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Abstract 

Insecticide resistance is a major threat to gains in malaria control, which have been stalling 

and potentially reversing since 2015. Studies into the causal mechanisms of insecticide 

resistance are painting an increasingly complicated picture, underlining the need to design 

and implement targeted studies on this phenotype. In this study, we compare three 

populations of the major malaria vector An. coluzzii: a susceptible and two resistant colonies 

with the same genetic background. The original colonised resistant population rapidly lost 

resistance over a 6-month period, a subset of this population was reselected with 

pyrethroids a third population of this colony that did not lose resistance was also available. 

The original resistant, susceptible and re-selected colonies were subject to RNAseq and 

whole genome sequencing, which identified a number of changes across the transcriptome 

and genome linked with resistance. Firstly, an increase in the expression of genes within the 

oxidative phosphorylation pathway were seen in both resistant populations compared to 

the susceptible control; this translated phenotypically through an increased respiratory rate, 

indicating that elevated metabolism is linked directly with resistance. Genome sequencing 

highlighted several blocks clearly associated with resistance, including the 2Rb inversion. 

Finally, changes in the microbiome profile were seen, indicating that the microbial 

composition may play a role in the resistance phenotype. Taken together, this study reveals 

a highly complicated phenotype in which multiple transcriptomic, genomic and microbiome 

changes combine to result in insecticide resistance. 

 

Background 

Over 80% of the reductions seen in malaria incidence since the turn of the century have 

been directly attributed to the use of insecticide-based vector control tools 
1
. Despite these 

significant declines in malaria related morbidity and mortality, progress has stalled in the 

last three years, with evidence that malaria case numbers are again on the rise 
2
. The 

plateau seen in malaria cases corresponds strongly with the spread of insecticide resistance 

in the major Anopheline vectors, allowing some mosquito populations to survive multiple 

exposures to key vector control interventions with no impact on their lifespan 
3,4

. Extremely 

high levels of insecticide resistance are now found in some settings due to the intense 

selection pressure caused by the use of relatively few public health insecticides and the use 

of the same classes of insecticides for controlling agricultural pests 
2
. For example, 

insecticide treated bednets, the most widely utilised and most effective vector control tool, 
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all contain insecticides from the pyrethroid class 
2
. Furthermore, the use of pyrethroids in an 

agricultural setting adds additional selection pressures in the larval habitats, further 

reinforcing resistance to these chemistries 
5
. To restore efficacy of bednets, next generation 

bednets containing pyrethroid insecticides and a different chemical class are now being 

distributed 
6–8

. The second chemistries contained in the bednets either synergise the effects 

of the pyrethroid through targeting enzymes that break down the insecticide 
6
, act as a 

second slower acting insecticide 
8
 or sterilise female adult mosquitoes 

7
. The efficacy of 

these different classes of nets will depend on the characteristics of the local vector 

population, with cross resistance 
9,10

, or limited synergism 
11

 reported in some settings, that 

may compromise their efficacy in the field. For example, pre-treatment with the metabolic 

detoxification inhibitor PBO, now incorporated into bednets from multiple manufacturers, 

does not always result in full susceptibility 
12

. Thus, an understanding of the causes of 

resistance is important for the development, evaluation, and implementation of new vector 

control tools. 

 

Insecticide resistance in Anopheles coluzzii, one of the most important African malaria 

vectors, is multi-faceted and recent work has revealed previously unexplored mechanisms 

that are contributing to the pyrethroid resistance phenotype 
13–15

. The first pyrethroid 

resistance mechanism to be described was target site resistance, these are single nucleotide 

polymorphisms found within the protein targeted by the insecticide rendering them less 

effective 
16,17

. Pyrethroid insecticides target the para gated sodium channel and several 

mutations in this gene have been shown to contribute to increased resistance 
16

. Another 

less well characterised resistance mechanism is the thickening of the cuticle 
18

; this reduces 

penetrance of the insecticide and therefore likely results in lower cellular concentrations. 

Metabolic resistance to pyrethroids is largely conferred by specific cytochrome p450s, which 

have been shown to be highly up-regulated across multiple Anopheles populations 
19

 and 

actively metabolise pyrethroid insecticides 
9,20–22

. Recent work has demonstrated a key role 

for the chemosensory protein family in pyrethroid resistance  
13

, and other gene families 

with sequestration functions have also been implicated in this phenotype 
19

. Taken 

together, the mosquito vector can make use of one or more of these mechanisms in parallel 
23

, with recent work demonstrating synergy of different mechanisms 
24

. 

 

Insecticide resistance is further complicated by sub-lethal exposure to insecticides; this is 

especially important in areas of high resistance where mosquitoes may contact insecticide 

multiple times throughout their lifetime 
3
. A number of targeted studies have shown 

induction of genes involved in metabolic resistance, potentially involving oxidative stress 

sensing pathways 
25

 and evidence points to induction of chemosensory proteins post-

exposure 
13

. Indeed, a recent induction study using sub-lethal pyrethroid exposure has 

shown large scale changes in the transcriptome including huge down-regulation of the 

oxidative phosphorylation pathway post-exposure 
15

. Sub-lethal exposure is also important 

in the context of a changing microbiome, which has been shown to be modified upon 

exposure 
26

 and several bacterial species have been linked to the resistance phenotype 
27,28

. 

 

Transcriptomic studies on insecticide resistance are confounded by the use of a susceptible 

species that is lab adapted and has been kept in colony for decades as a comparator 
19

. The 

differences in genetic backgrounds between the resistant population of interest and the 

susceptible control may identify differential expression attributed to the differing genetic 
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backgrounds and not the resistance status of the mosquito. Further, whole genome 

sequence data in anopheline mosquitoes is limited, with the Ag1000 project representing 

the largest resource; however, very few sequenced samples have associated insecticide 

phenotyping data 
29

. These factors make interpretation of big-data -omics in this field more 

difficult and each finding must be extensively validated in the lab, preventing fast 

identification of new or novel resistance mechanisms. 

