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Abstract
In proteomic differential analysis, FDR control is often performed through

a multiple test correction (i.e., the adjustment of the original p-values). In this
protocol, we apply a recent and alternative method, based on so-called knockoff fil-
ters. It shares interesting conceptual similarities with the target-decoy competition
procedure, classically used in proteomics for FDR control at peptide identifica-
tion. To provide practitioners with a unified understanding of FDR control in
proteomics, we apply the knockoff procedure on real and simulated quantitative
datasets. Leveraging these comparisons, we propose to adapt the knockoff pro-
cedure to better fit the specificities of quantitive proteomic data (mainly very few
samples). Performances of knockoff procedure are compared with those of the clas-
sical Benjamini-Hochberg procedure, hereby shedding a new light on the strengths
and weaknesses of target-decoy competition.

1 Introduction
Controlling the false discovery rate (FDR) is a well-established practice in most
-omic approaches, as it answers a pervasive question: Considering quantitative
measurements for many covariates (be they genes, transcripts, metabolites, or pro-
teins) in a set of samples split in at least two different biological conditions, how
can we shortlist some differentially expressed ones, while controlling the risk of
false positives (i.e. wrongly selected covariates due to their looking differentially
expressed while they are not)? To cope with this, the most commonly used proce-
dure is without a doubt the Benjamini-Hochberg one (BH) [2]. However, due to
its large field of application, FDR control has focused a lot of additional efforts in
biostatistics, and many authors have proposed to improve upon BH FDR control
[3, 8], or have proposed alternative frameworks to do so [1, 6, 20].

In the specific case of proteomics, FDR control is not only used in the afore-
mentioned biomarker selection problem. It is also an essential quality control
metric when matching experimental fragmentation spectra onto in silico spectra
(i.e., derived from reference database of protein sequences). However, for historical
reasons, the associated FDR control is not performed using classical tools from
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biostatistics. On the contrary, a rather empirical approach termed target-decoy [9]
is almost exclusively used. It consists in searching two databases: the first one,
referred to as target, containing the genuine protein sequences, and another one,
referred to as decoy, containing artefactual sequences. Under the assumption that
target mismatches and decoy matches are equally likely, the number of decoy
matches can be used to estimate the number of target mismatches, thus opening the
door to FDR control.

For a long time, FDR control for peptide identification and for protein differ-
ential analysis have been considered as largely independent. However, theoretical
connections exist: Notably, it has long been established [16] that if target and decoy
databases are searched independently, then the procedure is broadly equivalent to
relying on empirical null theory to estimate the FDR in a BH-related way [8].
More recently, it has been shown ([7] that BH procedure could be a user-friendly
and computationally attractive alternative to target decoy competition (TDC) (see
Note 1). However, recent developments in theoretical biostatistics have made the
links between both approaches to FDR control even tighter. Notably, the authors
of [1] have proposed to tackle the biomarker research FDR control using an al-
gorithmic procedure akin to that of TDC. Broadly, this novel approach, denoted
as “knockoff-filter,” works as follows. First, knockoff variables are simulated to
be as independent as possible from conditions of samples, but yet preserve the
covariance structure of the original variables (see Note 2). Second, a competition
is organized between each original variable and its associated knockoff. Third,
the proportion of retained knockoffs is used to estimate the proportion of wrongly
selected original covariates (see Table 1 for a more detailed comparison with TDC).
Conversely, authors have recently leverage the theory underlying knockoff filters to
propose improved TDC strategies (see [10]).

Overall, the framework of knockoff filters is particularly insightful to provide a
global understanding of FDR control in proteomics and the purpose of this protocol
is to root such unified view on empirical comparisons using both real and simulated
data. Interestingly, the results of these comparisons are compliant with empirical
knowledge about the various strengths and weaknesses classically associated to
each FDR control method.

2 Notations
We first start by reviewing commonly used yet conflicting notations in biostatistics
and proteomics.

2.1 Classical notations in biostatistics
In biostatistics, the false discovery rate (FDR) and the false discovery proportion
(FDP) are distinct notions. The FDP corresponds to what was classically and
informally referred to as the “true FDR” in proteomics, i.e., the exact proportion of
false positives among the proteins that passed the user-defined selection threshold,
and therefore deemed as differentially abundant. Of course, except for benchmark
artificial or simulated datasets, this quantity is unknown in practice.

The FDR reads as FDR = E[FDP], where E stands for the expectation, which
broadly amounts to the long run average of the FDP on an infinite number of related
experiments subject to stochastic fluctuations. This quantity is also unknown but it
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Target-Decoy Competition Knockoff filter (2nd order approxi-
mation)

1. Construct peptide decoys such that
decoy PSMs have same score distribu-
tion than erroneous target PSMs

1. For each protein, generate knockoff
abundances with same mean and corre-
lation matrices as original abundances.

2. For each real spectrum obtained, find
the best match among all targets and
decoys, and retain its score.

2. For each protein, compute a score
describing whether the original abun-
dances vector or its knockoff best pre-
dicts the condition.

