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Abstract

Task-optimized deep convolutional neural networks are the most quantitatively accurate
models of the primate ventral visual stream. However, such networks are implausible as mod-
els of the mouse visual system because mouse visual cortex has both lower retinal resolution
and a shallower hierarchy than the primate. Moreover, the category supervision deep networks
typically receive is neither ethologically relevant to the mouse in semantic content, nor realistic
in quantity. As a result, standard supervised deep neural networks have proven quantitatively
ineffective at modeling mouse visual data. Here, we develop and evaluate models that remedy
these structural and functional gaps. We first demonstrate that shallow hierarchical architec-
tures applied to lower resolution images improve match to neural responses, both in electro-
physiological and calcium imaging data. We then show that networks trained using contrastive
embedding methods, a recent unsupervised learning objective that requires no semantic label-
ing, achieve neural prediction performance that substantially exceed that of the same architec-
tures trained in a supervised manner, across a wide variety of architecture types. Combining
these better structural and functional priors yields models that are the most quantitatively ac-
curate match to mouse visual responses to natural scenes, significantly surpassing that of prior
attempts using primate-specific models, and approaching the inter-animal consistency level of
the data itself. We further find that these shallow unsupervised models transfer to a wide va-
riety of non-categorical visual tasks better than categorization-trained models. Taken together,
our results suggest that mouse visual cortex is a low-resolution, shallow network that makes
best use of the mouse’s limited resources to create a light-weight, general-purpose visual system
– in contrast to the deep, high-resolution, and more task-specific visual system of primates.

1 Introduction

In systems neuroscience, the mouse has become an indispensable model organism, allowing un-
precedented genetic and experimental control at the level of cell-type specificity in individual cir-
cuits (Huberman and Niell, 2011). Beyond fine-grained control, studies of mouse visual behavior
have revealed a multitude of abilities, ranging from stimulus-reward associations, to goal-directed
navigation, and object-centric discriminations. These behaviors suggest that the mouse visual sys-
tem is capable of supporting higher-order functions, and prior physiological studies provide evi-
dence that higher visual cortical areas might subserve such behaviors (Glickfeld and Olsen, 2017).
A natural question, therefore, is what these populations of neurons code for during visually-guided
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behaviors. Formal computational models are needed to test these hypotheses: if optimizing a
model for a certain task leads to accurate predictions of neural responses, then that task may pro-
vide a unified, normative account for why those population responses occur in the brain.

Deep convolutional neural networks (CNNs) are a class of models that have had immense
success as predictive models of the human and non-human primate ventral visual stream (e.g.,
Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven, 2015; Cichy
et al., 2016; Cadena et al., 2019a; Bashivan et al., 2019). In contrast with the strong correspondence
between task-optimized CNNs and the primate visual system, these CNNs are poor predictors of
neural responses in mouse visual cortex (Cadena et al., 2019b).

Three fundamental problems, each grounded in the goal-driven modeling approach (Yamins
and DiCarlo, 2016), confront these primate ventral stream models as potential models of the mouse
visual system. Firstly, these models are too deep to be plausible models of the mouse visual system,
since mouse visual cortex is known to be more parallel and much shallower than primate visual
cortex (Harris et al., 2019; Siegle et al., 2021; Felleman and Van Essen, 1991). Secondly, they are
trained in a supervised manner on ImageNet (Schrimpf et al., 2018; Conwell et al., 2020), which
is an image set containing over one million images belonging to one thousand, mostly human-
relevant, semantic categories (Deng et al., 2009). While such a dataset is an important technical tool
for machine learning, it is highly implausible as a biological model particularly for rodents, who
do not receive such category labels over development. Finally, mice are known to have lower visual
acuity than that of primates (Prusky et al., 2000; Kiorpes, 2019), suggesting that the resolution of
the inputs to mouse models should be lower than that of the inputs to primate models. Given these
three differences between the visual system of primates and of mice, one cannot simply use current
supervised primate ventral stream models as models of the mouse visual system.

The failure of these current models may therefore be tied to a failure in the application of the
principles of goal-driven modeling to mouse vision, having to do with a mismatch between the
model’s architecture and task and those of the system being investigated. We addressed these
three differences between the primate and mouse visual system by training shallower CNN archi-
tectures in an unsupervised manner using lower-resolution images. First, we noticed that AlexNet
(Krizhevsky et al., 2012), which had the shallowest hierarchical architecture, provided strong cor-
respondence to neural responses in mouse visual cortex. However, the deepest layers of AlexNet
did not correspond well in neural predictivity to any mouse visual area, suggesting that even this
architecture is too deep to be a completely physically matched model of the system. Therefore, we
developed a class of novel shallower architectures with multiple parallel streams (“StreamNets”)
based on the AlexNet architecture. The parallel streams mimic the intermediate and higher visual
areas identified in mice, informed by empirical work on the mouse visual hierarchy (Harris et al.,
2019; Siegle et al., 2021). These StreamNets were able to achieve neural predictive performance
competitive with that of AlexNet, while also maintaining a match between each model layer and a
mouse visual area.

We then addressed the strong supervision signals used in the standard ImageNet categoriza-
tion task by turning to a spectrum of unsupervised objectives including sparse autoencoding (Ol-
shausen and Field, 1996), image-rotation prediction (Gidaris et al., 2018), and contrastive embed-
ding objectives (Wu et al., 2018; Chen et al., 2020a,b; Chen and He, 2020), as well as supervised
tasks with less category labels (CIFAR-10) or ethologically relevant labels that might be available to
the mouse (e.g., depth information provided by whiskers; Quist et al., 2014; Huet and Hartmann,
2016; Zhuang et al., 2017), all while operating on lower-resolution images.

Finally, we found that lowering the resolution of the inputs during model training led to im-
proved correspondence with the neural responses across model architectures, including current
deep CNNs (VGG16 and ResNet-18) used in prior comparisons to mouse visual data (Cadena
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et al., 2019b; Shi et al., 2019; de Vries et al., 2020; Conwell et al., 2020). Thus, strong constraints
even at the level of input transformations improve model correspondence to the mouse visual sys-
tem, although there remains a small gap between these models and the inter-animal consistency
ceiling.

Overall, shallow architectures (our StreamNet variants and AlexNet) trained on unsupervised
contrastive objectives using lower-resolution inputs yielded the best match to neural response pat-
terns in mouse visual cortex, substantially improving the matches achieved by any of the super-
vised models we considered and approached the inter-animal consistency ceiling. Moreover, we
show the resulting system is behaviorally different from a deep supervised network in a key qual-
itative fashion: unlike deep supervised neural networks, which are (comparatively speaking) cat-
egorization specialists, these shallow unsupervised networks are “general purpose” visual ma-
chines, achieving better transfer performance to a variety visual tasks.

Taken together, our best models of the mouse visual system suggest that it is a shallow, general-
purpose system operating on lower-resolution inputs. These identified factors therefore provide
interpretable insight into the confluence of evolutionary constraints that gave rise to the system in
the first place, suggesting that these factors were crucially important given the ecological niche in
which the mouse is situated, and the resource limitations to which it is subject.

2 Determining the animal-to-animal mapping transform

How should we map a neural network to mouse visual responses? What firing patterns of mouse
visual areas are common across multiple animals, and thus worthy of computational explanation?
A natural approach would be to map neural network features to mouse neural responses in the
same manner that different animals can be mapped to each other. Specifically, we aimed to identify
the best performing class of similarity transforms needed to map the firing patterns of one animal’s
neural population to that of another (inter-animal consistency; Figure 1A). We took inspiration
from methods that have proven useful in modeling primate and human visual, auditory, and motor
cortex (Yamins and DiCarlo, 2016; Kell et al., 2018; Michaels et al., 2020; Nayebi et al., 2021). As
with other cortical areas, this transform class likely cannot be so strict as to require fixed neuron-
to-neuron mappings between cells. However, the transform class for each visual area also cannot
be so loose as to allow an unconstrained nonlinear mapping, since the model already yields an
image-computable nonlinear response.

We explored a variety of linear mapping transform classes (fit with different constraints) be-
tween the population responses for each mouse visual area, as illustrated in Figure 1. The mouse
visual responses to natural scenes were collected previously using both two-photon calcium imag-
ing and Neuropixels by the Allen Institute (de Vries et al., 2020; Siegle et al., 2021). For all methods,
the corresponding mapping was trained on 50% of all the natural scene images, and evaluated on
the remaining held-out set of images (Figure 1B, see supplement for more details). We also in-
cluded representational similarity analyses (RSA, Kriegeskorte et al., 2008) as a baseline measure
of population-wide similarity across animals, corresponding to no selection of individual units,
unlike the other mapping transforms. For the strictest mapping transform (One-to-One), each
target unit was mapped to the single most correlated unit in the source animal. Overall, the One-
to-One mapping and linear regression with sparseness priors (Lasso and ElasticNet) tended to
yield the lowest inter-animal consistency among the maps considered. In some cases, they led to
large error bars in some visual areas, implying an inconsistent fit. However, Ridge regression (L2-
regularized), and PLS (Partial Least Squares) regression were more effective at the inter-animal
mapping, yielding the most consistent fits across visual areas, with PLS regression providing the
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highest inter-animal consistency. This result implies that an appropriate transform between visual
areas in different mice (at least in these datasets) is a linear transform that incorporates a substan-
tial proportion of source animal units to map to each unit in the target animal. We therefore use
this same transform class by which to evaluate candidate models.