 

In this study we utilise a highly insecticide resistant population of An. coluzzii colonised in 

2014 from Burkina Faso 
30

  which unexpectedly and rapidly lost resistance within a 6-month 

period. The susceptible colony reared from this population and the subsequent re-selection 

of the colony to full resistance in four generations allows a unique comparison of resistant 

and susceptible mosquitoes with the same genetic background. Here, we use RNAseq and 

single individual whole genome sequence data to identify changes within the mosquito’s 

genome, transcriptome and microbiome contributing to the change in resistance 

phenotype. We show that pyrethroid resistance is associated with higher basal metabolism 

and numerous polymorphisms clustered on large haplotype blocks and we identify a 

number of divergent single nucleotide polymorphisms (SNPs) driving the phenotypic 

change. Finally, we show that changes in the microbiome composition are linked to the 

resistance phenotype and that some of these bacteria increase in frequency in resistant and 

selected mosquitoes. 

 

Results 

Origin of the strains 

A highly resistant An. coluzzii colony collected from Banfora 
30

, Burkina Faso unexpectedly 

and rapidly lost resistance to pyrethroid insecticides 4 years after establishment as a lab 

colony, despite regular selection with the pyrethroid deltamethrin (Figure 1). Resistance was 

restored to pre-loss levels after exposing a subset of the susceptible colony to 3 sequential 

rounds of deltamethrin selection (Figure 1). The temporary loss followed by rapid re-

selection of resistance provided an opportunity to identify the mechanisms responsible for 

pyrethroid resistance in this strain. Throughout the study, Banfora-O will be used to 

reference the original resistant colony, Banfora-R the new re-selected colony and Banfora-S 

the susceptible colony. 
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Figure 1: Phenotyping of three Banfora lines. 24-hour mortality after standard WHO assays 

for (a) 0.05% deltamethrin, (b) 0.75% permethrin and (c) 4% DDT. The Banfora-O population 

mortality is taken from phenotyping 6-months before loss of resistance, both Banfora-S and 

Banfora-R colony phenotypes are shown. Significant difference calculated by ANOVA 

followed by Tukey’s ad hoc test. **** p < 0.0001 and ** p < 0.005.  

 

The restoration of pyrethroid resistance is associated with higher respiration rates 

RNAseq analysis was carried out on four biological replicates from Banfora-O, Banfora-R and 

Banfora-S populations; PCA showed that much of the variance was driven by Banfora-O 

compared to the two sister lines (39%) whilst PC2 separated Banfora-R and Banfora-S (17%) 

(Supplementary Figure 1). The closer relationship between Banfora-R and Banfora-S is not 

unexpected, given their separation of just four generations. To rule out contamination of 

the colony, WGS was performed and discussed below. Significantly down-regulated genes 

found in both Banfora-O and Banfora-R lines when compared to Banfora-S are enriched in 

transmembrane and ion transport (p fisher’s exact test = 9.95e-15, 5.35e-9) and regulation of 

intracellular PH (p fisher’s exact test = 3.17e-5). The up-regulated terms across both populations 

are highly enriched for NADH dehydrogenase activity (p fisher’s exact test = 1.22e-11), oxidative 
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phosphorylation (p fisher’s exact test = 3.6e-13), cellular respiration (p fisher’s exact test = 3.56e-11), 

mitochondrial membrane protein complex (p fisher’s exact test = 7.74e-31) and respirasome (p 

fisher’s exact test = 1.41e-28) suggestive of large changes to basal metabolism (Supplementary 

Table 1). To test this hypothesis, the respiratory rate of Banfora-S and Banfora-R lines was 

measured daily in adult females from age 4 to 7 days. At each time point, the resistant 

mosquitoes respired at a significantly higher rate than the susceptible counterparts, even 

when normalised for size (Figure 2a). Further, the resistant mosquitoes are significantly 

smaller than the susceptible (p t-test = 3.9e-3) with a mean wing length of 2.76mm compared 

to 2.85mm (Figure 2b), indicating body size is related to biological changes resulting in 

resistance.  

 

Increased rates of respiration are linked with increased oxidative stress 
31

. Previous work 

has shown that silencing a key oxidative stress sensing pathway, MafS-Nrf-cnc, is associated 

with a loss of pyrethroid resistance 
25

. In addition to linking the pathway phenotypically with 

resistance, the study also produced a microarray data set characterising genes controlled by 

this pathway 
25

.  Comparisons of the genes regulated by the MafS-Nrf-cnc pathway with 

those differentially expressed between Banfora-R and Banfora-S reveals a high degree of 

overlap. Of the 428 significantly over-expressed and 359 down-regulated genes in this study 

which also present on the microarray chip, 214 and 117 are also regulated by the MafS-Nrf-

cnc pathway respectively, a significant enrichment (p hypergeometric test < 0.0001). Further, the 

majority of genes show opposing expression patterns in the resistant lines and the MafS-

Nrf-cnc pathway knockdown (83.2% of the up-regulated and 91.5% of the down-regulated 

genes) thus indicating that the Banfora-R population has higher expression of genes 

resulting in elevated levels of oxidative stress, possibly resulting from, or leading to, 

elevated respiration rates. 

 

A recent study demonstrated large reductions in the oxidative phosphorylation pathway 

from 4-hours post-pyrethroid exposure 
15

. To determine whether this phenotype is seen in 

the Banfora strain, and to further link respiratory rate to insecticide resistance, Banfora-R 

was exposed to a pyrethroid impregnated bed net and assayed for respiratory rate after 4-

hours. A significant reduction in respiratory rate was seen post-exposure, indicating that 

pyrethroid resistance may require significant metabolic plasticity (Figure 2c). 

 

Evidence for the involvement of metabolic resistance 

In addition to enrichment of gene families associated with respiration, up-regulated genes 

overlapping Banfora-O and Banfora-R are enriched in oxidoreductase activity (p fisher’s exact test 

= 7.35e-4), precatalytic spliceosome (p fisher’s exact test = 5.56e-6) and regulation of gene 

expression (p fisher’s exact test = 2.1e-6) (Supplementary Table 1). The RNAseq data indicates that 

metabolic detoxification may be enabled by relatively few cytochrome p450s, which differs 

from previous transcriptomic studies implicating a wide range of these genes in resistance. 

Indeed, no enrichment of the 113 cytochrome p450s was seen; 8 are down-regulated in 

both Banfora-R and Banfora-O compared to the susceptible population, with just three 

P450s (CYP6M2, CYP6P15P and CYP6AG1), upregulated in both resistant strains; of these, 

CYP6M2 is a known pyrethroid metaboliser 
20

 and is likely contributing to the resistance 

phenotype. qPCR on 9 detoxification candidates shows the same pattern of minimal p450 

involvement (Supplementary Figure 2). A small number of genes from other insecticide 

detoxification families are up-regulated in both Banfora-R and Banfora-O including GSTS1, 
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previously linked to reactive oxygen species metabolism 
32

 (Supplementary Table 1). 

