCD10)52, a proposed tumor suppressor7,53 (Figure 2a). The p53 206 

regulatory cluster (TP53, CDKN1A, CHECK2, TP53BP1) also exhibited a strong co-occurrence 207 

pattern that was independent of the mTOR regulatory cluster (Figure 2a). mTOR54 and cell cycle 208 

checkpoint genes55,56 have been heavily linked to cancer development, given their roles in 209 

controlling cell growth and proliferation, and thus have been the focus of studies characterizing 210 

patient genomic profiles to identify common pathway alterations57,58. 211 

  212 

The modularity of mTOR regulators and TP53 regulators demonstrates pathway-level 213 

proliferation suppressor activity. This reflects the concept of genes with correlated fitness profiles 214 

indicating the genes operate in the same biochemical pathway or biological process19,21,59,60. 215 
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However, the sparseness of PSG, coupled with their smaller effect sizes, renders correlation 216 

networks relatively poor at identifying modules of genes with proliferation suppressor activity. In 217 

order to identify such modules, we developed a PSG network (Supplementary Table 3) based 218 

on statistical overrepresentation of co-occurring PSG (Figure 2b); see Methods for details. This 219 

approach yields a network of 145 genes containing 462 edges in disconnected clusters; only 8 220 

clusters have 3 or more genes (Figure 2c and Supplementary Figure 4c). Of these 462 edges, 221 

74 (16.0%, empirical P<10-4) are present in the HumanNet61 functional interaction network 222 

(Supplementary Figure 4a-b),~8 fold more than expected from random sampling, indicating high 223 

functional coherence between connected genes. The network recovers the PTEN and TP53 224 

modules as well as the Hippo pathway, the aryl hydrocarbon receptor complex (AHR/ARNT), the 225 

mTOR-repressing GATOR1 complex, the STAGA chromatin remodeling complex, JAK-STAT 226 

signaling, and the gamma-secretase complex (Figure 2c, and Supplementary 4c), all of which 227 

have been associated with tumor suppressor activity. The functional coherence and biological 228 

relevance of the PSG co-occurrence network further validates the approach taken and establishes 229 

this dataset as a resource for exploring putative tumor suppressor activity in cell lines and tumors. 230 

 231 

Variation in Fatty Acid Metabolism in AML Cells 232 

 233 

In addition to the known tumor suppressors, we observed a large module containing elements of 234 

several fatty acid (FA) and lipid biosynthesis pathways (Figure 2c). Interestingly, while there does 235 

not appear to be a strong tissue specificity signature for most clusters (Figure 2c), the fatty acid 236 

metabolism cluster shows a strong enrichment for AML cell lines (P = 1.5x10-4). AML, like most 237 

cancers, typically relies on increased glucose consumption for energy and diversion of glycolytic 238 

intermediates for the generation of biomass required for cell proliferation. Membrane biomass is 239 

generated by phospholipid biosynthesis that uses fatty acids as building blocks, with FA pools 240 

replenished by some combination of triglyceride catabolism, transporter-mediated uptake, and de 241 

novo synthesis via the ACLY/ACACA/FASN palmitate production pathway using citrate precursor 242 

diverted from the TCA cycle. Indeed, the role of lipid metabolism in AML progression is indicated 243 

by changes in serum lipid content62, in particular for long-chain saturated fatty acids that are the 244 

terminal product of the FAS pipeline. Inhibition of FA synthesis is therefore an appealing 245 

chemotherapeutic intervention63,64  and FASN inhibitors are currently undergoing clinical trials for 246 

treatment of solid tumors and metabolic diseases40. The observation that knocking out FAS 247 

pathway genes results in faster proliferation in some AML cells, and their signature as putative 248 

tumor suppressor genes, is therefore very unexpected. 249 
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 250 

To learn whether additional elements of lipid metabolism were associated with the FAS cluster, 251 

we examined the differential correlation of mixed Z-scores in AML cells. We and others have 252 

shown that genes with correlated gene knockout fitness profiles in CRISPR screens are likely to 253 

be involved in the same biological pathway or process (“co-functional”)18–21, analogous to 254 

correlated genetic interaction profiles in yeast25,26,65. Strikingly, all gene pairs within the fully 255 

connected clique in the FAS cluster (containing genes FASN, ACACA, GPAT4, CHP1, GPI 256 

CERS6, PCGF1, Figure 2c) had a median Pearson correlation coefficient (PCC) of 0.76 in the 257 

23 AML cell lines (range 0.63-0.95, Figure 3a, red), compared to median correlation of 0.05 in 258 

the remaining 785 cell lines (range -0.11-0.62, with the highest correlation between FASN and 259 

ACACA, adjacent enzymes in the linear palmitate synthesis pathway; Figure 3a, gray). These 260 

high differential Pearson correlation coefficients (dPCC) suggest that variation in lipid metabolism 261 

is pronounced in AML cells66. 262 

 263 

We sought to explore whether this difference in correlation identified other genes that might give 264 

insight into metabolic rewiring in AML. We first removed noisy data by filtering for high-quality 265 

screens (Cohen’s D > 2.5, recall > 60%42), leaving 659 cell lines, including 17 AML cell lines. 266 

Calculating a global difference between PCC of all gene pairs in all 17 AML and in the remaining 267 

642 cell lines yielded many gene pairs whose dPCC appeared indistinguishable from random 268 

sampling (Supplementary Figure 5a-b). To filter these, we calculated empirical P-values for 269 

each gene pair. We randomly selected 17 cell lines from the pool of all screens, calculated PCC 270 

for all gene pairs in the selected and remaining lines, and calculated dPCC from these PCC values 271 

(Figure 3b). We repeated this process 1,000 times to generate a null distribution of dPCC values 272 

for each gene pair, against which a P-value could be computed (Figure 3c-d).  273 

 274 

Expanding the set to a filtered list of genes whose correlation with a gene in the FAS clique 275 

showed significant change in AML cells (P<0.001; see Methods) yielded a total of 106 genes, 276 

including the 7 genes in the clique (Figure 3e) plus Holocarboxylase Synthetase (HLCS), which 277 

biotinylates and activates acetyl-CoA-carboxylase, the protein product of ACACA, as well as 278 

glycolysis pathway genes PGP and HK2. Interestingly, about half of the genes showed 279 

significantly increased anticorrelation with the FAS cluster, indicating genes preferentially 280 

essential where the FAS genes act as proliferation suppressors (Figure 3e). These genes include 281 

fatty acid desaturase (SCD), which operates directly downstream from FASN/ACACA to generate 282 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2020.10.08.332023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.332023
http://creativecommons.org/licenses/by/4.0/


 

 10 

monounsaturated fatty acid species, and Sterol Regulatory Element Binding Transcription Factor 283 

1 (SREBF1), the master regulatory factor for lipid homeostasis in cells. 284 

 285 

Clustering the AML cells lines according to these high-dPCC genes reveals two distinct subsets 286 

of cells. The FAS cluster and its correlates show strong proliferation suppressor phenotype in four 287 

cell lines, NB4, MV411, MOLM13, and THP1. The remaining thirteen AML cell lines show 288 

negligible to weakly essential phenotypes when these genes are knocked out. The anticorrelated 289 

genes, including SCD and SREBF1, show heightened essentiality in these same cell lines. 290 

Together these observed shifts in gene knockout fitness indicates that this subset of AML cells 291 

has a substantial metabolic rewiring. Because these cells share a genetic signature among fatty 292 

acid synthesis pathway genes that is consistent with tumor suppressors, we call these cell lines 293 

Fatty Acid Synthesis/Tumor Suppressor (FASTS) cells (Figure 3e). 294 

 295 

Cas12a-mediated Genetic Interaction Screens Confirm Rewired Lipid Metabolism 296 

 297 

We sought to confirm whether gene knockout confers improved cell fitness, and to gather some 298 

insight into why some AML cells show the FASTS phenotype and others do not. Genetic 299 

interactions have provided a powerful platform for understanding cellular rewiring in model 300 

organisms, and we sought to apply this approach to deciphering the FASTS phenotype. We 301 

designed a CRISPR screen that measures the genetic interactions between eight selected “query 302 

genes” and ~100 other genes (“array genes”). The query genes include FASN and ACACA, from 303 

the cluster of proliferation-suppressor genes, as well as lipid homeostasis transcription factor 304 