We further noticed a large difference between the inter-animal consistency obtained via RSA
and the consistencies achieved by any of the other mapping transforms for the responses in VISrl
of the calcium imaging dataset (green in Figure 1B). However, this difference was not observed
for responses in VISrl in the Neuropixels dataset. This discrepancy suggested that there was a
high degree of population-level heterogeneity in the responses collected from the calcium imaging
dataset, which may be attributed to the fact that the two-photon FOV for VISrl spanned the bound-
ary between the visual and somatosensory cortex, as originally noted by de Vries et al. (2020). We
therefore excluded it from further analyses, following Siegle et al. (2020), who systematically com-
pared these two datasets. Thus, this analysis provided insight into the experiments from which
the data were collected.
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Figure 1: Evaluating the inter-animal consistency of the neural data. A. Calcium imaging and
Neuropixels data were collected by the Allen Institute for six mouse visual areas: VISp, VISl, VISal,
VISrl, VISam, VISpm. We assessed the neural data for their internal consistency (split-half relia-
bility) and their inter-animal consistency, which tells us how well one animal corresponds to a
pseudo-population of pooled source animals. Obtaining these metrics further allows us to deter-
mine how well any model can be expected to match the neural data, whereby each animal’s visual
responses are mapped onto other animal’s visual responses. B. Inter-animal consistency was com-
puted using different linear maps, showing that PLS regression provides the highest consistency.
Horizontal bars at the top are the median and s.e.m. of the internal consistencies of the neurons in
each visual area. Refer to Table S1 for N units per visual area.
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3 Three key factors of quantitatively accurate goal-driven models of
mouse visual cortex

We considered three primary ingredients that, when combined, yielded quantitatively accurate
goal-driven models of mouse visual cortex: architecture (analogous to the wiring diagram), task
(analogous to the visual behavior), and input resolution at which the system operates. Having
established a consistent similarity transform class between animals across visual areas (PLS re-
gression), we proceeded to map artificial neural network responses which varied in these three
factors to mouse neural response patterns under this transform class. We delved into each factor
individually before adjoining them, leading to the overall conclusion that the mouse visual sys-
tem is most consistent with a low-resolution, shallow, and general-purpose visual system. These
models approached 90% of the inter-animal consistency, significantly improving over the prior
high-resolution, deep, and task-specific models (VGG16) which attained only 56.27% of this ceil-
ing.

3.1 Architecture: Shallow architectures better predict mouse visual responses than
deep architectures

The mouse visual system has a shallow hierarchy, in contrast to the primate ventral visual stream
(Harris et al., 2019; Siegle et al., 2021; Felleman and Van Essen, 1991). We further corroborated this
observation by examining the internal consistencies (i.e., split-half reliability) of the neurons in
each visual area from the Neuropixels dataset at each 10-ms time bin, shown in the right panel of
Figure 2A. The peak internal consistencies occurred in quick succession from 100-130 ms, starting
from VISp (hierarchically the lowest visual area) and was consistent with the normalized hierarchy
criterion of Siegle et al. (2021), reproduced in the left panel of Figure 2A, suggesting an overall three
to four level architecture.

We found that the neural response predictions of a standard deep CNN model (VGG16), used
in prior comparisons to mouse visual areas (Cadena et al., 2019b; Shi et al., 2019; de Vries et al.,
2020), were quite far from the inter-animal consistency (56.27%). Retraining this model with im-
ages of resolution closer to the visual acuity of mice (64× 64 pixels) improved the model’s neural
predictivity, reaching 67.7% of the inter-animal consistency. We dive deeper into the image reso-
lution issue in Section 3.3.

We also reasoned that the substantial gap with the inter-animal consistency was partly due to
the mismatch between the shallow hierarchy of the mouse visual system and the deep hierarchy
of the model. Work by Shi et al. (2020) investigated the construction of a parallel pathway model
based on information provided by large-scale tract tracing data, though this model was neither
task-optimized nor compared to neural responses. We trained this network on (64 × 64 pixels)
ImageNet categorization, and conducted a hyperparameter sweep to identify the learning param-
eters that yielded the best performance on the task. We also trained a variant of this network where
the task readout was at the final model layer (“VISpor”), and found that this yielded an approx-
imately 2% improvement in ImageNet categorization performance over the original model with
its best hyperparameters. The neural predictivity of the original MouseNet and this variant were
comparable on both datasets (see Figure 2C for neural predictivity on the Neuropixels dataset and
Figure S3B for neural predictivity on the calcium imaging dataset).

For each visual area, the maximum neural predictivity of all of these models was worse than
that of AlexNet (trained on 64 × 64 pixels images), which was the best (and shallowest) model
among these architectures (Figure 2C). By examining neural predictivity of the best performing
model (AlexNet) as a function of model layer, we found that peak neural predictivity did not
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occur past the fourth convolutional layer (Figure 3B; orange lines), suggesting that an even shal-
lower network architecture might be more appropriate (Figures 2B and S3A; orange lines). This
result motivated the development of an architecture that is shallower than AlexNet (which we call
“StreamNet”), that is more physically matched to the known shallower hierarchy of the mouse
visual system, and has no model layers that are unassigned to any visual area.

Our StreamNet was based on the AlexNet architecture, up to the model layer of maximum pre-
dictivity across all visual areas, but allowed for potentially multiple parallel pathways with three
levels based on the peak internal consistency timing observations (right panel of Figure 2A). This
yielded an architecture of four convolutional layers, divided into three levels. The first level con-
sisted of one convolutional layer and the intermediate level consisted of two convolutional layers.
The final level has two “areas” in parallel (where each area consists of one convolutional layer), in-
spired by the observation that VISpor and VISam comprise the top-most levels of the mouse visual
hierarchy (left panel of Figure 2A; Harris et al., 2019; Siegle et al., 2021). We additionally included
dense skip connections from shallow levels to deeper levels, known from the feedforward connec-
tivity of the mouse connectome (Harris et al., 2016; Knox et al., 2018). Taking into consideration
the observation of Conwell et al. (2020) that thinner task-optimized networks yielded better fits
to mouse visual data1, we allowed the number of parallel streams N to be an architectural vari-
able. We set the number of parallel streams to be one (as a control; denoted “single-stream”), two
(to mimic a potential ventral/dorsal stream distinction; denoted “dual-stream”), and six (to more
closely match the known number of intermediate visual areas: VISl, VISli, VISal, VISrl, VISpl, and
VISpm; denoted “six-stream”). Figure 2B shows a schematic of our StreamNet architecture. We
found that our StreamNet model variants were always more predictive of the neural data across
all the visual areas than the MouseNet of Shi et al. (2020) and attain comparable predictivity as
AlexNet (Figure 2C).

3.2 Task: Unsupervised, contrastive objectives, instead of supervised categorization,
improves predictions of mouse visual responses

Training neural network models on 1000-way ImageNet categorization is useful for obtaining vi-
sual representations that are well-matched to those of the primate visual system (Schrimpf et al.,
2018; Zhuang et al., 2021) and seems to result in the best supervised models for rodent visual cor-
tex (Conwell et al., 2020). However, it is unclear that rodents can perform well on large-scale object
recognition tasks when trained (attaining approximately 70% on a two-alternative forced-choice
object classification task, Froudarakis et al., 2020), such as those where there are hundreds of la-
bels. Furthermore, the categories of the ImageNet dataset are rather human-centric and therefore
not entirely ethologically relevant for rodents to begin with.

We therefore considered unsupervised losses instead, as these may provide more general goals
for the models beyond the specifics of (human-centric) object categorization. Advances in com-
puter vision have yielded algorithms that are powerful unsupervised visual representation learn-
ers, and models trained in those ways are quantitatively accurate models of the primate ventral
visual stream (Zhuang et al., 2021). Reducing the image size during task training based on rodent
visual acuity, which we show in Section 3.3 to be important to provide good neural predictivity
when controlling for task and architecture, further set a constraint on the type of unsupervised
algorithms we considered. Specifically, algorithms that involved crops were unlikely candidates,
as the resultant crop would be too small to be effective or too small to have non-trivial features
downstream of the network due to the architecture (e.g., relative location prediction or contrastive

1We note, however, that this conclusion was made without using models that were trained on images with the ad-
justed size.
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Figure 2: Hierarchically shallow models achieve competitive neural predictivity performance
(Neuropixels dataset). A. Left: Normalized hierarchy scores for each mouse visual area from
Figure 2a of Siegle et al. (2021). Higher score indicates that the visual area is higher in the mouse
visual hierarchy. Right: Fraction of maximum split-half reliability for each visual area as a function
of time computed from the Neuropixels dataset. B. We found that the first four convolutional layers
of AlexNet best corresponded to all the mouse visual areas (panel C). These convolutional layers
were used as the basis for our StreamNet architecture variants. C. AlexNet and our StreamNet
variants (light purple) provide neural predictivity on the Neuropixels dataset that is better or at
least as good as those of deeper architectures (dark purple). Refer to Table S1 forN units per visual
area. See Figure S3 for neural predictivity on the calcium imaging dataset.
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Figure 3: Unsupervisedmodels better predict the neural responses inmouse visual cortex (Neu-
ropixels dataset). A. Models can be trained in either a supervised or an unsupervised contrastive
manner. In supervised training (left), an image is used as input for a model and the model’s
prediction (bars) is compared with the labels. In unsupervised contrastive training (right), mod-
els are trained so that embeddings of augmentations of an image are more similar to each other
(upper two rows) than to the embeddings of another image (lower two rows). B. Neural predictiv-
ity, using PLS regression, on the Neuropixels dataset across AlexNet architectures trained in two
different ways (supervised [orange] and unsupervised [green]). We observe that the first four
convolutional layers provide the best fits to the neural data while the latter three layers are not
very predictive for any visual area, suggesting that an even shallower architecture may be suitable.
This is further corroboration for our architectural decision in Figure 2B. See Figure S4 for neural
predictivity on the calcium imaging dataset.
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predictive coding (CPC) for static images, Doersch et al., 2015; Oord et al., 2018). We instead
considered objective functions that use image statistics from the entire image. As control models,
we used relatively less powerful unsupervised algorithms including the sparse autoencoder (Ol-
shausen and Field, 1996), depth-map prediction, and image-rotation prediction (RotNet, Gidaris
et al., 2018). Advances in unsupervised learning have shown that training models on contrastive
objective functions yields representations that can support strong performance on downstream
object categorization tasks. Thus, the remaining four algorithms we used were from the family
of contrastive objective functions: instance recognition (IR, Wu et al., 2018), simple framework
for contrastive learning (SimCLR, Chen et al., 2020a), momentum contrast (MoCov2, Chen et al.,
2020b), and simple siamese representation learning (SimSiam, Chen and He, 2020).

