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Abstract 

Background: The gain or loss of large chromosomal regions or even whole chromosomes is termed 

as genomic scarring and can be observed as copy number variations resulting from the failure of 

DNA damage repair.  

Results: In this study, a new algorithm called Genomic Scar Analysis (GSA) has developed and 

validated to calculate homologous recombination deficiency (HRD) score. The two critical 

submodules were tree recursion (TR) segmentation and filtering, and the estimation and correction 

of the tumor purity and ploidy. Then, this study evaluated the rationality of segmentation and 

genotype identification by the GSA algorithm and compared with other two algorithms, PureCN 

and ASCAT, found that the segmentation result of GSA algorithm was more logical. In addition, the 

results indicated that the GSA algorithm had an excellent predictive effect on tumor purity and 

ploidy, if the tumor purity was more than 20%. Furtherly, this study evaluated the HRD scores and 

BRCA1/2 deficiency status of 195 clinical samples, and the results indicated that the accuracy was 

0.98 (comparing with Affymetrix OncoScan™ assay) and the sensitivity was 95.2% (comparing 

with BRCA1/2 deficiency status), both were well-behaved. Finally, HRD scores and 16 genes 

mutations (TP53 and 15 HRR pathway genes) were analyzed in 17 cell lines, the results showed 

that there was higher frequency in HRR pathway genes in high HRD score samples. 

Conclusions: This new algorithm, named as GSA, could effectively and accurately calculate the 

purity and ploidy of tumor samples through NGS data, and then reflect the degree of genomic 

instability and large-scale copy number variations of tumor samples. 
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Background 

Homologous recombination deficiency (HRD) is a functional defect in homologous recombination 

repair (HRR) pathway, which is responsible for repairing DNA double-stranded breaks (DSBs), and 

HRD is a potent tumorigenic type of DNA lesion. Tumors with HRD status are arising from germline 

and/or somatic mutations in BRCA1/2 or other HRR pathway genes, promoter hypermethylation of 

BRCA1 and/or RAD51C, and other mechanisms[1-3]. In particular, it has proved that BRCA1 

promoter hypermethylation is also a common epigenetic event in breast and ovarian cancer, ranged 

from 11% to 57% in different studies [4-6]. Over the last years, several studies about HRD in pan-

cancer have shown that HRD occurred in many cancers with various frequency, and it was most 

prevalent in ovarian, breast, prostate and pancreatic cancer[7-9]. 

Some drugs based on DSB or single-strand break (SSB) repair have been developed and used 

successfully in clinical trials. Platinum salts are currently one of the most important 

chemotherapeutic drugs and have a broad anticancer spectrum, which introduces DNA DSBs and 

interstrand crosslinks. Therefore, HRD cells are supposed to be sensitive to platinum salts. The 

PARP family of proteins, especially PARP1, are essential for SSBs repair by the BER pathway. 

PARP inhibitors (PARPi) are based on inhibiting the SSBs repairing and then the accumulation of 

SSBs would lead to the development of fatal DSBs. Thus, PARPi are more sensitive to HRD-

positive tumors through synthetic lethal interaction[10, 11]. Several studies have shown that HRD 

is a potential biomarker for platinum salts and PARPi in many cancers, especially in ovarian and 

breast cancer, and PARPi have attracted widespread attention in the targeted therapies of multiple 

cancers due to better efficacy and fewer side effects[12-14]. In the past years, FDA has approved 

niraparib and olaparib combined with bevacizumab, for specific patients with HRD-positive status, 

according to two critical clinical trials, QUADRA and PAOLA-1[15, 16].  

Currently, HRD testing is mainly carried out by two methods. Firstly, BRCA1/2 or other HRR 

pathway gene mutation detection and analysis by a custom-designed panel, but the panel gene list 

is various and variants of unknown significance and secondary mutations lack a standard 

database[17]. Secondly, identifying the results of HRD by detecting genomic damage patterns, 

known as genomic scars, including three biomarkers, loss of heterozygosity (LOH), telomeric allelic 

imbalance (TAI), and large-scale state transition (LST)[15, 16, 18]. Besides, some other methods 

are also developing, such as BRCA1/RAD51C epigenetic analysis and mutational signature analysis, 
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et.al.[9], but these are still difficult for clinical application. Two commercial genomic scar detection 

kits have been approved by FDA, myChoice HRD CDx (Myriad Genetics, Co., Ltd.) and 

Foundation Focus CDx (Foundation Medicine, Co., Ltd.)[2].  

Genomic scar analysis (GSA) by calculating LOH, LST and TAI scores is a dominant way to 

evaluate the HRD status of tumors, and the theoretical foundation of this method is that tumors with 

HRD phenotype would lead to large-scale copy number variation (CNV)[15, 16, 18, 19]. There are 

four software commonly used to detecting CNV of tumor samples, including PennCNV, ASCAT, 

ABSOLUTE and PureCN. PennCNV is a free software tool based on a hidden Markov model 

(HMM), for kilobase-resolution detection of CNVs from Illumina high-density SNP genotyping 

data [20]. ASCAT and ABSOLUTE were introduced to estimate tumor purity directly from SNP 

array data[21, 22], and both can effectively solve the impact of purity and ploidy based on SNP 

array data. NGS data is much higher resolution data than SNP arrays, and provides the opportunity 

to derive highly accurate estimates of both tumor purity and ploidy[23]. PureCN, is optimized for 

targeted short read sequencing data, integrates well with standard somatic variant detection pipelines, 

and has support for matched and/or unmatched tumor samples[24]. Currently, PureCN is a 

mainstream method for purity correction based on circular binary segmentation (CBS) from NGS 

data, but it is necessary to artificially judge the best combination from multiple combinations of 

purity and ploidy. 