SREBF1, anticorrelated with the FAS cluster in the differential network analysis, and 305 

uncharacterized gene c12orf49, previously implicated in lipid metabolism by coessentiality21 and 306 

a recent genetic interaction study60. Additional query genes include control tumor suppressor 307 

genes TP53 and PTEN and control context-dependent essential genes GPX4 and PSTK (Figure 308 

4a). The array genes include two to three genes each from several metabolic pathways, including 309 

various branches of lipid biosynthesis, glycolysis and glutaminolysis, oxphos, peroxisomal and 310 

mitochondrial fatty acid oxidation. We include the query genes in the array gene set (Figure 4a) 311 

to test for screen artifacts and further add control essential and nonessential genes to measure 312 

overall screen efficacy (Supplementary Table 4-5). 313 

 314 

We used the enCas12a CRISPR endonuclease system to carry out multiplex gene knockouts35. 315 

We used a dual-guide enCas12a design, as described in DeWeirdt et al.34, that allows for 316 
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construction of specific guide pairs through pooled oligonucleotide synthesis (Figure 4b). The 317 

library robustly measures single knockout fitness by pairing three Cas12a crRNA per target gene 318 

each with five crRNA targeting nonessential genes7,47 (n=15 constructs for single knockout 319 

fitness), and efficiently assays double knockout fitness by measuring all guides targeting query-320 

array gene pairs (n=9) (Figure 4c & Supplementary Table 5). Using this efficient design and the 321 

endogenous multiplexing capability of enCas12a, we were able to synthesize a library targeting 322 

800 gene pairs with a single 12k oligonucleotide array.  323 

 324 

We screened one AML cell line from the FASTS subset, MOLM13, and a second one with no FAS 325 

phenotype, NOMO1, collecting samples at 14 and 21 days after transduction with a five-day 326 

puromycin selection (Supplementary Table 6-7). Importantly, by comparing the mean log fold 327 

change of query gene knockouts in the “A” position vs. the same genes in the “B” position of the 328 

dual knockout vector, we find no positional bias in the multiplex knockout constructs (Figure 4d), 329 

consistent with our previous findings23,34. Single knockout fitness measurements effectively 330 

segregated known essential genes from nonessentials, confirming the efficacy of the primary 331 

screens (Supplementary Figure 6). Context-dependent fitness profiles are consistent with the 332 

cell genotypes, with PTEN and TSC1 showing positive selection in PTENwt NOMO1 cells and 333 

TP53 being a strong PS gene in P53wt MOLM13 cells. Strikingly, CHP1 and GPAT4 are the next 334 

two top hits in MOLM13, confirming their proliferation suppressor phenotype (Figure 4e), while 335 

neither shows a phenotype in NOMO1. Together these observations validate the enCas12a-336 

mediated multiplex perturbation platform, confirm the ability of CRISPR knockout screens to 337 

detect proliferation suppressors, and corroborate the background-specific fitness enhancing 338 

effects of genes from the FAS cluster. 339 

 340 

To measure genetic interactions, we fit a linear regression for each guide between the 341 

combination LFCs and the single guide LFCs, Z-scoring the residuals from this line, and 342 

combining across all guides targeting the same gene pair (Supplementary Figure 6 & 343 

Supplementary Table 7). Here, positive genetic interaction Z-scores reflect greater fitness than 344 

expected and negative Z-scores represent lower than expected based on the single gene 345 

knockouts independently, similar to the methodology applied in a recent survey of genetic 346 

interactions in cancer cells using multiplex CRISPR perturbation33 (see Methods). Gene self-347 

interactions (when the same gene is in the A and B position, Figure 4d) should therefore be 348 

negative for proliferation suppressors and positive for essentials (Figure 4f-g, Supplementary 349 

Figure 6). Overall, genetic interaction Z-scores in the two cell lines showed moderate correlation 350 
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(Figure 4g) and previously reported synthetic interactions between C12orf49 and low-density 351 

lipoprotein receptor LDLR17 and between SREBF1 and its paralog SREBF217 are identified in both 352 

cell lines (Supplementary Figure 6f-g).  353 

 354 

In contrast with the interactions found in both cell lines, background-specific genetic interactions 355 

reflect the genotypic and phenotypic differences between the cells. The negative interaction 356 

between tumor suppressor PTEN and mTOR repressor TSC1 in PTENwt NOMO1 cells is 357 

consistent with their epistatic roles in the mTOR regulatory pathway. Both genes show positive 358 

knockout fitness in NOMO1 (Figure 4e) but their dual knockout does not provide an additive 359 

growth effect, resulting in a suppressor interaction with a negative Z-score (Figure 4g-h). 360 

Similarly, suppressor genetic interactions between ACACA and downstream proliferation 361 

suppressor genes CHP1 and GPAT4 are pronounced in MOLM13 cells, consistent with epistatic 362 

relationships in a linear biochemical pathway (Figure 4h). These interactions are not replicated 363 

with query gene FASN, but both FASN and ACACA show negative interactions with fatty acid 364 

transport gene FABP5 and positive interactions with SREBF1 and SCD, the primary desaturase 365 

of long-chain saturated fatty acids. All of these interactions are absent in NOMO1, demonstrating 366 

the rewiring of the lipid biosynthesis genetic interaction network between these two cell types 367 

(Figure 4h).  368 

 369 

FASTS Signature Predicts Sensitivity to Saturated Fatty Acids 370 

 371 

The significant differences in the single- and double-knockout fitness signatures between the two 372 

cell lines suggests a major rewiring of lipid metabolism in these cells. CHP1 and GPAT4 are 373 

reciprocal top correlates in the Avana coessentiality network (r = 0.43, P = 2.5x10-34), strongly 374 

predicting gene co-functionality21. Two recent studies characterized the role of lysophosphatidic 375 

acid acyltransferase GPAT4 in adding saturated acyl moieties to glycerol 3-phosphate, generating 376 

lysophosphatidic acid (LPA) and phosphatidic acid (PA), the precursors for cellular phospholipids 377 

and triglycerides, and further discovered CHP1 as a key regulatory factor for GPAT4 activity67,68. 378 

Within hematological cancer cell lines, the coessentiality network is significantly restructured, with 379 

the ACACA/FASN module correlated with SCD in most backgrounds (r = 0.35, P < 10-18) but 380 

strongly anticorrelated in 36 blood cancer cell lines (r = -0.52, P < 10-3, Figure 3e). The magnitude 381 

of this change in correlation is ranked #8 out of 31 million gene pairs (see Methods). In contrast, 382 

ACACA and FASN are weakly correlated with CHP1 in most tissues but strongly correlated in 383 

AML, with underlying covariation largely driven by the PS phenotype in FASTS cells (Figure 3e). 384 
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This pathway sign reversal is confirmed in the single knockout fitness observed in our screens: 385 

SCD is strongly essential in MOLM13 but not in NOMO1 (Figure 4e). 386 

 387 

Collectively these observations make a strong prediction about the metabolic processing of 388 

specific lipid species. Faster proliferation upon knockout of genes related to saturated fatty acid 389 

processing, coupled with increased dependency on fatty acid desaturase gene SCD (Figure 5a), 390 

suggests that these cells are at or near their carrying capacity for saturated fatty acids. To test 391 

this prediction, we exposed three FASTS cell lines and four other AML cell lines to various species 392 

of saturated and unsaturated fatty acids. FASTS cells showed significantly increased apoptosis 393 

in the presence of 200 µm palmitate (Figure 5b-c) while no other species of saturated or 394 

unsaturated fatty acid showed similar differential sensitivity. In addition, analysis of metabolic 395 

profiles of cells in the Cancer Cell Line Encyclopedia69,70 showed that saturated acyl chains are 396 

markedly overrepresented in triacylglycerol (TAG) in FASTS cells (Figure 5d), in contrast with 397 

other lipid species measured (Supplementary Figure 7). Palmitate-induced lipotoxicity has been 398 

studied in many contexts – and importantly, the role of GPAT4 and CHP1 in mediating lipotoxicity 399 

was well described recently67,68 – but, to our knowledge, this is the first instance of a genetic 400 

signature that predicts liposensitivity. 401 

 402 

Prognostic signature for FASTS genes 403 

  404 

To explore whether the FASTS phenotype has clinical relevance, we compared our results with 405 

patient survival information from public databases. Using genetic characterization data from 406 

