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Abstract

Motivation: Gene regulatory networks define regulatory relationships
between transcription factors and target genes within a biological system,
and reconstructing them is essential for understanding cellular growth and
function. Methods for inferring and reconstructing networks from genomics
data have evolved rapidly over the last decade in response to advances in
sequencing technology and machine learning. The scale of data collection has
increased dramatically; the largest genome-wide gene expression datasets
have grown from thousands of measurements to millions of single cells, and
new technologies are on the horizon to increase to tens of millions of cells
and above.

Results: In this work, we present the Inferelator 3.0, which has been
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significantly updated to integrate data from distinct cell types to learn
context-specific regulatory networks and aggregate them into a shared reg-
ulatory network, while retaining the functionality of the previous versions.
The Inferelator is able to integrate the largest single-cell datasets and learn
cell-type specific gene regulatory networks. Compared to other network in-
ference methods, the Inferelator learns new and informative Saccharomyces
cerevisiae networks from single-cell gene expression data, measured by re-
covery of a known gold standard. We demonstrate its scaling capabilities by
learning networks for multiple distinct neuronal and glial cell types in the
developing Mus musculus brain at E18 from a large (1.3 million) single-cell
gene expression dataset with paired single-cell chromatin accessibility data.

Availability: The inferelator software is available on GitHub (https:
//github.com/flatironinstitute/inferelator) under the MIT license
and has been released as python packages with associated documentation
(https://inferelator.readthedocs.io/).

1. Background1

Gene expression is tightly regulated at multiple levels in order to control2

cell growth, development, and response to environmental conditions (Fig-3

ure 1A). Transcriptional regulation is principally controlled by Transcription4

Factors (TFs) that bind to DNA and effect chromatin remodeling (Zaret,5

2020) or directly modulate the output of RNA polymerases (Kadonaga,6

2004). Three percent of Saccharomyces cerevisiae genes are TFs (Hahn and7

Young, 2011), and more than six percent of human genes are believed to8

be TFs or cofactors (Lambert et al., 2018). Connections between TFs and9

genes combine to form a transcriptional Gene Regulatory Network (GRN)10

that can be represented as a directed graph (Figure 1B). Learning the true11

regulatory network that connects regulatory TFs to target genes is a key12

problem in biology (Thompson et al., 2015; Chasman et al., 2016). Deter-13

mining the valid GRN is necessary to explain how mutations that cause gene14

dysregulation lead to complex disease states (Hu et al., 2016), how varia-15

tion at the genetic level leads to phenotypic variation (Mehta et al., 2021;16

Peter and Davidson, 2011), and how to re-engineer organisms to efficiently17

produce industrial chemicals and enzymes (Huang et al., 2017).18

Learning genome-scale networks relies on genome-wide expression mea-19

surements, initially captured with microarray technology (DeRisi et al.,20

1997), but today typically measured by RNA-sequencing (RNA-seq) (Na-21

galakshmi et al., 2008). A major difficulty is that biological systems have22
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large numbers of both regulators and targets, and many regulators are re-23

dundant or interdependent. Many plausible networks can explain observed24

expression data and the regulation of gene expression (Szederkényi et al.,25

2011), which makes identifying the correct network challenging. Designing26

experiments to produce data that increases network identifiability is possi-27

ble (Ud-Dean and Gunawan, 2016), but most data is collected for specific28

projects and repurposed for network inference as a consequence of the cost29

of data collection. Large-scale experiments in which a perturbation is made30

and dynamic data is collected over time is exceptionally useful for learning31

GRNs but systematic studies that collect this data are rare (Hackett et al.,32

2020).33

Measuring the expression of single cells using single-cell RNA-sequencing34

(scRNAseq) is an emerging and highly scalable technology. Microfluidic-35

based single-cell techniques (Macosko et al., 2015; Zilionis et al., 2017; Zheng36

et al., 2017) allow for thousands of measurements in a single experiment.37

Split-pool barcoding techniques (Rosenberg et al., 2018) are poised to in-38

crease single-cell throughput by an order of magnitude. These techniques39

have been successfully applied to generate multiplexed gene expression data40

from pools of barcoded cell lines with loss-of-function TF mutants (Dixit41

et al., 2016; Jackson et al., 2020), enhancer perturbations (Schraivogel et al.,42