At a high-level, the goal of these contrastive objectives is to learn a representational space where
embeddings of augmentations for one image (i.e., embeddings for two transformations of the same
image) are more “similar” to each other than to embeddings of other images (schematized in Fig-
ure 3A). We found that a model trained with these contrastive objectives resulted in higher neural
predictivity across all the visual areas than a model trained on supervised object categorization,
for the best model architecture class in Section 3.1 (i.e., AlexNet) (Figure 3B). We systematically
explored the space of architecture and objective function combinations in Section 3.4, and found
that this observation holds more generally.

3.3 Data stream: Task-optimization on images of lower resolution improves predic-
tions of mouse visual responses

The visual acuity of mice is known to be lower than the visual acuity of primates (Prusky et al.,
2000; Kiorpes, 2019). We briefly mentioned previously that task-optimization with images of lower-
resolution is important in building models of the mouse visual system. Here we delved deeper
and investigated how neural predictivity performances of two (shallower) architectures varied as
a function of the image resolution at which models were trained. A schematic of this is shown in
Figure 4A. We trained our dual stream variant in an unsupervised manner (instance recognition)
using image resolutions that varied from 32 × 32 pixels to 224 × 224 pixels. Similarly, we trained
AlexNet on instance recognition using image resolutions that varied from 64×64 pixels to 224×224
pixels. 64× 64 pixels was the minimum image size for AlexNet due to its additional max-pooling
layer. In both cases, 224 × 224 pixels is the image resolution that is typically used to train neural
network models of the primate ventral visual stream.

Training models using resolutions lower than what is used for primate models indeed improves
neural predictivity across all visual areas, shown in Figure 4B. Although the input resolution of
64 × 64 pixels may not be optimal for different architectures, it is the resolution that we used to
train all the models. This was motivated by the observation that the upper bound on mouse visual
acuity is 0.5 cycles / degree (Prusky et al., 2000), corresponding to 2 pixels / cycle × 0.5 cycles /
degree = 1 pixel / degree, so that a simplified correction for the appropriate visual acuity would
correspond to 64 × 64 pixels, which was also used in Shi et al. (2019) and in the MouseNet of Shi
et al. (2020). A more thorough investigation into the appropriate image transformations, however,
may be needed.

Overall, our observations suggest that a change in the task via a simple change in the image
statistics (i.e., data stream) is crucial to obtain an appropriate model of mouse visual encoding.
This further suggests that mouse visual encoding is the result of task-optimization at a lower “vi-
sual acuity” than what is typically used for primate ventral stream models.
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Figure 4: Lower image resolution during model training improves task-optimized neural pre-
dictivity (Neuropixels dataset). A. Models with “lower visual acuity” were trained using lower-
resolution ImageNet images. Each image was downsampled from 224 × 224 pixels, which is the
size typically used to train primate ventral stream models, to various image sizes. B. We trained
our dual stream variant (blue) and AlexNet (orange) on instance recognition using various image
sizes ranging from 32 × 32 pixels to 224 × 224 pixels and computed their neural predictivity per-
formance for each mouse visual area. Training models on resolutions lower than 224× 224 pixels
generally led to improved correspondence with the neural responses for both models. The median
and s.e.m. across neurons in each visual area is reported. Refer to Table S1 for N units per visual
area. See Figure S5 for neural predictivity on the calcium imaging dataset.
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3.4 Putting it all together: Shallow architectures trained on contrastive objectiveswith
low-resolution inputs best capture neural responses throughout mouse visual cor-
tex

Here we combined all three ingredients, varying the architecture and task at the visual acuity of
the rodent.

N
oi

se
-C

or
re

ct
ed

 N
eu

ra
l P

re
di

ct
iv

ity



Di
ffe

re
nc

e 
fro

m
 V

G
G

16
 (P

ea
rs

on
’s 

R)

Inter-animal Consistency

Contrastive AlexNet 
Contrastive ResNet-18 
Shi et al. MouseNets 

Supervised Primate Models

RotNet StreamNet 
Autoencoder StreamNet 

Depth Prediction StreamNet

Untrained StreamNet 
Supervised StreamNet 
Contrastive StreamNet

A B

ImageNet Transfer Accuracy

N
oi

se
-C

or
re

ct
ed

 N
eu

ra
l P

re
di

ct
iv

ity



(P
ea

rs
on

’s 
R)

VG
G

16
 (2

24
 p

x)

Al
ex

N
et

 (6
4 

px
)

Re
sN

et
-1

8 
(6

4 
px

)

VG
G

16
 (6

4 
px

)

C
IF

AR
-1

0

C
IF

AR
-1

0
C

IF
AR

-1
0

Figure 5: Shallow architectures trained with contrastive objective functions yield the best
matches to the neural data (Neuropixels dataset). A. The median and s.e.m. neural predictiv-
ity, using PLS regression, across units in all mouse visual areas. N = 1731 units in total. Red de-
notes our StreamNet models trained on contrastive objective functions, blue denotes our StreamNet
models trained on RotNet, turquoise denotes our StreamNet models trained in a supervised man-
ner on ImageNet and on CIFAR-10, green denotes untrained models (random weights), orange
denotes our StreamNet models trained depth prediction, purple denotes our StreamNet models
trained on autoencoding, brown denotes contrastive AlexNet, pink denotes contrastive ResNet-18
(both trained on instance recognition), black denotes the remaining ImageNet supervised mod-
els (primate ventral stream models), and grey denotes the MouseNet of Shi et al. (2020) and our
variant of this architecture. Actual neural predictivity performance can be found in Table S3. B.
Each model’s performance on ImageNet is plotted against its median neural predictivity across all
units from each visual area. All ImageNet performance numbers can be found in Table S3. Color
scheme as in A. See Figure S1 for neural predictivity on the calcium imaging dataset.

We found that AlexNet and our unsupervised StreamNet model variants outperformed all the
other models (Figure 5A). Furthermore, when those models were trained with contrastive objec-
tives, they had the highest neural predictivity, as shown by the red and brown bars on the left
of Figure 5A, attaining close to 90% of the inter-animal consistency ceiling. However, there was
no clear separation in neural predictivity among the different contrastive objectives. Among the
unsupervised algorithms, contrastive objectives had the highest 64 × 64 pixels ImageNet transfer
performance (red vs. blue/orange/purple in Figures 5B and S2B), indicating that powerful unsu-
pervised loss functions are crucial for explaining the variance in the neural responses.

Higher ImageNet categorization performance also did not correspond to higher neural predic-
tivity, in contrast to findings in models of the primate ventral visual stream (Yamins et al., 2014;
Schrimpf et al., 2018). Specifically, deeper, purely supervised models that attain greater than 40%
accuracy had, on average, the least match to the neural data (black dots in Figures 5B and S2B).
Moreover, object recognition tasks with less categories (e.g., 10 categories in CIFAR-10, Krizhevsky
et al., 2009) did not improve neural predictivity for the same architecture trained on ImageNet
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(turquoise bars in Figure 5A).
As a positive control, we optimized ResNet-18 on a contrastive objective function (pink in Fig-

ure 5) and found that although changing the objective function improved neural predictivity for
ResNet-18 over its supervised counterpart, it was still worse than the shallower AlexNet trained
using a contrastive objective (compare pink and brown points in Figures 5A and 5B). This indi-
cates that having an appropriately shallow architecture contributes to neural predictivity, but even
with a less physically realistic deep architecture such as ResNet-18, you can greatly improve neu-
ral predictivity with a contrastive embedding loss function. These findings are consistent with the
idea that appropriate combinations of objective functions and architectures are necessary to build
quantitatively accurate models of neural systems, with the objective function providing a strong
constraint especially when coupled with a shallow architecture (Yamins and DiCarlo, 2016).

4 Mouse visual cortex is a general-purpose visual system

Given the strong correspondence between unsupervised models trained with contrastive embed-
ding objectives, especially relative to their supervised and untrained counterparts (the latter being
an objective-function-independent control), here we delve into why this might be the case. In other
words, given that improvement on ImageNet categorization was not related to improved neural
predictivity (Figure 5B), are the representations in these unsupervised networks better serving
some other downstream ecological niche compared to more task-specific objectives (e.g., object
categorization)?

Our hypothesis was that non-task-specific unsupervised training resulted in more general visual
representations. Specifically, we explored whether contrastive models provided visual represen-
tations useful for different downstream tasks that rodents might perform, such as object-centric
visual behaviors (Zoccolan et al., 2009) and non-object-centric behaviors that may be useful for
guiding navigation, typically attributed to dorsal areas (Wang and Burkhalter, 2013). We consid-
ered two primary datasets for these tasks. The first image set was previously used to assess both
neural and behavioral consistency of supervised and unsupervised neural networks (Yamins et al.,
2014; Rajalingham et al., 2018; Schrimpf et al., 2018; Zhuang et al., 2021), on which we evaluated
transfer performance on object categorization and other object-centric visual tasks independent of
object category, including object position localization, size estimation, and pose estimation. The
second dataset was focused on texture discrimination (Cimpoi et al., 2014), which we used as a
proxy for the subset of non-object-centric visual behaviors which may be relevant to navigation
and the exploration of novel environments.

We assessed the transfer performance of the unsupervised models by adding a single fully-
connected linear readout layer to each layer of the three StreamNet variants, trained with the super-
vised categorization and the unsupervised loss functions. Since different tasks could, in theory, be
best supported by different layers of the unsupervised networks, we reported the cross-validated
performance values for the best model layer. We note that these performance values are all on
held-out images not used during the training of any of the original networks.