CCLE69, we did not find any lesion which segregated FASTS cells from other CD33+ AML cells 407 

(Figure 6a), so no mutation is nominated to drive a FASTS phenotype in vivo. Instead, we 408 

explored whether variation in gene expression was associated with patient outcomes. We 409 

included genes in the core FASTS module as well as genes with strong genetic interactions with 410 

ACACA/FASN in our screen (Figure 6a). To select an appropriate cohort for genomic analysis, 411 

we first considered patient age. Although AML presents across every decade of life, patients from 412 

whom FASTS cell lines were derived are all under 30 years of age (sources of other AML cells 413 

ranged from 6 to 68 years; Figure 6b). With this in mind, we explored data from the TARGET-414 

AML71 project, which focuses on childhood cancers (Figure 6c).  Using TARGET data, we 415 

calculated hazard ratios using univariate Cox proportional-hazards modeling with continuous 416 

mRNA expression values for our genes of interest as independent variables. We observed that 417 

4/7 FAS genes, GPAT4, CHP1, PCGF1, and GPI, show significant, negative hazard ratios (HR), 418 
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consistent with a tumor suppressor signature (Figure 6d), and that no other gene from our set 419 

shows a negative HR. Indeed, when stratifying patients from the TARGET cohort with high 420 

expression of GPAT4, CHP1, PCGF1, and GPI (Figure 6e), we observe significantly improved 421 

survival (P-value = 0.001, Figure 6f). These findings are not replicated for GPAT4, CHP1, and 422 

GPI in the TCGA72 or OHSU73 tumor genomics data sets, possibly because they sample older 423 

cohorts (Polycomb group subunit PCGF1 is observed to have a HR < 1 within the OHSU cohort, 424 

Supplementary Figure 8a). However, age is not generally associated with expression of genes 425 

in the FAS cluster in either cell lines or tumor samples (Supplementary Figure 8). 426 

 427 

Discussion 428 

 429 

CRISPR screens have had a profound impact on cancer functional genomics. While research has 430 

been mainly focused on essential gene phenotypes, there is still much clinically relevant biology 431 

that can be uncovered by examining other phenotypes from a genetic screen. We establish a 432 

methodology that can reliably identify the proliferation suppressor phenotype from whole-genome 433 

CRISPR knockout genetic screens. This represents, to our knowledge, the first systematic study 434 

of this phenotype in the more than 1,000 published screens8,10,11,13,48.  435 

 436 

The activity of proliferation suppressor genes is inherently context-dependent, rendering global 437 

classification difficult. As with context-dependent essential genes, the strongest signal is attained 438 

when comparing knockout phenotype with underlying mutation state. For example, wildtype and 439 

mutant alleles of classic tumor suppressor examples TP53 and PTEN are present in large 440 

numbers of cell lines, enabling relatively easy discrimination of PS behavior in wildtype 441 

backgrounds, but most mutations are much more rare, reducing statistical power. Our model-442 

based approach enables the discovery of PS phenotype as an outlier from null-phenotype 443 

knockouts. Using this approach, we recover COSMIC-annotated TSGs exhibiting the PS 444 

phenotype when wildtype alleles are expressed at nominal levels.  445 

 446 

Co-occurrence of proliferation suppressors follows the principles of modular biology, with genes 447 

in the same pathway acting as proliferation suppressors in the same cell lines. We observe 448 

background-specific putative tumor suppressor activity for the PTEN pathway, P53 regulation, 449 

mTOR signaling, chromatin remodeling, and others. The co-occurrence network also reveals a 450 

novel module associated with glycerolipid biosynthesis, which exhibits the PS phenotype in a 451 

subset of AML cells. Analysis of the rewiring of the lipid metabolism coessentiality network in AML 452 
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cells corroborated this discovery, and led us to define the Fatty Acid Synthesis/Tumor Suppressor 453 

(FASTS) phenotype in four AML cell lines. A survey of genetic interactions, using the enCas12a 454 

multiplex knockout platform, showed major network rewiring between FASTS and other AML cells 455 

and revealed strong genetic interactions in FASTS cells with GPAT4, a key enzyme in the 456 

processing of saturated fatty acids, and its regulator CHP1. Collectively these observations 457 

suggest that FASTS cells are near some critical threshold for saturated fatty acid carrying 458 

capacity, which we validated biochemically by treatment with fatty acids and bioinformatically 459 

through analysis of CCLE metabolomic profiles. 460 

 461 

Confirming the clinical relevance of an in vitro phenotype can be difficult. No obvious mutation 462 

segregates FASTS cells from other AML cells, and with only four cell lines showing the FASTS 463 

phenotype, we lack the statistical power to discover associations in an unbiased way. However, 464 

by narrowing our search to strong hits from the differential network analyses, we found a 465 

significant survival advantage in a roughly age-matched cohort for GPAT4 and CHP1 466 

overexpression. This finding points to a wholly novel tumor suppressor signature for our PSG 467 

module, though significant further study is necessary to determine whether this gene expression 468 

signature confers a similar in vivo metabolic rewiring and sensitivity to saturated lipids. 469 

 470 

The combination of genetic, biochemical, and clinical support for the discovery of a novel tumor 471 

suppressor module has several implications. First, it provides a clinical signature that warrants 472 

further research as a prognostic marker as well as a potential therapeutic target. Second, it 473 

demonstrates the power of differential network analysis, and in particular differential genetic 474 

interaction networks, to dissect the rewiring of molecular pathways from modular phenotypes. 475 

And finally, it suggests that there still may be much to learn from data-driven analyses of large-476 

scale screen data, beyond the low-hanging fruit of lesion/vulnerability associations. 477 

 478 

 479 

  480 
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Figure Legends 511 

 512 
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 514 

Figure 1. Discovery of Proliferation Suppressor genes. (a) Fold-change distribution of a 515 

typical CRISPR knockout screen has a long left tail of essential genes, and a small number of 516 

genes whose knockout increases fitness (proliferation suppressor genes, “PSG”). A two-517 

component Gaussian mixture model (red, blue) models this distribution. (b) and (c) Fold change 518 

of common tumor suppressors across 808 cell lines (P-values, Wilcoxon rank-sum tests). (d) 519 

Precision vs. recall of mixed Z-score and other CRISPR analysis methods. Dashed line, 90% 520 

precision (10% FDR). (e) Fraction of cell lines in which known tumor suppressors (green) or other 521 

genes (blue, not defined as TSG by COSMIC) are classified as PS genes at 10% FDR. (f) 522 

Presence of each known TSG across 808 cell lines, vs. cell genetic background. Gold, mutation 523 

present; gray, absent. Green or blue, following color scheme in (e), gene is classified as a 524 

proliferation suppressor. 525 

  526 
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Figure 2. Co-occurrence of PSG. (a) Co-occurrence/mutual exclusivity of common TSG as PSG 530 

in CRISPR screens. Brown, number of cell lines in which two genes co-occur as PSG at 10% 531 

FDR. Blue, FDR of co-occurrence. Hierarchical clustering delineates functional modules. (b) 532 

Pipeline for building the co-PS network. (c) Examples from the Co-PS network. Nodes are 533 

connected by edges at FDR < 0.1%. Heatmaps indicate presence of PSG vs. cell lineage. 534 

  535 
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Figure 3. Differential network analysis of fatty acid synthesis module. (a) Among genes in 538 

the FAS module, Pearson correlation coefficients of shuffled Z score profiles are substantially 539 

higher in AML cells (red) than in other cells (gray). (b) Significance testing of differential PCC 540 