2020), and disease-causing oncogene variants (Ursu et al., 2020). Individual43

cell measurements are sparser and noisier than measurements generated us-44

ing traditional RNA-seq, although in aggregate the gene expression profiles45

of single-cell data match RNA-seq data well (Svensson, 2020), and tech-46

niques to denoise single-cell data have been developed (Arisdakessian et al.,47

2019; Tjärnberg et al., 2021).48

The seurat (Stuart et al., 2019) and scanpy (Wolf et al., 2018) bioin-49

formatics toolkits are established tools for single-cell data analysis, but50

pipelines for inferring GRNs from single-cell data are still nascent, although51

many are under development (Zappia and Theis, 2021). Recent work has be-52

gun to systematically benchmarking network inference tools, and the BEE-53

LINE (Pratapa et al., 2020) and other (Nguyen et al., 2021; Chen and Mar,54

2018) benchmarks have identified promising methods. Testing on real-world55

data has proved difficult, as reliable gold standard networks for higher eu-56

karyotes do not exist. scRNAseq data for microbes which have some known57

ground truth networks (like Saccharomyces cerevisiae and Bacillus subtilis)58

was not collected until recently. As a consequence, most computational59

method benchmarking has been done using simulated data. Finally, GRN60

inference is computationally challenging, and the most scalable currently-61

published GRN pipeline has learned GRNs from 50,000 cells of gene expres-62
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sion data (Van de Sande et al., 2020).63

Here we describe the Inferelator 3.0 pipeline for single-cell GRN infer-64

ence, based on regularized regression (Bonneau et al., 2006). This pipeline65

calculates TF activity (Ma and Brent, 2021) using a prior knowledge net-66

work and regresses scRNAseq expression data against that activity estimate67

to learn new regulatory edges. We compare it directly to two other network68

inference methods that also utilize prior network information and scRNAseq69

data, benchmarking using real-world Saccharomyces cerevisiae scRNAseq70

data and comparing to a high-quality gold standard network. The first71

comparable method, SCENIC (Van de Sande et al., 2020), is GRN inference72

pipeline that estimates the importance of TFs in explaining gene expres-73

sion profiles and then constrains this correlative measure with prior network74

information to identify regulons. The second comparable method, CellOr-75

acle (Kamimoto et al., 2020), has been recently proposed as a pipeline to76

integrate single-cell ATAC and expression data using a motif-based search77

for potential regulators, followed by bagging Bayesian ridge regression to78

enforce sparsity in the output GRN.79

Older versions of the Inferelator (Madar et al., 2009) have performed well80

inferring networks for Bacillus subtilis (Arrieta-Ortiz et al., 2015), human81

Th17 cells (Ciofani et al., 2012; Miraldi et al., 2019), mouse lymphocytes82

(Pokrovskii et al., 2019), Saccharomyces cerevisiae (Tchourine et al., 2018),83

and Oryza sativa (Wilkins et al., 2016). We have implemented the Infere-84

lator 3.0 with new functionality in python to learn GRNs from scRNAseq85

data. Three different model selection methods have been implemented: a86

Bayesian best-subset regression method (Greenfield et al., 2013), a StARS-87

LASSO (Miraldi et al., 2019) regression method in which the regularization88

parameter is set by stability selection (Liu et al., 2010), and a multitask-89

learning regression method (Castro et al., 2019). This new package provides90

scalability, allowing millions of cells to be analyzed together, as well as in-91

tegrated support for multi-task GRN inference, while retaining the ability92

to utilize bulk gene expression data. We show that the Inferelator 3.0 is a93

state-of-the-art method by testing against SCENIC and CellOracle on model94

organisms with reliable ground truth networks, and show that the Inferelator95

3.0 can generate a mouse neuronal GRN from a publicly available dataset96

containing 1.3 million cells.97
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2. Results98

2.1. The Inferelator 3.099

In the 12 years since the last major release of the Inferelator (Madar100

et al., 2009), the scale of data collection in biology has accelerated enor-101

mously. We have therefore rewritten the Inferelator as a python package to102

take advantage of the concurrent advances in data processing. For inference103

from small scale gene expression datasets (< 104 observations), the Inferela-104

tor 3.0 uses native python multiprocessing to run on individual computers.105

For inference from extremely large scale gene expression datasets (> 104 ob-106

servations) that are increasingly available from scRNAseq experiments, the107

Inferelator 3.0 takes advantage of the Dask analytic engine (Rocklin, 2015)108

for deployment to high-performance clusters (Figure 1C), or for deployment109

as a kubernetes image to the Google cloud computing infrastructure.110

2.2. Network Inference using Bulk RNA-Seq Expression Data111

We incorporated several network inference model selection methods into112

the Inferelator 3.0 (Figure 2A) and evaluate their performance on the prokary-113

