
BashTheBug: a crowd of volunteers reproducibly and accurately

measure the minimum inhibitory concentrations of 13 antitubercular

drugs from photographs of 96-well broth microdilution plates.

Philip W Fowler*1, Carla Wright1, Helen Spiers2,3, Tingting Zhu4, Elisabeth ML Baeten5, Sarah W

Hoosdally1, Ana Luı́za Gibertoni Cruz1, Aysha Roohi1, Samaneh Kouchaki4, Timothy M Walker1,

Timothy EA Peto1, Grant Miller2, Chris Lintott2, David Clifton4, Derrick W Crook1, A Sarah Walker1,

The Zooniverse Volunteer Community , and The CRyPTIC Consortium

1Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way,

Oxford, OX3 9DU, UK
2Zooniverse, Department of Physics, University of Oxford, Oxford, UK

3Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
4Institute of Biomedical Engineering, University of Oxford, UK

5Citizen Scientist, c/o Zooniverse, Department of Physics, University of Oxford, Oxford, UK

Abstract

Tuberculosis is a respiratory disease that is treatable with antibiotics. An increasing prevalence of resistance

means that to ensure a good treatment outcome it is desirable to test the susceptibility of each infection to

different antibiotics. Conventionally this is done by culturing a clinical sample and then exposing aliquots to a

panel of antibiotics, thereby determining the minimum inhibitory concentration (MIC) of each drug. Using 96-

well broth micro dilution plates with each well containing a lyophilised pre-determined amount of an antibiotic is

a convenient and cost-effective way to measure the MICs of several drugs at once for a clinical sample. Although

accurate, this is an expensive and slow process that requires highly-skilled and experienced laboratory scientists.

Here we show that, through the BashTheBug project hosted on the Zooniverse citizen science platform, a crowd

of volunteers can reproducibly and accurately determine the MICs for 13 drugs and that simply taking the

median or mode of 11-17 independent classifications is sufficient. There is therefore a potential role for crowds

to support (but not supplant) the role of experts in antibiotic susceptibility testing.

*To whom correspondence should be addressed: philip.fowler@ndm.ox.ac.uk, @philipwfowler
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INTRODUCTION

Tuberculosis (TB) is a treatable (primarily) respiratory disease that caused illness in ten million people in 2019,

with 1.4 million deaths1. Ordinarily this is more than any other single pathogen, however SARS-CoV-2 killed more

people than TB in 2020 and is likely to do so again in 2021. Like all bacterial diseases treated with antibiotics, an

increasing proportion of TB cases are resistant to one or more drugs.

Tackling this ‘silent pandemic’ will require action on several fronts, including the development of new antibi-

otics, better stewardship of existing antibiotics and much wider use of antibiotic susceptibility testing (AST) to

guide prescribing decisions2. The prevailing AST paradigm is culture-based: a sample taken from the patient is

grown and the pathogen identified. If required, further samples are cultured in the presence of different antibiotics

and each test is inspected/measured to see which compounds inhibit the growth of the bacterium. A scientific

laboratory, with an enhanced biosafety level and staffed by experienced and highly-trained laboratory scientists, is

required to carry out such AST. Maintaining such laboratories with a cadre of expert scientists is expensive and

hence they tend to be found only at larger hospitals and national public health agencies, even in high-income coun-

tries. This model, whilst effective, is practically and economically difficult to scale up which explains in part why

most antibiotic prescribing decisions are still done without any AST data.

Conventionally, the sample is inoculated into an appropriate growth medium that contains the antibiotic at a

range of concentrations, each of which is double that of the last. The minimum inhibitory concentration (MIC)

of an antibiotic is the smallest such concentration that prevents growth of the pathogen – this is the key AST

measurement that informs prescribing decisions. Historically it has been assumed has been that, since accuracy

is paramount, only highly-trained and experienced laboratory scientists (experts), or more recently, extensively-

validated automatic algorithms part of accredited AST devices, can measure MICs. If the MIC is below a pre-

determined threshold (cutoff) then the clinical isolate is classified as being susceptible to that drug and the attending

clinician can have some confidence that it would be effective, should they choose to prescribe it.

In this paper we shall show that a crowd of volunteers, who have no microbiological training, can reproducibly

and accurately determine the growth of M. tuberculosis (the causative agent of TB) on a 96-well plate and thence

the MICs for 13 different antibiotics. The BashTheBug citizen science project, which was launched in April 2017

on the Zooniverse platform, has two goals: (i) to help reduce MIC measurement error in the large dataset of >

20,000 clinical M. tuberculosis isolates collected by the Comprehensive Resistance Prediction for Tuberculosis: an

International Consortium (CRyPTIC) project and (ii) to provide a large dataset of classifications to train machine-

learning models, thereby assessing their suitability. CRyPTIC is seeking to add to and therefore improve upon the

existing catalogues that describe genetic variants that are associated with resistance to specific antituberculars3–5

which would in turn accelerate the shift from culture-based to genetics-based AST which is faster and cheaper than

the culture-based alternatives6 and is already well underway for tuberculosis7. Ultimately shifting to a genetics-
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based paradigm, where the susceptibility of a pathogen to an antibiotic is inferred from the genome of the pathogen,

potentially offers a route to making pathogen diagnostics much more widely available.
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METHODS