(dPCC) involves quality filtering of Avana data (n=659 cell lines, including 17 AML cell lines), 541 

building a null distribution by randomly selecting 17 cell lines, and calculating PCC between all 542 

gene pairs in the selected cells and the remaining cells. (c) After 1,000 repeats, a null distribution 543 

is generated for each pair, and a two-sided P-value is calculated for the observed AML-vs-other 544 

dPCC. (d) Volcano plot of dPCC vs. P-value for all genes in the Co-PS cluster. (e) Heatmap of 545 

mixed Z score for 17 AML cell lines in selected genes with high |mixed Z| and high |dPCC|. 546 

Clustering of cell lines indicates the putative Fatty Acid Synthesis/Tumor Suppressor (FASTS) 547 

subtype. 548 
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Figure 4. Genetic interactions reveal a rewired lipid biosynthesis pathway in FASTS cells. 552 

(a) Genetic interaction screen targets 8 query genes, selected from FASTS cluster and dPCC 553 

analysis, and 100 array genes sampling lipid metabolism pathways, for a total of 800 pairwise 554 

knockouts. (b) Library design uses a dual-guide enCa12a expression vector which targets the 555 

query gene in the “A” position and array gene in the “B” position. (c) Overall library design includes 556 

three crRNA/gene plus control crRNA targeting nonessential genes. Single-knockout constructs 557 

(target gene paired with nonessential controls) allow accurate measurement of single knockout 558 

fitness. (d) Considering single knockout fitness of query genes in the “A” and “B” position of the 559 

crRNA expression vector shows no position effects in the two cell lines screened (MOLM13, 560 

NOMO1). LFC, log fold change. (e) Single knockout fitness (Z-score of mean LFC) is highly 561 

consistent between MOLM13 and NOMO1, but reveals background-specific PS genes. (f) 562 

Enrichment among GI for coessential and self-interacting genes. Self-interactions among genes 563 

that show single knockout fitness phenotypes are expected, reflecting quality of GI observations. 564 

(g) Global comparison of MOLM13, NOMO1 genetic interaction Z scores. (h) Network view of 565 

interactions in each background shows rewiring in MOLM13 FASTS cells. 566 
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Figure 5. FASTS cells are sensitive to saturated FA. (a) Schematic of the fatty acid/glycerolipid 571 

synthesis pathway. Blue, PSG in FASTS cells. Red, essential genes. Pathway analysis suggests 572 

saturated fatty acids are a critical node. (b) Apoptosis of FASTS cells in response to media 573 

supplemented with 200 µm fatty acids. All three cell lines show marked sensitivity to palmitate. 574 

(c) Apoptosis of other AML cells in response to fatty acids shows no response to palmitate. (d) 575 

Triacylglycerol (TAG) species metabolite differences. The x axis represents the median difference 576 

of log10 normalized peak area of the metabolite in FASTS cells vs all other AML cells. The y axis 577 

represents the number of saturated bonds present. Each dot represents a unique metabolite.  578 
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Figure 6. Prognostic signature of FAS module. (a) Heatmap of mixed Z scores for genes 583 

implicated in the genetic interaction network. Top, common AML lesions. (b) Mixed Z-score of 584 

FASN in AML cell lines vs. age of patient from which cell lines were derived. Blue, FASTS cells. 585 

(c) Age distribution of AML patients in three public tumor genomics cohorts. (d) Hazard ratios 586 

(95% CI; univariate Cox proportional hazards test) for expression of genes in (a), using genomics 587 

and survival data from TARGET. (e) Hierarchical clustering of gene expression in TARGET, using 588 

the four genes with negative HR. Green, high expression cluster. Blue, others. (F) Kaplan-Meier 589 

survival analysis of AML patients in TARGET, comparing patients in high expression cluster vs. 590 

others. 591 
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Supplementary Materials and Methods 593 

 594 

Code Availability 595 

 596 

Mixed Z-scoring, analysis using scoring metric, co-occurrence network, and survival analysis was 597 

conducted in R version 4.0.474,75. dPCC correlation analysis, including empirical calculations were 598 

conducted in Python 3.8.276, using the packages  SciPy77, NumPy78, Matplotlib79, and pandas80. 599 

Code is made available at: https://github.com/hart-lab/tsg_crispr_screen_survey/. R packages 600 

tidyverse81, data.table82, and knitr83–85 were used for figure generation, data manipulation, and 601 

general R functions; mixtools86, permute87, and PRROC88,89 were used for data simulations 602 

present in figures and evaluation; biomaRt90,91, and org.Hs.eg.db92 were used in integrating data 603 

types; cowplot93, ggbeeswarm94, annotate95, RColorBrewer96, ComplexHeatmap97, gplots98, 604 

ggpubr99, grid75, circlize100, ggthemes101, ggExtra102, patchwork103, and ggplot2104, were used for 605 

figure aesthetics and generation. R packages survival105,106 and survminer107 were used for 606 

survival analysis and figure generation. Analysis related to Kaplan Meier and patient 607 

stratification was done in python version 3.8.5108 using the packages pandas80, numpy78, and 608 

scipy77 for statistical functions and data manipulation, seaborn109, plotly110, and matplotlib79 609 

for figure aesthetics and generation, and lifelines111 for both statistical analysis and figure 610 

generation. 611 

 612 

 613 

Analysis of enCas12a multiplex genetic screens was conducted in R 4.0.0 and Python 3.8.3112. 614 

Code for this analysis is available at https://github.com/PeterDeWeirdt/FASTS. R packages 615 

tidyverse81 and tidygraph113 were used for data manipulation and ggraph114 was used for graph 616 

visualization. Python packages SciPy77, NumPy78, Matplotlib79, pandas80, statsmodels115, 617 

plotnine116 were used for analysis and visualization. The Custom package gnt117 was used to 618 

calculate genetic interaction scores and gpplot118 was used to generate point density plots. 619 

 620 

Processing DepMap Screen and CCLE Genomics Data 621 

 622 

Raw read count data and a map of guide RNAs were downloaded from the DepMap database 623 

(www.depmap.org)10,48 and Project Score database (https://depmap.sanger.ac.uk/)13. Avana data 624 

version 2020q449 was used for this analysis. To avoid genetic interaction effects, we discarded 625 

sgRNAs targeting multiple protein coding genes annotated as public or update pending in The 626 
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Consensus Coding Sequence (CCDS, release 22)119. Gene names in the guide RNA maps of 627 

Avana and Project Score were updated using human gene information obtained from ncbi ftp. 628 

Then, read count data for each replicate was passed through CRISPRcleanR120 with location 629 

information of sgRNAs for the Avana CRISPR library based on GENCODE121 to correct depletion 630 

effects caused by copy-number amplification. Following this correction, each guide’s log2 fold-631 

change was calculated. For Project Score data, we used only the gene location information of KY 632 

library v1.0 which is built in CRISPRcleanR. Normalized TPM RNA-seq data, copy number data, 633 

and mutation annotations for CCLE69 cells were also downloaded from DepMap. Ensembl gene 634 

id in RNA-seq data was converted to gene symbol using cross reference downloaded from 635 

Emsembl Biomart122.  636 

 637 

Mixed Z-Score Metric 638 

 639 

Mixed z-score metric was generated using R version 4.0.4 base stat packages75 and the 640 

mixtools86 normalmixEM function.  To calculate the mixed z-score, individual guide log2 fold-641 

changes for each cell line were passed through the default settings of the normalmixEM function 642 

to fit two distinction normal distributions. Of the 808 cell lines passed through this analysis, 805 643 

cell lines were able to converge with two distinction normal distribution following 1,000 iterations.  644 

The calculated mean and standard deviation of the higher (more positive) distribution were 645 

recorded. Along with the uncorrected original gene log2 fold-change, was used to calculate the 646 

corresponding mixed z-score. The original and mixed Z-score formula is as follows: 647 

	𝑀𝑖𝑥𝑒𝑑	𝐺𝑒𝑛𝑒	𝑍 − 𝑆𝑐𝑜𝑟𝑒 = 		
𝑥 − 𝜇!"#!
𝜎!"#!

