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Summary  
Triple negative breast cancer (TNBC) is a highly heterogeneous set of diseases that has, until 
recently, lacked any FDA-approved, molecularly targeted therapeutics. Thus, systemic 
chemotherapy regimens remain the standard of care for many. Unfortunately, even combination 
chemotherapy is ineffective for many TNBC patients, and side-effects can be severe or lethal. 
Identification of predictive biomarkers for chemotherapy response would allow for the prospective 
selection of responsive patients, thereby maximizing efficacy and minimizing unwanted toxicities. 
Here, we leverage a cohort of TNBC PDX models with responses to single-agent docetaxel or 
carboplatin to identify biomarkers predictive for differential response to these two drugs. To 
demonstrate their ability to function as a preclinical cohort, PDX were molecularly characterized 
using whole-exome DNA sequencing, RNAseq transcriptomics, and mass spectrometry-based 
total proteomics to show proteogenomic consistency with TCGA and CPTAC clinical samples. 
Focusing first on the transcriptome, we describe a network-based computational approach to 
identify candidate epithelial and stromal biomarkers of response to carboplatin (MSI1, TMSB15A, 
ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel 
(ITGA7, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). Biomarker panels are predictive in PDX 
expression datasets (RNAseq and Affymetrix) for both taxane (docetaxel or paclitaxel) and 
platinum-based (carboplatin or cisplatin) response, thereby demonstrating both cross expression 
platform and cross drug class robustness.  Biomarker panels were also predictive in clinical 
datasets with response to cisplatin or paclitaxel, thus demonstrating translational potential of PDX-
based preclinical trials. This network-based approach is highly adaptable and can be used to 
evaluate biomarkers of response to other agents.  
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Introduction 

Triple-negative breast cancer (TNBC) is an aggressive clinical subtype of breast cancer that is 

characterized by the absence of expression of the steroid hormone receptors (HR) estrogen receptor 

alpha (ESR1) and progesterone receptor (PGR), as well as the absence of overexpression and/or 

genomic amplification of oncogenic epidermal growth factor receptor 2 (ERBB2 or 

HER2)(Mehanna et al., 2019). Relative to patients diagnosed with HR+ and ERBB2-driven breast 

cancers, patients with TNBC are typically diagnosed at a younger age, are at a higher risk of 

relapse, and have lower overall survival rates. The median overall survival rate for patients with 

metastatic TNBC remains less than 18 months (Garrido-Castro et al., 2019).  Unlike HR+ and 

ERBB2-driven tumors, which are treated with either endocrine therapy or ERBB2-targeted 

therapies, respectively, TNBC largely lacks biomarker-guided selection for treatment with targeted 

agents. Thus, treatment options for many TNBC patients remain limited to regimens using 

cytotoxic chemotherapies, which also lack predictive biomarkers for guided agent selection.  

 

In recent years, there have been some breakthrough advances for treating TNBC more effectively. 

Immune checkpoint inhibitors including Atezolizumab, which targets Programmed Cell Death 

Ligand 1 (PD-L1), and Pembrolizumab, which targets Programmed Cell Death Receptor 1 (PD-

1), are approved by the Food and Drug Administration (FDA) in locally advanced, non-resectable 

and metastatic patients. Atezolizumab is given with nab-paclitaxel, and Pembrolizumab is given 

with a broader range of chemotherapeutics. Pembrolizumab has also been approved with 

chemotherapy (various) in high risk primary TNBC in the neoadjuvant setting. In addition to 

immunotherapies, PARP inhibitors olaparib and talazoparib are also approved for HER2-negative 

patients with advanced disease that carry a germline BRCA1/2 mutation, and who have had prior 

chemotherapy. Finally, the FDA recently approved sacituzumab govitican, for locally advanced, 

unresectable primary tumors, as well as metastatic TNBC. Sacituzumab govitican acts by 

recognizing Trop2 (trophoblast cell-surface antigen 2) with an antibody conjugated to SN38 (the 

active metabolite of irinotecan targeting topoisomerase I). Patients treated with this therapy must 

have received two prior systemic treatments, with at least one of these being for metastatic breast 

disease (i.e. chemotherapy). Strikingly, despite these major advances, systemic chemotherapies 

remain and integral part of the TNBC treatment landscape. 
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Reduction in tumor volume is relevant in multiple clinical settings. In the neoadjuvant setting, 

systemic treatment is used to shrink tumors prior to surgery. There are two main reasons that tumor 

responsiveness is important in this clinical setting. First, patients whose tumors achieve a 

pathologic complete response (pCR) show better overall and disease-free survival (Spring et al., 

2020). Second, even in those patients not showing pCR, tumor shrinkage can enhance surgical 

outcomes. In the adjuvant setting, systemic treatment is used in an attempt to eliminate residual 

tumor cells after surgery that may be capable of re-growing a tumor either as a local or distant 

recurrence. Finally, in the metastatic setting, agents are used in an attempt to either eliminate 

tumors, or reduce tumor burden, to extend life. Thus, development of methods to determine which 

patients, in which clinical setting, will respond to which agents, systemic chemotherapies or 

otherwise, is an important clinical/translational goal. 
 

With respect to single agent/regimen treatment response in the neoadjuvant setting (taxane, 

platinum, anthracyclin/cytoxan), only 25-33% of TNBC patients achieve pCR to any given 

treatment (Caparica et al., 2019). This mediocre response rate has led to the combination of 

chemotherapeutic agents, with the combinations and dose schedules determined to be most 

effective identified over time in human clinical trials.  Combination chemotherapy is now first line 

standard of care for TNBC in the neoadjuvant setting, with patients receiving up to five 

chemotherapeutic agents over the course of treatment (Wahba and El-Hadaad, 2015). Even with 

the most recently used chemotherapy combinations, pCR rates still only reach 55-65% (Loibl et 

al., 2018; Minckwitz et al., 2014; Sharma et al., 2017; Sikov et al., 2014). Because 35-45% of 

patients do not respond even when their tumors are challenged with multiple cytotoxic 

chemotherapy agents, it is clear that many patients receive toxic, and ultimately ineffective, 

treatments for little or no clinical benefit.  

 

If systemic combination chemotherapy is to remain at the forefront of treatment for TNBC, in any 

clinical setting, it is critical that molecular biomarkers of differential response to individual 

chemotherapy agents be identified. If successful, patients can be selected prospectively as a likely 

responder to one or more agents, and then treated with the agent(s) most likely to be effective 

against their unique tumor.  If successful, efficacy rates could increase dramatically. Further, there 
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should be the opportunity for dose de-escalation, which should decrease the frequency of severe, 

or life-threatening toxicities. Finally, these data may also provide insights into molecular 

mechanisms of chemotherapy resistance that may be targetable to enhance responses. 