Plate design

The CRyPTIC project is collecting a large number (> 20,000) of clinical TB samples, each having its whole

genome sequenced and the MIC of a panel of 14 antibiotics measured using a bespoke 96-well broth microdilution

plate. This plate, called UKMYC5, is variant of the MYCOTB 96-well microdilution plate manufactured by

Thermo Fisher and contains 14 anti-TB drugs. UKMYC5 includes two repurposed compounds (linezolid and

clofazimine) and two new compounds (delamanid and bedaquiline). Since 96-well plates have 8 rows and 12

columns, fitting 14 drugs, alongside two positive control wells, onto the plate necessitated a complex design (Fig.

S2).

Each of the antibiotics on the UKMYC5 plate is present at 5-8 concentrations, each double the previous. The

smallest concentration that prevents growth of M. tuberculosis after two weeks of incubation is the minimum

inhibitory concentration (MIC). Since M. tuberculosis is notoriously difficult to culture and inspect, relying on a

reading taken by a single expert (laboratory scientist) would likely have led to sufficiently high levels of errors in

the dataset to bedevil sophisticated analyses, such as genome-wide analysis studies.

Image dataset

Thirty one vials containing 19 external quality assessment (EQA) M. tuberculosis strains, including the reference

strain H37Rv ATCC 272948, were sent to seven participating laboratories as described previously9. Since some

labs only received a subset of the 31 vials (Table S1), a total of 447 plates were inoculated and then incubated for

3 weeks (Fig. 1A). Minimum inhibitory concentrations of the 14 drugs on the plate were measured after 7, 10, 14

and 21 days by two laboratory scientists using a Thermo Fisher Sensititre Vizion Digital MIC viewing system, a

mirrored-box and a microscope. One or two photographs were also taken each time using the Vizion instrument

(Fig. 1B).

A previous blinded validation study involving seven CRyPTIC laboratories showed that the UKMYC5 plate is

reproducible and that it is optimal to read the plate using either a Thermo Fisher Vizion instrument or a mirrored-

box after 14 days of incubation9. That study also showed that para-aminosalicylic acid (PAS) performed poorly

and therefore this drug is excluded in all subsequent analyses. Each image was also processed and analysed by

some bespoke software, the Automated Mycobacterial Growth Detection Algorithm (AMyGDA), that segmented

each photograph, thereby providing a second independent MIC reading of all the drugs on each plate (Fig. 1B)10.

Early internal tests using the Zooniverse platform showed that asking a volunteers to examine all 96 wells on a

plate was too arduous a task. We therefore observed a clinical microbiologist as she examined several photographs

of UKMYC5 plates. Rather than considering the absolute growth in each well, she was constantly comparing the

growth in the wells containing antibiotic back to the positive control wells and therefore judging what constituted
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growth relative to how well the isolate had grown in the absence of drug. A suitable task was therefore to classify

the growth in the wells for a single drug as long as the positive control wells are also provided. The AMyGDA

software was therefore modified to composite such drug images (Fig. 1B).

Each UKMYC5 plate yielded 14 composite images, one for each drug. Throughout the following analysis we

shall aggregate all the data from the different drugs on the UKMYC5 plate. To facilitate this we shall therefore

consider the dilution, which is defined as the number of well in the drug image with the lowest antibiotic con-

centration which prevents bacterial growth, rather than the minimum inhibitory concentration. Following upload

to the Zooniverse platform, the retirement threshold was set to 17 classifications, however some images attracted

additional classifications with 191 images having ≥ 34 classifications whilst 83 have 100 or greater (Table S2, Fig.

S3).

Analysis

The resulting classifications were downloaded from the Zooniverse platform, either by a web browser or using the

panoptes-cli command line tool11. Two Python modules were written to parse, store, manipulate and graph this

classification data. The first, pyniverse12, is designed to be generic for Zooniverse projects whilst the second,

bashthebug13, inherits from the first and adds functionality specific to BashTheBug (Fig. 1C). Both are freely

available to download and use. These Python modules output several Pandas14 dataframes which were then in-

dexed, filtered and joined to other dataframes containing the sample information and the MIC readings taken by

the expert and the AMyGDA software. AMyGDA also measured the growth in the two positive control wells and

this was also recorded in a dataframe. All subsequent analysis was performed using Python3 in a jupyter-notebook

and all graphs were plotted using matplotlib.