 648 

Where x is the original gene log2 fold-change, 𝜇!"#! is the average of the more positive fitted 649 

distribution, and 𝜎!"#! is the standard deviation of the more positive fitted distribution. This metric 650 

was calculated for the DepMap 2020q449 screen set, and the Sanger’s DepMap13 screen set for 651 

Supplementary Figure 3.  652 

 653 

Comparisons of Fitness Scoring Metrics 654 

  655 

The following describes our comparative analysis of screening algorithms observed in 656 

Supplementary Figure 1. JACKS43 and BAGEL41,42,123, software was downloaded from their 657 

corresponding GitHub official distribution sites: https://github.com/felicityallen/JACKS, and 658 

https://github.com/hart-lab/bagel. We ran JACKS and BAGEL with raw fold change data of 659 
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DepMap 2020q4 version49, gene guide map and replicate information. We obtained DepMap 660 

2020q4 CERES scores from ‘dependency_score.csv’ downloaded from DepMap depository. 661 

Ranking was performed per screen and based on mean log2 fold-change values per gene.  662 

 663 

We used the cancer gene census (CGC) list from COSMIC45,46 to compare fitness methods that 664 

can detect proliferation suppressor activity. Tumor suppressor genes (TSGs) from CGC represent 665 

a gene set of well-known proliferation suppressors. We separated the CGC gene list in two gene 666 

sets, genes with any tumor suppressor role in cancer representing true positive proliferation 667 

suppressor observations, and genes with any oncogene role in cancer representing false 668 

positives. Additionally, we added reference non-essential genes7,47 to the false positive list as 669 

these genes are not expected to demonstrate any phenotype. With these compiled lists, we 670 

evaluated each metric’s fitness scores, to see which metric would best separate the true and false 671 

positive gene lists. The R package PRROC was used for fitness scoring evaluation88,89.  672 

 673 

Direct Proliferation Suppressor Comparisons of Avana and Sanger Screen Datasets   674 

 675 

The CRISPRcleanR120 corrected fold-change Sanger screen set13 was pushed through identical 676 

pipelines used to calculate the mixed z-score metric. Quality analysis of the mixed z-score metric 677 

for both data sets was pushed using identical gene sets described in the “Comparisons of Fitness 678 

Scoring Metrics” section. This analysis was restricted to only overlapping cell lines, 186 total, in 679 

both datasets. 680 

 681 

The fitness enhancement introduced by PSG knockout, relatively weak compared to severe 682 

defects from essential gene knockout, often precludes detection in a shorter experiment. In the 683 

example F5 cell line (Figure 1a), a 2.5-fold change over a 21-day time course corresponds to a 684 

fitness increase of only ~12% for rapidly growing cells, or a doubling time decrease from 24 to 21 685 

hours. In a 14-day experiment, this increased proliferation rate would result in an observed log 686 

fold change of only ~1.7, within the expected noise from genes with no knockout phenotype. This 687 

is explained in detail as follows: 688 

 689 

Theoretical Fold-Change and Growth Rate Quantification: To assess hypothetical differences 690 

of proliferation suppressor fitness scoring metrics based on standard sampling times of screen 691 

collection taken from the Sanger and Avana databases10,11,13,48, we calculated theoretical cell 692 
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population differences of wild-type and knocked out proliferation suppressor cell lines. The 693 

following formula can be used to calculate cell populations based on doubling rate per day: 694 

 695 

𝑋$ = 𝑋" ∗ 2%∗' 696 

 697 

In this formula Xf is the final population number of cells, Xi  is the initial population of cells, k is 698 

doubling time  of the cells (in days), and t is time in days. In order to compare cells we can assume 699 

that these formulas are consistent with both wild-type cells and knocked out proliferation 700 

suppressor cells. With, knocked out proliferation suppressor cells the assumption is that these 701 

cells would grow faster compared to wild-type conditions and thus kps > kwt, where kps is the growth 702 

rate for proliferation suppressor knocked out cells, and kwt is the growth rate of wild type cells. 703 

These two independent growth rates are related as: 704 

 705 

𝑘() = 𝑘*' +	∆𝑘 706 

 707 

Δk represents the change in growth rate resulting from genetic knockout, and is assumed to be 708 

positive. The growth rate formula for wild-type and proliferation suppressor cells is thus: 709 

𝑋*' = 𝑋" ∗ 2%!"∗', 𝑋() = 𝑋" ∗ 2(%!",∆%)∗' 710 

 711 

We then solved for Δk, with Log2(Xps/Xwt) as Log2(FC), representing the fold-change difference 712 

between the cell populations at time t: 713 

 714 

𝐿𝑜𝑔/𝐹𝐶 = 𝐿𝑜𝑔/ <
𝑋()
𝑋*'

= 715 

 716 

𝐿𝑜𝑔/𝐹𝐶 = 	𝐿𝑜𝑔/ >
𝑋" ∗ 2(%!",∆%)∗'

𝑋" ∗ 2%!"∗'
? 717 

 718 

𝐿𝑜𝑔/𝐹𝐶 = 	𝐿𝑜𝑔/ >
2(%!",∆%)∗'

2%!"∗'
? 719 

 720 

𝐿𝑜𝑔/𝐹𝐶 = 	 ((𝑘*' + ∆𝑘) ∗ 𝑡) − (𝑘*' ∗ 𝑡) 721 

 722 

𝐿𝑜𝑔/𝐹𝐶/𝑡 = 	𝑘*' + ∆𝑘 − 𝑘*' 723 
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 724 

𝐿𝑜𝑔/𝐹𝐶/𝑡 = 	∆𝑘 725 

 726 

For a representative Log2(FC) of 2.5, which represents a sizable gain in fitness from a knocked-727 

out proliferation suppressor, and t = 21 days, representing the time in which the Avana screens 728 

were sampled, we calculated Δk: 729 

 730 

∆𝑘 =
2.5
21

= 0.12 731 

 732 

Using the calculated Δk at 0.12, we can calculate the hypothetical Log2(FC) that would be 733 

expected at t = 14 days, representing the time in which the Sanger screens were sampled: 734 

 735 

𝐿𝑜𝑔/𝐹𝐶 = 	∆𝑘 ∗ 𝑡 736 

 737 

𝐿𝑜𝑔/𝐹𝐶 = 	0.12 ∗ 14 = 1.7 738 

 739 

The resulting theoretical measurements demonstrate that Δk can be identical between two 740 

samples, however the time in which the sample was taken will influence the ratio between the two 741 

measured cell populations. Taken together, this demonstrates that samples at shorter time points 742 

will demonstrate smaller quantified population size differences between wild-type and proliferation 743 

suppressor knocked out cells compared to samples taken at longer time points. 744 

 745 

Proliferation Suppressor Co-Occurrence Network 746 

 747 

The co-occurrence network was developed based on FDR-corrected P-values from Fisher exact 748 

tests of all gene by gene comparisons that were identified as a proliferation suppressor more than 749 

once (584 genes total). Parallel processing, Fisher’s exact test, Benjamini & Hochberg FDR p-750 

value adjustment were done using base R stat packages75. Figure 2a was created with heatmap.2 751 

function from the R gplots98 package, with the dendrogram created through base R75 functions of 752 

euclidean distance, and complete agglomeration methods clustering of the Fisher’s exact test 753 

score between gene pairs. Smaller heatmaps displayed in Figure 2c were made using the R 754 

ComplexHeatmap library97. Network visualization was completed using Cytoscape124.  755 

 756 
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Network creation followed the corresponding steps; 1) Identify all proliferation suppressor 757 

observations at a 10% FDR threshold (Z >= 3.83). 2) Filter for gene proliferation suppressor 758 

observations that occurred at least 2 or more times, selecting for a total of 584 out of 18,111 759 

genes available (3.2% total available genes); 3) Create a binary (1 = proliferation suppressor, 0 760 

= not proliferation suppressor) matrix of all 584 genes in all cell lines;  4) Conducted Fisher’s exact 761 

test of every possible 2 x 2 contingency table of the 584 selected genes (n= 170,236 tests); and 762 