 

Historically, attempts to develop response predictors have been limited to either in vitro cell line-

based studies, cell line xenografts, or human clinical trials. However, to date, predictive molecular 

signatures of chemotherapy response are not used clinically. More recently, patient-derived 

xenograft (PDX) models of human breast cancer have emerged as potential surrogates for their 

tumor of origin. We and others have shown remarkable biological consistency between patient 

tumors and their corresponding PDX with respect to histology, cellular heterogeneity, biomarker 

expression, mutations, genomic copy number alterations, variant allele frequencies, and mRNA 

expression patterns (Dobrolecki et al., 2016; Echeverria et al., 2018; Evrard et al., 2019; Powell et 

al., 2020; Savage et al., 2020; Whittle et al., 2015; Woo et al., 2019; Zhang et al., 2013a). Most 

importantly, we and others have made progress in demonstrating that treatment responses in PDX 

are qualitatively similar to those of the tumor-of-origin (Savage et al., 2020; Whittle et al., 2015; 

Zhang et al., 2013a). Based on these commonalities, and the availability of a comparatively large 

collection of TNBC PDX, we hypothesized that collections of PDX models can be used as a cohort 

analogous with human cohorts in clinical trials. If so, it should be possible to derive pre-clinically 

and clinically relevant molecular signatures of treatment response using a collection of PDX as the 

discovery platform.  

 

To evaluate the degree to which our PDX collection could function as a “patient cohort” in 

preclinical trials that might also inform tumor responses in clinical trials, we conducted a baseline 

proteogenomic characterization using DNA whole exome sequencing (copy number alterations 

and mutations), mRNA transcriptomics (deep RNAseq), and mass spectrometry-based total 

proteomics) and compared these data with large patient datasets to demonstrate the range of 

representation of the PDX models. We then aggregated single agent responses to docetaxel or 

carboplatin across three recently completed PDX-based preclinical trials designed to approximate 

human equivalent dosing and scheduling in the mouse (to be described in full elsewhere) for 

analysis. We ultimately selected mRNA from other -omic data types for generation of differential 
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response signatures as it was the deepest omics signature, and we could identify both PDX-based 

and clinical datasets with which to validate our observations. 

 

Standard methods of identifying genes informative for prediction of response and resistance 

include simple correlation of gene expression with the phenotype of interest, recursive feature 

elimination in machine-learning models, and the identification of hub genes with graph-based 

methods such as WGCNA (Weighted Gene Co-expression Network Analysis) (Jia et al., 2020; 

Tadist et al., 2019; Tang et al., 2018; Zhao et al., 2010). Determining the correlation between genes 

and the phenotype of interest is perhaps the most straightforward approach for the identification 

of potentially informative genes. A problem with using gene-phenotype correlations is that a gene 

may be correlated to response not because of a direct role in response, but because it is correlated 

with other factors that are functionally relevant for response. Another standard approach is to 

identify genes that add predictive power to a machine learning model of response. An example of 

this approach is the recursive feature elimination method. This method begins with all potentially 

informative features and eliminates features recursively based on the importance of individual 

features to the model. Unfortunately, recursive feature elimination can eliminate features which, 

while weak on their own, could contribute predictive power in the context of other features. 

Network-based methods such as WGCNA have also been developed to identify informative and 

biologically connected sets of genes. These methods are often more reliable for the identification 

of biomarkers than single gene comparison methods. WGCNA is a widely exploited network 

method in the field, and it has been used to identify informative modules and their hub genes in 

complex diseases including cancer and Alzheimer’s (Di et al., 2019; Du et al., 2020; Giulietti et 

al., 2017; Huang et al., 2020; Liao et al., 2020; Liu et al., 2017; Qiu et al., 2019; Zhang et al., 2018; 

Zhao et al., 2010).  

 

The WGCNA approach is not without limitations. The standard application of WGCNA includes 

building a network over all samples, detecting informative modules through the correlation of the 

representative module eigengene profile to the phenotype of interest, and finally the identification 

of highly connected hub genes in informative modules. There are three primary issues with the 

standard WGCNA approach. The modules identified by WGCNA can be large and thus 

biologically unwieldy. Results may also be associated with inter-sample biological heterogeneity 
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rather than to actual response. Furthermore, the use of module eigengenes to determine if a module 

is associated with response may miss more highly informative genes in an otherwise less 

informative module. This happens when a large module (hundreds of genes) contains a small, more 

highly informative, submodule whose signal is diluted by the presence of the large number of less 

informative genes.  

 

To test our hypothesis that PDX-based cohorts can yield translationally relevant predictive 

information, and to address one of the limitations of WGCNA, we adapted a newly developed 

network algorithm, CTD (Thistlethwaite et al., 2021), to “Connect The Dots” in our molecular 

data relative to single agent chemotherapy responses.  Here, CTD is used in addition to WGCNA 

to identify highly connected sets of analyte nodes, and to assign an upper-bounded p-value to sets 

of nodes. While other network-based algorithms also estimate p-values, they use permutation 

testing which is not feasible for large gene co-expression graphs with thousands of genes. Our 

ability to assign p-values without the need for permutation testing allows the identification of small 

sets of nodes that are significantly associated with a phenotype. This algorithmic advancement 

allowed for the identification of a specific set of genes that were differentially associated with 

docetaxel and carboplatin response/resistance in our PDX cohort. These PDX-derived informative 

panels were validated for their predictive power in other PDX collections, as well as in two clinical 

datasets. If validated in subsequent prospective clinical trials, this approach to feature selection 

coupled with PDX-based discovery could accelerate development of predictive signatures that are 

useful clinically. 

 

Results 

PDX models of TNBC closely resemble human tumors represented in The Cancer Genome Atlas 

(TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) Cohorts. 

At BCM, we have amassed a collection of 169 PDX models of human breast cancer that is now 

large enough that a subset of the collection could potentially be used as a pre-clinical cohort whose 

biological characteristics should closely resemble clinical cohorts (publicly available models can 

be evaluated on https://pdxportal.research.bcm.edu/pdxportal). These models are summarized in 

Supplemental Figure 1 which was generated with ComplexHeatmap (Gu et al., 2016). 
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For this study, we make use of a subset of 50 PDX models of TNBC, all of which were treated 

with single agent docetaxel or carboplatin at human equivalent doses, and in a preclinical platform 

that closely mimics a multicycle clinical trial in human patients(Izumchenko et al., 2017). This 

PDX collection shows a wide range of responses to docetaxel and carboplatin, with some PDX 

being cross-resistant or cross-responsive, but others showing differential responses to these two 

agents, suggesting that molecular signatures of differential treatment response could be generated 

that might also have predictive power in clinical datasets (Zhang et al., 2013b).  

 

To evaluate the quality of our -omic data, and to determine if our collection of TNBC PDX 

reflected a significant cross section of TNBC clinical samples represented in TCGA (genome and 

transcriptome) and CPTAC (proteome) to be considered a representative preclinical cohort, we 

compared DNA, RNA, and protein-based assays.  

 

At the DNA level, we first compared genomic copy number alteration patterns in our cohort 

relative to TCGA samples using WES data. Figure 1A shows that the overall pattern of gains and 

loses across our PDX cohort and the TCGA cohort are qualitatively similar upon visual inspection. 

Similar results were obtained for ER+ and HER2+ PDX, but our sample size was not large enough 

for full analysis (Supplemental Figure 2A and 2B). To demonstrate similarities in a more 

quantitative manner, we clustered the gain and loss patterns of both the human and PDX cohorts. 

Figure 1B shows these hierarchical clustering results. Not only could PDX gain/loss patterns be 

compared directly to TCGA samples, but the results also show that our PDX collection represents 

a wide range of TNBC at the copy number alteration level.  