3. The number of selected PSMs from
decoys at a given cutoff enables to esti-
mate the FDR on selected target PSMs.

3. The number of selected knockoffs
at a given cutoff enables to estimate
the FDR on selected original proteins
deemed differentially abundant.

Table 1: Comparison of the target-decoy and knockoff filter procedures for FDR control.
(PSM stands for Peptide-Spectrum Match).

is much easier to estimate, and such estimate is classically noted �FDR. Estimating
the FDR is insightful, but unfortunately, not always sufficient [14]. An unbiased
FDR estimate is expected to provide a value closed to E[FDP]. However, on a
given dataset, this value may be larger or smaller than the FDP. While a slightly
too large estimate implies a conservative behavior (there will be less false positives
than expected among the shortlisted biomarkers), a too small FDR implies a too
liberal quality control and subsequent risks in post-proteomics experiments.

To cope with weaknesses of FDR estimation, FDR control procedures have
been developed: they rely on more conservative assumptions that yield slightly
lesser selected discoveries at a given cut-off parameter. If we note as �FDRU the
FDR estimate resulting from controlling the FDR at level U (U being classically
tuned to 1%) it is likely that �FDRU ≤ U.
In other words, if one cuts-off a list of putative biomarkers according to an FDR
controlled at 1%, the FDR estimate on this very list is likely to be slightly lower than
1%. However, as the FDP remains unknown, it is the only way to safely assume
that the FDP is equal to or lower than 1%.

2.2 Classical notations in proteomics
In proteomics, most of the notions described above (see Subheading 2.1) are con-
flated. Since the mid-2010s, discriminating between the FDP and the FDR has
progressively become standard. However, distinction between FDR (as equal to
E[FDP]), �FDR, �FDRU, and U is scarce. The reason is obvious: except for spe-
cific methodological publications, most of them are not useful to the community.
Indeed, in practice, a proteomic researcher only needs to manipulate U, the cut-off
parameter, and to understand that after applying the FDR control accordingly, the
FDP is not necessarily strictly equal to U, but possibly slightly smaller. However,
the everyday language is error-prone: when one says or writes “We selected the
putative biomarkers at an FDR of 1%,” what is referred to as FDR is not E[FDP],
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�FDR, or �FDRU, but U.
To cope with this, it is possible to rely on other notations. They are not as

formal as those of mainstream biostatistics (see Subheading 2.1) although they are
sometimes reported in mathematics works [4]. However, they are sufficient for a
rigorous everyday work in a proteomic lab. Essentially, it amounts to conflate the
FDR estimate with U, and to define the FDR control as a procedure which provides
the following guarantee with a sufficiently high probability:

FDR ≥ E[FDP] . (1)

This formulation can be misleading in the sense it gives the impression that the
FDR control procedure indeed controls the FDP (see Note 3). However, it has two
advantages: First, it makes the everyday language compliant with the minimum
amount of statistical notions possible; second, it simplifies the understanding of
other statistical notions such as “q-value” or “adjusted p-value,” as using this
formalism, they are simply equivalent to the FDR, as detailed in [5]. In the rest of
the protocol, the naming conventions resulting from Eq. 1 are used, so that FDR
refers to U, the FDR level tuned by the practitioner to perform FDR control.

2.3 Other notations used in this protocol
Hereafter, the following mathematical notations are used:

1. =: the number of biological samples.
2. ?: the number of proteins to include in differential analysis.
3. - ∈ R=×? : the matrix of protein abundances, where each row corresponds

to a sample and each column corresponds to a protein.
4. - 9 : the vector of abundance of the 9-th protein, i.e. the 9-th column of - .
5. G8, 9 : the abundance value of 9-th protein for the 8-th replicate.
6. H: the vector representing the condition label (numerical value) of biological

samples, of length =. For example, the 8-th coefficient of H is 1 if the 8-th
sample comes from the healthy condition, and -1 if it comes from the disease
condition.

7. -Ko ∈ R=×? : the knockoff dataset, generated from original dataset matrix
- .

8. -Ko
9 : the knockoff vector of abundance of the 9-th protein.

9. , : the vector of scores of all proteins (only the original ones, not the
knockoff), of length ?.

10. , 9 : the score associated to the 9-th protein. A large positive value , 9

is evidence that the protein 9 is differentially expressed. It is typically
constructed by comparing the predictive power of - 9 and -Ko

9
of the sample

conditions. Swapping - 9 and -Ko
9

should swap the sign of , 9 . A null , 9

means that both -Ko
9

and -Ko
9

bring the same amount (or lack thereof) of
information on the condition.
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3 Material
3.1 R version
Rversion 4.0.3 (or above) is required to use the following packages. We recommend
using an integrated development environment likeRstudio to execute the commands
of this protocol. It can be downloaded from https://www.rstudio.com/.