Engagement

In addition to the Zooniverse project page, which contained background information, a tutorial and FAQs, we

setup a blog15 and a variety of social media channels, focussing mainly on Twitter (@bashthebug). These all used

a professionally designed logo and typeface (Fig. 1C), allowing instantaneous recognition of the project, which

is important since the Zooniverse platform hosts tens of projects at any one time, and to indirectly convey that

this is a professional project and therefore of scientific and societal importance. Since the blog was launched in

March 2017 we have written 71 posts, attracting 7,393 visitors who made 13,811 views. At the time of writing,

the Twitter account, @bashthebug, has 393 followers and has tweeted 400 times. Finally, the volunteers interacted

with one another as well as the project team via the BashTheBug Talk Boards on the Zooniverse platform. A

total of 6,255 posts were made by 1,042 individuals on 4,834 topics. During the course of the project, one of our

more experienced volunteers (EMLB) became a de facto moderator by answering so many of the questions posted

(>500) which we recognised by giving her moderator status.
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Figure 1: Each UKMYC5 plate was read by an Expert, by some software (AMyGDA) and by at least 17 citizen
scientist volunteers via the BashTheBug project. (A) 447 UKMYC5 plates were prepared and read after 7, 10, 14
and 21 days incubation. (B) The minimum inhibitory concentrations (MIC) for the 14 drugs on each plate were
read by an by Expert, using a Vizion instrument. The Vizion also took a photograph which was subsequently
analysed by AMyGDA – this software then composited 14 drug images from each photograph, each containing
an image of the two positive control wells. To allow data from different drugs to be aggregated, all MICs were
converted to dilutions. (C) All drug images were then uploaded to the Zooniverse platform before being shown to
volunteers through their web browser. Images were retired once they had been classified by 17 different volunteers.
Classification data were downloaded and processed using two Python modules (pyniverse + bashthebug) before
consensus measurements being built using different methods.
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RESULTS

Project launch and progress

After a successful beta-test on 22 March 2017, BashTheBug was launched as a project on the Zooniverse citizen

science platform on 8 April 2017. The launch was publicised on social media, mainly Twitter, and mentioned on

several websites and the Zooniverse users were notified via email. By the end of the first week, 2,029 people had

participated (of which 1,259 had usernames) classifying a total of 74,949 images – this includes the beta-test. The

initial set of images were completed on 11 October 2017 and a second set was classified between 8 June 2020 and

15 November 2020 (Fig. 2A).

Volunteers

In total, 9,063 volunteers participated in classifying this dataset doing a total of 776,119 classifications (Fig. S1).

The number of citizen scientists is an over-estimate since users who did not register with the Zooniverse (and

therefore could not be identified through their unique username) but did more than one session will be counted

multiple times. This is a mean of 85.6 classifications per volunteer, however this hides a large amount of variation

in the number of classifications done by individual volunteers. Almost half of the volunteers (4,154) did ten or

fewer classifications and 1,060 classified only a single image whilst the ten volunteers who participated the most

did 103,569 classifications between them which is 13.3% of the total. The Gini-coefficient is a useful way to

measure these unequal levels of participation, and for this dataset it is 0.85 (Fig. 2B).

Comparison to other Zooniverse projects

The activity within the first 100 days of launch has been used to benchmark and compare different Zooniverse

projects from several academic disciplines16. A total of 381,964 classifications were done in the first hundred days

after launch by a total of 6,237 users of which 3,733 were registered and so were unique. Several Zooniverse

projects have attracted many more users and classifications, however, these are all ecology or astronomy projects

which are the mainstay of the Zooniverse.

Since the number of classifications is heavily influenced by the difficulty of the task, it can be more illuminating

to compare the Gini coefficients of different projects. Cox. et al.17 measured a mean Gini coefficient across several

Zooniverse projects of 0.81, whilst a later and more comprehensive study16 demonstrated that Zooniverse projects

had Gini coefficients in the range 0.54 to 0.94 with a mean of 0.80. They also suggested that biomedical projects

had lower Gini coefficients, with a mean Gini coefficient of 0.67, however this was only based on three projects.

BashTheBug attracted more users, completed more classifications and had a higher Gini coefficient than any of

these three biomedical projects16. A more recent biomedical project, Etch-a-cell, that launched at a similar time to

BashTheBug had a Gini coefficient of 0.8318. BashTheBug therefore has a higher than average level of participation

inequality, having the 17th highest Gini coefficient out of 63 Zooniverse projects surveyed16.
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Figure 2: This dataset of 776,119 classifications was collected in two batches between April 2017 and Sep 2020 by
9,062 volunteers. (A) The classifications were done by the volunteers in two distinct batches; one during 2017 and a
later one in 2020. Note that the higher participation during 2020 was due to the national restrictions imposed due to
the SARS-Cov-2 pandemic. (B) The Lorenz curve demonstrates that there is considerable participation inequality
in the project resulting in a Gini-coefficient of 0.85. (C) Volunteers spent different lengths of time classifying drug
images after 14 days of incubation with a mode duration of 3.5 seconds.
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Time spent

The time spent by a volunteer classifying a single drug image varied from a few seconds up to hours; the latter

are assumed to be data artefacts caused by e.g. a volunteer leaving a browser window open. The distribution of

time spent per image split shows no appreciable differences when calculated as function of the incubation time

with a mode of 3.5 seconds (Fig. 2C, S3), which is unexpected given after only 7 days of incubation there is little

or no bacterial growth. After 14 days incubation there are, however, observable differences between how long the

volunteers spent classifying each drug (Fig. S5).