5) Adjust the corresponding p-values to FDR values, using a cutoff of 0.001 (0.1% FDR) to define 763 

edges. By assessing gene edges through Fisher exact-tests, we observe gene associations that 764 

are based on the relative proportion of co-occurrences between two genes. 765 

 766 

 767 

Proliferation Suppressor Network Enrichment 768 

 769 

To test network enrichment of observed edges (Supplementary Figure 4a), we took 10,000 770 

random samples of 462 (total number of edges in the co-occurrence network) gene pairs from the 771 

170,236 available all by all gene pair Fisher’s exact test set. We then compared each sample to 772 

see the frequency of gene pairs observed to have some interaction within HumanNet61, excluding 773 

genetic interactions observed solely in the co-essentiality network component21 (generated from 774 

the same data) to prevent circularity. Additionally, we compared our selected mixed Z-Score cutoff 775 

against other various Z-Score cutoffs to ensure that we observed appropriate edge representation 776 

from HumanNet (Supplementary Figure 4b). Networks were made using identical pipelines and 777 

Fisher’s exact test set cutoffs with Z-Score cutoffs between 3 and 8 at 0.2 increments.  778 

 779 

Differential Pearson Correlation Coefficient Analysis 780 

 781 

Differential Pearson correlation coefficient (dPCC) analysis was conducted to identify genetic 782 

fitness distinctions between AML cells and all other cells (Figure 3). Initial correlations (Figure 783 

3a) of FAS cluster genes, PCGF1, CERS6, GPI, FASN, CHP1, GPAT4, and ACACA were 784 

calculated with R version 4.0.4 base stat packages75 and plotted in ggplot2104.  785 

 786 

Following this observation, a follow up dPCC analysis was conducted on the FASTS cluster genes 787 

to assess dPCC quality. Cell line screens with low quality (Cohen’s D < 2.5 or recall of known 788 

core essential genes < 60%) were excluded, leaving 659 cell lines. Following this filtering step, 789 

two gene-by-gene correlation matrices were calculated. The first correlation matrix calculated all 790 
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gene by gene pairs in only the available AML cell lines (n=17). The second matrix calculated all 791 

gene by gene pairs in the remaining 642 cell lines. The dPCC matrix is therefore the AML 792 

correlation matrix minus the non-AML correlation matrix. 793 

 794 

Each gene-pair has a unique joint distribution of mixed Z scores; thus, the significance of each 795 

dPCC score must be calculated individually. To do this, we generated null distributions for dPCC 796 

for each gene pair. We took random selections without replacement of 17 cell lines (matching the 797 

n of AML cells), calculated all gene by gene pairwise correlations within this selection and within 798 

the remainder, and calculated dPCC. We repeated this sampling and calculation 1,000 times to 799 

generate a unique null distribution of dPCC for each gene pair and calculated an appropriate P-800 

value for the observed dPCC above (right tailed for positive dPCC, left tailed for negative dPCC).  801 

 802 

Genes which showed signficant knockout phenotype (|mixed Z| > 5) and AML-specific change in 803 

correlation (dPCC P<0.001) with a gene in the connected clique in the co-occurrence cluster 804 

(CHP1, GPAT4, ACACA, FASN, GPI, CERS6, PCGF1) were selected for further analysis (Figure 805 

3e). Figure 3e was made using the R ComplexHeatmap library97. Figure 3c-d plots were made 806 

using the Python package Matplotlib79.  807 

 808 

Cell culture for Genetic Screens 809 

 810 

MOLM13 and NOMO1 cells screened with the Cas12a-mediated genetic interaction library at the 811 

Broad Institute were obtained from the Cancer Cell Line Encyclopedia.  812 

 813 

All cell lines were routinely tested for mycoplasma contamination and were maintained without 814 

antibiotics except during screens, when the media was supplemented with 1% 815 

penicillin/streptomycin. Cell lines were kept in a 37 °C humidity-controlled incubator with 5.0% 816 

carbon dioxide and were maintained in exponential phase growth by passaging every 2-3 days. 817 

The following media conditions and doses of polybrene, puromycin, and blasticidin, respectively, 818 

were used: 819 

MOLM13: RPMI + 10% FBS; 8 μg mL-1; 4 μg mL-1; 8 μg mL-1 820 

NOMO1: RPMI + 10% FBS; 8 μg mL-1; 1 μg mL-1; 8 μg mL-1 821 
 822 

Pooled screens 823 
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 824 

Cell lines stably expressing enCas12a (pRDA_174, Addgene 136476) were transduced with 825 

guides cloned into the pRDA_052 vector (Addgene 136474) in two cell culture replicates at a low 826 

MOI (~0.5). Transductions were performed with enough cells to achieve a representation of at 827 

least 750 cells per guide construct per replicate, taking into account a 30–50% transduction 828 

efficiency. Throughout the screen, cells were split at a density to maintain a representation of at 829 

least 1000 cells per guide construct, and cell counts were taken at each passage to monitor 830 

growth. Puromycin selection was added 2 days post-transduction and was maintained for 5 days. 831 

14 days and 21 days after transduction, cells were pelleted by centrifugation, resuspended in 832 

PBS, and frozen promptly for genomic DNA isolation. 833 

 834 

 835 

Genomic DNA isolation and PCR 836 

 837 

Genomic DNA (gDNA) was isolated using the KingFisher Flex Purification System with the Mag-838 

Bind® Blood & Tissue DNA HDQ Kit (Omega Bio-Tek #M6399-01) as per the manufacturer’s 839 

instructions. The gDNA concentrations were quantitated by Qubit. For PCR amplification, gDNA 840 

was divided into 100 μL reactions such that each well had at most 10 μg of gDNA. Per 96 well 841 

plate, a master mix consisted of 144 μL of 50x Titanium Taq DNA Polymerase (Takara), 960 μL 842 

of 10x Titanium Taq buffer, 768 μL of dNTP (stock at 2.5mM) provided with the enzyme, 48 μL of 843 

P5 stagger primer mix (stock at 100 μM concentration), 480 μL of DMSO, and 1.44 mL water. 844 

Each well consisted of 50 μL gDNA plus water, 40 μL PCR master mix, and 10 μL of a uniquely 845 

barcoded P7 primer (stock at 5 μM concentration).  846 

 847 

PCR cycling conditions: an initial 1 min at 95 °C; followed by 30 s at 94 °C, 30 s at 53 °C, 30 s at 848 

72 °C, for 28 cycles; and a final 10 min extension at 72 °C. PCR primers were synthesized at 849 

Integrated DNA Technologies (IDT). PCR products were purified with Agencourt AMPure XP 850 

SPRI beads according to manufacturer’s instructions (Beckman Coulter, A63880).  851 

 852 

Samples were sequenced on a HiSeq2500 Rapid Run flowcell (Illumina) with a custom primer of 853 

sequence: 5’-CTTGTGGAAAGGACGAAACACCGGTAATTTCTACTCTTGTAGAT. The first 854 

nucleotide sequenced with the primer is the first nucleotide of the guide RNA, which will contain 855 

a mix of all four nucleotides, and thus staggered primers are not required to maintain diversity 856 

when using this approach. Reads were counted by alignment to a reference file of all possible 857 
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guide RNAs present in the library. The read was then assigned to a condition (e.g. a well on the 858 