AGAP004690 and AGAP008449 were the highest differentially expressed genes in both 

resistant populations, both of which encode cuticular proteins; CPF3 and CPLCG5 

respectively. In total, 33 genes were over 2-fold differentially expressed across both 

populations compared to the susceptible; in addition to the genes described above, these 

include the ABC transporter ABCC8, three trypsin genes and two NADH dehydrogenase 

subunits. The two most down-regulated genes are AGAP002771 (a protein of unknown 

function) and AGAP011475 an envelysin (a metalloprotease). A total of 32 genes are down 

regulated by 50% or more in the resistant populations, including three cytochrome p450s, 

CYP6Z1, CYP4C36 and CYP304B1.  
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Figure 2: Respirometer and wing measurements for resistant and susceptible lines. (a) 

Centimetres moved per two mosquitoes as corrected for average wing size for each 

mosquito batch (y axis) acts as a proxy measure for the amount of CO2 produced by the 

mosquitoes across the time points (x axis) for Banfora-R and Banfora-S. Significance 
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calculated by a Kruskall-Wallis test. Error bars show median and 95% confidence intervals. 

(b) Wing size measurements for Banfora-R and Banfora-S mosquitoes (c) As in (a) comparing 

Banfora-R unexposed and exposed to the IG1 bed net. Error bars show mean and standard 

deviation. Significance calculated by t-test. **** p < 0.0001, *** p < 0.001, ** p < 0.01 and * 

p < 0.05. 

 

Inversion status but not gene duplications are linked with resistance on this strain 

Whole genome sequencing of the three Banfora colonies revealed long divergent 

haplotypes, but without the fixed differences that would be expected if a colony 

contamination event with a lab susceptible population had occurred (Figure 3a). As with the 

RNAseq, PCA analysis showed that the Banfora-S and Banfora-R populations were more 

similar to each other than the Banfora-O population and again indicate a lack of 

contamination (Figure 3b). Post-filtering 6,928,092 SNPs were called and retained across the 

96 individuals compared to PEST P4 (273,109,044 bases). 

 

Chromosomal inversions are common within the An. gambiae complex 
33

 and using 

informative markers 
34

, inversions on chromosome 2 were seen in the Banfora colonies. The 

2La inversion appeared fixed in the Banfora-O colony (n= 20) but was found at frequencies 

of 38% in Banfora S (n=86) and 48% Banfora R (n= 86) (Figure 3c); the frequency of 2LA did 

not differ between Banfora-R and Banfora-S populations (p fisher’s exact test = 0.187). However, 

significant differences in the frequencies of the inversions on chromosome 2R were 

detected between the colonies. The 2Rb and 2Rc inversions are found at significantly higher 

frequency in Banfora-R (2Rb: 23%; 2Rc: 9%) (p fisher’s exact test < 0.0001; 0.0447) and Banfora-O 

(2Rb: 25%; 2Rc: 20%) (p fisher’s exact test = 2e-4; 0.0014) populations than Banfora-S (2Rb: 2%; 

2Rc: 2%). Thus, among these well-known inversions, 2Rb and 2Rc track the loss and regain 

of resistance observed here. 

 

A recent publication has linked gene duplication events with insecticide pressure 
35

; 

however, the reversion of resistance in this population was not associated with copy 

number variation. We determined the frequency of the reported duplications surrounding 

detoxification genes in An. coluzzii 
35

 and found two in this population; Cyp6aap_Dup10 

(covering four genes, CYP6AA1, CYP6AA2, COEAE60 and CYP6P15P) and Gstue_Dup1 

(containing GSTE2 and a small portion of GSTE4). These duplications were found at high 

frequencies in the Banfora-O colony but at significantly lower frequencies in the Banfora-S 

and Banfora-R colonies (Figure 3d). RNAseq comparing Banfora-O to Banfora-S colony 

shows significantly increased expression of all genes within the duplications in the resistant 

population. In the Banfora-R line, just CYP6P15P is differential, indicating these duplications 

are putatively responsible for the increased transcript expression of the whole cluster 

(Supplementary Table 2). 
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Figure 3: Whole genome sequence results. In each image Banfora-O is green and Banfora-R 

is yellow Banfora-S is blue. (a) Nucleotide diversity per population (π) and per individual 

(heterozygosity, H) along the length of each chromosome in 1 Mb windows. Diversity is 

similar among populations and overall (grey at bottom) but is heterogeneous along 

chromosomes suggestive of large haplotype blocks (b) PCA plot of chromosome 3R, chosen 

to represent the autosomal genome outside of large inversions (c) Frequency of inversion 

status in each population (d) Gene duplication scans showing the proportion of each 

population containing the two detected duplications. Significance calculated by Fisher’s 

exact test. * = p < 0.05, *** p < 0.001, **** p < 0.0001, ns. indicates non-significance. 

 

To determine whether the increased respiratory rate was due to an increase in 

mitochondrial number, mitochondrial read counts were extracted and visualised across the 

length of the genome. There was no difference in read depth between the susceptible and 

re-selected mosquitoes (Supplementary Figure 3) indicating that the increase in respiration 

not due to an overall greater number of mitochondria in the resistant populations. 

 

Genomic regions associated with restoration of resistance 

Using a GWAS-like approach with populations as proxies for phenotype, we found 209 

significant SNPs, of these 189 SNPs correspond to a large block on 2L ranging from 2920946 

to 3085768, encompassing 28 genes (35 transcripts). SNPEff shows potential changes in 23 

genes in this region (Supplementary Table 3), GO enrichments for these genes include 
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mitochondrion (p fisher’s exact test = 3.6e-2) and ribonuclease activity (p fisher’s exact test = 5.99e-3). 

Nine non-synonymous changes associated with resistance were predicted with 8 in 

AGAP029113 and one in AGAP004735. Neither AGAP029113 nor AGAP004735 have 

assigned functions; however, the latter is a direct homolog of Meckel Syndrome, type 1 

(Mks1) in Drosophila which is involved in cilium assembly. AGAP029113 has no direct 

homolog in Drosophila but has both homeodomain and SANT/Myb domains (IPR009057 and 

IPR001005) and a nuclear receptor co-repressor related NCOR (PTH13992) indicating that 

this gene has a regulatory function. STRING analysis of AGAP029113 predicts interactions 

with the ecdysone receptor, ultraspiricle and estrogen-related receptor indicating that this 

regulatory function may be related to hormonal signalling. Neither AGAP029113 nor 

AGAP004735 are differentially expressed between the strains; however, the RNAseq 

analysis showed that a block of six contiguous genes in this region are all significantly up-

regulated in Banfora-R (Supplementary Table 3) indicating either SNP-based changes or 

changes to transcriptional regulation driving the inheritance of this block.  