Classification validity

The tutorial on the Zooniverse website (Fig. S6) encouraged volunteers to check that the control wells both contain

bacterial growth – if not then the drug image should be marked as having “No Growth in either of the ‘No Antibi-

otic’ wells”. They were also asked to check if any of the drug wells contain growth very different to all the others

(contamination), inconsistent growth (skip wells), or anything else that would prevent a measurement being taken

(artefacts). If any of these are true, they were asked to mark the drug image as “Cannot classify”. In the analysis

these were aggregated into a single dilution (NR – not read). In all cases, if a simple majority make a classification

of NR, then this is always returned as the result. All NR results are excluded from calculations of the exact or

essential agreement.

Expert measurements

Each drug image was also measured by a laboratory scientist using a Vizion instrument as well as programmatically

by some software, AMyGDA10. Although the AMyGDA software is reproducible, it will often classify artefacts,

such as air bubbles, contamination, shadows and sediment, as bacterial growth and is also likely to assess a well

as containing no bacterial growth when the level of growth is very low. By contrast, laboratory scientists are not

consistent but can recognise and ignore artefacts. Since the sources of error for each these methods are different,

we constructed a consensus dataset with an assumed reduced error rate by only including readings where both of

these independent methods agree on the value of the MIC. We will refer to this as the ‘Expert+AMyGDA’ dataset

and the larger dataset simply consisting of all the readings taken by the laboratory scientist as the ‘Expert’ dataset.

We shall further assume the error-rate in the ‘Expert+AMyGDA’ consensus dataset is negligible, allowing us to use

it as a reference dataset, which in turn will allow us to infer the performance of the volunteers by comparison.

A total of 12,488 drug images were read after 14 days incubation (Table S3); for 6,205 (49.7%) of these both

the laboratory scientist (Expert) and the software (AMyGDA) returned the same MIC. Since a laboratory scientist

would be reasonably expected to make an error ≤ 5% of the time, the majority of the drug images excluded are

most likely due to AMyGDA incorrectly reading a drug image with only a minority being genuine errors.

By constructing the consensus Expert+AMyGDA dataset we are likely to have introduced bias by unwittingly
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selecting for samples which are easier to read. One candidate is that we may have selected samples with higher

than average levels of bacterial growth. We can show that this is not the case since not only is the average level of

growth in the positive controls (as measured by AMyGDA) for the Expert+AMyGDA dataset (30.8%) similar to

that observed (30.6%) for the larger Expert dataset (Fig. S7), but the distributions themselves are very similar.

A second possibility is that drug images with specific growth configurations (for example either no growth or

growth in all the wells) are easier to read than drug images where the growth halts. This would imply that the

probability of the Expert+AMyGDA measurements agreeing is a function of the dilution MIC, which indeed is

what we find (Table S4). The agreement is highest when there is no growth in any of the drug wells, which makes

sense as that is a relatively trivial classification to make. The next highest value is when the dilution is 8, which

since 7 of the 14 drugs on the plate have 7 drug wells (Fig. 1), corresponds to growth in all 7 drug wells, which is

also an easy classification.

The net effect of this is that the Expert+AMyGDA dataset has a different distribution of measured MICs,

including a greater proportion of drug images with a low MIC dilution (61.4% after 14 days incubation have a

dilution of 1 or 2, Fig. S8) compared to the parent Expert dataset (45.8%). One should bear in mind this bias when

interpreting the results, and to assist we will consider if key results change when we use the Expert-only dataset.

How to compare?

Ideally one would apply an international standard for antibiotic susceptibility testing (AST) for Mycobacteria which

would permit us to assess if a consensus measurement obtained from a crowd of volunteers is sufficiently repro-

ducible and accurate to be accredited as an AST device. Unfortunately, there is no international standard for My-

cobacterial AST – the need to subject Mycobacteria to the same processes and standards as other bacteria has been

argued elsewhere19 – we shall therefore tentatively apply the international standard for aerobic bacteria20 which

requires the results of the proposed antibiotic susceptibility testing method to an appropriate reference method.

Neither of the measurement methods used in constructing our reference consensus dataset has been endorsed,

although broth microdilution using Middlebrook 7H9 media was recently selected by EUCAST as a reference

method for determining M. tuberculosis MICs21 but only for manually-prepared 96-well plates, permitting much

larger numbers of wells for each drug. Nor has any software-based approach for reading MICs from 96-well

microdilution plates been endorsed by EUCAST, the CLSI or any other international body. Despite this, and in lieu

of any other reasonable approach, we shall treat the consensus MICs (the Expert+AMyGDA datset) as a reference

dataset and apply ISO 20776-220.