This study aims to developing and validating an algorithm, named as GSA, which can effectively 

and accurately calculate the purity and ploidy of tumor samples through NGS data, and then reflect 

the degree of genomic instability and large-scale copy number variations of tumor samples.  

Results 

The Density and Uniformity of SNP sites  

The density and uniformity of SNP sites are the critical factors for the precision and resolution of 

CNVs identification. Herein, the capture regions distribution of HRD Panel with all chromosomes 

was compared with Affymetrix OncoScan™ Assay, xGen Exome Research Panel (IDT), and a pan-

cancer panel (BGI) (Fig.1A). Then, chr4, chr13 and chr21 were selected randomly to compare the 

number and spacing of capture regions in the above four panels (Fig.1B). The Affymetrix 

OncoScan™ Assay is a SNP-array based on molecular inversion probe technology, a proven 

technology for identifying CNVs, LOH, and detecting somatic mutations. Besides, this assay could 
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realize the high-resolution (50–300 kb) copy number detection. HRD panel is designed for detecting 

large-scale CNVs (at Mb level) to calculate LOH, TAI, LST, and HRD score, thus the total number 

of SNP sites could reduce appropriately, but not uniformity. The results showed that the SNP sites 

of HRD panel had similar uniformity with Affymetrix OncoScan™ Assay, but had less SNP sites 

(93,200 vs. 217,611). Most of the work published to date detecting CNVs is based on SNP array, 

thus this study defined Affymetrix OncoScan™ Assay as a correlation method to evaluate the 

accuracy of HRD panel based on NGS approaches[25].  

The Rationality of Segmentation and Genotype Identification 

Chromosome segmentation of different genotypes is the key step for detecting CNVs. This 

algorithm had a variety of built-in statistical methods, which could evaluate whether the adjacent 

chromosomal segments conform to the same genotype according to the BAF. If the adjacent sub-

segmentations belonged to the same genotype, they would be combined based on circular binary 

segmentation (CBS). Besides, the abnormal points had been removed, thus the segmentation error 

rate could be reduced greatly (supplementary Fig. 4). Subsequently, the segmentation result of 

chromosome 2 in one patient of 195 clinical samples was selected as an example to analyze the 

rationality of segmentation and genotype identification (Fig.2). The results showed that the BAF 

and copy number of the 25M~40M region were 0.67 and 3 copies, it means that this segmentation 

was identified as ABB genotype. Similarly, BAF and copy number of the 115M~120M region were 

1.00 and 2 copies, it means that this segmentation was identified as BB genotype. Evaluating the 

relationship between BAF and CNV of all segmentation were all logical. 

The Self-Consistency of Purity and Ploidy Estimation 

The different tumor purity samples (80%, 50%, and 20%) of HCC1143 cell line were used to 

evaluate the necessity and limitation of tumor purity correction. The genotype of 20M~120M in 

chromosome 1 of HCC1143 was considered as ABB, so the BAF distribution in this region should 

be characterized by a bimodal distribution with the antimode around 0.5 and peaks around 0.33 and 

0.67. The density of BAF in each tumor purity was analyzed, and the results showed that the lower 

tumor purity, the more difficult to define ABB or AB genotype (Fig. 3A-3C). In addition, the ploidy 

of 195 OC and BC tumor samples had been estimated by the GSA algorithm. The ploidy ranged 

between 1.41 and 4.07, being characterized by a bimodal distribution with the antimode around 2.5 

and peaks around 2 (near-diploid status) and 3 (near-triploid status) (Fig. 3D & Supplementary Table 
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3). Thus, purity and ploidy estimation were considered to the GSA algorithm. The accuracy of the 

GSA algorithm to predict tumor purity and ploidy were verified by the following two methods. 

Firstly, mix sequencing reads of different proportions of control samples into the 5 measured FFPE 

samples to simulate tumor purity dilution; Secondly, mix different proportions of germline DNA 

into 3 samples of tumor cell lines to obtain tumor cell line samples of different tumor purity. The 

correlation coefficient R2 between the theoretical tumor purity value and the actual tumor purity 

value calculated by GSA were 0.9813 and 0.9812, respectively, in simulated diluted tumor samples 

and the real diluted cell line samples (Fig. 4A, Fig. 4B, Supplementary Table 4). The tumor purity 

calculated by GSA maintains a good linear relationship with the theoretical purity obtained by 

simulated dilution, indicating that the GSA purity correction algorithm has good stability when the 

pathological tumor purity is higher than or equal to 20%, and the algorithm can accurately reflect 

the real tumor cell content. Due that tumor ploidy is an essential attribute of the sample and will not 

affect by the tumor purity, the smaller the fluctuation and the more accurate the ploidy correction 

algorithm. Similarly, the ploidy values under different tumor purity calculated by GSA are basically 

the same (Fig. 4C, Fig. 4D, Supplementary Table 4). In a word, GSA algorithm had an excellent 

predictive effect on tumor purity and tumor genome ploidy, but the pathological tumor purity should 

more than 20%. 

The Accuracy of LOH, LST, TAI and HRD Score 

Total of 40 FFPE tumor samples were both detected by Affymetrix OncoScan™ assay and the 

custom designed HRD Panel. BAF and LRR from NGS data and CEL file were both used to 

calculate HRD scores by the GSA algorithm. The results showed that the correlation coefficient of 

HRD scores calculated by the two method was 0.98, and the correlation coefficient of LOH, TAI 

and LST calculated by the two methods were 0.96, 0.89 and 0.95, respectively. It indicated that our 

target capture panel, containing 93,200 SNP sites, could represent the whole-genome copy number 

variations, and thus could generate the accurate HRD scores (Fig.5 & Table 1). 