 

Next, we evaluated the spectrum of mutations in our TNBC PDX cohort relative to TNBC in 

TCGA to determine whether the distribution of mutations was indeed similar. Figure 2A 

demonstrates that the spectrum of genes most highly mutated in TCGA are also mutated at largely 

the same frequencies in PDX. Similar results were observed for ER+ and HER2+ PDX models, 

(Supplemental Figure 3A and 3B, respectively). While our sample size for either the ER+ or 

HER2+ subtypes were not large enough to be representative, these results suggested that the 

mutation spectrum observed in our PDX collection is representative of the mutation spectrum 

observed in human patients, particularly TNBC patients. 
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With respect to gene expression analysis at the transcriptomic level, deep RNAseq (~200M reads 

per sample) GSEXXXXXX data from untreated PDX models were hierarchically clustered with 

patient tumors represented in TCGA using the PAM50 signature (Figure 3A) (Koboldt et al., 

2012). Importantly, the PDX models do not cluster together as a single group. Rather, PDX were 

interspersed among TCGA samples, with basal-like PDX being distributed into multiple groups 

across the full range observed in TCGA.  

 

With respect to gene expression analysis at the proteomic level, we detected 8346 human proteins 

in at least half of our models by mass spectrometry. As with the RNAseq analysis, PDX models 

were again distributed across the samples represented in the CPTAC proteomic dataset using the 

top 1000 most variable proteins (Figure 3B). The clustering pattern was remarkably like that 

derived from mRNA data, again with two main groups clustering with luminal B tumors, and the 

majority clustering in the basal-like group, with PDX models distributed across the full spectrum 

of basal-like tumors.  

 

Responses Of PDX Models To Human-Equivalent Doses Of Docetaxel Are Largely Consistent 

With Clinical Responses Of The Tumor-Of-Origin When Challenged With A Taxane  

To evaluate concordance of treatment responses across a range of chemotherapies, we compared 

the “best clinical response” of PDX using our modified RECIST 1.1 classification to clinical and/or 

pathologic responses in their tumor of origin when challenged with the same, or same class, of 

agent. Results are shown in Tables 1-3.  

 

In the patient matched PDX models, treatment with 20mg/kg docetaxel (Table 1), 14/30 (47%) 

showed unqualified concordance with the tumor of origin. An additional 11 (37%) showed 

“qualified” concordance, in which the PDX response fell into an adjacent RECIST response 

category in the patient. Given that the preclinical regimen we established may not yet be fully 

equivalent to that used in a human clinical trial, we reasoned that the use of qualified concordance 

was justified. If this argument is accepted, a remarkable 84% of observations were considered 

concordant. Only 4/30 PDXs received an unqualified discordant response from the original tumor 

((“No”) shown here in pink).  
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For the four unqualified non-concordant PDX models (BCM-3611, BCM-4913, BCM-7482, and 

HCI-015) three tumors of origin showed Progressive Disease (PD), whereas the corresponding 

PDX (BCM-3611, BCM-4913, and HCI-015) showed a Partial Response (PR). The reason for the 

enhanced response relative to the tumor-of-origin is not known. The remaining PDX, BCM-7482, 

showed PD while the tumor of origin showed a PR. For this line, we hypothesized that the 

difference in response may be because we evaluated docetaxel at the low human equivalent dose 

(20mg/kg) rather than the high human equivalent dose (30mg/kg) to which the tumor of origin 

would likely have been exposed. If so, BCM-7482 may show response to the higher dose, and thus 

then show concordance. To test this possibility, we challenged BCM-7482 with four cycles of 

docetaxel at the higher dose. Several other lines were also evaluated to see if response to 30mg/kg 

docetaxel enhanced response beyond that of 20mg/kg (HCI-015 was not evaluated). As 

hypothesized, BCM-7482 then became concordant. Thus, overall, only 10% (3/30) of the PDX 

evaluated showed unqualified discordance. 

 

Concordance Of Response With The Tumor-of-origin: PDX Responses To Carboplatin Or AC 

Were Equivocal. 

With respect to platinum-based agents, we identified five PDX-matched patients who had been 

treated with a platinum-containing regimen, none of which were single agent. Of these, there were 

two unqualified concordances and one qualified concordance (most likely due to the addition of 

radiation with cisplatin), and two unqualified discordances (Table 2). In the two discordant cases, 

the patients were treated with combination carboplatin/taxane, which might complicate the 

interpretation of the response results. Thus, it remains to be determined whether PDX responses 

to platinum-containing regimens recapitulate patient tumor-of-origin responses. 

 

Finally, with respect to multi-cycle AC (anthracycline and cyclophosphamide), nine patient-

matched PDX could be evaluated for concordance. In contrast to docetaxel-treated PDX, AC-

treated PDX showed only three unqualified concordances and two qualified concordances. Four 

of nine (44%) showed unqualified discordance compared to the tumor of origin. In most cases, the 

clinical response of the tumor of origin was PR, whereas the corresponding PDX showed PD. This 
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is most likely due to the fact that we could not achieve human equivalent doses for either the 

doxorubicin or cyclophosphamide. Thus, PDX responses to AC are unlikely to be fully reflective 

of the responses in patients, at least under the conditions achievable in SCID/Bg mice.  

 

Identification Of Multigene Biomarker Panels Associated With Differential Chemotherapy 

Response Using a WGCNA Only Vs.  a Combined WGCNA/CTD Approach. 

Based on the conservation of biology in the -omics datasets, the high degree of concordance of 

responses in docetaxel-treated PDX/patient tumor pairs, and the possibility that PDX may 

ultimately recapitulate responses to carboplatin, we chose to focus our effort on taxane and 

platinum differential response prediction. 

 

Because the RNAseq transcriptomic data were the most robust, and could be validated in other 

datasets, we chose to focus on these data first. For each PDX, epithelial gene expression and 

stromal gene expression was evaluated by separating the RNAseq reads by species using Xenome. 

Separation allowed us to evaluate both epithelial and stromal genes that may be associated with 

resistance for each approach. For both the WGCNA and combined WGCNA/CTD approach, we 

first built two networks for each cell type (stromal or epithelial)/response combination using 

WCGNA only (biweight midcorrelation).  

 

One of these graphs was built over all the PDX models, while the other was built just over the 

responsive PDXs (CR and PR). Because gene-gene correlation could be caused by heterogeneity 

in the samples that is not related to the responsiveness of the samples to the agents in question, we 

then pruned, or removed edges, that were found in the graph built over just the responsive PDXs 

to ensure that we eliminated noise not related to response. By removing these edges, we both 

eliminated gene-gene variance that may not be associated with response and made the networks 

more sparse, and thus easier to evaluate. This approach produced four pruned networks that were 

specific to both a tissue compartment and chemotherapy treatment (i.e., human epithelial 

carboplatin, human epithelial docetaxel, murine stromal carboplatin, murine stromal docetaxel).  

 

Pruned networks were then broken into modules with WGCNA using the standard approach. The 

method identified between 3 and 99 gene modules for each of the graphs. These modules were 
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large (30-200 genes each), and not biologically tractable as they contained too many genes 

representing several pathways, thus not allowing us to determine which specific genes were most 

closely related to response in a straightforward manner.  

 

As mentioned in the introduction, the WGCNA approach may overlook modules with informative 

genes whose signal is overwhelmed by less-informative genes. After the identification of 

informative modules, WGCNA identifies hub genes, but these the hub genes are not necessarily 

the genes that carry the predictive information. To address these issues, we applied CTD to 

determine which sets of genes in these large WGCNA modules were significantly connected in 

the pruned networks.  