3.2 Packages
The following packages are necessary:

1. The packages knockoff, lars ([13]), and glmnet ([11]) must be installed
from the CRAN:

i n s t a l l . p ackages ( " knocko f f " )
i n s t a l l . p ackages ( " l a r s " )
i n s t a l l . p ackages ( " g lmne t " )

2. cp4p [12] provides two datasets with controlled ground truth: They result
from analysis of samples containing different abundance of 48 human pro-
teins spiked in a yeast background [19]. The p-values from a Welch C-test
associated to each protein are also provided, along with functions to ap-
ply Benjamini-Hochberg procedure for differential analysis. To install cp4p
package, it is first necessary to install the BioConductor [15] packages it
depends on:

i f ( ! r equ i r eNamespace ( " BiocManager " , q u i e t l y = TRUE) )
i n s t a l l . p ackages ( " BiocManager " )

BiocManager : : i n s t a l l ( " m u l t t e s t " )
BiocManager : : i n s t a l l ( " limma " )
BiocManager : : i n s t a l l ( " qva l u e " )

3. Then cp4p can be installed from the CRAN:

i n s t a l l . p ackages ( " cp4p " )

4. Finally, load the packages in the environment:

l i b r a r y ( cp4p )
l i b r a r y ( knocko f f )
l i b r a r y ( l a r s )

3.3 Data Format
This protocol relies on a data format which is quite uncommon in proteomics (see
Note 4). The input data - on which FDR control is applied should have at least 3
rows, i.e. at least biological 3 samples in total are needed. The number of proteins
to include in differential analysis can be arbitrary. Values of abundance in - should
be log2-scaled.

For conveniency, we use two datasets in this protocol: A dataset resulting from
real mass-spectrometry output, called LFQRatio25 (see Subheading 3.4), and a
simulated dataset with adjustable parameters (see Subheading 3.5).
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3.4 Data loading from cp4p
The following commands enable to load and prepare LFQRatio25 dataset [12]:

1. Load the dataset with the following command:

d a t a ( " LFQRatio25 " )

2. Then, abundances values for all 6 samples are extracted to form the rows of
the X_yups variable:

X_yups = t ( LFQRatio25 [ , 1 : 6 ] )

3. Similarly, vector y_yups contains the condition labels of these samples:

y_yups = c (1 ,1 ,1 , −1 , −1 , −1)

4. For this particular dataset, differentially abundant proteins (or in statistical
language, variables under the alternative hypothesis �1) are known. It is
possible to display their name and their index in the list of proteins. These
are the 46 first proteins, as the output of this code chunk suggests (see Note
5):

mask_human = LFQRatio25$Organism == "human "
names_d i f f _yup s = LFQRat io25$Major i ty . p r o t e i n . IDs [ mask_human ]
i d x _ d i f f _ y u p s = which ( mask_human )
i d x _ d i f f _ y u p s

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
[35] 35 36 37 38 39 40 41 42 43 44 45 46

5. Check the dataset to make sure the same dataset is obtained:

head ( X_yups [ , 1 : 5 ] )

[,1] [,2] [,3] [,4] [,5]
A.R1 31.27392 29.48101 29.80982 29.10410 26.85626
A.R2 31.27147 29.46032 29.84163 29.22384 27.11535
A.R3 31.26327 29.45797 29.83771 29.00945 26.94358
B.R1 29.83022 28.04973 28.41002 27.45505 25.71735
B.R2 29.81413 28.02686 28.38101 27.58463 25.74196
B.R3 29.84867 28.00774 28.42514 27.52028 24.62264

3.5 Data simulation
The following commands enable to prepare a simulated dataset:

1. The code below randomly generates a dataset broadly akin to LFQRatio25.
Due to randomness, it will be different from one run to another. To ensure
the results are reproducible and to obtain same results as in the remaining
of the protocol, use the following optional command to set the random seed
(see Note 6):
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s e t . s eed (1234 )

2. Tune the parameters of the dataset:

n_h1 = 50 # Number o f p r o t e i n s d i f f e r e n t i a l l y abundan t
n_rep = 3 # Number o f r e p l i c a t e s o f each c o n d i t i o n
p=1500 # Number o f p r o t e i n s
mu = r u n i f ( p , 24 , 32)
s igma1 = d i ag ( r u n i f ( p , 0 , 0 . 0 2 ) )
s igma2 = d i ag ( r u n i f ( p , 0 , 0 . 0 2 ) )
mu_d i f f = c ( r u n i f ( n_h1 , 0 . 5 , 2)∗ s i g n ( r u n i f ( n_h1 , −1 , 1 ) ) ,

r ep ( 0 , p−n_h1 ) )