As shown in Figure 6, we found that, across all evaluated objective functions and StreamNet
architectural variants, the contrastive embedding objectives (red bars) showed substantially bet-
ter linear task transfer performance than other unsupervised methods (purple and blue bars), as
well as ethologically-relevant supervision such as depth prediction (orange bars). Furthermore,
the contrastive embedding objectives either approached or exceeded, the performance of networks
trained on supervised ImageNet categorization (turquoise bars). Taken together, these results sug-
gest that contrastive embedding methods have achieved a generalized improvement in the quality
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Figure 6: Evaluating visual representations of StreamNet variants learned in an unsupervised
manner on object-centric and non-object-centric visual tasks. Red denotes our StreamNet vari-
ants trained on contrastive objective functions. Blue denotes our models trained on rotation predic-
tion (RotNet), orange denotes our depth prediction models, purple denotes autoencoding models,
green are the untrained model. The average performance and its standard deviation (mean and
s.t.d.) across 10 train-test image splits is reported for each transfer task. A. Maximum linear trans-
fer performance across model layers on the categorization of objects that are highly varied in terms
of their rotation, sizes, and positions in the image. B. Object pose estimation accuracy. C. Ob-
ject position estimation accuracy. D. Object size estimation accuracy. E. Maximum linear transfer
performance on 47-way texture classification (a non-object-centric task).

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.06.16.448730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448730
http://creativecommons.org/licenses/by/4.0/


of the visual representations they create, enabling a diverse range of visual behaviors, providing
evidence for their potential as computational models of mouse visual cortex, across ventral and
dorsal areas.

5 Discussion

In this work, we showed that shallow architectures trained with contrastive embedding meth-
ods operating on lower-resolution images most accurately predict image-evoked neural responses
across visual areas in mice, surpassing the predictive power of supervised methods. Deep CNNs
supervised on ImageNet categorization, which were previously used as models of mouse visual
cortex and are quantitatively the best models of the primate ventral stream, were comparatively poor
predictors of neural responses throughout mouse visual cortex. Our best models approached the
computed inter-animal consistency of all measured units on both neural datasets. Taken together
with recent work done in primates (Zhuang et al., 2021), the results indicate that contrastive ob-
jectives appear to best explain responses across both rodent and primate species, suggesting that
these objectives may be part of a species-general toolkit.

Unlike the situation in the primate ventral visual stream, however, contrastive objectives sur-
passed the neural predictivity of their supervised counterparts, as increased categorization perfor-
mance lead to overall worse correspondence to mouse visual areas. We observe that the advantage
of these contrastive objectives is that they provide representations that are generally improved over
those obtained by supervised methods in order to enable a diverse range of visual behaviors. We
additionally found that neural networks of larger sizes, either measured by network parameters
(analogous to the number of synapses) or network units (analogous to the number of neurons),
had comparatively lower neural predictivity (Figure S6). These results suggest that the mouse
visual cortex is a light-weight, shallow, low-resolution, and general-purpose visual system in con-
trast to the deep, high-resolution, and more task-specific visual system in primates. Our improved
models of the mouse visual system therefore provide a different view of its goals and constraints
than that provided by (comparatively) high-resolution, deep feedforward categorization models.
Furthermore, the generic nature of these unsupervised contrastive objective functions suggests the
intriguing possibility that they might be used by other sensory systems, such as in barrel cortex or
the olfactory system.

In fact, these results, coupled with the fact that larger, deeper networks (which are relatively
better models of primate ventral visual responses than shallow networks) are among the worst
models of mouse visual cortex, demonstrates a double dissociation between the mouse-like archi-
tectures and tasks and the primate-like architectures and tasks. Thus, the failure of the “blind
application” of deep networks to capture mouse data well – and the subsequent success of our
more structurally-and-functionally tuned approach – illustrates not a weakness of the goal-driven
neural network approach, but instead a strength of this methodology’s ability to be appropriately
sensitive to salient biological differences.

Overall, we have made progress in modeling the mouse visual system in three core ways: the
choice of architecture class, objective function, and the data stream.

On the architectural front, we introduced StreamNets, a novel shallow and multi-stream model,
which we think is a reasonable starting point for building more accurate mouse vision models.
Specifically, our focus in this work was on feedforward models, but there are many feedback
connections from higher visual areas to lower visual areas (Harris et al., 2019). Incorporating
these architectural motifs into our models and training these models using dynamic inputs may
be useful for modeling temporal dynamics in mouse visual cortex, as has been recently done in
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primates (Nayebi et al., 2018; Kubilius et al., 2019; Nayebi et al., 2021).
We also demonstrated that unsupervised, contrastive embedding functions are critical goals for

a system to accurately match responses in the mouse visual system. Thus, towards incorporating
recurrent connections in the architecture, we would also like to probe the functionality of these
feedback connections in scenarios with temporally-varying, dynamic inputs. Concurrent work of
Bakhtiari et al. (2021) used the unsupervised predictive objective of CPC (Oord et al., 2018) to
model neural responses of mouse visual cortex to natural movies. Given that our best perform-
ing unsupervised methods obtained good representations on static images by way of contrastive
learning, it would be interesting to explore a larger spectrum of more object-centric unsupervised
signals operating on dynamic inputs, such as in the context of forward prediction (e.g., Mrowca
et al., 2018; Haber et al., 2018; Lingelbach et al., 2020).

Moreover, we found that constraining the input data so that they are closer to those received by
the mouse visual system, was important for improved correspondence – specifically, resizing the
images to be smaller during training as a proxy for low-pass filtering. We believe that future work
could investigate other appropriate low-pass filters and ethologically relevant pixel-level transfor-
mations to apply to the original image or video stream. These additional types of input transforma-
tions will likely also constrain the types of unsupervised objective functions that can be effectively
deployed in temporally-varying contexts, as it did in our case for static images.

Finally, our inter-animal consistency measurements make a clear recommendation for the type
of future neural datasets that are likely to be helpful in more sharply differentiating future can-
didate models. In Figure S7A, we observed that when fitting linear maps between animals to
assess inter-animal consistency, fitting values are significantly higher in training than on the eval-
uation (test) set, indicating that the number of stimuli is not large enough to prevent overfitting
when identifying source animal neuron(s) to match any given target neuron. Furthermore, as a
function of the number of stimuli, the test set inter-animal consistencies steadily increases (see
Figure S7B), and likely would continue to increase substantially if the dataset had more stimuli.
Thus, while much focus in methods has been on increasing the number of neurons contained in a
given dataset (Steinmetz et al., 2021), our analysis indicates that the main limiting factor in model
identification is number of stimuli in the dataset, rather than the number of neurons. In our view, fu-
ture experiments should preferentially focus more resources on increasing stimulus count. Doing
so would likely raise the inter-animal consistency, in turn providing substantially more dynamic
range for separating models in terms of their ability to match the data, and thereby increasing the
likelihood that more specific conclusions about precisely which circuit structure(s) (Collins et al.,
2017; Bergstra et al., 2015) and which specific (combinations of) objectives (e.g., Wu et al., 2018;
Chen and He, 2020; Chen et al., 2020a) best describe mouse visual cortex.
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Joshua H Siegle, Xiaoxuan Jia, Séverine Durand, Sam Gale, Corbett Bennett, Nile Graddis, Greg-
gory Heller, Tamina K Ramirez, Hannah Choi, Jennifer A Luviano, et al. Survey of spiking in
the mouse visual system reveals functional hierarchy. Nature, pages 1–7, 2021.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.06.16.448730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448730
http://creativecommons.org/licenses/by/4.0/


Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius
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6 Methods

6.1 Neural Response Datasets

We used the Allen Brain Observatory Visual Coding dataset (de Vries et al., 2020; Siegle et al.,
2021) collected using both two-photon calcium imaging and Neuropixels from areas VISp (V1),
VISl (LM), VISal (AL), VISrl (RL), VISam (AM), and VISpm (PM) in mouse visual cortex. We
focused on the natural scene stimuli, consisting of 118 images, each presented 50 times (i.e., 50
trials per image).

We list the number of units and specimens for each dataset in Table S1, after units are selected,
according to the following procedure: For the calcium imaging data, we used a similar unit selec-
tion criterion as in Conwell et al. (2020), where we sub-selected units that attain a Spearman-Brown
corrected split-half consistency of at least 0.3 (averaged across 100 bootstrapped trials), and whose
peak responses to their preferred images are not significantly modulated by the mouse’s running
speed during stimulus presentation (p > 0.05).

For the Neuropixels dataset, we separately averaged, for each specimen and each visual area,
the temporal response (at the level of 10-ms bins up to 250 ms) on the largest contiguous time
interval when the median (across the population of units in that specimen) split-half consistency
reached at least 0.3. This procedure helps to select the most internally-consistent units in their
temporally-averaged response, and accounts for the fact that different specimens have different
time courses along which their population response becomes reliable.

Finally, after subselecting units according to the above criteria for both datasets, we only keep
specimens that have at least the 75th percentile number of units among all specimens for that
given visual area. This final step helped to ensure we have enough internally-consistent units per
specimen for the inter-animal consistency estimation (derived in Section 6.3).

Dataset Type Visual Area Total Units Total Specimens

Calcium Imaging

VISp 7080 29
VISl 4393 24
VISal 2064 9
VISrl 1116 8

VISam 847 9
VISpm 1844 19

Neuropixels

VISp 442 8
VISl 162 6
VISal 396 6
VISrl 299 7

VISam 257 7
VISpm 175 5

Table S1: Descriptive statistics of the neural datasets. Total number of units and specimens for
each visual area for the calcium imaging and Neuropixels datasets.
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6.2 Noise Corrected Neural Predictivity

6.2.1 Linear Regression

When we perform neural fits, we choose a random 50% set of natural scene images (59 images in
total) to train the regression, and the remaining 50% to use as a test set (59 images in total), across
ten train-test splits total. For Ridge, Lasso, and ElasticNet regression, we use an α = 1, following
the sklearn.linear model convention. For ElasticNet, we use an l1 ratio=0.5. PLS regression
was performed with 25 components, as in prior work (e.g., Yamins et al., 2014; Schrimpf et al.,
2018). When we perform regression with the One-to-One mapping, as in Figure 1B, we identify
the top correlated (via Pearson correlation on the training images) unit in the source population
for each target unit. Once that source unit has been identified, we then fix it for that particular
train-test split, evaluated on the remaining 50% of images.