PCR plate) on the basis of the 8 nt index included in the P7 primer. 859 

 860 

Scoring Genetic Interactions 861 

 862 

To score genetic interactions we used a custom python package, gnt117, available on the python 863 

package index. We use log-fold changes (LFCs) as inputs to the scoring pipeline. We define 𝑦"0as 864 

the observed LFC of a guide pair 𝑖, 𝑗and 𝑦12M as this pair’s expected LFC. We then calculate the 865 

residual 𝑦"0 − 𝑦12M	to generate an interaction score. To define expected LFCs, 𝑦12M  we fit a linear 866 

regression for each guide, 𝑖, saying  867 

𝑦1N = 𝑚" ⋅ 𝑥 + 𝑏" , 868 

where 𝑥 is the LFC of each guide individually and 𝑚" and 𝑏" are the fit slope and intercept for 869 

guide 𝑖 (Supplementary Figure 6b). We refer to 𝑖 as the anchor guide and its pairs as target 870 

guides. We then Z-score residuals within each anchor guide. This approach is similar to the one 871 

taken by Horlbeck et al.33. 872 

To aggregate interaction scores at the gene level, we sum the z-scored residuals, 𝑧"0, for all 873 

constructs 𝑖, 𝑗 targeting the gene pair 𝐼, 𝐽, fixing 𝐼 as the anchor gene, and divide by the square 874 

root of the number of constructs targeting 𝐼, 𝐽. We repeat this calculation, fixing 𝐽as the anchor 875 

gene. We sum scores for both of these orientations and divide by √2 to arrive at a gene level Z-876 

score.  877 

 878 

Cell Culture for Fatty Acid Response 879 

 880 

Human cancer cell lines used at MD Anderson were obtained as follows:  EOL1, MONOMAC1, 881 

NB4, OCIAML3 (DSMZ); MOLM13 and NOMO1 (Fisher); MV411 (ATCC). Identities were 882 

confirmed upon receipt and prior to experiments by STR typing (MDACC Characterized Cell Line 883 

Core). Absence of mycoplasma was confirmed monthly (Invivogen). All cell lines were grown at 884 

37 °C in 5% CO2 in low attachment flasks (Greiner) and maintained at less than 1M cells ml−1. All 885 

but one line were cultured in RPMI-1640 with 25 mM HEPES (Sigma) supplemented with 10% 886 

FBS (Sigma), 2 mM Glutamax (Gibco), 1 mM sodium pyruvate (Gibco), 10,000 units ml−1 penicillin 887 

(Sigma), 10 mg ml−1 streptomycin (Sigma) and 100 µg ml−1 Normocin (Invitrogen). Complete 888 
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medium was additionally supplemented with 0.1 mM non-essential amino acids (Gibco) for 889 

MONOMAC1. 890 

  891 

Fatty Acid Solutions 892 

 893 

Fatty All chemicals were purchased from Sigma (St. Louis, MO). Solutions were prepared 894 

according to Luo et al.125 following best practices126. Fatty acid stock solutions were prepared in 895 

100% ethanol at 50 mM for stearic acid or 200 mM for the rest. Fatty acid free bovine serum 896 

albumin (FAF-BSA) was dissolved in tissue culture grade (pyrogen free) water at 1.5 mM (10% 897 

w/v), filtered using 0.1 µm PES vacuum unit (Corning) and aliquoted for storage at -20°C. Ethanol 898 

stock solutions were diluted to 4 mM in FAF-BSA (molar ratio 2.7:1) and mixed gently at room 899 

temperature for 2 hours to facilitate conjugation. A vehicle control was prepared by diluting 100% 900 

ethanol in FAF-BSA to match the ethanol concentration in the 4 mM stearic acid solution. Vehicle 901 

or 4 mM solutions were aliquoted and stored at -80°C for up to 3 months. After thawing, aliquots 902 

were diluted 1:10 with complete medium to 400 µM, stored at 4°C and used within one week. 903 

  904 

 905 

Apoptosis Assay 906 

 907 

Cells were seeded 24 hr prior to treatment in 500 µL complete medium in 24-well low attachment 908 

plates (Greiner) at 250,000 cells well−1 . Quadruplicate wells received 500 µL FA working solution 909 

(400 µM) or vehicle (BSA+EtOH).  Cells were treated at 200 µM for 48 hr. Treated cells were 910 

transferred to a deep 96 well plate and medium was discarded after centrifugation at 500 x g for 911 

5 min. Cells were washed once with 1000 µL D-PBS (Sigma). Next, cells were resuspended in 912 

300 µL binding buffer containing annexin-FITC and propidium iodide according to the 913 

manufacturer’s protocol (BD Biosciences) and transferred to a shallow 96 well V-bottom plate 914 

(Corning). After staining for 15 min at room temperature in the dark, cells were washed once with 915 

300 µL binding buffer and finally resuspended in 100 µL binding buffer. Unstained and single stain 916 

controls were prepared for every cell line in a separate plate. Gates were adjusted such that 99% 917 

of unstained singlets fell below each threshold. See Supplementary Figure 9 for complete gating 918 

strategy. Flow cytometry data were collected using a FACSCelesta analyzer equipped with an 919 

autosampler (BD Biosciences) and analyzed using FlowJo 10.5.3. Results shown are 920 

representative of three independent experiments conducted with sequential passages of each 921 

cell line. 922 
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 923 

 924 

Metabolomics Analysis 925 

 926 

This section describes the methods used within Figure 5d and Supplementary Figure 7. 927 

Metabolomics data acquired from Supplementary table 1 of Li et al.70 For analysis, normalized 928 

data (“1-clean data”) and coefficient of variation for each metabolite (“1-CV”) was used. 929 

Normalized data was filtered to select only AML cells that were present in Avana 2020q449 screen 930 

set. Following filtering, the median of species present were taken, grouped by whether the 931 

measurement was from a FASTS AML or other AML cell line. The difference in median, 932 

representing the log ratio, was taken for each metabolite. Metabolites that had differences in 933 

medians less than the coefficient of variation were omitted from the plots. Acyl group and number 934 

of unsaturated bonds were obtained directly from the provided nomenclature. 935 

 936 

AML Patient Survival Analysis 937 

 938 

This section describes the methods used within Figure 6 and Supplementary Figure 8 & 10. 939 

The results published here are in part based upon data generated by the Therapeutically 940 

Applicable Research to Generate Effective Treatments (TARGET) initiative, phs000218, 941 

managed by the NCI. The data used for this analysis are available at dbGaP Study Accession: 942 

phs000465.v19.p8. Information about TARGET can be found at 943 

http://ocg.cancer.gov/programs/target.  944 

 945 

Genes chosen for analysis were all genes shown to have an interaction with ACACA in Figure 946 

4h and FASN. Gene annotations noted in the Figure 6a heatmap include any non-silent mutation, 947 

copy number loss for TP53 & KMT2A, and copy number gain for KRAS, NRAS, and FLT3. FLT3-948 

ITD annotations were included in the FLT3 annotation row bar. Mutation annotations come from 949 

CCLE69, copy number calls come from the cBioPortal127,128 database, and FLT-ITD annotations 950 

come from the DSMZ catalogue129. 951 

 952 

TARGET-AML71 data including age, genetic expression (HTseq FPKM UQ) , time to event, and 953 

survival event outcomes, and TCGA72 patient ages and genetic expression were downloaded 954 

directly from the Xena130 database. The OHSU BeatAML73 age data was directly downloaded 955 

from the Vizome database, and genetic expression data was taken from the original publication. 956 
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Age of patient derived cell lines were obtained from the Cellosaurus database131. Hazard ratios 957 

calculated from Cox proportional hazards modeling were done using the R survival105,106 package. 958 

Patient clustering stratification was done with clustering functions from the scipy package77, using 959 

Euclidean clustering and complete linkage settings. This output heatmap (Figure 6e) was created 960 

using functions from the seaborn109 package. We identified the patient cluster containing the 961 

highest overall expression of CHP1, GPAT4, GPI, PCGF1 from the heatmap using the fcluster 962 

function from scipy77. Figure 6f demonstrates the resulting survival comparison of the two patient 963 

clusters and was created with functions from the lifelines111 package, specifically, 964 