 

In addition to this region on 2L we identified 20 additional SNPs classified as significant, one 

on 2L, a smaller block between 2R:56934652-56934669 containing 5 SNPs, five further SNPs 

at the end of the 2R chromosome, one SNP on each of 3L and 3R and finally seven SNPs 

found on the X chromosome. In each case, these SNPs are in intragenic regions, represent 

intron variants or cause up- or down-stream changes to genes following SNPEff terminology 

(Supplementary Table 3).  

 

 

 
Figure 4: Manhattan plot comparing reselected and susceptible populations. GWAS-like 

analysis with populations as proxies for phenotype calculated using pyseer, likelihood ratio 

test p-values are plotted with the FDR p cut-off of p = 7.2e-9 shown with a red line. 

Alternative colours show the split between chromosomes. Each individual point is a SNP 

along each chromosome (x) and -log10 p value (y). Annotated genes are predicted from 
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SNPEff, contiguous ranges are shown with ‘-‘. Corrections for inversions and clonality were 

performed to account for population structuring. 

 

Peaks of divergence 

High FST (>0.25) peaks with no fixed differences were seen across the chromosomes (Figure 

5a, Supplementary Table 4), except for chromosome 3L, indicating regions of divergence 

between Banfora-R and Banfora-S. 21004 SNPs showed high FST, with the FST peaks closely 

matching the SNP peaks seen in the GWAS-like analysis. Highly divergent SNPs appear in 

clear blocks and are shown in Figure 5a as blocks a-j; many of these SNPs show similarly high 

FST in Banfora-O (Figure 5b) reinforcing their role in the resistance phenotype.  

 

 
Figure 5: FST between Reselected and Susceptible populations. (a) FST (y axis) and 

chromosomal position (x axis) of reselected compared to susceptible populations. Dark blue 

shows the average FST over 10kb windows and grey are individual SNPs with FST > 0.25. 

Shaded in pink are regions identified as blocks of divergent SNPs, the inversions are 

highlighted by dashed grey boxes. (b) SNPs showing high FST and allele frequency difference 

(b)
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in the same direction relative to Banfora-S, for Banfora-O and Banfora-R. Several SNP blocks 

as in part (a) (blocks a, b, d, and i) are highlighted. 

 

As seen with the GWAS approach, the centromeric regions on both 2R and 2L appear to be 

key in driving the resistance phenotype seen in these populations. The large block on 2R 

(19.3Mb, Figure 5 block ‘b’) comprises 1008 genes. Gene ontology (GO) enrichment analysis 

of genes present in this block shows significant enrichment for glutathione transferase 

activity (p fisher’s exact test = 6.83e-4), oxidoreductase activity (p fisher’s exact test = 3.32e-3) and 

glutathione metabolic process (p fisher’s exact test = 3.1e-2). Given the high levels of respiration 

seen in this population, it may be that this region is buffering the excess ROS produced. 386 

of the 917 genes detected by RNAseq in this region are differentially expressed, 213 of 

which are up regulated, including GSTD1 and a number of heat shock proteins. The large 

block on 2L is 6.5Mb and overlaps the kdr locus (Figure 5, block ‘d’), a gene known to 

increase resistance to pyrethroid insecticides 
16

. Despite the overlap of this locus and the 

presence of 13 highly divergent SNPs within kdr (Supplementary Table 4), there is no 

significant difference in frequency of the classic kdr allele 995F (49% in Banfora-S and 64% in 

Banfora-R). The 1527T and 402L changes in the kdr locus have recently been linked with 

pyrethroid resistance 
36

 and are in perfect linkage in this population and mutually exclusive 

with the 995F mutation as previously reported 
36

; again, there is no difference in frequency 

between strains. The remaining peaks illustrated in Figure 5a are described in Appendix 1. 

 

Microbial composition is associated with insecticide resistance 

Significant differences in microbial composition were seen between the Banfora-R and 

Banfora-S lines, with clear relative increase of Elizabethkingia anophelis and Herbaspirilum 

sp (Figure 6). No differences in species richness were seen between the two groups and a 

Bray-Curtis dissimilarity shows high overlap of the Banfora-R and Banfora-S populations 

(Supplementary Figure 4); however, a significant difference in beta diversity (p PERMANOVA = 

7.9e-4) is seen demonstrating differences in species compositions between the populations. 

To determine the highest contributions to microbiome weighting, operational taxonomic 

units (OTUs) were selected that added most to the between sample diversity. These 

included the endosymbionts E. anophelis, Asaia borgorensis and Serratia sp Ag1. Other 

bacteria significantly contributing to the microbiome include Rhizobium tropici, 

Herbaspirilium sp, Ochrobactrum sp, Acinetobacter soli, Pantoea dispersa and Acetobacter 

sp. Of these bacteria, Pantoea (p Mann-Whitney = 1.8e-3), Acinetobacter soli (p Mann-Whitney = 7e-

4) and Serratia (p Mann-Whitney = <1e-4) are at significantly reduced abundance in the Banfora-

R population compared to Banfora-S, whereas Elizabethkingia (p Mann-Whitney = 1.11e-2), 

Rhizobium (p Mann-Whitney = <1e-4) and Herbaspirilium (p Mann-Whitney = 1.09e-2) are at 

significantly higher abundance in the Banfora-R population compared to the Banfora-S. 

Asaia, Ochrobactrum and Acetobacter show no changes in abundance after selection and so 

are unlikely to contribute to resistance (Figure 6; Supplementary Figure 5).  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2021.08.21.457189doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.21.457189
http://creativecommons.org/licenses/by/4.0/


 
 

Figure 6: Abundance plots. Species abundance (y) for each biological sample (x) for (a) 

Banfora-S and (b) Banfora-R populations. Other represents the total sum of all other 

abundances within each individual.  