Motivated by the justification given in Section 6.3 for the noise correction in the inter-animal
consistency, the noise correction of the model to neural response regression is a special case of
the quantity defined in Section 6.3.2, where now the source animal is replaced by model features,
separately fit to each target animal (from the set of available animalsA). Let L be the set of model
layers, let r` be the set of model responses at model layer ` ∈ L,M be the mapping, and let s be the
trial-averaged pseudo-population response.

max
`∈L

median
⊕
B∈A

〈
Corr

(
M
(
r`train; s

B
1,train

)
test

, sB2,test

)
√
C̃orr

(
M
(
r`train; s

B
1,train

)
test

,M
(
r`train; s

B
2,train

)
test

)
× C̃orr

(
sB1,test, s

B
2,test

)
〉
,

where the average is taken over 100 bootstrapped split-half trials,⊕ denotes concatenation of units
across animals B ∈ A followed by the median value across units, and Corr(·, ·) denotes the Pearson
correlation of the two quantities. C̃orr(·, ·) denotes the Spearman-Brown corrected value of the
original quantity (see Section 6.3.5).

Prior to obtaining the model features of the stimuli for linear regression, we preprocessed each
stimulus using the image transforms used on the validation set during model training, resizing
the shortest edge of the stimulus in both cases to 64 pixels, preserving the aspect ratio of the input
stimulus. Specifically, for models trained using the ImageNet dataset, we first resized the shortest
edge of the stimulus to 256 pixels, center-cropped the image to 224×224 pixels, and finally resized
the stimulus to 64×64 pixels. For models trained using the CIFAR-10 dataset, this resizing yielded
a 64× 81 pixels stimulus.

6.2.2 Representational Similarity Analysis (RSA)

In line with prior work (Shi et al., 2019; Conwell et al., 2020), we also used representational simi-
larity analysis (RSA, Kriegeskorte et al., 2008) to compare models to neural responses, as well as to
compare animals to each other. Specifically, we compared (via Pearson correlation) only the upper-
right triangles of the representational dissimilarity matrices (RDMs), excluding the diagonals to
avoid illusory effects (Ritchie et al., 2017).

For each visual area and a given model, we defined the predictivity of the model for that area
to be the maximum RSA score across model layers after the suitable noise correction is applied,
which is defined as follows. Let r` be the model responses at model layer ` and let s be the trial-
averaged pseudo-population response (i.e., responses aggregated across specimens). The metric
used here is a specific instance of Equation (10), where the single source animal A is the trial-wise,
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deterministic model features (which have a mapping consistency of 1 as a result) and a single
target animal B, which is the pseudo-population response:

max
`∈L

〈
RSA

(
r`, s2

)√
R̃SA (s1, s2)

〉
,

R̃SA (s1, s2) :=
2RSA (s1, s2)

1 + RSA (s1, s2)
,

(1)

where L is the set of model layers, {si}2i=1 are the animal’s responses for two halves of the trials
(and averaged across the trials dimension), the average is computed over 100 bootstrapped split-
half trials, and R̃SA (s1, s2) denotes Spearman-Brown correction applied to the internal consistency
quantity, RSA (s1, s2), defined in Section 6.3.5.

If the fits are performed separately for each animal, then B corresponds to each animal among
those for a given visual area (defined by the set A), and we compute the median across animals
B ∈ A:

max
`∈L

median
B∈A

〈
RSA

(
r`, sB2

)√
R̃SA

(
sB1 , s

B
2

)
〉
. (2)

Similar to the above, Spearman-Brown correction is applied to the internal consistency quantity,
RSA

(
sB1 , s

B
2

).
6.3 Inter-Animal Consistency Derivation

6.3.1 Single Animal Pair

Suppose we have neural responses from two animalsA andB. Let tpi be the vector of true responses
(either at a given time bin or averaged across a set of time bins) of animal p ∈ A = {A,B, . . . } on
stimulus set i ∈ {train, test}. Of course, we only receive noisy observations of tpi , so let spj,i be the
jth set of n trials of tpi . Finally, let M(x; y)i be the predictions of a mapping M (e.g., PLS) when
trained on input x to match output y and tested on stimulus set i. For example, M (

tAtrain; t
B
train

)
test

is the prediction of mappingM on the test set stimuli trained to match the true neural responses of
animal B given, as input, the true neural responses of animal A on the train set stimuli. Similarly,
M
(
sA1,train; s

B
1,train

)
test

is the prediction of mapping M on the test set stimuli trained to match the
trial-average of noisy sample 1 on the train set stimuli of animal B given, as input, the trial-average
of noisy sample 1 on the train set stimuli of animal A.

With these definitions in hand, the inter-animal mapping consistency from animal A to animal
B corresponds to the following true quantity to be estimated:

Corr
(
M
(
tAtrain; t

B
train

)
test

, tBtest

)
, (3)

where Corr(·, ·) is the Pearson correlation across a stimulus set. In what follows, we will argue that
Equation (3) can be approximated with the following ratio of measurable quantities, where we
split in half and average the noisy trial observations, indexed by 1 and by 2:
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B
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)
test
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)
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(
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)
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)
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(
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B
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) . (4)
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In words, the inter-animal consistency (i.e., the quantity on the left side of Equation (4)) corre-
sponds to the predictivity of the mapping on the test set stimuli from animal A to animal B on two
different (averaged) halves of noisy trials (i.e., the numerator on the right side of Equation (4)),
corrected by the square root of the mapping reliability on animalA’s responses to the test set stimuli
on two different halves of noisy trials multiplied by the internal consistency of animal B.

We justify the approximation in Equation (4) by gradually replacing the true quantities (t) by
their measurable estimates (s), starting from the original quantity in Equation (3). First, we make
the approximation that:

Corr
(
M
(
tAtrain; t

B
train

)
test

, sB2,test

)
∼ Corr

(
M
(
tAtrain; t

B
train

)
test

, tBtest

)
× Corr

(
tBtest, s

B
2,test

)
, (5)

by the transitivity of positive correlations (which is a reasonable assumption when the number
of stimuli is large). Next, by transitivity and normality assumptions in the structure of the noisy
estimates and since the number of trials (n) between the two sets is the same, we have that:

Corr
(
sB1,test, s

B
2,test

)
∼ Corr

(
sB1,test, t

B
test

)
× Corr

(
tBtest, s

B
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)
∼ Corr

(
tBtest, s

B
2,test

)2
. (6)

In words, Equation (6) states that the correlation between the average of two sets of noisy obser-
vations of n trials each is approximately the square of the correlation between the true value and
average of one set of n noisy trials. Therefore, combining Equations (5) and (6), it follows that:
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B
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∼
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B
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) . (7)

From the right side of Equation (7), we can see that we have removed tBtest, but we still need to
remove the M (

tAtrain; t
B
train

)
test

term, as this term still contains unmeasurable (i.e., true) quantities.
We apply the same two steps, described above, by analogy, though these approximations may not
always be true (they are, however, true for Gaussian noise):
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which taken together implies the following:
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Equations (7) and (8) together imply the final estimated quantity given in Equation (4).
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6.3.2 Multiple Animals

For multiple animals, we consider the average of the true quantity for each target in B in Equa-
tion (3) across source animals A in the ordered pair (A,B) of animals A and B:〈
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test
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.

We also bootstrap across trials, and have multiple train/test splits, in which case the average on the
right hand side of the equation includes averages across these as well.

Note that each neuron in our analysis will have this single average value associated with it
when it was a target animal (B), averaged over source animals/subsampled source neurons, boot-
strapped trials, and train/test splits. This yields a vector of these average values, which we can take
median and standard error of the mean (s.e.m.) over, as we do with standard explained variance
metrics.

6.3.3 RSA

We can extend the above derivations to other commonly used metrics for comparing representa-
tions that involve correlation. Since RSA(x, y) := Corr(RDM(x),RDM(y)), then the corresponding
quantity in Equation (4) analogously (by transitivity of positive correlations) becomes:〈
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(9)
Note that in this case, each animal (rather than neuron) in our analysis will have this single av-

erage value associated with it when it was a target animal (B) (since RSA is computed over images
and neurons), where the average is over source animals/subsampled source neurons, bootstrapped
trials, and train/test splits. This yields a vector of these average values, which we can take median
and s.e.m. over, across animals B ∈ A.

For RSA, we can use the identity mapping (since RSA is computed over neurons as well, the
number of neurons between source and target animal can be different to compare them with the
identity mapping). As parameters are not fit, we can choose train = test, so that Equation (9)
becomes:〈
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. (10)

6.3.4 Pooled Source Animal

Often times, we may not have enough neurons per animal to ensure that the estimated inter-animal
consistency in our data closely matches the “true” inter-animal consistency. In order to address this
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issue, we holdout one animal at a time and compare it to the pseudo-population aggregated across
units from the remaining animals, as opposed to computing the consistencies in a pairwise fashion.
Thus, B is still the target heldout animal as in the pairwise case, but now the average over A is over
a sole “pooled” source animal constructed from the pseudo-population of the remaining animals.

6.3.5 Spearman-Brown Correction

The Spearman-Brown correction can be applied to each of the terms in the denominator individu-
ally, as they are each correlations of observations from half the trials of the same underlying process
to itself (unlike the numerator). Namely,

C̃orr (X,Y ) :=
2Corr (X,Y )

1 + Corr (X,Y )
.

Analogously, since RSA(X,Y ) := Corr(RDM(x),RDM(y)), then we define

R̃SA (X,Y ) := C̃orr(RDM(x),RDM(y))

=
2RSA (X,Y )

1 + RSA (X,Y )
.

6.4 StreamNet Architecture Variants

We developed shallow, multiple-streamed architectures for mouse visual cortex, shown in Fig-
ure 5A. There are three main modules in our architecture: shallow, intermediate, and deep. The
shallow and deep modules each consist of one convolutional layer and the intermediate module
consists of a block of two convolutional layers. Thus, the longest length of the computational graph,
excluding the readout module, is four (i.e., 1+2+1). Depending on the number of parallel streams
in the model, the intermediate module would contain multiple branches (in parallel), each receiv-
ing input from the shallow module. The outputs of the intermediate modules are then passed
through one convolutional operation (deep module). Finally, the outputs of each parallel branch
would be summed together, concatenated across the channels dimension, and used as input for
the readout module. Table S2 describes the parameters of three model variants, each containing
one (N = 1), two (N = 2), or six (N = 6) parallel branches.