This requires a new AST method that measures MICs to be compared to the reference method using two

key metrics: the exact agreement and the essential agreement. The former is simply the proportion of definite

readings which agree, whilst the latter allows for some variability and is defined as the “MIC result obtained by

the AST device that is within plus or minus doubling dilution step from the MIC value established by the reference
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method”20. To meet the standard any new AST method must be ≥ 95% reproducible and ≥ 90% accurate (both

assessed using essential agreement) compared to the reference method20.

Variability in classifications

Inevitably there is a large degree of variation in the classifications made by different volunteers of the same drug

image. Examining all 112,163 classifications made by the volunteers on the 6,205 drug images taken after 14 days

incubation and comparing them to the consensus of the laboratory scientist and AMyGDA shows that a single

volunteer is likely to exactly agree with the Expert+AMyGDA dataset 74.6% of the time, excluding cases where

either concluded the drug image could not be read (Table S3). This rises to 86.4% when only considering essential

agreement.

The magnitude of agreement varies depending on the measured dilution: if the consensus view is that a drug

image contains no growth, a single volunteer is likely to agree 64.1% of the time (Fig. 3A), however this falls to

47.8% if the consensus dataset indicates that the first four wells contain growth before rising to 94.5% when the

laboratory scientist decides the dilution is 8. We hence recapitulate our earlier observation that drug images with no

growth or growth in all wells are easier to read than drug images where only a subset of drug wells contain growth.

The BashTheBug volunteers are likely to return a higher dilution than the Expert+AMyGDA consensus; this

can be seen in the greater proportion of MICs with higher dilutions (Fig. 3B-D). For example a single volunteer is

at least 5×, and often > 10×, more likely to return an MIC one greater than the reference rather than an MIC one

lower than the reference (Fig. 3D). We shall return to this bias later.

When the classification made by an individual volunteer does not agree with the consensus this is often (but

not always) because they have misclassified the drug image (Fig. 3E-G). Comparing the classifications made

by individual volunteers with the larger, but presumably less accurate, Expert dataset we see that an individual

volunteer is less likely to agree with a single laboratory scientist with the overall level of exact agreement falling

from 74.6% to 65.3% (Table S3, Fig. S9). Regardless of the comparison dataset used, it is clear that to achieve

satisfactory levels of reproducibility and accuracy one must clearly ask several volunteers to assess each drug image

and then form a consensus measurement which can be compared to the reference measurement. How should we

form that consensus?
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Figure 3: Heatmap showing how all the individual BashTheBug classifications (n=214,164) compare to the di-
lution measured by the laboratory scientist using the Thermo Fisher Vizion instrument after 14 days incubation
(n=12,488) (A) The probability that a single volunteer exactly agrees with the Expert+AMyGDA dataset varies
with the dilution. (B) The distribution of all dilutions in the Expert+AMyGDA dataset after 14 days incubation.
The differences are due to different drugs having different numbers of wells as well as the varying levels of re-
sistance in the supplied strains. NR includes both plates that could not be read due to issues with the control
wells and problems with individual drugs such as skip wells. (C) The distribution of all dilutions measured by the
BashTheBug volunteers. (D) A heatmap showing the concordance between the Expert+AMyGDA dataset and the
classifications made by individual BashTheBug volunteers. Only cells with > 0.1% are labelled. (E) Two exam-
ple drug images where both the Expert and AMyGDA assessed the MIC as being a dilution of 5 whilst a single
volunteer decided no growth could be seen in the image. (F) Two example drug images where both the laboratory
scientist and a volunteer agreed that the MIC was a dilution of 5. (G) Two example drug images where the labora-
tory scientist decided there was no growth in any of the wells, whilst a single volunteer decided there was growth
in the first four wells.
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Consensus

There are a range of methods one can use to extract a consensus from a set of classifications; the simplest being

majority voting, however, this is not practical since an outright majority is not guaranteed. Alternatively one may

take the mode, mean or median of the classifications, although the the former is not always defined and the last

two do not always yield an integer. More sophisticated methods, such as the weighted-majority algorithm22, give

weights to the classifiers based on their accuracy, however this requires each volunteer to first classify a ground-truth

dataset, which was not available at the start of the project. Given the high level of inequality in participation (Fig.

2D), such methods would be very difficult to apply in practice in our case. We shall therefore limit ourselves here to

considering only the mean, median and mode. Since these methods all require the classifications to be numerical,

we excluded all readings where the Expert+AMyGDA measurement and/or half or over of the volunteers decided

the drug image could not be read. If the classification distribution was bi-modal, then the lower value of the dilution

is returned. If necessary, the mean or median were also rounded down.

Reproducibility

To create two consensus measurements by the volunteers of each drug image, two separate sets of 17 classifications

were drawn with replacement. By applying the relevant method (mean, median or mode) a consensus dilution

was arrived at for each set and then the two results compared. To begin with only drug images with 17 or more

classifications were considered and this bootstrapping process was repeated ten times for each drug image in the

Expert+AMyGDA dataset. Considering only those drug images taken after 14 days incubation (Fig. 4A & Table

S5), they are more likely to exactly agree with one another when the mode was applied (89.2 ± 0.1%) than the

median (86.9 ± 0.1%) or mean (74.3 ± 0.1%). For the essential agreement we find that the mean now performs

best (97.2 ± 0.1%), followed by the median (94.2 ± 0.1%) and mode (94.1 ± 0.1%).