The Relationship between HRD Score and BRCA1/2 Deficiency Status in Clinical Samples 

Deficiency of BRCA1/2 via biallelic mutations and somatic hypermethylation (for BRCA1) gives 

rise to a deficiency status in homologous recombination repair, thus the HRD score and BRCA1/2 

deficiency status of the 195 clinical samples were all analyzed. The distribution of scores was shown 

for BRCA1/2-deficient versus BRCA1/2-intact samples in Figure 6. Higher HRD scores were 
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observed in BRCA1/2-deficient tumors, suggesting that these tumors had a tendency towards 

genomic instability, and the consistency was up to 95.2% if the biological threshold was set as 30. 

But for other indicators, LOH, TAI and LST, there was less distinction between BRCA1/2-deficient 

tumors and BRCA1/2-intact tumors. Therefore, the results indicated that HRD score, combing LOH, 

TAI and LST, was the optimal indicator. 

The HRD Score and HRR Genetic Landscape of Cell lines 

All the 17 ovarian and breast cancer cell lines were determined, 2 cell lines (11.76%) were mBRCA 

carriers (only including SNV and InDel variation, which are defined as likely pathogenic and 

pathogenic mutation carriers), and BRCA1/2 copy number loss was detected in 8 cell lines (47.06%) 

(Table 2 & Fig. 7). The HRD scores distributed from -21.19 to 73.21, and the mean was 27.91, and 

the median was 14.42. Assuming that there is only one primary clone in the tumor samples, and 

amplification or loss only occur in one chromosome, the theoretic ploidy of diploid is between 1.95 

and 2.04. Thus, only 1 cell line (A2780) was calculated as diploid, and other 15 cell lines (93.75%) 

were defined as aneuploidy (Table 2). The BAF and CN mapping of HCC38 and ZR-75-30, which 

had the similar ploidy correction factor but the different HRD scores, were shown as supplementary 

Fig.5 and supplementary Fig.6. Obviously, the genomic status of HCC38 cell line was more instable 

than ZR-75-30. In addition, all the cell lines with BRCA1 methylation were showed as high HRD 

scores but not with any BRCA1 mutation. Meanwhile, mutations of 13 other HRR pathway genes, 

ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, 

RAD51D, RAD54L, and TP53 were analyzed. TP53, which encodes the tumor-suppressor protein 

p53, was the most frequently mutated gene (82.35%), but there was no mutation in CDK12, CHEK2, 

FANCL, PALB2, PPP2R2A and RAD51D (Fig. 7). ZR-75-1 cell line was not detected any mutation 

in the above 16 genes and BRCA1 methylation, and the HRD score was 14.42. Notably, there was 

higher frequency in HRR pathway genes in high HRD score samples, except for IGR-OV1, which 

derived from ovarian endometrioid adenocarcinoma, which is a type I epithelial ovarian cancer 

(EOC) and have verified as a slow growing and indolent neoplasms. The HRD score of IGR-OV1 

was calculated as -14.73 but with many mutations in multiple HRR pathway genes and multi-hit 

mutations in TP53 and BRCA2, and it indicated that this kind of ovarian cancer type might tend to 

genomic stability and various threshold should be set in different tumor type.  
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Discussion 

This study proposed a new algorithm model called GSA to detect genome aberrations based on high-

throughput sequencing data, and this algorithm could accurately realize the segmentation of 

chromosomal regions, effectively calculate the tumor purity and tumor genome ploidy automatically 

and could be used for the statistical modeling of various genomic instability indicators.  

Herein, the segmentation result of chromosome 2 in one clinical sample as an example to compare 

the chromosome segmentation effects of GSA, PureCN and ASCAT algorithms through measured 

samples (Supplementary Fig.7 & Supplementary Table 4). The results showed that PureCN, ASCAT 

and GSA algorithms divided chromosome 2 into 4, 26 and 4 fragments respectively. First of all, the 

BAF and copy number of the 76M~170M region were different from the adjacent segments. The 

BAF of this segment was concentrated around 0.5, indicating that the A/B gene ratio was closed to 

1:1, and the average copy number was about 4 excluding the influence of some interference points. 

The result given by GSA was 4 copies, and the genotype of this fragment is AABB. But the result 

given by PureCN was 3 copies, which is inconsistent with BAF, and ASCAT algorithm divided the 

segment into 10 fragments, due to the interference of some noise points. Secondly, PureCN was 

disconnected at the positions of 21M, 90-92M, and 147M, but there was no significant difference at 

the breakpoint position judging from BAF and copy number. ASCAT divides the 10K~76M region 

into 7 fragments, which should belong to the same genotype inferring by the data of BAF and copy 

number. In addition, it should be pointed out that the GSA method has special processing for the 

chromosome centromere gap region. If the region distribution before and after the gap was the same, 

it would be merged. Overall, the GSA algorithm is more accurate for chromosome fragment 

segmentation.  

Aneuploidy is commonly observed in cancers, and the result showed that ploidy in tumor samples 

is characterized by a bimodal distribution in triploid and diploid which is basically consistent with 

the results reported in many literatures[7]. Then, three tumor cell line samples (HCC1143, HCC1428 

and HCC38) and four FFPE samples with different tumor purity were used to predict tumor purity 

and ploidy using GSA, ASCAT and PureCN software, respectively. The results showed that the 

tumor purity predicted by GSA was closest to the pathological tumor purity compared to the other 

two software. ASCAT has an obvious limitation in predicting samples with lower tumor purity. 