 

To confirm the presence of the bacteria within the mosquito populations, PCR was 

performed on whole DNA extracts for the selected OTUs and positive bands sent for 

sequencing. Of the bacteria selected as greatest contributors to beta-diversity, only Serratia 

couldn’t be confirmed by PCR, potentially indicating an unstable infection or inadequacy of 

the published primers for anopheline Serratia. Additionally, phylogenies were reconstructed 

from extracted 16S sequences for high abundance bacteria showing that these nest within 

samples isolated from mosquitoes (Supplementary Figure 6). To further explore the 

presence of these bacteria, ORFs were BLASTed against the non-redundant species 

database. Whole length genes were found directly attributable to the bacteria identified in 

the earlier analysis for each treatment group (Supplementary Table 5). In addition to the 

bacteria, 63 fungal reads were detected in Banfora-R which were absent in Banfora-S. 

Further, the Banfora-R population has a 316 amino acid match to the RNA virus Xincheng 

mosquito virus indicating a potential integration event. These data indicate a change in 

microbial composition after selection for resistance, potentially indicating that the 

microbiome is either directly contributing to the resistance phenotype or that the use of 

insecticides preferentially selects for certain bacterial species. 

 

Discussion 

This study utilises multiple -omics data and phenotypic studies to explore causative factors 

of pyrethroid resistance in an Anopheles coluzzii colony from Burkina Faso, after a sudden 
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and dramatic loss of the phenotype. The subsequent re-selection of the susceptible 

population, and stored material from the original Banfora-O colony, present a rare 

opportunity to explore the causal mechanisms of pyrethroid resistance in populations from 

identical genetic backgrounds. The data here reveals a much more complex story than often 

reported in resistance research and shows that resistance is not entirely attributable to 

previously characterised mechanisms. Here, we show that the respiratory rate is elevated in 

resistant mosquitoes, indicative of large-scale changes in the mosquitoes’ basal metabolism. 

Further, we highlight a clear association of resistance with divergent regions of the genome. 

Finally, we demonstrate a change in microbial composition upon re-selection for pyrethroid 

resistance. 

 

Loss of resistance in this population was associated with a strong reduction in expression of 

genes involved in the oxidative phosphorylation pathway, which was subsequently restored 

upon re-selection. The change in expression of this pathway is closely mirrored 

phenotypically by changes in respiration rates, with resistant mosquitoes having higher 

levels of respiration. Due to these changes, higher resistance levels are likely to incur a high 

fitness cost and may account for the lack of stability of resistance in this strain. Remarkably, 

the changes seen to the oxidative phosphorylation pathway closely mirror but oppose those 

seen after exposure to pyrethroid insecticide in a different resistant population from 

Burkina Faso 
15

. Interestingly, when tested, exposure to pyrethroid insecticides causes a 

significant reduction in respiratory rate in the resistant Banfora population, and as 

pyrethroids are known to cause oxidative stress 
37

, this further implicates metabolic 

plasticity, potentially through modulation of oxidative stress, in pyrethroid resistance and 

response. 

 

A higher basal metabolic rate is likely to result in higher levels of oxidative stress.  Whilst 

oxidative stress levels were not directly measured in this study, a putative link between the 

elevated basal metabolism and oxidative stress signalling was identified by comparison of 

the transcriptomic changes seen between Banfora-S and Banfora-R and those identified in a 

previous study perturbing the oxidative stress signalling pathway via silencing a component 

of the Maf-S-cnc pathway. Previous work has shown that perturbation of this pathway leads 

to increased mortality post-exposure to pyrethroid insecticides 
25

. There is a clear 

correlation between genes differentially expressed in this study and those perturbed by 

disruption of Maf-S signalling. Further, this signal displays clear negative reciprocal overlap, 

as expected if higher basal metabolic rate is causing increased oxidative stress. Taken 

together, these data indicate a role for oxidative stress in the resistance phenotype within 

this population. 

 

Despite the clear evidence of the key role detoxification genes play in the metabolic 

breakdown of insecticides in anopheline populations 
9,38

, there is little evidence that this 

Banfora laboratory population relies on these gene families in aggregate to confer 

resistance. Only three cytochrome p450s are overexpressed in both the original and 

reselected populations, CYP6M2, CYP6P15P and CYP6AG1. CYP6M2 is a well-studied 

pyrethroid metaboliser and hence may be contributing to the resistance phenotype 
20

 but  

the latter two p450s have not been studied despite CYP6P15P being present in a gene 

duplication seen in wild populations 
35

. There is some evidence for cuticular resistance in 

this population, as CPLCG5 is the most up-regulated gene across both datasets and this gene 
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has previously been shown to impact pyrethroid resistance in Culex mosquitoes 
39

. 

Interestingly, CYP6Z1 which has previously been implicated in DDT resistance 
40

 is 

downregulated in these populations despite high levels of resistance to this chemistry. 

 

Whole genome sequencing on individual females of each population reveals clear 

divergence between the Banfora-R and Banfora-S populations. Interestingly, the well 

characterised inversions present on chromosome 2 of the An. coluzzii genome show 

significant differences in frequency between the three populations. One striking region is 

the 2Rb inversion which partially overlaps SNP block ‘a’, being present at significantly higher 

frequency in both the Banfora-O and Banfora-R populations than the susceptible, 

implicating this region in resistance in this population. Other than the larger and better 

studied 2La inversion, 2Rb is the only other inversion found widely across sub-Saharan 

Africa in multiple anopheline species 
33

. The 2Rb inversion has been linked with host 

preference in Anopheles arabiensis 
41

 and larval breeding habitat 
42

 and desiccation 

tolerance 
43

 in the An. gambiae complex but thus far has not been linked to resistance. 

Other SNP blocks show a similar degree of divergence including ‘b’, ‘d’, and ‘i’ highlighting 

multiple loci playing putative roles in resistance in this population.  

 

WGS also reveals two previously described copy number variations in this population which 

are at higher frequency in Banfora-O than either Banfora-R or Banfora-S colonies, indicating 

that they are not necessary for resistance in this population. Despite revealing both highly 

divergent FST peaks and SNPs significant via GWAS methodology, there is not enough 

resolution in this dataset to identify individual SNPs with a role in pyrethroid resistance, 

likely due to the high linkage disequilibrium in these captive populations. However, clear 

divergent blocks show an association with pyrethroid resistance, with high FST in the 

Banfora-R and Banfora-O colonies. Interestingly, one such block overlaps the kdr locus but 

there is no association with known causal SNPs in this locus and resistance, indicating that 

the haplotype block may be related to a different gene in this region. The majority of the 

SNPs are found in non-coding regions and so may play a role in transcriptional regulation, 

but further studies will be needed to pinpoint the importance of these SNPs. Further, a 

region of 2R shows divergence between Banfora-R and Banfora-S and is enriched in genes 

involved in glutathione reductase activity. The glutathione pool is a redox buffer found 

within cells and is often used as a proxy for oxidative stress 
44

; this may indicate that genes 

involved in reducing the oxidated redox pool help maintain redox levels which are increased 

due to increased respiration. 