Hence only the mean exceeds the threshold for reproducibility20 when 17 classifications are used to build a

consensus. Repeating the analysis for the drug images in the larger Expert dataset yields the same conclusion (Fig.

S10A). The heatmaps (Fig. 4B) show how two consensus measurements arrived at via the mean tend to be similar

but not necessarily identical to one another, whilst two consensus measurements derived using the mode are more

likely to agree with one another but also are more likely to arrive at very different values. The median sits in

between these two extremes.

Accuracy

Comparing the consensus measurements from the volunteers to the set of MICs in the Expert+AMyGDA dataset

yields a different picture (Fig. 4C). The mode exactly agrees with the reference 80.9 ± 0.1% of the time, followed

by the median (78.1 ± 0.1%) and then mean (68.4 ± 0.1%). The mean, despite performing best for reproducibility,

has the lowest level of essential agreement (as well as exact agreement) with the Expert+AMyGDA readings (88.5
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C accuracy after 14 days incubation using n=17 classifications
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Figure 4: Taking the mean of 17 classifications is ≥ 95% reproducible whilst applying either the median or mode
is ≥ 90% accurate. (A) Only calculating the mean of 17 classifications achieves an essential agreement ≥ 95%
for reproducibility20, followed by the median and the mode. (B) Heatmaps of the consensus formed via the mean,
median or mode after 14 days incubation. Only drug images from the Expert+AMyGDA dataset are included. (C)
The essential agreement between a consensus dilution formed from 17 classifications using the median or mode
and the consensus Expert+AMyGDA dilution both exceed the required 90% threshold20. (D) The heatmaps clearly
show how the volunteer consensus dilution is likely to be the same or greater than the Expert+AMyGDA consensus.
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± 0.1%), with the median (90.2 ± 0.1%) and mode (91.0 ± 0.1%) both exceeding the 90% accuracy threshold20.

The heatmaps show how the consensus dilution of the classifications made by the volunteers is much more

likely to be higher than the Expert+AMyGDA measurement than lower (Fig. 4D), regardless of the consensus

method, indicating perhaps that volunteers are more likely than laboratory scientists to classify any dark regions in

a well as bacterial growth, or that laboratory scientists are more willing to discount some features as artefacts e.g.

air bubbles or sediment. Repeating the analysis using the Expert dataset (Fig. S10) leads to lower values for the

exact and essential agreements for all consensus methods – this is to be expected since this the Expert reference

dataset contains a larger proportion of errors than the Expert+AMyGDA dataset.

Which method to choose?

Despite being the most reproducible method as measured by essential agreement, we discount the mean since it

suffers from relatively poor levels of exact agreement for both reproducibility and accuracy and its performance

falls faster than the other methods when n is decreased. The median and mode have very similar reproducibilities

and accuracy and we conclude they perform equally well. We can infer from this that bi-modal classification

distributions are rare and that the median is often identical to the mode.

Reducing the number of classifications

Clearly it would be desirable and ethical to only require the volunteers to complete the minimum number of classi-

fications to achieve an acceptable result. The simplest way to do this is to decrease the number of classifications, n,

before a drug image is retired – this reduces both the reproducibility and accuracy of the consensus measurements

(Fig. 5, Table S5, S6), however perhaps not by as much as one might expect. The mean exceeds the essential agree-

ment ≥ 95% reproducibility threshold for n ≥ 13, whilst the mode and the median satisfy the accuracy criterion

of essential agreement ≥ 90% for n ≥ 3 and n ≥ 11, respectively (Fig. 5, Table S6). Similar trends are observed

when the Expert dataset is used as the reference (Fig. S12). Accuracy is hence less sensitive than reproducibility to

reducing the number of classifications used to build the consensus and, depending on the consensus method used,

the number of classifications can be reduced whilst still maintaining acceptable levels of accuracy.

Can we improve matters?

Retiring all drug images after a fixed number of classifications is simple but does not take account of the relative

difficulty of the classification task. If one was able to group the drug images by difficulty, either before upload or

dynamically during classification, then one could optimally target the work undertaken by the volunteers. Due to

the inherent difficulties in culturing M. tuberculosis, there is a broad distribution of growth in the positive control

wells after 14 days incubation (Fig. S7). One might expect that drug images with poor growth would be more

challenging to classify, however, segmenting by low, medium and high growth shows the amount of growth in the

positive control wells has little effect on either the reproducibility (Fig. S14) or accuracy (Fig. S15), regardless of
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B accuracy after 14 days incubation
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Figure 5: Reducing the number of classifications, n, used to build the consensus dilution decreases the repro-
ducibility and accuracy of the consensus measurement. (A) The consensus dilution becomes less reproducible as
the number of classifications is reduced, as measured by both the exact and essential agreements. (B) Likewise,
the consensus dilution becomes less accurate as the number of classifications is decreased, however the highest
level of exact agreement using the mean is obtained when n = 3 and the mode, and to a lesser extent the median,
are relatively insensitive to the number of classifications. These data are all with respect to the Expert+AMyGDA
dataset.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.07.20.453060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.20.453060
http://creativecommons.org/licenses/by/4.0/


the consensus method and number of classifications employed.