6.5 Neural Network Training Objectives

In this section, we briefly describe the supervised and unsupervised objectives that were used to
train our models.

6.5.1 Supervised Training Objective

The loss function L used in supervised training is the cross-entropy loss, defined as follows:

L(X;θ) = − 1

N

N∑
i=1

log

(
exp(Xi[ci])∑C−1
j=0 exp(Xi[j])

)
, (11)

where N is the batch size, C is the number of categories for the dataset,X ∈ RN×C are the model
outputs (i.e., logits) for theN images,Xi ∈ RC are the logits for the ith image, ci ∈ [0, C−1] is the
category index of the ith image (zero-indexed), and θ are the model parameters. Equation (11)
was minimized using stochastic gradient descent (SGD) with momentum (Bottou, 2010).
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Module
Name Output Size Single (N = 1) Dual (N = 2) Six (N = 6)

Input 64× 64 N/A N/A N/A
Shallow 7× 7 (64, 11, 4, 2) (64, 11, 4, 2) (64, 11, 4, 2)

Intermediate 3× 3
[
(192, 5, 1, 2)
(384, 3, 1, 1)

] [
(192, 5, 1, 2)
(384, 3, 1, 1)

]
×2

[
(192, 5, 1, 2)
(384, 3, 1, 1)

]
×6

Deep 3× 3

If inputs are from
intermediate:
(256, 3, 1, 1),
otherwise:
(256, 3, 2, 0)

If inputs are from
intermediate:
(256, 3, 1, 1),
otherwise:
(256, 3, 2, 0)

If inputs are from
intermediate:
(256, 3, 1, 1),
otherwise:
(256, 3, 2, 0)

Table S2: Neural network parameters and output sizes for the convolutional layers of our
StreamNet model variants containing one, two, and six parallel branches in the intermediate
module. One convolutional layer is denoted by a tuple: (number of filters, filter size, stride,
padding). A block of convolutional layers is denoted by a list of tuples, where each tuple in the list
corresponds to a single convolutional layer. When a list of tuples is followed by “×N”, this means
that the convolutional parameters for each of the N parallel branches are the same.

ImageNet (Deng et al., 2009) This dataset contains approximately 1.3 million images in the train
set and 50 000 images in the validation set. Each image was previously labeled into C = 1000
distinct categories.

CIFAR-10 (Krizhevsky et al., 2009) This dataset contains 50 000 images in the train set and 10 000
images in the validation set. Each image was previously labeled into C = 10 distinct categories.

6.5.2 Unsupervised Training Objectives

Sparse Autoencoder (Olshausen and Field, 1996) The goal of this objective is to reconstruct an
image from a sparse image embedding. In order to generate an image reconstruction, we used a
mirrored version of each of our StreamNet variants. Concretely, the loss function was defined as
follows:

L(x;θ) = 1

2 · 642
‖f(x)− x‖22 +

λ

128
‖v‖1, (12)

where v ∈ R128 is the image embedding, f is the (mirrored) model, f(x) is the image reconstruc-
tion, x is a 64×64 pixels image, λ is the regularization coefficient, and θ are the model parameters.

Our single-, dual-, and six-stream variants were trained using a batch size of 256 for 100 epochs
using SGD with momentum of 0.9 and weight decay of 0.0005. The initial learning rate was set to
0.01 for the single- and dual-stream variants and was set to 0.001 for the six-stream variant. The
learning rate was decayed by a factor of 10 at epochs 30, 60, and 90. For all the StreamNet variants,
the embedding dimension was set to 128 and the regularization coefficient was set to 0.0005.

Depth Prediction (Zhang et al., 2017) The goal of this objective is to predict the depth map of
an image. We used a synthetically generated dataset of images known as PBRNet (Zhang et al.,
2017). It contains approximately 500 000 images and their associated depth maps. Similar to the
loss function used in the sparse autoencoder objective, we used a mean-squared loss to train the
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models. The output (i.e., depth map prediction) was generated using a mirrored version of each of
our StreamNet variants. In order to generate the depth map, we appended one final convolutional
layer onto the output of the mirrored architecture in order to downsample the three image channels
to one image channel. During training, random crops of size 224× 224 pixels were applied to the
image and depth map (which were both subsequently resized to 64 × 64 pixels). In addition,
both the image and depth map were flipped horizontally with probability 0.5. Finally, prior to the
application of the loss function, each depth map was normalized such that the mean and standard
deviation across pixels were zero and one respectively.

Each of our single-, dual-, and six-stream variants were trained using a batch size of 256 for 50
epochs using SGD with momentum of 0.9, and weight decay of 0.0001. The initial learning rate
was set to 10−4 and was decayed by a factor of 10 at epochs 15, 30, and 45.

RotNet (Gidaris et al., 2018) The goal of this objective is to predict the rotation of an image. Each
image of the ImageNet dataset was rotated four ways (0◦, 90◦, 180◦, 270◦) and the four rotation
angles were used as “pseudo-labels” or “categories”. The cross-entropy loss was used with these
pseudo-labels as the training objective (i.e., Equation (11) with C = 4).

Our single-, dual-, and six-stream variants were trained using a batch size of 192 (which is
effectively a batch size of 192 × 4 = 768 due to the four rotations for each image) for 50 epochs
using SGD with nesterov momentum of 0.9, and weight decay of 0.0005. An initial learning rate
of 0.01 was decayed by a factor of 10 at epochs 15, 30, and 45.

Instance Recognition (Wu et al., 2018) The goal of this objective is to be able to differentiate
between embeddings of augmentations of one image from embeddings of augmentations of other
images. Thus, this objective function is an instance of the class of contrastive objective functions.

A random image augmentation is first performed on each image of the ImageNet dataset (ran-
dom resized cropping, random grayscale, color jitter, and random horizontal flip). Let x be an im-
age augmentation, and f(·) be the model backbone composed with a one-layer linear multi-layer
perceptron (MLP) of size 128. The image is then embedded onto a 128-dimensional unit-sphere
as follows:

z = f(x)/‖f(x)‖2, z ∈ R128.

Throughout model training, a memory bank containing embeddings for each image in the train set
is maintained (i.e., the size of the memory bank is the same as the size of the train set). The em-
bedding z will be “compared” to a subsample of these embeddings. Concretely, the loss function
L for one image x is defined as follows:

h(u) =
exp(u · z/τ)/Z

exp(u · z/τ)/Z + (m/N)
,

L(x;θ) = − log h(v)−
m∑
j=1

log (1− h(vj)) , (13)

where v ∈ R128 is the embedding for image x that is currently stored in the memory bank,N is the
size of the memory bank,m = 4096 is the number of “negative” samples used, {vj}mj=1 are the neg-
ative embeddings sampled from the memory bank uniformly, Z is some normalization constant,
τ = 0.07 is a temperature hyperparameter, and θ are the parameters of f . From Equation (13),
we see that we want to maximize h(v), which corresponds to maximizing the similarity between
v and z (recall that z is the embedding for x obtained using f). We can also see that we want
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to maximize 1 − h(vj) (or minimize h(vj)). This would correspond to minimizing the similarity
between vj and z (recall that vj are the negative embeddings).

After each iteration of training, the embeddings for the current batch are used to update the
memory bank (at their corresponding positions in the memory bank) via a momentum update.
Concretely, for image x, its embedding in the memory bank v is updated using its current embed-
ding z as follows:

v ← λv + (1− λ)z,
v ← v/‖v‖2,

where λ = 0.5 is the momentum coefficient. The second operation on v is used to project v back
onto the 128-dimensional unit sphere.

Our single-, dual-, and six-stream variants were trained using a batch size of 256 for 200 epochs
using SGD with momentum of 0.9, and weight decay of 0.0005. An initial learning rate of 0.03 was
decayed by a factor of 10 at epochs 120 and 160.

SimSiam (Chen and He, 2020) The goal of this objective is to maximize the similarity between
the embeddings of two augmentations of the same image. Thus, SimSiam is another instance of
the class of contrastive objective functions.

Two random image augmentations (e.g., random resized crop, random horizontal flip, color
jitter, random grayscale, and random Gaussian blur) are first generated for each image in the Ima-
geNet dataset. Let x1 and x2 be the two augmentations of the same image, f(·) be the model back-
bone, g(·) be a three-layer non-linear MLP, and h(·) be a two-layer non-linear MLP. The three-layer
MLP has hidden dimensions of 2048, 2048, and 2048. The two-layer MLP has hidden dimensions
of 512 and 2048 respectively. Let θ be the parameters for f , g, and h. The loss function L for one
imagex of a batch is defined as follows (recall thatx1 andx2 are two augmentations of one image):

p1 = h ◦ g ◦ f(x1), p2 = h ◦ g ◦ f(x2), z1 = g ◦ f(x1), z2 = g ◦ f(x2),

L(x1,x2;θ) = −
1

2

(
z1 · p2

‖z1‖2‖p2‖2
+

z2 · p1
‖z2‖2‖p1‖2

)
, (14)

where z1, z2,p1,p2 ∈ R2048. Note that z1 and z2 are treated as constants in this loss function (i.e.,
the gradients are not back-propagated through z1 and z2). This “stop-gradient” method was key
to the success of this objective function.

Our single-, dual-, and six-stream variants were trained using a batch size of 512 for 100 epochs
using SGD with momentum of 0.9, and weight decay of 0.0001. An initial learning rate of 0.1 was
used, and the learning rate was decayed to 0.0 using a cosine schedule (with no warm-up).

MoCov2 (He et al., 2020; Chen et al., 2020b) The goal of this objective is to be able to distinguish
augmentations of one image (i.e., by labeling them as “positive”) from augmentations of other
images (i.e., by labeling them as “negative”). Intuitively, embeddings of different augmentations
of the same image should be more “similar” to each other than to embeddings of augmentations of
other images. Thus, this algorithm is another instance of the class of contrastive objective functions
and is similar conceptually to instance recognition.