Meanwhile, when the actual tumor purity was low, the tumor ploidy predicted by PureCN was varies 
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greatly. But the tumor ploidy predicted by GSA could maintain good stability (Supplementary Table 

6). Although the tumor purity calculated by GSA was highly consistent with the theoretical purity 

of the diluted tumor cell line sample, if the tumor cell content was less than 20%, GSA algorithm 

could not accurately predict the tumor purity and ploidy. Normal tissue contamination and 

duplication of the entire genome is the most common initiation event for aneuploidy during cancer 

progression[3, 15, 26]. Moreover, near-tetraploid tumors show increased TAI and LST scores, but 

the generation of new HRD-LOH events is theoretically less likely to occur as ploidy increases[7]. 

The GSA algorithm added the calculation of ploidy and tumor cell purity when detecting CNVs and 

deducted the ploidy when calculating the HRD score. The results from clinical samples indicated 

that the accuracy and sensitivity of the combined HRD score calculated by GSA algorithm both 

were well-behaved, the accuracy was 0.98 (comparing with Affymetrix OncoScan™ assay) and the 

sensitivity was 95.2% (comparing with BRCA1/2 deficiency status).  

To verify whether the HRD score results obtained by the GSA algorithm can be used to assist clinical 

treatment efficacy, more clinical efficacy data support is needed. Unfortunately, the clinical samples 

used in this study lack this part of information, but we can initially compare the score of cell lines 

with the research results of the previous literature. The HRD scores of HCC38 and MDA-MB-231 

calculated by GSA were 73.21 and 8.90, respectively. Both of the two cell lines are Claudin-low 

breast cancer cells, and the BRCA status were wildtype. In the Anne Margriet Heijink study (2019), 

HCC38 (GR50 = 3.6 μM) was defined as cisplatin-sensitive TNBC cell lines, and MDA-MB-231 

(GR50 = 61.0 μM) was defined as cisplatin-resistant TNBC cell lines[27]. Due to the cisplatin 

introduces both intra- and inter-strand DNA crosslinks (ICLs), which stall replication forks and are 

therefore especially toxic in proliferating cells, if the homologous recombination function of cell 

lines is deficient, the cell lines cannot repair the double-strand breaks. Obviously, the HRD score 

result obtained by the GSA algorithm is consistent with the judgment of cell line drug sensitivity of 

the previous study[27]. With more and more application of PARP inhibitor in the clinic, we need 

data on the efficacy of PARP inhibitors to validate the accuracy of GSA algorithm in the real-world 

data. 

Conclusions 

This new algorithm, named as GSA, could effectively and accurately calculate the purity and ploidy 

of tumor samples through NGS data, and then reflect the degree of genomic instability and large-
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scale copy number variations of tumor samples. 

Methods  

Tumor samples and cell lines 

Archival FFPE tumor tissues were obtained from 195 ovarian and breast cancer patients who had 

signed the informed consents, and the study was approved by the Institutional Review Board of BGI 

Co., Ltd. 17 human cancer cells (HCC38, HCC1428, HCC1143, HCC1806, MX-1, HCC70, ZR-75-

1, MDA-MB-453, MDA-MB-231, MDA-MB-361, MDA-MB-415, ZR-75-30, HS-578T, IGR-OV1, 

A2780, NCI/ADR-RES and OVCAR-4) and 3 matched-wildtype cell lines (HCC38BL, 

HCC1143BL and HCC1428BL) were purchased from the CoBioer Biosciences Co., Ltd. All cell 

lines have been verified by STR and were provided in the form of DNA status. 

Custom design HRD Panel  

Variant detection requires comprehensive consideration of the detection frequency and coverage of 

SNP sites, and relies on statistical analysis based on the relationship between adjacent points to 

determine the position of fragment breakpoints and eliminate test deviations. Therefore, the 

principles of probe design mainly include: (1) The target region should contain high-frequency SNP 

sites of the population; (2) Ensure the capture region has a certain density in the whole genome; (3) 

Ensure that the regions are as even as possible; (4)Ensure that the target probe is synthesizable (some 

region probes cannot be synthesized by the supplier due to complex structure or multiple alignments 

lead to poor specificity); (5)Ensure that the target regions have good capture efficiency and coverage, 

and no obvious regional preference. Based on the above principles, a total of 93,200 high-frequency 

SNP loci (frequency >=5%) from the 1000 Genome Database were screened out, which are evenly 

distributed on each chromosome (except Y chromosomes and mitochondria).  

Library Preparation, Hybridization capture and sequencing  

DNA from FFPE tissues was extracted by QIAAMP DNA FFPE TISSUE KIT (Qiagen, Hilden, 

Germany) according to the manufacturer’s standard protocol. Briefly, 400ng genomic DNA is 

fragmented and end-repaired, and a linker with a tag sequence is added to both ends of the DNA by 

ligase, followed by PCR amplification to form a pre-PCR library. The target DNA fragment in the 

library is hybridized with a combined probe containing 93,200 SNP sites and additional 2,228 

capture beds targeting the complete coding region of ATM, BRCA1, BRCA2, BRIP1, BARD1, 

CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L and 
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TP53, et.al. After purification, the enriched DNA is specifically captured and amplified by PCR to 

obtain a post-PCR library. The post-PCR library undergoes single-strand separation, circularization 

and rolling circle replication to generate DNA nano balls (DNB) and sequencing was performed 

with 2×101 bp paired-end reads on MGISEQ-2000 platform (MGI Tech Co., Ltd.). 