 

CTD is an information theoretic-based network method that identifies patterns of connectedness 

between analytes and assigns p-values to highly connected subsets of analytes within large 

modules without computationally-costly permutation testing (Figure 4A) (Thistlethwaite et al., 

2021). With respect to gene expression data, CTD is used to “connect the dots” and identify these 

highly connected gene sets by finding subsets that are more connected in a weighted graph than 

by chance. Because response has not been added as a node in the expression graph, we hypothesize 

that significantly connected sets within the large modules may be connected due to their latent 

connection to response (Figure 4B). For each of the pruned networks, we identified small CTD 

submodules that contained fewer genes than the number of PDXs in our analysis (n=45). This then 

allowed for the generation of generalized linear models (GLMs), and the identification of specific 

genes that are predictive for response to the two agent classes chosen. The p-value calculated by 

CTD for these modules, as well as the significance of their linear regression with response, and 

whether the larger module was identified as informative by WGCNA can be found in Supplemental 

Table 1. 

An example of an informative submodule for the carboplatin epithelial network is shown in Figure 

4C, while an example of an informative docetaxel epithelial submodule is shown in Figure 4D. 

For carboplatin, five genes were identified as informative for response in the epithelial network 

(MSI1, TMSB15A, ARHGDIB, GGT1, SV2A) and four genes were identified as informative in the 

stromal network (SEC14L2, SERPINI1, ADAMTS20, DGKQ) (Figure 4E). For docetaxel, four 

genes were identified as informative in the epithelial network (ITGA7, MAGED4, CERS1, 
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ST8SIA2) and two genes were identified as informative in the stromal network (KIF24, PARPBP) 

(Figure 4F).   

We then combined the stromal and epithelial RNAseq expression profiles for each of the PDX 

tumor models to generate a pseudo-bulk expression profile for each PDX. To show the 

directionality of these informative genes relative to response, we plotted the expression of our 

informative panel in the pseudo-bulk expression profiles for the carboplatin genes (Figure 5A) and 

the docetaxel genes (Figure 5B) relative to quantitative drug responses. In both cases, an 

expression gradient can be observed across PDX with respect to response.  

 

Protein Multigene Biomarker Evaluation  

Because our total proteome data were more sparse, WGCNA did not perform well enough to  

evaluate the WGCNA/CTD approach. To determine if the multigene biomarkers that were 

identified with RNA expression data were also predictive of response using protein data, we 

leveraged a mass spectrometry-based total proteomics dataset for the same PDX models. The 

proteins were separated into those expressed in cancer cells and those expressed in the murine 

stroma by the gpGrouper algorithm (Saltzman et al., 2018). We then identified proteins whose 

expression was significantly correlated to response and compared the list of identified proteins to 

both our multigene markers and the informative submodules (Supplemental Table 2).  

 

For carboplatin, we found that three of our informative genes at the mRNA level were also 

significantly correlated (p < 0.05) with response at the protein level (MSI1, ARHGDIB, DGKQ,), 

as well as two other genes (MAGED4, MAGED4B) that were found in gene expression submodules 

that were informative for carboplatin response (Supplemental Table 2). The Fisher’s exact test for 

the intersection of informative genes identified by the WGCNA/CTD approach and proteins 

correlated to response was significant with a p-value of 0.002.  

 

For docetaxel, only one of the proteins significantly correlated with response (KIF18B) was also 

identified in a CTD submodule. The Fisher’s exact test was marginally significant for this 

comparison with a p-value of 0.1. The identification of a subset of informative gene biomarkers 

through an independent protein analysis further increased our confidence in the multi-gene RNA 

biomarkers. 
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Enrichment By Text Mining Using The WGCNA/CTD Approach And Literature Search 

To determine if the WGCNA/CTD method enriched for genes that were previously shown to be 

associated with chemotherapy resistance, we employed a text mining approach. iTextMine (Ren 

et al., 2018) was used to query which of the genes identified by WGCNA alone, as well as in our 

informative panel were also identified in other studies as linked to the term “chemoresistance”. Of 

the 15 WGCNA/CTD genes, two (13%) were also identified with the text mining approach 

(Fisher’s test p-value = 0.06), as opposed to only 16 (4%) of the 390 WGCNA genes (Fisher’s test 

p-value = 0.11). The genes identified by both the WGCNA/CTD approach and text mining were 

MSI1 and ARHGDIB. As well as identifying a smaller more biologically tractable set of genes, the 

addition of CTD to the standard WGCNA approach also enriched for genes that have previously 

been linked to the term “chemoresistance” in the literature.  

 

To determine more rigorously if our multigene biomarkers were associated with cancer 

progression or response to therapy previously, we then conducted a literature search. For the 

carboplatin multigene biomarker panel, we found that: MSI1 was associated with lung cancer 

malignancy (Lang et al., 2017) and stem cells in breast cancer (Lagadec et al., 2014), TMSB15A is 

predictive of response in TNBC (Darb-Esfahani et al., 2012), ARHGDIB is associated with breast 

cancer progression and is associated with drug resistance (Bozza et al., 2015; Zhang et al., 2005), 

GGT1 is linked to breast cancer progression and prognosis (Staudigl et al., 2015), SERPINI1 may 

be associated with the survival of cancer cells (Valiente et al., 2014),  and ADAMTS20 is 

associated with the grade of breast cancer (Guo et al., 2018).  

 

For the docetaxel multigene biomarkers, we found that: ITGA7 is associated with worse prognosis 

and migration in breast cancer (Bai et al., 2019; Bhandari et al., 2018) and is a stem cell marker in 

squamous cell carcinoma(Ming et al., 2016), breast cancer patients with an overexpression of 

MAGED4 had worse survival (Jia et al., 2019), CERS1 is associated with cancer cell death in head 

and neck squamous cell carcinomas (Dany and Ogretmen, 2015), and PARPBP has previously 

been identified in breast cancer as a marker of therapy resistance (Chen et al., 2020).  

Additionally, SV2A (Bandala et al., 2015) and KIF24 (Kim et al., 2015) were found to be 

overexpressed in breast cancer cell line data.  
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Comparison Of The WGCNA/CTD Approach With Other Feature Selection Methods 

We then investigated how the combined WGCNA/CTD approach compared to three widely used 

feature selection methods (correlation, recursive feature elimination with a random forest model, 

and WGCNA hub genes). For evaluation of the WGCNA only approach, we identified modules 

whose eigengenes were correlated to response, and then determined which genes had the highest 

gene significance. For the correlation and recursive feature selection approaches, we identified the 

top 10 genes (as our WGCNA/CTD approach identified 9 genes for carboplatin and 6 genes for 

docetaxel) that were related to response in both the stromal and epithelial compartments. While a 

few genes were identified with multiple methods, most potentially informative genes were unique 

to the feature selection method used (Figure 5C, Figure 5D). Genes that were identified as 

potentially informative with multiple methods included: RFC5, SV2A, GGT1, MAGED4, 

MAGED4B, MSI1 for carboplatin, and ASGR1, IQSEC1, LYRM2, MAGED4, ST8SIA2 for 

docetaxel, with only MAGED4 represented in both panels.  

 

 

WGCNA/CTD Outperforms Other Methods Of Feature Selection With Respect To Predictive 

Value. 