Alternatively one could use the first few classifications performed by the volunteers to assess the difficulty of

each drug image. For example, if the first n volunteers all return the same classification, then it is reasonable to

assume that this is a straightforward image and it can be retired, with the remainder accruing additional classifica-

tions. Ideally one would want to develop an algorithm that assessed the likelihood of the classification not being

altered by more classifications to allow a dynamic decision about when to halt, however applying such an approach

is not yet possible within the Zooniverse.

To estimate the potential value in applying a simple approach to dynamically retiring drug images, we shall

consider applying the median after 14 days of incubation and will arbitrarily retire a drug image if the first three

volunteers all made the same classification, with all other drug images being retired after 17 classifications. This

simple protocol reduces the number of classifications required to n = 8.8, a reduction of 48%, and the reproducibil-

ity, as measured by exact agreement, rises from 86.8% to 87.6%, whilst the essential agreement remains unchanged

(94.2% to 94.4%). The accuracy, assessed in the same way, behaves similarly with the exact agreement increasing

from 78.1% to 78.8% with the essential agreement remaining unaltered (90.2% to 90.3%). Hence retiring some of

the drug images at n = 3 not only dramatically reduces the number of classifications required but also improves the

result in a few cases, presumably because the subsequent classifications have a small chance of altering the dilution

by a single unit, hence worsening the exact agreement but not affecting the essential agreement.

A fairer test is to ask if this dynamic approach improves performance if we are constrained to a fixed number of

total classifications: if we choose n = 9, then the reproducibility of the median (as measured by exact and essential

agreements) improves from 83.0% & 92.2% to 87.6% & 94.4% and the accuracy, measured in the same way,

improves slightly from 77.2% & 89.6% to 78.8% & 90.3%. We therefore conclude that even a simple dynamic

approach to retiring images would minimise the work done by the volunteers / allow more images to be classified.

Variation by drug

So far we have analysed the reproducibility and accuracy of consensus MICs obtained from a crowd of volunteers,

thereby aggregating the results for each of the 13 anti-tuberculars (excl. PAS) present on the UKMYC5 plate

design. The reproducibility of each drug, as measured by the exact and essential agreements, varies between 79.6-

91.4% and 90.8-97.0%, respectively (Fig. 6A). Previous analysis showed that the reproducibility of the whole plate

under these conditions when assessed using the essential agreement is 94.2 ± 0.1% (Fig. 4A) – this is below the

95% threshold specified by an international standard for aerobic bacteria20. Applying the same threshold to each

drug we find that five out of the 13 drugs meet or exceed the threshold whilst the plate as a whole does not. The

accuracy of each drug varies more widely: between 48.4-88.9% and 82.8-94.7% when assessed using the exact

and essential agreement, respectively. Hence whilst the accuracy of the plate as a whole was 90.2 ± 0.1%, just

exceeding the 90% threshold, only six out of 13 drugs surpassed the same threshold.
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Figure 6: The reproducibility and accuracy of the consensus MICs varies by drug. Consensus MICs were arrived
at by taking the median of 17 classifications after 14 days incubation. The essential and exact agreements are
drawn as red and green bars, respectively. For the former the minimum thresholds required are 95% and 90% for
the reproducibility and accuracy, respectively20. See Fig. S16 for the other consensus methods.
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The variation in reproducibility and accuracy between anti-tuberculars, as well as between the exact and essen-

tial agreement for a single compound, is due to a number of factors, not limited to the number and concentration

range of the wells on the plate design, the mechanisms of both action and resistance, the prevalence of resistance

and the degradation rate after lyophilisation, both during storage and after inoculation. For example, kanamycin

passes the reproducibility and accuracy thresholds we have adopted and this is likely due to there being relatively

few (five) drug wells on the UKMYC5 plate (Fig. S2) and the mechanism of resistance being such a substan-

tial proportion of samples either do not grow in any well, or grow in all the drug wells, making measurement

more straightforward. The mechanism of action of each compound is likely to affect how ‘easy’ it is to determine

the minimum inhibitory concentration. From the striking differences in exact and essential accuracies of reading

ethambutol, moxifloxacin and linezolid we hypothesise the Mycobacterial growth diminishes more gradually with

increasing concentration for these drugs, rather than coming to an abrupt end, as it does for other compounds.

This whole analysis could be considered somewhat moot since the UKMYC5 96-well plate would be treated

as a single entity (or medical device) if accreditation were to be sought and therefore the results for individual

compounds would likely not be considered. One unintended consequence of the current standards is therefore

that one could improve the performance of a plate design by dropping compounds with lower-than-average perfor-

mance, even if this is clinically not desirable, rather than work to e.g. improve the performance of the measurement

methods.