 

An association between the microbial composition and resistance was seen in these 

samples, something previously noted in resistant populations 
26,28,45

. However, even though 

the colonies were maintained in the same insectary by the same technician, we cannot rule 

out stochastic changes due to bottlenecking of the colony, which requires further 

exploration. Nevertheless, we show a clear increase in abundance of the known commensal 

Elizabethkingia in Banfora-R, which has not previously been linked to resistance. Of the 

other OTUs, Acinetobacter reduction in wild Anopheles albimanus has previously been 

reported in fenitrothion resistant mosquitoes 
28

, and Pantoea reductions have been linked 

with pyrethroid exposure 
26

 in agreement with results here. Rhizobium, a nitrogen fixing 

bacteria traditionally associated with plants has not previously been shown to be present in 

the mosquito microbiome but given the differential abundance within on extraction round, 
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it is unlikely to be a reagent contaminant. Herbaspirillum  and Ochrobactrum have 

previously been reported in the microbiome 
46

, but the former has not before been linked 

to resistance, as seen here. Strikingly, Serratia abundance is dramatically reduced in 

Banfora-R compared to Banfora-S and is in agreement with a recent discovery in Côte 

D’Ivoire showing that this bacteria is strongly associated with pyrethroid susceptibility in An. 

coluzzii 
27

. Further study is needed to determine the relative contribution of these individual 

bacteria to the insecticide resistance phenotype. 

 

This study provided a unique opportunity to compare two resistant populations and a 

susceptible population from the same genetic background, removing the confounding factor 

of the differences in genetic background of lab adapted susceptible populations. Here, we 

show evidence for involvement of relatively few metabolic detoxification genes. In addition, 

an increased respiratory rate appears to directly contribute to pyrethroid resistance through 

up-regulation of the oxidative phosphorylation pathway. Further, clear genetic signatures 

associated with resistance are seen, including an association with the 2Rb inversion and 

several blocks dispersed across the genome. Finally, we demonstrated a change in the 

microbial profile in resistant mosquitoes, further emphasising the need to study the impact 

of the microbiome. Overall, we clearly demonstrate the complexity of resistance in 

Anopheline vectors and emphasise the need to continually monitor the emergence of new 

insecticide resistance mechanisms to best inform vector control. 

 

Methods 

Mosquito Rearing Conditions 

Mosquitoes were reared under standard insectary conditions at 27L°C and 70–80% 

humidity under a 12:12Lh photoperiod. The An. coluzzii colonies used in these experiments 

were derived from the Banfora strain from the Cascades District of Burkina Faso. The 

Banfora colony is resistant to pyrethroids and DDT and was maintained under deltamethrin 

selection pressure in the insectaries at the Liverpool School of Tropical Medicine since 2014 
12

. In September 2018 after routine phenotyping, it was noticed that Banfora had 

significantly higher mortality after exposure to pyrethroid insecticides, prior to this full 

resistance was seen in March 2018. This provided the opportunity to generate two lines 

from the same parental population, Banfora-S which had lost much of its resistance and 

reselected Banfora-R line.  The Banfora-R line was generated by exposing 3 consecutive 

generations to 0.05% deltamethrin WHO tube papers for between 30 minutes and 2 hours 

(see figure 7). 
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Figure 7: Selection regime for the susceptible colony. The generations are shown separated 

by a dashed line. The times of each exposure to 0.05% deltamethrin are given above the 

tube, with the mean mortality for each generation below. N = 409; N = 514; N = 115(tested), 

full cage selected – total adults in each generation passed through WHO selection. 

 

Bioassays 

WHO diagnostic bioassays were performed for each population using WHO tube assays with 

0.05% Deltamethrin, 0.75% permethrin and 4% DDT 
47

. A minimum of 3 biological replicates 

were used, with 25–30 treated females present in each tube. For each assay 20–25 female 

mosquitoes were simultaneously exposed to untreated papers as a control. Post-exposure, 

mosquitoes were left in a control tube, under insectary conditions for 24Lh, with 10% 

sucrose solution and mortality recorded. Analysis of mortality data was done on normal 

data using an ANOVA test followed by a Tukey post hoc test. Graphs were produced using 

GraphPad Prism 7. For exposure to the alpha-cypermethrin containing IG1 bed nets, an 

exposure using a cone test was used as previously described 
12

, mosquitoes were then left 

to recover for 4 hours before being placed in a respirometer with similarly treated 

unexposed mosquitoes as a control. 

 

RNA Extraction and analysis 

At 10am, 3-5 day old presumed-mated adult females were snap frozen in the -80
o
C, 5 

individuals were used for each of the 4 biological replicates. RNA was extracted using a 

Picopure kit after homogenisation with a motorised pestle as previously described. Quality 

and quantity of the RNA was then analysed using an Agilent TapeStation and Nanodrop 

respectively and sent for sequencing at Centre for Genomics, Liverpool, UK. The fastq files 

were aligned to PEST 4.2 using Hisat2 and then counts extracted using featureCounts using 

default parameters; PEST 4.2 fasta and GFF files are available from VectorBase 

(vectorbase.org) 
48

. Differential expression analysis was performed using DEseq2 v3.10 in R 
49

, following the standard protocol. Briefly, count data was read in from the featureCounts 

output, sample metadata including sample names and treatment were passed to 

DESeqDataSetFromMatrix, variance stabilised dispersions were then calculated and PCA 

performed on this dataset. Genes with an average of less than 10 reads per sample were 
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removed. Differential expression was then carried out using DESeq and lfcShrink from 

apeGLM v3.10 
50

, following DEseq2 instructions. Significance was taken as adjusted p ≤ 0.05. 