3. Create and concatenate arrays of both conditions:

p = l e n g t h (mu)
X1 = ma t r i x ( rnorm ( n_rep ∗p ) , n_ rep ) %∗% cho l ( s igma1 )
X2 = ma t r i x ( rnorm ( n_rep ∗p ) , n_ rep ) %∗% cho l ( s igma2 )
X1 = t ( t (X1)+mu+mu_d i f f / 2 )
X2 = t ( t (X2)+mu−mu_d i f f / 2 )
X_sim = r b i n d (X1 , X2)
y_sim = c ( r ep ( 1 , n_ rep ) , r ep ( −1 , n_rep ) )
i d x _ d i f f _ s im = 1 : n_h1

4. Check the dataset to make sure there are no mistakes:

head ( X_sim [ , 1 : 5 ] )

[,1] [,2] [,3] [,4] [,5]
[1,] 23.96519 28.55181 27.95301 29.64470 31.05108
[2,] 24.04396 28.21652 27.74679 29.56570 31.51248
[3,] 24.05717 28.39634 27.90406 29.74762 31.56869
[4,] 25.65308 29.55612 29.92890 28.21821 30.47228
[5,] 25.74846 29.63377 29.77653 28.30777 30.32441
[6,] 25.89306 29.58248 29.80624 28.33325 30.52107

4 Methods
This section falls into the following subsections:

1. We explain how to apply the original knockoff-filter procedure to control
the FDR for differential expression analysis. Precisely, we show how to (1)
generate knockoff variables; (2) compute a score for each protein/knockoff
pair; (3) select differentially abundant proteins for a predefined target FDR.

2. We detail how to replace the default scoring strategy with other ones, and
compare these alternative knockoff procedures to the classical Benjamini-
Hochberg (BH) procedure.

3. We propose some code to illustrate the sensitivity of the knockoff filter
procedure to the random generation of knockoffs.
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4.1 Original knockoff procedure
1. Choose the dataset on which applying the knockoff procedure:

(a) To apply it on the LFQRatio25 dataset, use:

X_data = X_yups
y_da t a = y_yups
i d x _ d i f f = i d x _ d i f f _ y u p s

(b) Alternatively, to apply it on the simulated dataset, use:

X_data = X_sim
y_da t a = y_sim
i d x _ d i f f = i d x _ d i f f _ s im

For the rest of this section, we will use the LFQRatio25 dataset.
2. Rescale the data to have null mean and unitary variance for each protein

abundance vector (i.e. for each - 9 ) (see Note 7):

X_data = s c a l e ( X_data )

3. Execute these commands to generate the knockoff dataset from original data
with a fixed seed (see Note 8):

s e t . s eed (1234 )
X_data_k = c r e a t e . s e c ond_o r d e r ( X_data )

4. For each protein, compute a score based on the Lasso path of covariates (see
Note 9). An inevitable warning concerning the lack of replicates appears:
“one multinomial or binomial class has fewer than 8 observations; dangerous
ground.”

s e t . s eed (1234 )
W_lasso = s t a t . l a s so_ l ambdasmax_b in ( X_data , X_data_k , y_da t a )

5. Set the value of targeted FDR, compute the resulting threshold, and select
proteins for which their score is above this threshold. The target_fdr
parameter must be a number between 0 and 1. The offset parameter
determines which FDR estimator to use, it can be set to either 0 or 1 (see
Note 10) . When offset is 0, a biased FDR estimate is used, and when
offset is 1, a non-biased, yet more conservative estimate is used.

t a r g e t _ f d r = 0 .05
t h r e s = knocko f f . t h r e s h o l d ( W_lasso , f d r = t a r g e t _ f d r , o f f s e t =0)
s e l e c t e d _ l a s s o = which ( W_lasso >= t h r e s )

6. This step and the following ones are optional, as they can only be applied
for a dataset endowed with a ground truth, such as LFQRatio25 or a
simulated dataset. Display the names of proteins selected as differentially
abundant at the FDR tuned with the target_fdr parameter (here 0.05).

n ames_d i f f _yup s [ s e l e c t e d _ l a s s o ]
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[1] P02768upsedyp ALBU_HUMAN_upsedyp - CON__P02768-1
[2] O00762upsedyp UBE2C_HUMAN_upsedyp
[3] P00709upsedyp LALBA_HUMAN_upsedyp
[4] P02788upsedyp TRFL_HUMAN_upsedyp
[5] P06396upsedyp GELS_HUMAN_upsedyp
[6] P12081upsedyp SYHC_HUMAN_upsedyp