Raw data quality control 

Sequencing data needs to pass the basic standards of quality checks. Raw data quality control 

includes quality metrics for per-base sequence quality, sequence content, GC content and sequence 

length distribution, relative percentages of unmatched indices. Usually, the quality control 

parameters are set as Q30>=90%, and 40%-50% GC content. 

Data pre-processing  

Raw paired-end reads were subjected to SOAPnuke (v2.0) processing to remove sequencing 

adapters and low-quality reads. High-quality reads were aligned to the reference human genome 

(GRCh37.p13), using the BWA sequence alignment software (0.7.17-r1188). PCR deduplication 

was performed using Picard. Average sequencing depths for tumors samples were >=150×. For each 

sample, SNVs were called from BAM files using an in-house software, termed as Somatk. B allele 

frequency (BAF) and Log R ratio (LRR) were obtained from each capture region. BAF represents 

the median SNP genotype frequency of each capture region, and LRR represents the normalized 

depth ratio of the tumor and the normal sample (or blood cell control set) in each capture region 

after GC-bias correction. 

TR Segmentation and Filtering Algorithm 

The Tree recursion (TR) Segmentation and Filtering Algorithm was developed by C++. The input 

data format of the algorithm is (i) BAF data and (ii) LRR data. To reduce the noise in the input data, 

both BAF and LRR are preprocessed by a specially designed segmentation and filtering algorithm. 

First, if BAF >= 0.95 or BAF <= 0.05, defined as homozygous, the data would be removed from 

the BAF track because of its uselessness. Then the remaining BAF value is mirrored and flipped 

upward with 0.5 as the center, thus BAF= |BAF-0.5|+0.5. For LRR, the bin LRR values are also first 

optionally filtered for outliers, defined as the total probability density is below the 30% quantile in 

all bins. 

Next, the in-house TR segmentation algorithm, based on the calculation of the run-length, was used 

to roughly segment each chromosome, as shown in supplementary Fig. 1. In this algorithm, the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2021.08.02.454110doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454110


whole chromosome is taken as the root node, all the segmented sub-nodes are taken as the child 

nodes. The segmentation process can be simply described as the following steps:  

a. Calculate the cumulative run-length of data (here refers to BAF and LRR) deviated from the mean 

（∑(x − x̅)）, and select its maximum and minimum points as candidate breakpoints. 

b. Make appropriate trade-offs of candidate breakpoints according to the location of breakpoints, 

length of segments, number of data points in segments, etc., that is, determine whether breakpoints 

should be recorded. 

c. If none of the subfragment of the current fragment satisfies the record condition, a recursive 

judgment is initiated. Otherwise, it recursively slices its last child node. 

d. After the termination condition is reached, recursion is carried out on horizontal child nodes. 

e. If all child objects have been processed, the parent's level object will continue to be processed 

until it is finally traced back to the root node and no new child objects are created. 

Then the fragments are merged in a cyclic manner. Firstly, for each segmented fragment of 

chromosome was traversed by the kernel density estimation, to find out the two fragments, which 

are closest to the same distribution and combine them. Secondly, the statistics of the newly merged 

fragment and its adjacent fragments are recalculated until all indicators meet the requirements. 

Besides, segmentation of BAF and LRR is carried out separately, and then the union set of the 

merged BAF and LRR segmentation list is taken, but the regions with too short or insufficient data 

points are iteratively removed. 

Purity and ploidy estimation 

BAF and LRR are expressed by a given genomic location as functions of the allele-specific copy 

numbers nA and nB, where nA denotes the number of copies of the A allele and nB denotes the number 

of copies of the B allele. Assuming tumor cell purity (p) was 1, BAF and LRR are calculated by: 

𝐵𝐴𝐹 =
𝑛𝐵

𝑛𝐴 + 𝑛𝐵

=
𝑛𝐵

𝐶𝑁
 

𝐿𝑅𝑅 = 𝑙𝑜𝑔2 (
𝑛𝐴 + 𝑛𝐵

2
) 

Considering the influence of nonaberrant cells in real world tumor samples and assuming that the 

nonaberrant cells have a total copy number of 2 for all loci, tumor ploidy correction factor 

(scale_factor), tumor purity (p), the measured CN (CN*) and the measured BAF (BAF*) of the 

FFPE samples satisfy the following relationship (Supplementary Table 1 & Supplementary Table 
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2). 

nB = CN∙ 𝐵𝐴𝐹  (1) 

𝐶𝑁∗ ∙ 𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝐶𝑁 ∙ 𝑝 + 2(1 − 𝑝)   (2) 

𝐵𝐴𝐹∗ =
1−𝑝+𝑝𝑛𝐵

𝐶𝑁∗∙𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟
 (3) 

Based on Eqs (1), (2) and (3), Tumor purity can be expressed as below. 

𝑝𝑢𝑟𝑖𝑡𝑦 =  
1−2∙𝐵𝐴𝐹∗

𝐵𝐴𝐹∗∙𝐶𝑁−2∙𝐵𝐴𝐹∗+1−𝐵𝐴𝐹∗𝐶𝑁
 (4) 

Based on the segmented chromosome fragments, the mean of all BAF value in the fragments, the 

percentage ranking of the BAF mean in all fragments, the theoretical CN (CN=2LRR*2) and the 

percentage ranking of the CN in all fragments are calculated. Subsequently, using the density-based 

scan (DBSCAN) algorithm to perform density clustering on the BAF mean-CN percentage ranking 

data, the chromosome fragments of the same genotype are clustered into a cluster. 