DISCUSSION

A crowd of volunteers can reproducibly and accurately measure the growth of a bacterial pathogen on a 96-well

broth microdilution plate, thereby demonstrating the potential for clinical microbiology to embrace and combine

contrasting measurement methods. No Mycobacterial antibiotic susceptibility testing standard exists, although ef-

forts are underway to establish a reference method21, and so we applied the standard for antibiotic susceptibility

testing of aerobic bacteria20. Forming a consensus by applying the mode or median to 17 independent classifi-

cations performs better overall than the mean, and the reproducibility of both these methods, as measured by the

essential agreement, is 94.2% and 94.1%, respectively (Fig. 4). This is slightly less than the 95% threshold set

by ISO for aerobic bacteria and therefore the volunteers do not need this criterion. The accuracy of the crowd, as

measured by the essential agreement, is 90.2% and 91.0% when the median and mode, respectively, are applied to

produce a consensus measurement – these values are above the required 90% threshold20, and therefore the vol-

unteers are sufficiently accurate (but not quite reproducible enough) to be classified as an antibiotic susceptibility

testing (AST) device.

The volunteers are fast, taking on average 3.5 seconds per drug image, and therefore a single plate requires

slightly less than 13 minutes of volunteer time to read if 17 classifications are amassed for each drug. Reducing the

number of classifications before an image is retired reduces the reproducibility and accuracy, but not by as much as
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one might expect. A more nuanced approach would be to retire a drug image early if the first few classifications are

identical, however it is not yet possible to define this type of dynamical rule in the Zooniverse portal. The level of

participation by the volunteers was very unequal with a small cadre of volunteers doing very large numbers with ten

volunteers doing, on average, over 10,000 classifications each which is more than many of the laboratory scientists

who are considered the experts! Compared to the measurements taken by the laboratory scientists, the consensus

dilution arrived at by the volunteers tends to be higher, indicating a bias to overcall (Fig. S10D), which is supported

by anecdotal observations of people classifying drug images at public engagement events where they often choose

a higher dilution ‘to be on the safe side’. By contrast, the AMyGDA computer software has been noted to have

the opposite bias – i.e. be more likely to undercall compared to the expert10. These oppositely directly biases will

make it more difficult to use all three methods to reduce the level of measurement error in large datasets since they

reduce the likelihood that different measurements methods will exactly agree with one another.

The reproducibility and accuracy of any method used to read a 96-well microtitre plate, whether that is lab-

oratory scientists using a Thermo Fisher Vizion instrument or citizen scientists visually examining drug images,

depends on a range of factors from the prevalence of drug-resistant samples in the dataset to which drugs are

included in the plate design and the number and concentrations of their allotted wells. For the UKMYC5 plate

design, both the Expert and either the AMyGDA or BashTheBug measurements are more likely to agree with one

another at low dilutions where there is little or no M. tuberculosis growth in the drug wells (Tables S4, S9), hence

reducing the number of resistant samples would artificially ‘improve’ performance yet the standards do not specify

the degree of resistance in any test dataset20. The requirement to have quality control strains that have definite

growth in all the drug wells unintentionally mitigates against this risk. The dataset used here was based on 19

external quality assessment strains and therefore whilst it included some degree of resistance for all 13 drugs, there

was only a single strain resistant to clofazimine, bedaquiline or delamanid and no strain was resistant to linezolid9.

For isoniazid and rifampicin, 8 and 7 of the 19 EQA strains, respectively were resistant and hence the prevalence

of resistance for these drugs is much greater than would be expected to be encountered in most countries. Clearly

studies including a much more diverse range of strains, for example clinical isolates, would be more definitive.

Since the 13 antituberculars on the UKMYC5 plate (Fig. S2) also all perform differently (Fig. 6) different plate

designs will perform differently, which is important as it is the plate that would be accredited, rather than the

individual compounds.

Although the primary aim of this study was to assess whether the measurements produced by a crowd of

volunteers are sufficiently reproducible and accurate to help reduce the measurement error in datasets containing

large numbers of microtitre plates (as is being collected by the CRyPTIC project and others) the resulting dataset

of classifications is ideally suited to train machine-learning models. This is increasingly recognised as an important

use of citizen science23 and one could envisage training a light-weight machine-learning algorithm able to run on a
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mobile device which, by taking a photograph of a 96-well plate, could automatically read the minimum inhibitory

concentrations. The best use of such a device would likely be to act as a double check for readings taken by the

laboratory scientist. Alternatively, one could build a hybrid approach where e.g. small crowds of experts could

examine plates used in a clinical microbiology service – these could be particularly difficult drug images or could

be a random sample for quality assurance purposes. This type of hybrid approach would also help with training

laboratory scientists which would help reduce the barrier to using 96-well microtitre plates for M. tuberculosis AST

in clinical microbiology laboratories, especially in low- and middle-income countries. Finally, it is likely that each

volunteer has their own individual bias and variability and constructing consensus methods24 that take these into

account would likely further improve the performance of crowds of citizen scientists.
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