 

Detoxification Family TaqMan 

RNA was extracted as above from a different generation of 3–5-day old female mosquitoes 

from each population. One to four micrograms of RNA were then reverse transcribed using 

OligoDT and Superscript III as previously described. The resulting cDNA was cleaned using a 

Qiagen PCR Purification column and quantified; cDNA was subsequently diluted to 4ng/µl as 

a template for qPCR. Primers, probes and multiplex combinations used in this reaction were 

as previously described 
12,51

. PrimeTime Gene Expression Master Mix was used with primers 

and probes at a final 10µM in 10µl. The qPCR reaction was carried out on an MxPro 3005P 

with the following conditions 3 min at 95 °C followed by 40 cycles of 15 s at 95 °C; 1 min at 

60 °C. Ct values were exported and analysed using the ΔΔct methodology, using RPS7 as an 

endogenous control and compared to the Banfora-S population. 
 

Respirometer 

To determine the respiration rate of resistant and susceptible Banfora populations, two 

individual female mosquitoes were placed in one tube following previous published 

methodology 
52

. Briefly, a 1000uL pipette tip, which had been cut and glued to a glass 

micropipette was placed into a tip holder over a clear container filled with dyed water. Each 

pipette tip contained soda lime between two pads of cotton wool. The mosquitoes were 

knocked down on ice and added to each tip before covering with clay. The mosquitoes were 

left to recover for fifteen minutes the assay began. Each respirometer allowed for a total of 

12 tubes, with one control empty tube for each treatment group. The respirometer was 

performed in triplicate using different generations of mosquitoes. Images were taken of the 

water level immediately after mosquitoes were aspirated into the tubes and a second 

images was taken 45 minutes later before aspiration of the mosquitoes back into cups 

where they were maintained on 10% sugar under insectary conditions. Images were taken 

using a camera clamped into a stand. ImageJ was used to quantify the distance the water 

moved as a proxy for respiration, negative control movement was accounted for by simple 

subtraction. Any negative values were assumed to be 0. Respirometry data were adjusted to 

account for variations in mosquito size. Wing lengths of 15 randomly selected female 

mosquitoes, taken from the same colony cage, on the same date, were determined 

following previously published protocols. Each individual biological replicate was corrected 

using an average of the 15 mosquitoes taken from the same cage. 

 

Comparison with Maf-S knockdown 

To compare the genes differential in the current RNAseq dataset and those in the Maf-S 

knockdown array, the full array data was used from Ingham et al. 2017 
25

 and merged with 

the overlapping significant genes from the RNAseq. The fold changes for each experiment 

were then extracted and counted as (i) opposing and (ii) overlapping directionality. 

 

Whole Genome Sequencing 

DNA was extracted from single female mosquitoes for 43 Banfora-R mosquitoes, 43 

Banfora-S mosquitoes and 10 Banfora-O mosquitoes using a Qiagen DNeasy Blood & Tissue 

Kit (Qiagen) following manufacturer's instructions. Whole genomic DNA was then 

sequenced with 151 bp paired-end reads on an Illumina HiSeq X instrument at the Broad 
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Institute, using Nextera low-input sequencing libraries. Reads were aligned to the Anopheles 

gambiae PEST reference genome (assembly AgamP4 
53,54

) using bwamem v. 0.7.17 
55

  

(command: bwa mem -M) and samtools v .1.8 
56

 (commands: samtools view -h -F 4 -b, 

samtools sort, samtools index). Variants were called using GATK v. 3.8-1 
57

, using hard 

filtering of SNPs with QD < 5 and/or FS > 60, and indels with QD < 2 and/or FS > 200 (--max-

gaussians 4). Mitochondrial read depth was extracted for each sample using samtools 
56

 

view for ‘Mt’ and coverage pulled using samtools depth function for combined and sorted 

BAM files for each of the susceptible and reselected colonies. 

 

Inversion Status 

Inversion status was determined by extracting previously published tagging SNPs for each 

inversion known to occur in the Anopheles gambiae species complex 
34

. These regions were 

then extracted using vcftools 
58

. 

 

Population genomic analysis 

Whilst the assumptions of FST are a better match for a structured population dataset like 

this, a GWAS pipeline provides a natural threshold for identifying meaningful SNPs and so 

both were explored in this study. The vcf file was filtered using vcftools v0.1.17 with 

minimum depth of 5, minimum quality score of 20, Hardy Weinberg equilibrium of 1e-6 and 

minor allele frequency of 0.01. BCFtools 
56

 was then used to remove SNPs with high 

missingness (>=0.05) resulting in 6,928,092 variants and a 0.996 genotyping rate. For 

production of PCA plots, BCFtools was used to prune SNPs with ld >0.8 in 10kb windows. 

PCA plots were produced using the --pca flag in plink v2 
59

, and corresponding eigenvectors 

read into R and plotted with ggplot2 
60

. Plink was used for FST analysis, with sex specified as 

female and Banfora-S coded as ‘0’ and Banfora-R or Banfora-O as ‘1’ using the –fst case-

control flag. SNPs with inflated FST due to missing calls were removed. FST was then plotted 

using the ggplot2 R package. SNPeff v4.3 
61

 was used to define the effect of each SNP within 

the vcf. 

 

To calculate heterozygosity and π, we retained sites for which all individuals showed 

coverage between 8 and 50 x with no missing data, excluding sites with ExcessHet > 30, and 

we examined nucleotide diversity in 1Mb blocks across the genome. Because of filtering, 

this approach likely underestimates true diversity but accurately portrays relative diversity 

among individuals and among genomic regions. 

 

To account for the clonal nature of the individuals used in this study, Pyseer v1.3.1 
62

 was 

used to account for strong confounding population structure. A whole genome phylogeny 

was generated using SNPhylo v20180901 
63

, with the apeR v5.3 
64

 package being used to 

extract phylogenetic distances between individuals. Due to the high number of variants, the 

vcf file was randomly thinned using the –thin 1000 flag on vcftools, resulting in 197928 sites 

being retained. The large inversion present on the Anopheles 2L chromosome and the 

differing inversion statuses of the individuals demonstrated high level structuring on the 

PCA plots and so were passed to Pyseer as a covariate file. Finally, a phenotype file was 

generated, with Banfora-S coded as ‘0’ and Banfora-R as ‘1’. Pyseer was then ran with the –

vcf, –phenotypes, --covariates and –distances flags with the files generated as described. 

Manhattan plots were produced on R using the Manhattan function in the qqman package. 
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An lrt p ≤ 7.2e-9 was used for significance to correct for false discovery rate. All commands 

were sped up through the use of the Parallel package 
65

.  