For fragments of the same genotype, the calculated purity value can be approximately regarded as 

conforming to a normal distribution with the theoretical mean value of purity, that is Eqs (5). 

𝑝𝑢𝑟𝑖𝑡𝑦̂ =
1−2∙𝐵𝐴𝐹∗̅̅ ̅̅ ̅̅ ̅̅

𝐵𝐴𝐹∗̅̅ ̅̅ ̅̅ ̅̅ ∙𝐶𝑁−2∙𝐵𝐴𝐹∗̅̅ ̅̅ ̅̅ ̅̅ +1−𝐵𝐴𝐹∗𝐶𝑁
   (5) 

Therefore, the tumor purity is calculated by clustering the chromosome fragments of the same 

genotype, and bringing the measured mean value of BAF*, theoretical BAF and CN values of the 

specific genotype cluster into the Eqs (5). 

In addition, the ploidy value of the entire genome of the sample is the weighted average of the copy 

number of each segment of the chromosome. 

𝑃𝑙𝑜𝑖𝑑𝑦 =
∑ 𝑆𝑒𝑛

𝑖=1 𝑔𝑠𝑖∗𝐶𝑁𝑖 + (1 − 𝛴𝑖=1
𝑛 𝑆𝑒𝑔𝑠𝑖) ∗ 2

𝑛
 

Segsi is the proportion of each segment on the reference genome, and CNi is the calculated copy 

number of the segment. 

Calculation of LOH, TAI, and LST scores 

HRD-LOH score was defined as the number of LOH regions longer than 15 Mb. HRD-TAI score 

was defined as the number of regions with allelic imbalance that (a) extend to one of the 

subtelomeres, (b) do not cross the centromere and (c) are longer than 11 Mb. HRD-LST score is the 

number of break points between regions longer than 10 Mb after filtering out regions shorter than 3 

Mb. 

Aneuploidy is a common event in cancer patients, so more copy number variations will be detected by 
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the high-throughput sequencing data. However, these copy number abnormalities may not be caused by 

the failure of homologous recombination repair, it will make the final HRD score calculation biased. 

Calculating accurately HRD scores depend on BAF and copy number, but the aneuploidy properties 

and various purity of tumor samples will affect the actual value of BAF and copy number. Thus, it 

is necessary to make appropriate correction, and the calculation formula of HRD score is 

preliminarily determined as follows:   

𝐻𝑅𝐷𝑠𝑐𝑜𝑟𝑒 = 𝐿𝑂𝐻 + 𝑇𝐴𝐼 + 𝐿𝑆𝑇 − K ∗ 𝑃𝑙𝑜𝑖𝑑𝑦 

Here, K is the coefficient of correction, which is a constant. Besides, the whole analysis flowchart 

was shown as Supplementary Fig. 2. However, the constant depends on the type of cancer, sample 

type, target region size, and sequencing platform, et.al. This study screened 62 BRCA1/2-deficiency 

samples and 37 BRCA1/2 wildtype clinical samples of the 195 patients to explore the reasonable 

constant K. Finally, when the correction coefficient was set as 15.5, the AUC of the model is 88.3%, 

the sensitivity is 95.2%, and the threshold is 30 (Supplementary Fig. 3).  

BRCA1/2 and other HRR gene mutation analysis 

Variants were named according to HGVS (Human Genome Variation Society; 

http://www.hgvs.org/). Point mutations, short InDels, copy number variants were identified from 

NGS data, and interpreted in accordance with the “Genetic Variation Annotation Standards and 

Guidelines” (2015 Edition) issued by the American College of Medical Genetics (ACMG) for 

germline mutation, and the “Cancer mutation interpretation of guidelines and standards (2017 

Edition)” for somatic mutation, respectively. BRCA1/2 locus-specific loss of heterozygosity were 

analyzed as follows: a) if the mutation frequency of the SNP on the control sample is between 35% 

and 65%, it is recorded as a heterozygous mutation; b) if the mutation frequency of the SNP on the 

tumor sample is greater than 65% or less than 35%, it is recorded as a homozygous mutation; c) if 

the mutation frequency of a SNP site meets the both conditions, the SNP site is marked as a LOH 

site, otherwise it is marked as a non-LOH site; d) if the number of LOH sites on BRCA1/2 is greater 

than the number of non-LOH sites, it is considered that LOH has occurred in BRCA1/2. 

BRCA1 Promoter methylation quantitative PCR assays 

DNA methylation-sensitive and methylation-dependent restriction enzymes were used to selectively 

digest unmethylated or methylated genomic DNA, respectively. Post-digest DNA was quantified by 

real-time PCR using a 344-bp PCR-generated primer that spanned BRCA1 exon 1. The relative 
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concentrations of differentially methylated DNA are determined by comparing the amount of each 

digest with that of a mock digest. A cutoff of 10% was used to define samples as “methylated”. 

The definition of BRCA1/2-deficiency 

BRCA1/2-deficiency is defined as either (i) one deleterious mutation in BRCA1 or BRCA2, with LOH in 

the wild-type copy or (ii) two deleterious mutations in the same gene or (iii) promoter methylation of 

BRCA1 with LOH in the wild-type copy. 