7. This code instantiates useful functions to compute the FDP and power from
ground truth data. For a certain selection level U, the power is defined as

PowerU =
# of selected original variables under �1

# of original variables under �1
.

Where�1 denotes the alternative hypothesis, i.e. “the protein is differentially
abundant.” The power gives a measure of how well our selection covers all
the proteins differentially expressed:

compute_fdp = f u n c t i o n ( s e l e c t e d , nonze ro ) {
i f ( l e n g t h ( s e l e c t e d ) != 0) {

r e t u r n (1−sum ( nonze ro %in% s e l e c t e d ) / l e n g t h ( s e l e c t e d ) )
}
r e t u r n ( 0 )

}

compute_power= f u n c t i o n ( s e l e c t e d , nonze ro ) {
i f ( l e n g t h ( s e l e c t e d ) != 0) {

r e t u r n ( sum ( nonze ro %in% s e l e c t e d ) / l e n g t h ( nonze ro ) )
}
r e t u r n ( 0 )

}

8. The following code computes the FDP and power of the procedure for a
user-defined range of target FDRs (for both offset values):

FDR = seq ( 0 , 0 . 5 , 0 . 0 4 )
t emp l a t e = r ep ( 0 , l e n g t h (FDR) )
FDP = l i s t ( t emp l a t e , t emp l a t e )
POWER = l i s t ( t emp l a t e , t emp l a t e )

f o r ( t i n 1 : l e n g t h (FDR) ) {
f o r ( o f f s i n 1 : 2 ) {

t h r e s = knocko f f . t h r e s h o l d ( W_lasso , f d r =FDR[ t ] ,
o f f s e t = o f f s −1)

s e l e c t e d = which ( W_lasso >= t h r e s )
FDP [ [ o f f s ] ] [ t ] = compute_fdp ( s e l e c t e d , i d x _ d i f f )
POWER[ [ o f f s ] ] [ t ] = compute_power ( s e l e c t e d , i d x _ d i f f )
}

}

9. Using the results computed at the previous step, the following code displays
the FDP and power as a function of the FDR (see Figure 1 for LFQRatio25
and Figure 2 for simulated dataset):
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pa r ( p t y = ’ s ’ )
c o l s = c ( " r ed " , " b l u e " , " b l a c k " )
p l o t (FDR, FDR, t ype = ’ l ’ , y l a b = "FDP" , x l a b = "FDR" ,

y l im=c ( 0 , 0 . 5 ) , x l im=c ( 0 , 0 . 5 ) )
l i n e s (FDR, FDP [ [ 1 ] ] , c o l =" r ed " )
l i n e s (FDR, FDP [ [ 2 ] ] , c o l =" b l u e " )
p o i n t s (FDR, FDP [ [ 1 ] ] , c o l =" r ed " , pch =1)
p o i n t s (FDR, FDP [ [ 2 ] ] , c o l =" b l u e " , pch =2)
l egend ( " t o p l e f t " , l e g end=c ( 0 , 1 , " y=x " ) , c o l = co l s ,

pch=c (1 , 2 , −1 ) , l t y = 1 , t i t l e =" O f f s e t " )

p l o t ( 1 , t y p e ="n " , y l a b = " Power " , x l a b = "FDR" ,
y l im=c ( 0 , 0 . 4 ) , x l im=c ( 0 , 0 . 5 ) )

l i n e s (FDR, POWER[ [ 1 ] ] , c o l =" r ed " )
l i n e s (FDR, POWER[ [ 2 ] ] , c o l =" b l u e " )
p o i n t s (FDR, POWER[ [ 1 ] ] , c o l =" r ed " , pch =1)
p o i n t s (FDR, POWER[ [ 2 ] ] , c o l =" b l u e " , pch =2)
l egend ( " t o p l e f t " , l e g end=c ( 0 , 1 ) , c o l = co l s , pch=c ( 1 , 2 ) ,

l t y = 1 , t i t l e =" O f f s e t " )

Figure 1: FDP and power vs. FDR for LFQRatio25 dataset, with and without offset,
for the knockoff filter procedure with Lasso-based scores.

We notice that FDP and power curves on Figures 1 and 2 are almost always
horizontal. This means that variables selected remain the same whatever the FDR
target chosen. When the offset equates 1 (unbiased estimator), no proteins are
deemed differentially expressed below a certain value of FDR. Thus, even though
their are no false positive, there are no true positive either, making the FDR control
through knockoff filters practically useless.

We mainly explain this over-conservativeness by the usage of variable selection
with the Lasso algorithm, at the step of, scores computation. In fact, in the setting
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Figure 2: FDP and Power vs. target FDR for the simulated dataset, with and without
offset, for knockoff procedure with Lasso-based scores.