 

Genome Duplication Scans 

CNV detection was performed as described in Lucas et al 2019 
35

, focusing on the five 

regions with previously identified CNVs of interest (Ace1, Cyp6aa / Cyp6p, Cyp6m / Cyp6z, 

Gste, Cyp9k1). Briefly, CNV alleles previously identified from Ag1000G data were detected 

from their associated discordant reads and soft-clipped reads. The possibility of novel CNVs 

in this sample set was investigated by applying a hidden markov model through normalised 

coverage data calculated in 300bp windows and also by visualising the coverage data across 

the regions of interest; this revealed no previously unknown CNVs. 

 

Enrichment Analysis 

All enrichment analysis was performed on VectorBase release 53 using built in GO, KEGG 

and Metacyc enrichments for An. gambiae PEST4.2. Benjamini-Hochberg corrected p values 

are used throughout, with significance p ≤ 0.05. 

 

Microbiome reads 

To determine the presence of bacterial reads in the BAM files, unmapped reads were pulled 

from the bwa mem alignment BAMs using the samtools view -b -f 4 command and 

converted to fastq files using bedtools bamtofastq command. Each step was aided through 

the use of Parallel. The latest Centrifuge v1 
66

 database was pulled from 

https://github.com/rrwick/Metagenomics-Index-Correction following the publication on 

improved databases 
67

. Centrifuge v1.0.4 
66

 was then run for each individual mosquito and 

converted to a kraken output using the -krereport function. Kraken reports were then 

visualised using Pavian 
68

. To ensure adequate read depth, bacteria had to contain over 500 

reads in at least 5% of the 96 samples. Bacteria were further filtered by abundance values of 

>0.01 in at least 5% of the samples. Kraken reports filtered as stated above were analysed 

following (https://rpubs.com/dillmcfarlan/R_microbiotaSOP) with the vegan v2.5.6 and 

SpadeR v0.1.1 packages in R. All permutation tests had 10000 permutations. A Kruskall-

Wallis test was used to compare alpha-diversity, a PERMANOVA for beta-diversity and a 

Mann-Whitney for comparing relative abundances. Data display was achieved using ggplot2.  

 

To confirm the results from the Centrifuge database, contigs were assembled for each 

population by combining individuals within the differing population using megahit v1.2.9 
69

. 

The contigs were then converted into 6-way open reading frames using 

TransDecoder.LongOrfs. The orf were then BLASTed against PEST 4.2 and Anopheles reads 

removed. The remaining protein reads were then BLASTed against an NCBI non redundant 

protein database, identifying only the top hit and pulling the taxon id. An R script was then 

written using NCBI taxon dump to identify whether the orf relates to ‘virus’, ‘bacteria’ 

‘fungi’ or ‘other’ (https://github.com/VictoriaIngham/Banfora_Paper). The longest read 

from each bacterium of interest was BLASTed against the NCBI database to identify the 

appropriate genome assembly to align to. Bacterial genomes were assembled by aligning to 

the reference genome using Hisat2 for each of the major bacterial species with an average 

read depth of > 50 reads. The number of reads aligned in each BAM file was then 

concatenated into a text output using samtools view. BAM files were used to call variants 

using mpileup and normalised with norm commands in bcftools, the vcf was indexed and a 
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consensus fasta was produced using bcftools consensus. rRNA position was predicted using 

barrnap, sorted by p value and extracted using the script ‘16S_sequence_Barrnap.sh’ 

(https://github.com/raymondkiu/16S_extraction_Barrnap). The extracted 16S sequence was 

then BLASTed against NCBI non-redundant nucleotide database and the top hits 

downloaded. To extract sequences isolated from Anophelines, NCBI BioSample was 

searched for Anopheles and Microbes selected. All sequences annotated from the same 

bacterial species were downloaded and used in the alignment. The reads were then aligned 

using MUSCLE and phylogenies produced using Maximum Likelihood with default 

parameters and 1000 bootstraps in MEGA X 
70

.  

 

Microbiome analysis 

Primers were taken from previously published literature or designed using NCBI 

PrimerBLAST (Supplementary Table 6). To confirm the specificity of the primers, PCR was 

run using DreamTaq with the following cycle: 95
o
C 2 min, 95

o
C 30s, 60

o
C 30s, 72

o
C 20s, 72

o
C 

7min for 35 cycles. Following positive PCR, bands were extracted using QiaQuick Gel 

Extraction kit following manufacturer’s instructions and sent for Sanger sequencing using 

forward and reverse primers. For the extractions, mosquitoes were surface sterilised by 

submersion in 100% ethanol and allowed to dry before being mechanically disrupted in STE 

buffer, boiled at 95
o
C for 10 minutes, centrifuged and supernatant removed.  
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Supplementary Figure 1: PCA of RNAseq datasets. PCA performed on variance stabilising 

transformation on count data using DEseq2. 

 

Supplementary Figure 2: TaqMan assay of detoxification families. Relative mRNA 

expression levels between the original (green) and susceptible (blue) and re-selected 

(orange) and susceptible (blue) for 8 genes previously linked with resistance. Significance 

was calculated by an ANOVA followed by Dunnett’s multiple testing. Adjusted p values are 

shown with significance as follows: ** p < 0.01 and *** p < 0.001. 

 

Supplementary Figure 3: Mitochondrial read depth. Read depth (y) along the full 

mitochondrial genome (x) for the re-selected (red) and susceptible (black). 

 

Supplementary Figure 4: Bray-Curtis dissimilarity. Graph showing the similarities of the 

different samples in terms of microbe abundance. 

 

Supplementary Figure 5: Relative abundance of bacteria. Log10 abundance of each 

bacteria meeting the cut-off criteria, were compared using a Mann Whitney test. In each 

case * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

Supplementary Figure 6: 16S phylogenies of the most abundant bacteria. Phylogenies 

constructed using 16S from the consensus genome for (a) Elizabethkingia; (b) Asaia and (c) 

Serratia. Each sequence with a green dot is confirmed to have been isolated from an 

Anopheline mosquito. Sequence extracted from the bacteria in this study are highlighted in 

red. Sequence names are taken directly from NCBI. Phylogenies created with MegaX using 

CLUSTAL alignment followed by a Neighbour Joining Tree with 1000 bootstraps. Figures on 

branches represent bootstrap values. 
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