Affymetrix OncoScan™ Assay 

The Affymetrix OncoScan™ assay utilizes the Molecular Inversion Probe (MIP) assay technology 

for the detection of SNP genotyping, and has subsequently been used for identifying other types of 

genetic variation including focal insertions and deletions, large fragment CNV, LOH, and even 

somatic mutation. This assay has been shown over time to perform well with highly degraded DNA, 

such as that derived from FFPE- preserved tumor samples of various ages and with <100 ng DNA 

of starting material, thus making the assay a natural choice in cancer clinical research. This assay 

captured the alleles of 217,611 SNPs and then the original CEL files were obtained by Affymetrix 

Genechip Scanner were converted to the OSCHP files by Chromosome Analysis Suite 3.0. 

Statistical analysis 

All statistical analysis was conducted using R version 3.6.1 (R Core Team, 2013) with an α of 0.05. 

The statistical tools employed in this study include Student's t-test and one-way ANOVA analysis 

of variance. All reported P values were two-sided. P ＜0.05 was considered to be statistically 

significant. The Pearson correlation were used to evaluating the consistency of two different 

methods. The two-dimensional normal distribution function was used to remove outliers. Same 

distribution statistical test was used to compare the difference between adjacent fragments. 

DBSCAN density clustering algorithm was used to identify different genotypes. 

List of abbreviations 

NGS: next generation sequencing; GSA: Genomic Scar Analysis; HRD: homologous recombination 

deficiency; HRR: homologous recombination repair; DSB: double-stranded break; SSB: single-

strand break; PARPi: PARP inhibitors; LOH: loss of heterozygosity; TAI: telomeric allelic 

imbalance; LST: large-scale state transition; CNV: copy number variation; HMM: hidden Markov 

model; CBS: circular binary segmentation; BAF: B allele frequency: LRR: Log R ratio: TR: tree 

recursion. 
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Figure legends 

Figure 1 The capture regions distribution of Affymetrix OncoScan™ Assay (red line), HRD panel 

(yellow line), xGen Exome Research Panel (orange line), and a pan-cancer panel (green line) with 

all chromosomes (A) and 3 randomly selected chromosomes (B).  

 

Figure 2 The genotype identification and the relationship between BAF and CNV in chromosome 

2. 

 

Figure 3 The BAF distribution of HCC1143 with 80% (A), 50% (B) and 20% (C) tumor purity in 

the region of 20M~120M in chromosome 1. The ploidy distribution of 195 clinical samples (D). 

 

Figure 4 The consistency of purity and ploidy estimation with the GSA algorithm. (A) The 

consistency between the theoretical tumor purity value and the actual tumor purity value in the 

simulated diluted tumor samples. (B) The consistency between the theoretical tumor purity value 

and the actual tumor purity value in the real diluted cell line samples. (C) The consistency of 

ploidy in the simulated diluted tumor samples with different tumor purity. (D) The consistency of 

ploidy in the real diluted cell line samples with different tumor purity.  

 

Figure 5 The consistency of LOH, LST, TAI and HRD score between Affymetrix OncoScan™ 

assay and the custom designed HRD Panel. 

 

Figure 6 The distribution of LOH, LST, TAI and HRD score were shown as BRCA1/2-deficient 

subgroup and BRCA1/2-intact subgroup. 

 

Figure 7 The relationship between HRD score and mutation frequency of 15 HRR pathway genes 

and TP53 in 17 cell lines. 
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Figure 1 The capture regions distribution of Affymetrix OncoScan™ Assay (red line), HRD panel 

(yellow line), xGen Exome Research Panel (orange line), and a pan-cancer panel (green line) with 

all chromosomes (A) and 3 randomly selected chromosomes (B).  
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Figure 2 The genotype identification and the relationship between BAF and CNV in chromosome 

2. 
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Figure 3 The BAF distribution of HCC1143 with 80% (A), 50% (B) and 20% (C) tumor purity in 

the region of 20M~120M in chromosome 1. The ploidy distribution of 195 clinical samples (D). 
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Figure 4 The consistency of purity and ploidy estimation with the GSA algorithm. (A) The 

consistency between the theoretical tumor purity value and the actual tumor purity value in the 

simulated diluted tumor samples. (B) The consistency between the theoretical tumor purity value 

and the actual tumor purity value in the real diluted cell line samples. (C) The consistency of 

ploidy in the simulated diluted tumor samples with different tumor purity. (D) The consistency of 

ploidy in the real diluted cell line samples with different tumor purity.  
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Figure 5 The consistency of LOH, LST, TAI and HRD score between Affymetrix OncoScan™ 

assay and the custom designed HRD Panel. 
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Figure 6 The distribution of LOH, LST, TAI and HRD score were shown as BRCA1/2-deficient 

subgroup and BRCA1/2-intact subgroup. 
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Figure 7 The relationship between HRD score and mutation frequency of 15 HRR pathway genes 

and TP53 in 17 cell lines. 
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Table 1 The HRD scores of SNP array and the target panel 