To evaluate CTD as an informative feature selection method, we tested each of these feature 

selection methods for their performance predicting treatment response using “pseudo-bulk” 

RNAseq data reconstructed from the PDX epithelial and stromal RNAseq gene expression 

datasets.  We built these pseudo-bulk profiles by summing the epithelial and stromal mRNA 

expression values for common genes to approximate human clinical bulk RNAseq better. To 

evaluate the performance of each feature selection method with a linear model within our dataset, 

we compared the Mean Absolute Error (MAE) (Figure 5E) and Root Mean Square Error (RMSE) 

(Figure 5F) from the quantitative response predictions using a 70/30 training/test set splitting 

approach of the source data, which were reshuffled 10 times. While each feature selection method 

identified a largely unique set of genes, we found that the WGCNA/CTD approach outperformed 

the others, including WGCNA alone, when predicting quantitative response of PDX models to 

both carboplatin and docetaxel (Figures 5E-5F).  

 

Preclinical Validation Of Differential Chemotherapy Response Predictors 
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For potential validation in other PDX datasets and in clinical trial response assessments, we 

converted our quantitative response assessments to a qualitative modified RECIST 1.1 

classification for each PDX. We then determined how predictive our models were for both 

Complete Response (CR) vs. all else, and for CR and Partial Response (PR) vs. all else using the 

full 50 PDX dataset.  

 

For this analysis, 70% of the pseudo-bulk RNAseq samples were used to train quantitative GLMs 

of response which was tested on the 30% test set. The training and test sets were reshuffled 10 

times to ensure that our results were not specific to a training/test set.  The GLMs were predictive 

in the test set for both carboplatin (MAE = 3.21, RMSE = 3.8) and docetaxel (MAE = 2.37, RMSE 

= 2.87). ROC curves were constructed using LOOCV for each of the treatments for two response 

cutoffs: complete response (CR) vs. all else, and complete response plus partial response (CR/PR) 

vs. all else.  The AUC for each combination of treatment and response cutoffs were calculated and 

are as follows: carboplatin CR/PR AUC = 0.80, docetaxel CR/PR   = 0.80, carboplatin CR AUC 

= 0.85, docetaxel CR AUC = 0.64 (Figure 6A, Figure 6B). Within our PDX dataset, we found that 

both the carboplatin biomarker panel and the docetaxel biomarker panel were informative for both 

quantitative and qualitative response.  

 

To be maximally useful, biomarker panels predictive of differential drug response should be 

informative for choosing which drug might be more effective in which tumors. To evaluate our 

ability to choose which chemotherapy agent, docetaxel or carboplatin, would have the best 

response in each PDX, we used a Leave One Out Cross-Validation (LOOCV) approach to predict 

the quantitative response of each PDX to both carboplatin and docetaxel.  

 

Across all the PDX models, the accuracy in predicting the best response was 69% (Figure 6C). 

However, we are particularly interested in predicting the differential response in PDXs with large 

differences in their carboplatin and docetaxel response. By limiting our scope to PDXs whose 

predicted responses to both agents differed by a log2 fold-change of more than two, the accuracy 

of our predictions rose to 78% (Figure 6D). Thus, using this approach, we can 1) identify the 

subset of models for which an accurate prediction can be made, and 2) predict the best therapy for 

these models, both with good precision.  
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Preclinical Validation: Multigene Biomarker Panels Are Predictive For Chemotherapy Response 

In Other PDX Datasets 

To test the predictive power of both our GLMs and our gene panels, we tested our predictive 

models on other PDX data sets (Table 1) with either associated RNAseq (within platform) or 

Affymetrix array (across platform) gene expression data. With respect to within platform 

validation, the carboplatin and docetaxel GLMs were tested in a PDX dataset with RNAseq and 

qualitative drug response from the Rosalind & Morris Goodman Cancer Research Centre 

(GSE142767)(Savage et al., 2020). Of the PDXs in this dataset (n=37), 30 had RECIST-like single 

agent response data for cisplatin and paclitaxel.  Despite the differences in the PDX composition 

and the specific therapies used (cisplatin vs. carboplatin and paclitaxel vs. docetaxel), we found 

that our multigene biomarker panels were predictive in this dataset (AUC 0.60-0.67). Using the 

GLM for carboplatin built on our dataset, we found that AUCs for cisplatin response in this dataset 

were 0.67 for CR vs. all else, and 0.60 for CR/PR vs. all else (Figure 7A, Figure 7B). Similarly, 

when we applied the docetaxel GLM built on our dataset, the AUCs for paclitaxel response were 

0.60 for CR vs. all else, and 0.67 for CR/PR vs. all else (Figure 7A, Figure 7B). Thus, our 

biomarker panels had predictive power for therapies that were in the same class (taxane vs. 

platinum-based).  

 

To test the cross-platform performance of our biomarker panel, the predictive power of our 

carboplatin biomarker was tested in a gene expression Affymetrix array dataset from the Curie 

Institute (n = 37) evaluating qualitative responses following treatment with cisplatin. Due to the 

platform differences in between array data, and the RNAseq data from which the GLMs were built, 

this dataset was used to validate the carboplatin informative genes, but not the carboplatin GLM 

itself. To determine the predictive power of the biomarkers, an XGBoost tree model was built with 

LOOCV over the 9 informative genes for carboplatin. The AUC of this model was 0.66 (Figure 

7C). Thus, by leveraging other publicly available PDX datasets, we have shown that the multigene 

panels are predictive across preclinical datasets and across gene expression platforms.  

 

Clinical Validation: Predictive Power Of The Platinum Multigene Biomarker Panel 
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To investigate the predictive power of our PDX-based platinum response signature in a clinical 

dataset, we tested our carboplatin GLM on an array dataset with 24 TNBC patient samples 

(GSE18864)(Silver et al., 2010). These patients were treated with a cisplatin monotherapy and had 

response to therapy measured qualitatively with the RECIST 1.1 classification system. For this 

analysis we also used an XGBoost tree model (LOOCV), this time using the 9 informative genes 

for carboplatin response. The AUC for this model was 0.73 (Figure 7D), demonstrating that we 

have predictive power in a clinical dataset for platinum response.  

To determine if the expression of stromal genes indeed contributed to the predictive power of the 

clinical model, we determined the variable importance rankings for this model using the varImp 

function from caret. The stromal genes were ranked second (DGKQ), third (ADAMTS20), fifth 

(SEC14L2), and ninth (SERPINI1) out of the nine genes for importance. This suggests that both 

stromal genes and epithelial genes contributed predictive power to our multigene biomarker panel.  

 

Clinical Validation: Predictive Power Of The Taxane Multigene Biomarker Panel 

We also tested the predictive power of our taxane GLM and biomarker panel by evaluating the 

docetaxel GLM on a subset of TNBC patient samples from the BrighTNess clinical trial who were 

treated with paclitaxel. While full RECIST 1.1 calls were not available, patients were evaluated 

for pathologic complete response vs. not (GSE164458) (Loibl et al., 2018). Although the GLM 

was built using PDX models showing fewer CR relative to the number observed for carboplatin, 

as well as using a different taxane (docetaxel vs. paclitaxel), we still had predictive power in this 

clinical dataset (AUC = 0.59) (Figure 7E). The contribution of the stromal genes to the taxane 

prediction in the BrighTNess trial was also evaluated using the variable importance rankings 

function from caret. We found that here too the stromal genes contributed to the model and were 

ranked first (PARPBP) and fourth (KIF24) out of the six genes for informativeness.  