= << ?, the Lasso algorithm will only select = variables. This is problematic for
differential expression analysis where the total number of samples rarely exceeds
the number of a priori differentially expressed proteins. On top of that, as very few
covariates are selected, and some original variables are much more differentially
abundant than all the others, knockoff variables are almost never selected. Thus,
estimating the number of false discoveries from the number of selected knockoffs
is not appropriate in our cases. These efficiency of variable selection with Lasso is
thoroughly discussed in [21].

4.2 Scoring methods based on forward stagewise regres-
sion and t-test
Preliminary experimental comparisons highlighted the knockoff procedure accu-
racy highly depends on the chosen feature selection algorithm. We herefater
describe two procedures that we found to address the issue described above (see
Subheading 4.1). The first scoring method consists in using forward stagewise se-
lection (FS) algorithm (see Note 11). The second one is derived from the variable
selection procedure classically used in proteomics: it amounts to computing a C-test
p-value for both original and knockoff variables; then, the final score (i.e., , 9 ) is
defined by the log difference of p-values (LDP) obtained between each original
variable and its knockoff.

1. To instantiate the functions that compute the,8’s for the FS and LDP meth-
ods, use the following chunks of code (it is advised to run them both, so as
to allow subsequent comparisons):
(a) For the FS method:

s t a t _ f o r w a r d _ s e l = f u n c t i o n (X, X_k , y ) {
Xconcat = cb ind (X, X_k )
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r e s = l a r s ( Xconcat , c (1 ,1 ,1 , −1 , −1 , −1) , t y p e =" f o r " ,
use . Gram = FALSE)

lambdas = r ep ( 0 , 2∗ nco l (X) )
lambdas [ r e s $ e n t r y != 0] = re s$ l ambda [ r e s $ e n t r y ]
W_fs = lambdas [ 1 : n co l (X)] − lambdas [ − ( 1 : n co l (X ) ) ]
W_fs

}
W_fs = s t a t _ f o r w a r d _ s e l ( X_data , X_data_k , y_da t a )

(b) For the LDP method:

s t a t _ l o g _ d i f f _ p v a l = f u n c t i o n (X, X_k ) {
Xconcat = cb ind (X, X_k )
p v a l s = app ly ( Xconcat , 2 , f u n c t i o n ( x ){ r e s =

t . t e s t ( x [ 1 : 3 ] , x [ 4 : 6 ] ) ; r e t u r n ( r e s $p . v a l u e ) } )
p v a l s _ o r = pv a l s [ 1 : ( l e n g t h ( p v a l s ) / 2 ) ]
pva l s _k = pv a l s [ ( l e n g t h ( p v a l s ) / 2 + 1 ) : l e n g t h ( p v a l s ) ]
W_pvals = (− l og ( p v a l s _ o r )+ l og ( pva l s _k ) )
W_pvals

}

W_ldp = s t a t _ l o g _ d i f f _ p v a l ( X_data , X_data_k )

2. Plot the histogram of ,8’s to better visualize the selection process (see
Figure 3 for LFQRatio25 dataset):

h i s t (W_ldp [W_ldp ! =0 ] , c o l =c ( r ep ( " r ed " , 2 ) , r ep ( " g rey " , 4 ) ,
r ep ( " b l u e " , 1 1 ) ) , main =" His togram of W" , x l a b ="W" )

a x i s ( 1 , a t =c ( −5 , −2 , 0 , 2 , 5 , 1 0 ) )

3. To illustrate the interest of using FS and LDPwithin the knockoff filter proce-
dure, we compare those two approaches with the classically used Benjamini-
Hochberg (BH) procedure. Depending on the dataset being LFQRatio25 or
the simulated one, the code differs:

(a) WithLFQRatio25, the p-values resulting fromWelch C-test are provided
in the dataset:

p v a l s = LFQRatio25 [ , 7 ]
r e s = a d j u s t . p ( pva l s , p i 0 . method = 1)

(b) With the simulated dataset, p-values must be computed beforehand (a
Welch C-test is also used here):

p v a l s = app ly ( X_data , 2 , f u n c t i o n ( x ){ r e s = t . t e s t (
x [ 1 : n_ rep ] , x [ ( n_ rep +1 ) : ( 2 ∗ n_rep ) ] ) ;
r e t u r n ( r e s $p . v a l u e ) } )

r e s = a d j u s t . p ( pva l s , p i 0 . method = 1)

4. Compute the FDP and power for BH and knockoff filter procedure with LDP
and FS methods (with offset=1), at different FDR levels:

FDP = l i s t ( t emp l a t e , t emp l a t e , t emp l a t e )
POWER = l i s t ( t emp l a t e , t emp l a t e , t emp l a t e )
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W_l i s t = l i s t (W_fs , W_ldp )

f o r ( t i n 1 : l e n g t h (FDR) ) {
f o r (W_idx i n 1 : 2 ) {

t h r e s = knocko f f . t h r e s h o l d ( W_ l i s t [ [ W_idx ] ] , f d r =FDR[ t ] ,
o f f s e t =1)

s e l e c t e d = which ( W_ l i s t [ [ W_idx ] ] >= t h r e s )
FDP [ [ W_idx ] ] [ t ] = compute_fdp ( s e l e c t e d , i d x _ d i f f )
POWER[ [ W_idx ] ] [ t ] = compute_power ( s e l e c t e d , i d x _ d i f f )

}
s e l e c t e d _ b h = which ( r e s $ a d j p $ a d j u s t e d . p<=FDR[ t ] )
FDP [ [ 3 ] ] [ t ] = compute_fdp ( s e l e c t e d _bh , i d x _ d i f f )
POWER[ [ 3 ] ] [ t ] = compute_power ( s e l e c t e d _bh , i d x _ d i f f )

}

5. Finally plot the FDP and power vs. FDR level, as illustrated on Figures 4
and 5, respectively for the LFQRatio25 and simulated datasets):

p a r ( p t y = ’ s ’ )
c o l s = c ( " r ed " , " b l u e " , " o r ange " )
l e g = c ( " Knockoff w F . S . " , " Knockoff w log d i f f . " , "B−H. " )
p l o t (FDR, FDR, t ype = ’ l ’ , y l a b = "FDP" , x l a b = "FDR" ,

y l im=c ( 0 , 0 . 6 ) , x l im=c ( 0 , 0 . 1 5 ) )
f o r ( i i n 1 : 3 ) {

l i n e s (FDR, FDP [ [ i ] ] , c o l = c o l s [ i ] )
p o i n t s (FDR, FDP [ [ i ] ] , c o l = c o l s [ i ] , pch= i )

}
l egend ( " t o p l e f t " , l e g end= leg , c o l = co l s , pch =1 :3 ,

t i t l e =" P rocedu r e " )

p l o t ( 1 , t y p e ="n " , y l a b = " Power " , x l a b = "FDR" ,
y l im=c ( 0 , 1 . 2 ) , x l im=c ( 0 , 0 . 1 5 ) )

f o r ( i i n 1 : 3 ) {
l i n e s (FDR, POWER[ [ i ] ] , c o l = c o l s [ i ] )
p o i n t s (FDR, POWER[ [ i ] ] , c o l = c o l s [ i ] , pch= i )

}
l egend ( " t o p l e f t " , l e g end= leg , c o l = co l s , pch =1 :2 ,

t i t l e =" P rocedu r e " )

We observe that the knockoff filter procedure with LDP broadly follows the
same trend as the BH one on LFQRatio25 (see Figure 4). By construction, the
LDP scores is never null, yielding a rather symmetric distribution (see Figure 3).
The largest positive scores (depicted in the right hand tail) result from differentially
abundant proteins, while the left hand one amounts to selected knockoff proteins.
The distribution being more symmetric than when using the Lasso, it is possible
to select a larger subset of proteins at a given FDR. However, when using the FS
based scores, knockoff filters roughly behaves as with the Lasso, yielding a greater
but yet insufficient power.

Finally, the BH procedure also yields anti-conservative results on LFQRatio25,
as the FDP is always higher than the FDR. However, this can be explained by other
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Figure 3: Histogram of scores,8’s obtainedwith log diff of p-values scoringmethod, on
LFQRatio25 dataset. The blue area correspond to original variables that are selected,
and the red area represent knockoff variables selected, both at a threshold of 2 (hence,
a conservative FDR estimate at a selection threshold of 2 reads ���' = red area+1

blue area ).

preprocessing steps (match between runs, normalization, imputation, etc.) which
tends to shrink the within-condition variance prior to differential analysis as well
as to increase the risk of false positives that are not accounted by FDR control.
Indeed, Benjamini-Hochberg is conservative on simulated data (see Figure 5).

4.3 Sensitivity of FDR control to knockoff used
Knockoff generation with create.second_order function (see Subheading 4.1,
Step 3) involves the random draw of a knockoff matrix (similarly to the random
generation of decoy sequences). Hence, on a given dataset, running two consecutive
FDRcontrol procedureswith knockofffilters should lead to slightly different results.
We hereafter propose several experiments to illustrate the sensitivity of the knockoff
filter procedure to the knockoff generation, as well as to evaluate its magnitude.