KaplanMeierFitter function for the Kaplan Meier curve, and the p-value reflecting the calculated 965 

logrank test of the two curves. 966 

 967 

P-values related to schoenfeld tests calculated internally by the survminer package. For TARGET 968 

data analysis, patient expression profiles were chosen from primary tumor samples, filtering out 969 

samples from recurrent patients (42 such cases). Patient stratification is conducted based on 970 

stratifying patient groups into lower genetic expression (patients with genetic expression below 971 

the 75th percentile, n = 108), and higher genetic expression (patients with 75th percentile and 972 

above, n = 37). Computed hazard ratios for all tested genes within the TARGET cohort all passed 973 

the cox proportion hazards assumption (Supplementary Figure 10) by failing to reject the 974 

schoenfeld test null hypothesis.  975 

 976 
Supplementary Tables 977 

 978 

Table S1. Mixed Distribution Model Z-Score Matrix. 808 cell line vs 18,111 gene matrix of 979 

mixed Z-score derived from log fold-change fitness scores. 980 

 981 

Table S2. COSMIC TSG PS Statistics. Statistics of 116 COSMIC TSG genes when observed 982 

as a PS, vs other available data points. Includes number of times TSG is observed as a PS 983 

gene (count), mean and median TPM expression when observed as a PS gene and additional 984 

backgrounds (PS_Mean_Exp, Other_Mean_Exp, PS_Median_Exp, Other_Median_Exp), and 985 

non-silent mutation rate as a PS gene and additional backgrounds (PS_mut, Other_mut). 986 
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Additionally includes a column of fisher’s exact test comparing mutated vs non mutated 987 

observations, and a Wilcox test comparing expression levels for each gene. 988 

 989 

Table S3. PSG Co-PS network. Network of PSG co-occurrence observations related to 990 

Figures 2c and S4c, including fisher test metrics (p-value and FDR).  991 

 992 

Table S4. enCas12a Screen Gene Selection and Rationale. 993 

 994 

Table S5. enCas12a Library Design. 995 

 996 

Table S6. enCas12a Single Gene Knock-Out Measurements. Z-score of mean Log fold-997 

change. 998 

 999 

Table S7. enCas12a Double Gene Knock-Out Measurements. Calculated Log fold-change 1000 

and corresponding GI Scores for each gene pair.  1001 

 1002 

  1003 
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Supplementary figure legends 1004 
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 1006 

 1007 

Figure S1. Discovery of Proliferation Suppressor genes extended. Fitness scoring 1008 

distributions of non-essential genes, and non-overlapping COSMIC defined oncogenes and tumor 1009 

suppressor genes; (a) mean log fold-change, (b) JACKS, (c) CERES, and (d) BAGEL. Selected 1010 

screen for a-d matches the screen observed in Figure 1a. (e) Distribution of mean log fold-change 1011 

of original distribution and mixed distribution . (f) Same (e) with mean standard deviation. (g) Bar 1012 

chart by cell line lineage, where at least 1 PS gene at 10% FDR cutoff identified.  1013 

  1014 
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Figure S2. Proliferation Suppressor Gene Evidence. (a) Percent representation of COSMIC 1017 

TSG (green) by corresponding label-shuffled Z-score. (b) Same as (a) with log10 y-axis of number 1018 

of genes. (c) Mean TPM expression of PSG, grouped by PS observations (blue) vs every other 1019 

available observation (gray) in which PSG were not observed as a PS. P value represents the 1020 

corresponding Wilcoxon test.  (d) same as (c) with mutation rate and (e) copy number. 1021 
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 1025 

Figure S3. Avana vs Sanger Genetic Screens Comparison. (a) Precision vs. recall of mixed 1026 

Z-score in matching screens from Avana (red), and Sanger (black). Dashed line, 90% precision 1027 

(10% FDR). (b) Avana vs Sanger mixed Z-scores of genes identified as hits in Avana. 1028 
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 1032 

Figure S4. Co-occurrence of PS genes extended. (a) Empirical comparison of Co-PS network 1033 

edges. Distribution represents random edges between genes identified in the network, and the 1034 

percentage of edges identified in HumanNet with coessentiality network removed. Black line 1035 

represents the percent of edges identified in the Kim et al. coessentiality network. Red line 1036 

indicates the actual number of edges the Co-PS contains that are observed in HumanNet with 1037 

coessentiality network removed. (b) Percent of edge coverage observed in HumanNet with 1038 

coessentiality network removed against Co-PS edge FDR < 0.1%. networks at iterative label 1039 

shuffled Z-score cutoffs. Red dot indicates actual cutoff used. (c) Remaining modules from the 1040 

Co-PS network not included in Figure 2c.  1041 
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Figure S5. Examples of high dPCC resulting from data noise. (a) EVPL vs MYCN mixed Z-1044 

scores. Red indicates AML only observations, while gray indicates observations in all other cells.  1045 

(b) same as (a) for ATOH8 vs. KNCK13 mixed Z-scores. 1046 
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Figure S6. Combinatorial screen QC. (a) Replicate correlations. (b) Example calculation of 1050 

residuals. (c) Correlation between genetic interaction scores for MOLM13. (d) same as (c) for 1051 

NOMO1. (e) Fraction of coessential pairs or pairs that target the same gene at different FDR 1052 

cutoffs for interactions with positive z-scores. (f) Comparison with qGI scores from Aregger et al. 1053 

for MOLM13. (g) Same as (f) for NOMO1. 1054 

1055 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2020.10.08.332023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.332023
http://creativecommons.org/licenses/by/4.0/


 

 54 

 1056 

 1057 

−0.4

−0.2

0.0

0.2

1.00 1.25 1.50 1.75 2.00
Number of Unsaturated Bonds

DAG

−0.2

−0.1

0.0

0 2 4 6
Number of Unsaturated Bonds

CE

−0.4

−0.3

−0.2

−0.1

0.0

0.0 0.5 1.0 1.5 2.0
Number of Unsaturated Bonds

SM

−0.2

−0.1

0.0

0.1

0.2

0 2 4 6
Number of Unsaturated Bonds

LPC

0.0

0.2

0.4

0 2 4 6
Number of Unsaturated Bonds

LPE

−0.3

−0.2

−0.1

0.0

0 2 4 6
Number of Unsaturated Bonds

lo
g(

 F
A

S
TS

 / 
ot

he
r A

M
L 

)

PC

lo
g(

 F
A

S
TS

 / 
ot

he
r A

M
L 

)

lo
g(

 F
A

S
TS

 / 
ot

he
r A

M
L 

)
lo

g(
 F

A
S

TS
 / 

ot
he

r A
M

L 
)

lo
g(

 F
A

S
TS

 / 
ot

he
r A

M
L 

)
lo

g(
 F

A
S

TS
 / 

ot
he

r A
M

L 
)

a b c

d e f

Figure S7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2020.10.08.332023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.332023
http://creativecommons.org/licenses/by/4.0/


 

 55 

Figure S7.  Additional metabolite comparisons. (a) Lysophosphatidylethanolamine (LPE) 1058 

species metabolite difference. The x axis represents the median difference of log10 normalized 1059 

peak area of the metabolite in FASTS cells vs all other AML cells. The y axis represents the 1060 

number of saturated bonds present. Each dot represents a unique metabolite. (b) same for 1061 

diacylglycerol (DAG), (c) lysophosphatidylcholine (LPC), (d) sphingomyelin (SM), (e) cholesterol 1062 

ester (CE), and (f) phosphatidylcholine (PC) species. 1063 

1064 
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Figure S8. Comparisons of FAS genes against age in AML patient data. Hazard ratio 1067 

calculations for FAS cluster genes in AML patient data coming from (a) OHSU - Tyner et al., and 1068 

(b) TCGA LAML. Spearman correlations of patient age against FAS gene expression in (c) OHSU, 1069 

Tyner et al., (d) TCGA LAML, and (e) GDC TARGET AML. (f) Boxplots of FAS gene expression 1070 

in FASTS AML cell lines and non-FASTS AML cell lines from CCLE. (g) Spearman correlations 1071 

of patient derived cell line age against FAS gene expression, coming from data in CCLE. ACACA 1072 

is not included in (g) as it was not found in the CCLE expression data used in prior analysis.  1073 

1074 
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Figure S9. Sample flow cytometry plots. A representative flow cytometry data used to create 1077 

bar graphs shown in figure 5b-c. 1078 

1079 
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Figure S10. Testing the Cox Proportional Hazards Assumption. Assessing the Cox 1082 

proportional hazards assumption with Schoenfeld tests of all genes in Figure 6d; (a) ACACA, (b) 1083 

CERS6, (c) CHP1, (d)FASN, (e) GPAT4, (f) GPI, (g) PCGF1.  1084 

 1085 
  1086 
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