 

Discussion 

PDX models represent a wide range of TNBC patients and recapitulate tumor of origin responses, 

to docetaxel, making them a viable system to identify biomarkers of response and resistance.  

PDX models have emerged as useful preclinical tools. Unlike cell line models, PDXs have the 

advantage of modeling the patient tumor epithelium and its interaction with the stromal 

microenvironment, albeit mouse-derived. Herein, we demonstrate that the cohort of TNBC PDXs 
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used in this study are highly representative of two widely used cohorts human tumors (TCGA and 

CPTAC) with respect to in copy number alteration patterns, mutation frequency, and gene 

expression profiles at both the transcriptomic and proteomic levels. Further, we demonstrate that, 

at least for taxanes, the responses of PDX to docetaxel are qualitatively similar to the responses of 

the tumors-of-origin in the patient when treated with docetaxel or paclitaxel. This high degree of 

concordance allowed us to treat the TNBC as a preclinical cohort to develop multigene biomarker 

panels predictive of differential response to two commonly used first line agents: platinums 

(carboplatin and cisplatin) and taxanes (docetaxel and paclitaxel).  

 

The Addition Of CTD To The Standard WGCNA Approach Is A Methodological Advancement That 

Allows For The Identification Of Multigene Biomarker Panels Associated With A Phenotype Of 

Interest 

To identify our gene biomarker panels, we first had to address a methodological issue. The initial 

gene modules identified by WGCNA were large, and it was difficult to determine which specific 

genes were contributing to the modules being associated with response. By adding CTD to the 

standard WGCNA approach we identified highly connected sets of genes and identified specific 

genes that contributed to the predictive power of the smaller submodules. The biomarker panels 

identified by this approach outperformed several methods that are commonly used for feature 

selection including correlation analysis, a recursive feature extraction approach, and the hub genes 

identified with the standard WGCNA approach.  Additionally, a literature search shown that many 

of our genes have been shown to play a role in cancer progression or resistance to therapy.  

 

Within the carboplatin and docetaxel response prediction panels, we identified both stromal and 

epithelial genes whose differential expression is predictive of differential response to both classes 

of chemotherapy agents. Although murine stromal genes were identified as part of the original 

biomarker panels, their human homologs were shown to be predictive in the clinical cohort. The 

identification of predictive stromal genes in this analysis is also supported by studies that have 

previously associated breast cancer stromal cells with both progression and resistance (Conklin 

and Keely, 2012; Criscitiello et al., 2014; Dittmer and Leyh, 2015; Farmer et al., 2009; Plava et 

al., 2019).  
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Multigene biomarkers proved predictive across expression platforms and chemotherapy agent 

classes 

By testing our multigene biomarkers across datasets with different platforms and agents, we 

determined that 1) our multigene biomarkers are predictive in both RNAseq and microarray 

datasets and 2) the multigene biomarkers developed for carboplatin and docetaxel are predictive 

for other chemotherapy agents of the same class (platinums and taxanes, respectively). A subset 

of the informative genes identified in this study were also identified with text mining and with 

proteomics data. Interestingly, although the protein dataset was computationally separated to only 

include proteins that were expressed in human cells, one of the proteins that was correlated with 

response, DGKQ, was identified in the stromal carboplatin network. This suggest that perhaps this 

gene/protein is informative when it is expressed in both the murine stromal and human cancer 

cells.  

 

While our study focused on identifying biomarkers of chemotherapy response, CTD can be applied 

to other data types and has previously been used to identify patterns of metabolic perturbations 

(Thistlethwaite et al., 2021). In future analyses, CTD could be applied to multiple data types to 

create a multi-omics signature of resistance. Our approach could also be applied to any biological 

problem that uses highly heterogenous, or highly dimensional data to identify specific biomarkers 

related to any phenotype of interest. 
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Figure Legends 

 

Figure 1: Copy number variation is quantitatively and qualitatively similar in TNBC PDX models 

and TNBC clinical samples 

Figure 1A: Copy number variation comparison between the PDXs and the TNBC clinical samples 

in TCGA with a heatmap.  

Figure 1B: Hierarchical clustering of PDXs among the TCGA TNBC samples with copy number 

variations to illustrate the distribution of PDX models within human clinical samples. PDX 

samples are in red and TCGA samples are in black. 

 

Figure 2: Mutational load is similar in TNBC PDXs and TNBC clinical samples 

Figure 2A: Mutational load of PDX models and TNBC TCGA samples show similar mutational 

profiles in highly mutated genes.  

Figure 2B: Waterfall plot showing the distribution of the types of mutations found in the PDX 

models.  

 

Figure 3: Deep RNAseq and proteomics reveal similarities between PDX models and TCGA 

clinical breast cancer samples. 

Figure 3A: Hierarchical clustering of TCGA and PDX models over the PAM50 gene signature.  

Figure 3B: Hierarchical clustering of TCGA and PDX models over the top 1,000 most variable 

proteins.  

 

Figure 4: CTD connects the dots to identify multigene biomarker panels of response to carboplatin 

and docetaxel. 

Figure 4A: CTD is a network method that can be used to “connect the dots” and identify highly 

connected sets of genes. CTD takes a weighted graph and a set of nodes of interest (grey) and 

outputs a set of highly connected genes (purple) with a p-value of connectedness.  

Figure 4B: Highly connected nodes may be connected through their latent connection to response. 
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Figure 4C: CTD carboplatin epithelial Submodule 5 which contains 3 informative genes 

highlighted with a star.  

Figure 4D: CTD docetaxel epithelial Submodule 23 which contains one informative gene 

highlighted with a star. 

Figure 4E: Table of all the informative genes for carboplatin identified with the WGCNA/CTD 

approach.  

Figure 4F: Table of all the informative genes for docetaxel identified with the WGCNA/CTD 

approach. 

 

Figure 5: CTD outperforms other feature selection methods when selecting informative genes and 

is predictive in our PDX cohort 

Figure 5A: Heatmap of informative genes for carboplatin across all PDXs from most responsive 

(left) to most resistant (right). CR – complete response, PR- partial response, SD – stable disease, 

PD – progressive disease 

Figure 5B: Heatmap of informative genes for docetaxel across all PDXs from most responsive 

(left) to most resistant (right). CR – complete response, PR- partial response, SD – stable disease, 

PD – progressive disease 

Figure 5C: Overlap between genes predicted to be informative for carboplatin. 

Figure 5D: Overlap between genes predicted to be informative for docetaxel. 

Figure 5E: MAE comparison of 4 different methods (red = WGCNA/CTD approach, orange = 

correlation, green = recursive feature extraction, purple = using the WGCNA hub genes) 

Figure 5F: RMSE comparison of 4 different methods (red = WGCNA/CTD approach, orange = 

correlation, green = recursive feature extraction, purple = using the WGCNA hub genes) 

 

Figure 6: Multigene biomarkers are predictive of qualitative response and are also predictive of 

the best therapy for each PDX.  

Figure 6A: ROC for complete and partial response (CR/PR) vs. all else. The ROC for docetaxel is 

red and the ROC for carboplatin is blue.  