1. Generate 30 knockoff datasets and store them in a list (depending on the
machine, this step may last between 30 minutes to an hour):

s e t . s eed (3456 )
n_k = 30
l_k = l i s t ( )
f o r ( i i n 1 : n_k ) {

l _k [ [ i ] ] = c r e a t e . s e c ond_o r d e r ( X_data )
}

2. Apply the knockoff filter procedure to each knockoff series, with FDRvarying
from 1% to 15%. In this example, the scoring method used is LDP. For all
the knockoff series, the effective FDP vs. FDR curves are iteratively plotted,
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Figure 4: FDP and power vs. target FDR for knockoff filter procedure with offset=1
appliedwith forward stagewise selection and log diff of p-values scoring, andBenjamini-
Hochberg procedure, obtained with LFQRatio25.

leading to a display akin to that of Figure 6. The proteins selected at an FDR
of 5% for each knockoff series are retained in a matrix referred to as scores:

p a r ( p t y = ’ s ’ )
FDR = seq ( 0 . 0 1 , 0 . 1 5 , 0 . 0 1 )
FDP <− POWER <− ma t r i x ( r ep ( 0 , n_k∗ l e n g t h (FDR) ) , nrow=n_k )
s c o r e s = ma t r i x ( r ep ( 0 , n_k∗ nco l ( X_sim ) ) , nrow=n_k )

p l o t (FDR, FDR, t ype = ’ l ’ , y l a b = "FDP" , x l a b = "FDR" ,
y l im=c ( 0 , 0 . 7 ) , x l im=c ( 0 , 0 . 1 5 ) )

f o r ( i i n 1 : n_k ) {
W = s t a t _ l o g _ d i f f _ p v a l ( X_data , l _k [ [ i ] ] )
f o r ( t i n 1 : l e n g t h (FDR) ) {

t h r e s = knocko f f . t h r e s h o l d (W, f d r =FDR[ t ] , o f f s e t =1)
s e l e c t e d = which (W >= t h r e s )
FDP[ i , t ] = compute_fdp ( s e l e c t e d , i d x _ d i f f )
i f (FDR[ t ] == 0 . 0 5 ) {

s c o r e s [ i , s e l e c t e d ] = 1
}

}
l i n e s (FDR, FDP[ i , ] , c o l = i )

}
l egend ( " t o p l e f t " , l e g end = " y=x " , l t y =1 , c o l =" b l a c k " )

3. Finally, plot a heatmap featuring the scores matrix which highlights with
different colors the selected proteins under �0 and �1 for each knockoff filter
series, at an FDR target of 5%. (see Figure 7):
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Figure 5: FDP and power vs. target FDR for knockoff procedure with offset=1 applied
with forward stagewise selection and log diff of p-values scoring, and Benjamini-
Hochberg procedure, obtained with simulated data.

pa r ( mar=c ( 5 , 5 , 2 , 8 ) , xpd=TRUE, mgp=c ( 1 , 1 , 0 ) )
h e i g h t s = s o r t ( colSums ( s c o r e s ) , d e c r e a s i n g = T ,

i ndex . r e t u r n = T)
h e i g h t s _ i n _ p l o t = h e i g h t s $ i x [ h e i gh t s $x >0]
submat = s c o r e s [ , h e i g h t s _ i n _ p l o t ]
submat [ ( submat == 1) & t ( ma t r i x ( r ep ( h e i g h t s _ i n _ p l o t >46 ,

nrow ( s c o r e s ) ) , n co l =nrow ( s c o r e s ) ) ) ] = 2

image ( t ( submat ) , c o l =c ( " g rey " , " b l u e " , " r ed " ) ,
x l a b =" P r o t e i n s ( s e l e c t e d a t l e a s t once ) " , axe s=F )

mtex t ( t e x t =c ( p a s t e ( " Knockoff " , c ( 1 , 1 5 , 3 0 ) ) ) , s i d e =2 , l i n e =0 . 1 ,
a t = seq ( 0 . 0 , 1 , 1 / 2 ) , l a s =1 , cex =0 . 9 )

l e gend ( " t o p r i g h t " , i n s e t =c ( −0 .23 , 0 ) ,
l e g end=c ( " S e l e c t e d H_0 " , " S e l e c t e d H_1 " , " Not s e l e c t e d " ) ,
f i l l =c ( " r ed " , " cyan " , " g rey " ) )

Figures 5 and 7 emphasize the important variability resulting from the random
nature of knockoff filters. To counter this variability, [18] proposes a method
to aggregate multiple knockoffs. In fact, similar sensitivity has already been
commented upon with target-decoy procedures [17], so it seems to be a problem
ubiquitous to FDR control procedures which involve simulating artifactual data
under the null hypothesis. Finally these observations provide an intuitive support
for the tools described in [10], which relies onmultiple decoy databases to construct
a knockoff-like score.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2021.08.20.454134doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.20.454134
http://creativecommons.org/licenses/by/4.0/


Figure 6: Curves of FDP vs. FDR for 30 different Knockoff procedure, applied with
log diff of -values score on LFQRatio25 dataset.
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