Two image augmentations are first generated for each image in the ImageNet dataset by apply-
ing random resized cropping, color jitter, random grayscale, random Gaussian blur, and random
horizontal flips. Let x1 and x2 be the two augmentations for one image. Let fq(·) be a query en-
coder, which is a model backbone composed with a two-layer non-linear MLP of dimensions 2048
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and 128 respectively and let fk(·) be a key encoder, which has the same architecture as fq. x1 is
encoded by fq and x2 is encoded by fk as follows:

v = fq(x1), k0 = fk(x2), v,k0 ∈ R128.

During each iteration of training, a dictionary of size K of image embeddings obtained from pre-
vious iterations is maintained (i.e., the dimensions of the dictionary are K × 128). The image
embeddings in this dictionary are used as “negative” samples. The loss function L for one image
of a batch is defined as follows:

L(x1,x2;θq) = − log
exp(v · k0/τ)∑K
i=0 exp(v · ki/τ)

, (15)

where θq are the parameters of fq, τ = 0.2 is a temperature hyperparameter, K = 65 536 is the
number of “negative” samples, and {ki}Ki=1 are the embeddings of the negative samples (i.e., the
augmentations for other images which are encoded using fk, and are stored in the dictionary).
From Equation (15), we see that we want to maximize v · k0, which corresponds to maximizing
the similarity between the embeddings of the two augmentations of an image.

After each iteration of training, the dictionary of negative samples is enqueued with the em-
beddings from the most recent iteration, while embeddings that have been in the dictionary for
the longest are dequeued. Finally, the parameters θk of fk are updated via a momentum update,
as follows:

θk ← λθk + (1− λ)θq,

whereλ = 0.999 is the momentum coefficient. Note that onlyθq are updated with back-propagation.
Our single-, dual-, and six-stream variants were trained using a batch size of 512 for 200 epochs

using SGD with momentum of 0.9, and weight decay of 0.0005. An initial learning rate of 0.06 was
used, and the learning rate was decayed to 0.0 using a cosine schedule (with no warm-up).

SimCLR (Chen et al., 2020a) The goal of this objective is conceptually similar to that of Mo-
Cov2, where the embeddings of augmentations of one image should be distinguishable from the
embeddings of augmentations of other images. Thus, SimCLR is another instance of the class of
contrastive objective functions.

Similar to other contrastive objective functions, two image augmentations are first generated
for each image in the ImageNet dataset (by using random cropping, random horizontal flips, ran-
dom color jittering, random grayscaling and random Gaussian blurring). Let f(·) be the model
backbone composed with a two-layer non-linear MLP of dimensions 2048 and 128 respectively.
The two image augmentations are first embedded into a 128-dimensional space and normalized:

z1 = f(x1)/‖f(x1)‖2, z2 = f(x2)/‖f(x2)‖2, z1, z2 ∈ R128.

The loss function L for a single pair of augmentations of an image is defined as follows:

L(x1,x2;θ) = − log
exp(z1 · z2/τ)∑2N

i=1 1[i 6= 1] exp(z1 · zi/τ)
, (16)

where τ = 0.1 is a temperature hyperparameter, N is the batch size, 1[i 6= 1] is equal to 1 if i 6= 1
and 0 otherwise, and θ are the parameters of f . The loss defined in Equation (16) is computed for
every pair of images in the batch (including their augmentations) and subsequently averaged.

Our single-, dual-, and six-stream variants were trained using a batch size of 4096 for 200 epochs
using layer-wise adaptive rate scaling (LARS, You et al., 2017) with momentum of 0.9, and weight
decay of 10−6. An initial learning rate of 4.8 was used and decayed to 0.0 using a cosine schedule.
A linear warm-up of 10 epochs was used for the learning rate with warm-up ratio of 0.0001.

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.06.16.448730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448730
http://creativecommons.org/licenses/by/4.0/


6.6 Top-1 Validation Set Performance

6.6.1 Performance of primate models on 224× 224 pixels and 64× 64 pixels ImageNet

Here we report the top-1 validation set accuracy of models trained in a supervised manner on
64× 64 pixels and 224× 224 pixels ImageNet.

Architecture Image Size Objective Function Top-1 Accuracy

AlexNet 224× 224

Supervised (ImageNet)

56.52%
64× 64 36.22%

VGG16 224× 224 71.59%
64× 64 58.32%

ResNet-18 224× 224 69.76%
64× 64 53.31%

6.6.2 Performance of StreamNet Variants on 64 × 64 pixels CIFAR-10 and 64 × 64 pixels Ima-
geNet

Here we report the top-1 validation set accuracy of our model variants trained in a supervised
manner on 64× 64 pixels CIFAR-10 and ImageNet.

Architecture Dataset Objective Function Top-1 Accuracy

Single Stream CIFAR-10

Supervised

76.52%
ImageNet 34.87%

Dual Stream CIFAR-10 81.13%
ImageNet 38.68%

Six Stream CIFAR-10 78.73%
ImageNet 34.15%

6.6.3 Transfer Performance of StreamNet Variants on 64 × 64 pixels ImageNet Under Linear
Evaluation for Models Trained with Unsupervised Objectives

In this subsection, we report the top-1 ImageNet validation set performance under linear evalua-
tion for models trained with unsupervised objectives. After training each model on a unsupervised
objective, the model backbone weights are then held fixed and a linear readout head is trained on
top of the fixed model backbone. In the case where the objective function is “untrained”, model pa-
rameters were randomly initialized and held fixed while the linear readout head was trained. The
image augmentations used during transfer learning were random cropping and random horizontal
flipping. The linear readout for every unsupervised model was trained with the cross-entropy loss
function (i.e., Equation (11) withC = 1000) for 100 epochs, which was minimized using SGD with
momentum of 0.9, and weight decay of 10−9. The initial learning rate was set to 0.1 and reduced
by a factor of 10 at epochs 30, 60, and 90.

6.7 Parameter and Unit Counts for Each Model

Table S4 summarizes the total number of trainable parameters and the total number of units for
each model. The number of trainable parameters reported excludes those specific to the loss func-
tion itself (i.e., the embedding or classification head). The total number of units for each model
was defined as the total number of features used in the neural response fitting procedure for each
model layer, summed across all model layers used for neural response fitting.
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Architecture Objective Function ImageNet Transfer Neural Predictivity
Top-1 Accuracy Neuropixels; Calcium Imaging

Single Stream

Untrained 9.28% 32.76%; 28.65%
Supervised 34.87% 36.21%; 29.73%

Autoencoder 10.37% 35.99%; 28.69%
Depth Prediction 18.04% 33.79%; 27.54%

RotNet 19.72% 35.63%; 29.27%
Instance Recognition 21.22% 38.01%; 30.88%

SimSiam 26.48% 39.19%; 30.48%
MoCov2 27.63% 39.17%; 30.30%
SimCLR 22.84% 39.45%; 29.50%

Dual Stream

Untrained 10.85% 33.58%; 29.24%
Supervised 38.68% 36.07%; 29.43%

Autoencoder 10.26% 34.97%; 28.74%
Depth Prediction 19.81% 32.81%; 27.20%

RotNet 23.29% 35.37%; 29.15%
Instance Recognition 22.55% 40.07%; 30.64%

SimSiam 29.21% 40.20%; 30.60%
MoCov2 31.00% 38.64%; 30.33%
SimCLR 26.25% 38.03%; 29.08%

Six Stream

Untrained 11.12% 33.74%; 29.26%
Supervised 34.15% 36.64%; 29.79%

Autoencoder 9.27% 37.34%; 31.12%
Depth Prediction 18.27% 33.12%; 27.63%

RotNet 22.78% 35.49%; 28.97%
Instance Recognition 26.49% 37.67%; 31.18%

SimSiam 30.52% 38.17%; 30.46%
MoCov2 32.70% 37.96%; 30.44%
SimCLR 28.42% 38.92%; 29.19%

AlexNet Supervised 36.22% 37.28%; 30.34%
AlexNet Instance Recognition 16.09% 41.33%; 31.60%

ResNet-18 Supervised 53.31% 35.82%; 28.93%
ResNet-18 Instance Recognition 30.75% 38.99%; 30.11%

VGG16 Supervised 58.32% 31.92%; 27.09%
VGG16 (224 px) Supervised 71.59% 26.03%; 20.40%

MouseNet of Supervised 37.14% 31.05%; 25.89%Shi et al. (2020)
MouseNet Supervised 39.37% 33.02%; 26.53%Variant

Table S3: ImageNet top-1 validation set accuracy via linear transfer or via supervised training
and neural predictivity for each model. We summarize here the top-1 accuracy for each unsu-
pervised and supervised model on ImageNet as well as their noise-corrected neural predictivity
obtained via the PLS map (aggregated across all visual areas). These values are plotted in Fig-
ures 5C and S1. Unless otherwise stated, each model is trained and validated on 64 × 64 pixels
images.
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Architecture Objective Function Parameter Count Unit Count

Single Stream

Untrained 2029632 8896
Supervised (CIFAR-10) 2029632 11712
Supervised (ImageNet) 2029632 8896

Autoencoder 2029632 8896
Depth Prediction 2029632 8896

RotNet 2029632 8896
Instance Recognition 2029632 8896

SimSiam 2029632 8896
MoCov2 2029632 8896
SimCLR 2029632 8896

Dual Stream

Untrained 5806848 14656
Supervised (CIFAR-10) 5806848 19392
Supervised (ImageNet) 5806848 14656

Autoencoder 5806848 14656
Depth Prediction 5806848 14656

RotNet 5806848 14656
Instance Recognition 5806848 14656

SimSiam 5806848 14656
MoCov2 5806848 14656
SimCLR 5806848 14656

Six Stream

Untrained 16780800 28480
Supervised (CIFAR-10) 16780800 37824
Supervised (ImageNet) 16780800 28480

Autoencoder 16780800 28480
Depth Prediction 16780800 28480

RotNet 16780800 28480
Instance Recognition 16780800 28480

SimSiam 16780800 28480
MoCov2 16780800 28480
SimCLR 16780800 28480

AlexNet Supervised (ImageNet) 57003840 19072
AlexNet (224 px) Supervised (ImageNet) 57003840 204672

AlexNet Instance Recognition 57022528 19072
ResNet-18 Supervised (ImageNet) 11176512 143872
ResNet-18 Instance Recognition 11176512 143872

VGG16 Supervised (ImageNet) 134260544 133120
VGG16 (224 px) Supervised (ImageNet) 134260544 1538560

MouseNet of Supervised 5974858 823296Shi et al. (2020)
MouseNet Supervised 5974858 823296Variant

Table S4: Parameter and unit counts for each model. Each model is summarized by its total num-
ber of trainable parameters (parameter count) and the total number of features used in neural pre-
dictions (unit count), excluding those specific to the loss function itself. Unless otherwise stated,
each model is trained on 64× 64 pixels images.
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6.8 Evaluating Model Performance on Downstream Visual Tasks

To evaluate transfer performance on downstream visual tasks, we used the activations from the
outputs of the shallow, intermediate, and deep modules of our StreamNet variants. We also in-
cluded the average-pooling layer in all the variants (the model layer prior to the fully-connected
readout layer). The dimensionality of the activations was then reduced to 1000 dimensions using
principal components analysis (PCA), if the number of features exceeded 1000. PCA was not used
if the number of features was less than or equal to 1000. A linear readout on these features was
then used to perform five transfer visual tasks.