Figure 6B: ROC for complete partial response (CR) vs. all else. The ROC curve for docetaxel is 

red and the ROC for carboplatin is blue.  
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Figure 6C: The best response predictions for all PDXs. If both the actual best therapy and the 

predicted best therapy is carboplatin, the dot is blue. If both the actual best therapy and the 

predicted best therapy is docetaxel, the dot is red. If the best therapy and the predicted best therapy 

don’t match the dot is black. 

Figure 6D: The best response predictions for PDXs that have a predicted log2 fold change of more 

than 2. If both the actual best therapy and the predicted best therapy is carboplatin, the dot is blue. 

If both the actual best therapy and the predicted best therapy is docetaxel, the dot is red. If the best 

therapy and the predicted best therapy don’t match the dot is black. 

 

Figure 7: Multigene biomarkers are predictive of qualitative response in other PDX datasets and 

in a clinical human data set with response to cisplatin 

Figure 7A: ROC of response predictions in the RMGCRC PDX cohort for complete and partial 

response (CR/PR) vs. all else. The ROC for predictions for cisplatin is in blue, and the ROC for 

predictions to paclitaxel is red.  

Figure 7B: ROC of response predictions in the RMGCRC PDX cohort for complete response (CR) 

vs. all else. The ROC for predictions for cisplatin is in blue, and the ROC for predictions to 

paclitaxel is red.  

Figure 7C: ROC of response prediction for cisplatin response in the Curie cohort. 

Figure 7D: ROC of response prediction for cisplatin response in a human clinical cohort (DFCI). 

 

Methods: 

Patient Derived Xenograft Model Selection and Chemotherapy Response 

Information related to publicly available PDX models from Baylor College of Medicine (BCM) 

and the Huntsman Cancer Institute (HCI) can be found on the BCM PDX portal 

(https://pdxportal.research.bcm.edu/). Single agent docetaxel, carboplatin and untreated/vehicle 

control data were derived from three separate preclinical trials (to be described in full elsewhere).  

In total, 50 TNBC PDX models were treated across these three preclinical trials. To define a 

homogenous set of tumors that did not over-represent any particular group of patient samples, we 

eliminated PDX models that did not match an immunosuppressed basal profile or were derived 

from the same patient as other models in this collection. Ultimately, 45 PDX were used for the 

generation of predictive models this study (Supplemental Table 3).  
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Each of the three preclinical trials used the same treatment strategy. Briefly, PDX-bearing mice 

were treated with four weekly cycles of docetaxel (20mg/kg, IP) (low human equivalent dose), 

carboplatin (50mg/kg, IP) (human equivalent dose AUC6), or left untreated for four weeks. A 

subset of models also received docetaxel at 30mg/kg (high human-equivalent dose). In addition, a 

subset of PDX models for whom we had clinical responses of the tumor-of-origin were also treated 

with doxorubicin (3mg/kg)/cyclophophamide (100mg/kg) (AC), but human-equivalent doses 

could not be achieved under the conditions used.  

 

Tumor volume was assessed twice weekly using calipers. Treatment responses were evaluated 

quantitatively by the log2 fold-change in tumor volume relative to their volume prior to treatment 

(~ 200mm3). A qualitative “best clinical response” was assigned using a modified RECIST 1.1 

criteria allowing for more direct comparison with tumor response in patients. Complete response 

(CR) was defined as non-palpable. Partial response (PR) was defined as those PDX showing >30% 

reduction in tumor volume, but not reaching the non-palpable state. PDX lines showing stable 

disease (SD) showed a <30% decrease, and no more than a 20% increase over starting volume. 

PDX lines showing progressive disease (PD) increased > 20% over starting volume vs. vehicle 

control at the end of the study. Quantitative response is summarized in Supplemental Table 3. 

 

Genomic Sequencing 

DNA sequencing was performed by core facilities at BCM and Cornell University. Exome 

Sequencing Libraries were prepared using the Agilent SureSelect XT v6.0 Human kit. Sequencing 

was performed on an Illumina HiSeq 4000 machine (PE, 2x100 cycles, ~133X estimated coverage 

per sample) at Cornell. At BCM, sequencing was performed on Illumina NovaSeq machine (PE, 

2x100, ~200M read pairs per sample). Separation of human and mouse reads, alignment to the 

reference genome, variant calling, and annotation were performed using the PDXNet Tumor-Only 

Variant Calling pipeline developed by the Jackson Laboratory and hosted on the Cancer Genomics 

Cloud.  

 

Baseline RNAseq Transcriptomics 
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For RNA extraction from untreated PDX tissue, snap frozen tissue from an early transplant 

generation (e.g. TG1-TG5) xenograft-derived tumors were harvested and stored at -80 °C prior to 

use. For library preparation, the NuGEN Ovation RNAseq v2 Kit (protocol p/n 7102, reagent kit 

p/n 7102-08) along with ThermoFisher’s ERCC RNA Spike-In Control Mixes Protocol 

(publication number 4455352, rev. D) and either the Illumina TruSeq DNA-Seq (protocol p/n 

15005180 Rev. C, June 2011, reagent kit p/n FC-121-2001) or the Rubicon ThruPlex DNA-Seq 

(protocol: QAM-108-002, kit p/n R400428) protocols were used.  

  

FastQ file generation was executed using bcl2fast software or Illumina's cloud-based informatics 

platform, BaseSpace Sequencing Hub.  

 

Baseline Mass Spectrometry-based Proteomics 

The mass spectrometry proteomic iBAQ values were obtained for the same set of PDX models. 

To identify proteins that are specifically expressed in the human cancer cells, gpGrouper was used 

to deconvolute murine vs human proteins. The iBAQ values were then used to identify 

differentially expressed proteins.  

 

 

 

 

 

Bioinformatics Analyses And Comparisons With TCGA And CPTAC Samples 

DNA Sequencing Data Processing 

All raw FASTQ files were subjected to QC verification by FASTQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and were trimmed for adapter 

sequences with TrimGalore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). 

Whole Exome FASTQ files were processed using the Tumor-Only Variant Calling pipeline 

(Evrard et al., 2019) developed by the Jackson Laboratory for PDXNet hosted on the Cancer 

Genomics Cloud. This pipeline uses Xenome(Conway et al., 2012) to separate human epithelial 

reads and mouse stromal reads, then aligns human reads against the GRCh38 human genome using 

bwa (Li, 2013). It then uses GATK MuTect2 (DePristo et al., 2011; Marx, 2013; McKenna et al., 
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2010) to call variants and SnpEff/SnpSift (Cingolani et al., 2012a, 2012b) to annotate variants, 

generating per-sample VCF and tabular outputs for downstream analyses. Further annotation with 

gnomAD (Karczewski et al., 2020) and CLINVAR (Landrum et al., 2017) was performed which 

added information by matching locus fields (Chromosome, Position, Reference and Alternate 

alleles) to standard annotation VCF files. Multi-allelic sites were decomposed to ensure Alternate 

alleles matched exactly with annotation sources. 

 

Copy Number Analysis 

A set of 6 normal breast tissue samples were subjected to Whole Exome Sequencing both at 

Cornell and Baylor to serve as platform-matched normal samples. These platforms matched 

normal samples were run through the Variant Calling pipeline to obtain platform-matched normal 

BAMs. CopywriteR(Kuilman et al., 2015) was used on each tumor BAM file obtained from the 

Variant Calling pipeline, and a random platform-matched normal BAM was used as control. 