Sample 
SNP Array HRD Panel 

purity LOH TAI LST ploidy HRD Score purity LOH TAI LST ploidy HRD Score 

S001 0.40  30 17 62 2.57  69.11  0.44  34 18 80 3.31  80.64  

S002 0.38  32 18 55 2.39  67.98  0.41  29 18 63 2.66  68.75  

S003 0.64  27 20 36 1.84  54.55  0.75  31 20 42 1.95  62.77  

S004 0.60  32 18 40 1.85  61.33  0.69  33 18 41 1.92  62.23  

S005 0.68  22 19 67 3.17  58.81  0.79  22 19 71 3.23  61.88  

S006 0.48  20 17 74 3.19  61.60  0.53  19 19 76 3.64  57.53  

S007 0.46  25 18 27 1.64  44.58  0.41  28 21 36 1.94  54.99  

S008 0.59  26 20 30 1.75  48.87  0.70  28 21 32 1.78  53.39  

S009 0.50  7 14 87 3.44  54.73  0.51  9 19 78 3.70  48.59  

S010 0.21  30 14 32 2.00  44.98  0.31  24 19 34 1.99  46.11  

S011 0.52  24 15 30 1.75  41.88  0.62  24 12 39 1.91  45.41  

S012 0.58  20 15 29 1.81  35.92  0.64  21 16 36 1.94  42.91  

S013 0.39  23 18 48 3.23  38.94  0.45  22 22 48 3.28  41.22  

S014 0.43  15 22 54 2.82  47.34  0.53  13 16 60 3.12  40.60  

S015 0.61  21 16 31 1.66  42.25  0.72  23 14 32 1.87  40.03  

S016 0.35  23 13 37 2.52  33.98  0.46  17 9 62 3.14  39.36  

S017 0.72  19 15 26 1.76  32.74  0.83  20 16 32 1.88  38.92  

S018 0.50  17 16 55 3.59  32.43  0.55  18 20 55 3.59  37.39  

S019 0.30  24 19 38 2.96  35.19  0.37  23 18 43 3.04  36.91  

S020 0.60  19 14 27 1.92  30.23  0.67  19 16 29 2.03  32.58  

S021 0.62  12 17 48 3.33  25.35  0.70  14 18 53 3.39  32.50  

S022 0.55  15 12 53 3.68  22.97  0.67  17 14 55 3.71  28.52  
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S023 0.28  20 13 30 2.13  30.03  0.26  17 15 37 2.61  28.49  

S024 0.59  16 13 25 1.82  25.83  0.66  17 17 26 1.92  30.24  

S025 0.54  16 14 24 1.78  26.36  0.58  16 14 24 1.81  25.96  

S026 0.34  7 13 47 3.58  11.49  0.43  7 18 57 3.66  25.21  

S027 0.77  18 11 25 1.85  25.35  0.88  15 19 29 2.01  31.84  

S028 0.72  18 13 26 1.85  28.38  0.83  16 11 26 1.94  22.99  

S029 0.25  14 7 18 2.04  7.34  0.21  17 9 37 2.65  21.96  

S030 0.73  17 12 21 1.89  20.69  0.83  17 12 23 1.94  21.96  

S031 0.67  18 13 23 1.87  24.95  0.79  18 11 23 1.94  21.94  

S032 0.61  17 8 23 1.95  17.77  0.68  18 8 25 2.01  19.83  

S033 0.49  15 11 30 2.81  12.47  0.67  18 11 35 2.92  18.67  

S034 0.56  18 9 18 1.68  18.90  0.65  15 7 21 1.69  16.83  

S035 0.36  12 8 16 1.83  7.59  0.39  13 9 24 2.06  14.11  

S036 0.70  8 13 32 2.76  10.16  0.77  6 15 35 2.84  12.04  

S037 0.72  8 3 5 1.89  -13.35  0.83  5 2 6 1.91  -16.63  

S038 0.41  5 4 8 2.02  -14.37  0.43  4 2 10 2.12  -16.87  

S039 0.34  1 1 1 1.98  -27.67  0.34  2 1 8 2.33  -25.12  

S040 1.00  0 0 0 2.00  -31.00  1.00  0 0 0 2.00  -31.00  
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Table 2 The HRD scores and BRCA1/2 mutations and methylation of 17 OC and BC cell lines 

cell line 
Cancer 

Type 
LOH TAI LST ploidy HRD Score BRCA1/2 Mutation 

BRCA1-

Methylation 

 HCC38 BRCA 30 24 71 3.34 73.21 WT 74.33% 

HCC1806 BRCA 34 23 42 2.29  63.47  WT 1.41% 

NCI/ADR-RES OV 32 19 47 2.32  61.99  WT 64.64% 

HCC1143 BRCA 28 20 67 3.59 59.35 WT 1.26% 

HCC70 BRCA 29 23 57 3.22  59.13  WT 0.28% 

MX-1 BRCA 30 21 50 2.72  58.90  
BRCA1 c.2679_2682delGAAA p.K893Nfs*106 

frameshift 99.84% 
2.40% 

OVCAR4 OV 29 19 55 3.12  54.67  WT 47.56% 

HCC1428 BRCA 17 17 53 3.62 30.82 WT 0.31% 

ZR-75-1 BRCA 9 15 40 3.20  14.42  WT 0.17% 

MDA-MB-453 BRCA 11 16 48 4.17  10.42  WT 0.45% 

MDA-MB-231 BRCA 11 11 30 2.78  8.90  WT 0.19% 

MDA-MB-361 BRCA 6 13 46 3.67  8.18  WT 1.91% 

MDA-MB-415 BRCA 9 13 34 3.09  8.10  WT 0.09% 

ZR-75-30 BRCA 7 13 41 3.67  4.10  WT 3.77% 

HS-578T BRCA 10 7 16 2.47  -5.33  WT 0.22% 

IGR-OV1 OV 7 0 7 1.85  -14.73  

BRCA1 c.1961delA p.K654Sfs*47 frameshift 50.07% 

BRCA2 c.9448C>A p.P3150T missense 22.55% 

BRCA2 c.9182delT p.L3061* frameshift 4.33% 

0.15% 

A2780 OV 3 3 4 2.01  -21.19  WT 0.69% 

* BRCA represents breast cancer, and OV represents ovarian cancer. 
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