For the first four object-centric visual tasks (object categorization, pose estimation, position
estimation, and size estimation), we used a stimulus set that was used previously in the evaluation
of neural network models of the primate visual system (Schrimpf et al., 2018; Rajalingham et al.,
2018; Zhuang et al., 2021). The stimulus set consists of objects in various poses (object rotations
about the x, y, and z axes), positions (vertical and horizontal coordinates of the object), and sizes,
each from eight categories. We then performed five-fold cross-validation on the training split of
the low variation image subset (“Var0” and “Var3”, defined in Majaj et al., 2015) consisting of
3200 images, and computed the performance (metrics defined below) on the test split of the high
variation set (“Var6”) consisting of 1280 images. Ten different category-balanced train-test splits
were randomly selected, and the performance of the best model layer (averaged across train-test
splits) was reported for each model. All images were resized to 64 × 64 pixels prior to fitting, to
account for the visual acuity adjustment. The final non-object-centric task was texture recognition,
using the Describable Textures Dataset (Cimpoi et al., 2014).

Object Categorization We fit a linear support vector classifier to each model layer activations
that were transformed via PCA. The regularization parameter,
C ∈ [10−8, 5× 10−8, 10−7, 5× 10−7, 10−6, 5× 10−6, 10−5, 5× 10−5,

10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2, 10−1, 5× 10−1,

1, 5, 102, 5× 102, 103, 5× 103, 104, 5× 104,

105, 5× 105, 106, 5× 106, 107, 5× 107, 108, 5× 108], (17)
was chosen by five-fold cross validation. The categories are Animals, Boats, Cars, Chairs, Faces,
Fruits, Planes, and Tables. We reported the classification accuracy average across the ten train-test
splits.

Position Estimation We predicted both the vertical and the horizontal locations of the object
center in the image. We used Ridge regression where the regularization parameter was selected
from:

α = 1/C, (18)
where C was selected from the list defined in (17). For each network, we reported the correlation
averaged across both locations for the best model layer.

Pose Estimation This task was similar to the position prediction task except that the prediction
target were the z-axis (vertical axis) and the y-axis (horizontal axis) rotations, both of which ranged
between −90 degrees and 90 degrees. The (0, 0, 0) angle was defined in a per-category basis and
was chosen to make the (0, 0, 0) angle “semantically” consistent across different categories. We
refer the reader to Hong et al. (2016) for more details. We used Ridge regression with α chosen
from the range in (18).
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Size Estimation The prediction target was the three-dimensional object scale, which was used to
generate the image in the rendering process. This target varied between 0.625 to 1.6, which was
a relative measure to a fixed canonical size of 1. When objects were at the canonical size, they
occluded around 40% of the image on the longest axis. We used Ridge regression with α chosen
from the range in (18).

Texture Recognition We trained linear readouts of the model layers on texture recognition using
the Describable Textures Dataset (Cimpoi et al., 2014), which consists of 5640 images organized
according to 47 categories, with 120 images per category. We used ten category-balanced train-test
splits, provided by their benchmark. Each split consists of 3760 train-set images and 1880 test-set
images. A linear support vector classifier was then fit withC chosen in the range (17). We reported
the classification accuracy average across the ten train-test splits.
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Figure S1: Shallow architectures trained with contrastive objective functions yield the best
matches to the neural data (calcium imaging dataset). As in Figure 5, but for the calcium imag-
ing dataset. A. The median and s.e.m. neural predictivity, using PLS regression, across neurons in
all mouse visual areas except VISrl. N = 16228 units in total (VISrl is excluded, as mentioned in
Section 2). Red denotes our StreamNet models trained on contrastive objective functions, blue de-
notes our StreamNet models trained on RotNet, turquoise denotes our StreamNet models trained
in a supervised manner on ImageNet and on CIFAR-10, green denotes untrained models (ran-
dom weights), orange denotes our StreamNet models trained depth prediction, purple denotes
our StreamNet models trained on autoencoding, brown denotes contrastive AlexNet, pink denotes
contrastive ResNet-18 (both trained on instance recognition), black denotes the remaining Ima-
geNet supervised models (primate ventral stream models), and grey denotes the MouseNet of Shi
et al. (2020) and our variant of this architecture. Actual neural predictivity performance can be
found in Table S3. B. Each model’s performance on ImageNet is plotted against its median neu-
ral predictivity across all units from each visual area. All ImageNet performance numbers can be
found in Table S3. Color scheme as in A.
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Figure S2: Shallow architectures trained with contrastive objective functions yield the best
matches to the neural data (RSA). A. The median and s.e.m. noise-corrected neural predictivity,
using RSA, across N = 39 and N = 90 animals for the Neuropixels and calcium imaging dataset
respectively (across all visual areas, with VISrl excluded for the calcium imaging dataset, as men-
tioned in Section 2). Red denotes our StreamNet models trained on contrastive objective functions,
blue denotes our StreamNet models trained on RotNet, turquoise denotes our StreamNet models
trained in a supervised manner on ImageNet and on CIFAR-10, green denotes untrained models
(random weights), orange denotes our StreamNet models trained depth prediction, purple de-
notes our StreamNet models trained on autoencoding, brown denotes contrastive AlexNet, pink
denotes contrastive ResNet-18 (both trained on instance recognition), black denotes the remaining
ImageNet supervised models (primate ventral stream models), and grey denotes the MouseNet
of Shi et al. (2020) and our variant of this architecture. B. We plot each model’s performance on
ImageNet against its median neural predictivity, using RSA, across visual areas. All ImageNet
performance numbers can be found in Table S3. Color scheme as in A.
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Figure S3: Hierarchically shallow models achieve competitive neural predictivity performance
(calcium imaging dataset). As in Figure 2C, AlexNet and our StreamNet variants (light purple)
were trained in a supervised manner on ImageNet and provide neural predictivity on the calcium
imaging dataset that is better or at least as good as those of deeper architectures (dark purple).
Refer to Table S1 for N units per visual area. As mentioned in Section 2, visual area VISrl was
removed from the calcium imaging neural predictivity results.
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Figure S4: Unsupervisedmodels better predict the neural responses inmouse visual cortex (cal-
cium imaging dataset). As in Figure 3, AlexNet was either untrained (blue), trained in a super-
vised manner (orange) or trained in an unsupervised manner (green). We observe that the first
four convolutional layers provide the best fits to the neural responses for all the visual areas while
the latter three layers are not very predictive for any visual area. This suggests that an even shal-
lower architecture may be suitable and further corroborates our architectural decision in Figure 2B.
As mentioned in Section 2, visual area VISrl was removed from the calcium imaging neural pre-
dictivity results.
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Figure S5: Lower image resolution during model training improves task-optimized neural pre-
dictivity (calcium imagingdataset)As in Figure 4, models with “lower visual acuity” were trained
using lower resolution ImageNet images. Each image was downsampled from 224 × 224 pixels,
the image size typically used to train primate ventral stream models, to various image sizes (im-
age sizes on horizontal axis). Our dual stream variant (blue) and AlexNet (orange) were trained
using various image sizes on instance recognition and their neural predictivity performances were
computed for each mouse visual area. Training models on resolutions lower than 224× 224 pixels
generally led to improved correspondence with the neural responses for both models. The median
and s.e.m. across neurons in each visual area is reported. As mentioned in Section 2, visual area
VISrl was removed from the calcium imaging neural predictivity results. Refer to Table S1 for N
units per visual area.
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Figure S6: Increasing neural network size can decrease the model’s neural predictivity of re-
sponses in mouse visual areas. A. Each model’s neural predictivity is plotted as a function of
its architecture size in terms of number of parameters, for both Neuropixels and calcium imag-
ing datasets. B. Each model’s neural predictivity is plotted as a function of its architecture size in
terms of number of units, for both Neuropixels and calcium imaging datasets. The median and
s.e.m. neural predictivity across neurons for each model is reported in all panels. Refer to Table S3
for the neural predictivity values of each model and to Table S4 for the parameter and unit counts
of each model.
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Figure S7: Inter-animal consistency can increase with more stimuli. A. Inter-animal consistency
under PLS regression evaluated on the train set (left bars for each visual area) and test set (right
bars for each visual area), for both Neuropixels and calcium imaging datasets. The horizontal
lines are the internal consistency (split half reliability). B. Inter-animal consistency under PLS
regression on the train set (dotted lines) and test set (straight lines), aggregated across visual
areas. Each dot corresponds to the inter-animal consistency evaluated across 10 train-test splits,
where each split is a sample of the natural scene image set corresponding to the percentage (x-
axis). Note that VISrl is excluded for calcium imaging, as explained in the text. The median and
s.e.m. across neurons is reported for both panels. Refer to Table S1 for N units per visual area.
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