CopywriteR uses depth information from off-target reads to calculate segment-level copy number 

data. This segment level data was then processed using GISTIC2.0(Mermel et al., 2011) to obtain 

raw and threshold gene-level and focal-level copy number information. 

 

Comparison with TCGA Samples 

Mutation, Copy Number and Clinical Biomarker data for TCGA-BRCA samples was obtained 

using the TCGABiolinks package. TCGA-BRCA samples and PDX models were grouped based 

on their ER/PR and HER2 IHC status, and each TCGA group was compared with its equivalent 

group of PDX models. 

 

Mutation frequency was computer per gene for all TCGA and PDX groups and compared among 

TNBC, ER+ and HER2+ groups. Similarly, Copy Number segment data was plotted per group to 

visualize common patterns in each group. To examine similarities between TNBC TCGA samples 

and TNBC PDX models, the segment level data for all TNBC samples across the groups were 

analyzed with GISTIC2.0 and the focal level copy number changes were used to generate a 

distance matrix and dendrogram using the R packages ggplot2(Wickham, 

2016),dendextend(Galili, 2015) and circlize (Gu et al., 2014). A similar analysis was also done for 

ER+ and HER2+ groups. 
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Gene Expression Quantification 

RNAseq FASTQ files were processed using Xenome to separate murine stromal reads and human 

epithelial reads, which were both then quantified with rsem-calculate-expression. A reference 

index was created for RSEM (v1.3.0) (Li and Dewey, 2011) using rsem-prepare-reference on the 

hg38 and mm10 genome assembly (FASTA) and transcript feature (GTF) files. Expected counts 

from RSEM were collated to create a genes-by-samples matrix. This matrix was Upper-Quantile 

normalized per-sample to account for differences in sequencing depth. 

 

Network Building  

To identify genes that could be predictive of response to chemotherapy, we used a gene network 

approach. For both the human and mouse reads, a network was built over all of the PDXs and the 

responsive PDXs for both carboplatin and docetaxel independently. The gene expression data was 

obtained from deep RNAseq (~200M reads/sample) of the PDXs. Preprocessing included 

removing genes that were expressed in less than 20% of the samples or had a low expression across 

all of the samples. The five thousand most variable genes were then selected for the human and 

mouse reads. These genes were used to build the species-specific networks. The following graphs 

were built: an epithelial graph with all the PDXs, an epithelial graph with the samples that are 

responsive to carboplatin, an epithelial graph with the samples that are responsive to docetaxel, a 

stromal graph from all the samples, a stromal graph with the samples that are responsive to 

carboplatin, and a stromal graph with the samples that are responsive to docetaxel. The graphs 

were then pruned to remove weak edges (defined as having an edge weight of <0.2). The graphs 

built from all the samples were then pruned to remove the edges that were also found in the 

responsive graphs. This was done for both carboplatin and docetaxel in both the epithelial and 

stromal compartments to identify signatures linked to resistance and potentially resistance 

mechanisms. 

 

Module Discovery and the Application of CTD 

Coarse modules were defined in the pruned graphs by applying WGCNA’s cutreeDynamic 

function. These modules were large, so we used CTD(Thistlethwaite et al., 2021) to identify highly 

connected genes within the modules. This allowed us to identify smaller and more biologically 
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tractable sets of genes. We then determined which of these submodules and which specific genes 

within these submodules were informative for resistance.  

 

Text Mining  

To determine if our method selected genes associated with for chemotherapy resistance genes in 

comparison to the standard WGCNA approach, we utilized a text mining tool, iTextMine(Ren et 

al., 2018) 

 

Predicting response to chemotherapy  

The genes identified as informative were used to predict the response to carboplatin and docetaxel 

and the combination treatment. To model bulk patient data better, a pseudo-bulk profile was first 

made for each of the PDXs in our collection by summing the human epithelial reads and the murine 

stromal reads. Ten balanced 30% test and 70% training sets were defined using caret’s (Kuhn, 

2008)createDataPartition function for each treatment. For each of these training/test permutations, 

the training set was used to create a quantitative GLM, whose performance was then tested on the 

test set. The mean absolute error and root mean square error were calculated for each training/test 

permutation and the observed vs. predicted log2 (fold change) was plotted. An LOOCV approach 

was used to determine the predictive power of our model in determining resistance vs. response as 

defined by RECIST criteria. The quantitative response for each sample was predicted, then the 

AUC was calculated to determine based on the qualitative response. 

 

Comparison of our WGCNA/CTD approach to other feature selection methods 

To compare the MAE and RMSE of the WGCNA/CTD approach to other commonly used feature 

selection methods, we also choose potentially informative genes with three other commonly used 

feature selection methods (correlation, recursive feature extraction, hub genes from informative 

WGCNA modules). Correlation - for each treatment the top 10 most correlated epithelial and 

stromal genes were determined. Recursive feature extraction – for each treatment the top 10 most 

informative epithelial and stromal genes were determined. Hub genes – to identify the hub genes 

for each treatment, WGCNA modules whose eigengene was correlation with response > 0.35 were 

identified. Then genes with a >0.75 correlation with the module eigengene and a >0.2 correlation 

with response were identified as the hub genes. For carboplatin there were 14 epithelial WGCNA 
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hub genes and no stromal WGCNA hub genes. For docetaxel there were 26 epithelial WGCNA 

genes and 1 stromal WGCNA gene. 

 

Rosalind & Morris Goodman Cancer Research Centre RNAseq PDX dataset prediction 

An RNAseq dataset and qualitative response were obtained from GEO (GSE142767) (n = 37). The 

majority of these PDX models were Basal-like and triple negative, however there were some PDX 

models that were classified as HER2(7) or positive for ER (5) or the HER2 enrichment (3).  

A GLM was built over all 45 PDXs in our collection over the informative genes for carboplatin, 

and this GLM was then applied to the validation RNAseq dataset. A ROC curve was then 

calculated to determine the predictive power of the GLM in predicting if the PDX has CR vs. all 

else or CR and PR vs. all else. 

 

Curie dataset prediction  

The Curie dataset was obtained from the Curie institute. This dataset consists of the Affymetrix 

array expression of 37 TNBC PDXs and the human equivalent response to cisplatin. Due to the 

inconsistencies between the array and RNAseq platforms, an XGBoost tree model (LOOCV) was 

built over the carboplatin multigene biomarker with the xgbTree option in caret for this dataset to 

determine the AUC and predictive nature of these genes. 

 

Dana-Farber Cancer Institute TNBC patient array dataset prediction 

The Dana-Farber (GSE18864) dataset was obtained from GEO (Silver et al., 2010). This dataset 

included array data from 24 patient biopsies as well as qualitative response of these patients to 

neoadjuvant cisplatin. These patients were part of a cohort of 28 women with TNBC that were 

treated with neoadjuvant cisplatin every 21 days. An XGBoost tree model (LOOCV) was built 

over the carboplatin multigene biomarker with the xgbTree option in caret for this dataset to 

determine the AUC and predictive nature of these genes. 

 

BrighTNess TNBC patient RNAseq dataset prediction 

RNAseq and patient response to paclitaxel was obtained for the BrighTNess (GSE164458) dataset 

from GEO (Loibl et al., 2018). Data from arm C, single agent paclitaxel in 123 patients were used 
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for this study. A GLM was built for the PDXs in our collection over the informative genes for 

docetaxel, and this GLM was then used to predict the response (pCR or not) to paclitaxel. 
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