otic model Bacillus subtilis and the eukaryotic model Saccharomyces cere-114

visiae. Both B. subtilis (Arrieta-Ortiz et al., 2015; Nicolas et al., 2012)115

and S. cerevisiae (Tchourine et al., 2018; Hackett et al., 2020) have large116

bulk RNA-seq and microarray gene expression datasets, in addition to a117

relatively large number of experimentally determined TF-target gene inter-118

actions that can be used as a gold standard for assessing network infer-119

ence. Using two independent datasets for each organism, we find that the120

model selection methods Bayesian Best Subset Regression (BBSR) (Green-121

field et al., 2010) and Stability Approach to Regularization Selection for122

Least Absolute Shrinkage and Selection Operator (StARS-LASSO) (Miraldi123

et al., 2019) perform equivalently (Figure 2B).124

The two independent data sets show clear batch effects (Supplemental125

Figure 1A), and combining them for network inference is difficult; concep-126

tually, each dataset is in a separate space, and must be mapped into a127

shared space. We take a different approach to addressing the batch effects128

between datasets by treating them as separate learning tasks (Castro et al.,129

2019) and then combining network information into a unified GRN. This re-130

sults in a considerable improvement in network inference performance over131

either dataset individually (Figure 2C). The best performance is obtained132

with Adaptive Multiple Sparse Regression (AMuSR) (Castro et al., 2019),133

a multi-task learning method that shares information between tasks during134

regression. The GRN learned with AMuSR explains the variance in the135
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expression data better than learning networks from each dataset individu-136

ally with BBSR or StARS-LASSO and then combining them (Supplemental137

Figure 1B), and retains a common network core across different tasks (Sup-138

plemental Figure 1C).139

2.3. Generating Prior Networks from Chromatin Data and Transcription140

Factor Motifs141

The Inferelator 3.0 produces an inferred network from a combination of142

gene expression data and a prior knowledge GRN constructed from existing143

knowledge about known gene regulation. Curated databases of regulator-144

gene interactions culled from domain-specific literature are an excellent145

source for prior networks. While some model systems have excellent databases146

of known interactions, these resources are unavailable for most organisms or147

cell types. In these cases, using chromatin accessibility determined by a148

standard Assay for Transposase-Accessible Chromatin (ATAC) in combina-149

tion with the known DNA-binding preferences for TFs to identify putative150

target genes is a viable alternative (Miraldi et al., 2019).151

To generate these prior networks we have developed the inferelator-prior152

accessory package that uses TF motif position-weight matrices to score TF153

binding within gene regulatory regions and build sparse prior networks (Fig-154

ure 3A). These gene regulatory regions can be identified by ATAC, by ex-155

isting knowledge from TF Chromatin Immunoprecipitation (ChIP) experi-156

ments, or from known databases (e.g. ENCODE (ENCODE Project Con-157

sortium et al., 2020)). Here, we compare the inferelator-prior tool to the158

CellOracle package (Kamimoto et al., 2020) that also constructs motif-based159

networks that can be constrained to regulatory regions, in Saccharomyces160

cerevisiae by using sequences 200bp upstream and 50bp downstream of each161

gene TSS as the gene regulatory region. The inferelator-prior and CellOracle162

methods produce networks that are similar when measured by Jaccard index163

but are dissimilar to the YEASTRACT literature-derived network (Figure164

3B). These motif-derived prior networks from both the inferelator-prior and165

CellOracle methods perform well as prior knowledge for GRN inference us-166

ing the Inferelator 3.0 pipeline (Figure 3C). The source of the motif library167

has a significant effect on network output, as can be seen with the well-168

characterized TF GAL4. GAL4 has a canonical CGGN11CGG binding site;169

different motif libraries have different annotated binding sites (Supplemental170

Figure 2A) and yield different motif-derived networks with the inferelator-171

prior pipeline (Supplemental Figure 2B-C).172
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2.4. Network Inference using Single-Cell Expression Data173

Single-cell data is undersampled and noisy, but large numbers of obser-174

vations are collected in parallel. As network inference is a population-level175

analysis which must already be robust against noise, we reason that data176

preprocessing that improves per-cell analyses (like imputation) is unneces-177

sary. We test this by quantitatively evaluating networks learned from Sac-178

charomyces cerevisiae scRNAseq data (Jackson et al., 2020; Jariani et al.,179

2020) with a previously-defined yeast gold standard (Tchourine et al., 2018).180

This expression data is split into 15 separate tasks, based on labels that cor-181

respond to experimental conditions from the original works (Figure 4A).182

A network is learned for each task separately using the YEASTRACT183

literature-derived prior network, from which a subset of genes are with-184

held, and aggregated into a final network for scoring on held-out genes from185

the gold standard. We test a combination of several preprocessing options186

with three network inference model selection methods (Figure 4B-D).187

We find that network inference is generally sensitive to the preprocessing188

options chosen, and that this effect outweighs the differences between differ-189

ent model selection methods (Figure 4B-D). A standard Freeman-Tukey or190

log2 pseudocount transformation on raw count data yields the best perfor-191

mance, with notable decreases in recovery of the gold standard when count192

data is count depth-normalized (such that each cell has the same total tran-193

script counts). The performance of the randomly generated Noise control194

(N) is higher than the performance of the shuffled (S) control when counts195

per cell are not normalized, suggesting that total counts per cell provides196

additional information during inference.197

Different model performance metrics, like AUPR, Matthews Correlation198

Coefficient (MCC), and F1 score correlate very well and identify the same199

optimal hyperparameters (Supplemental Figure 4). We apply AMuSR to200

data that has been Freeman-Tukey transformed to generate a final network201

without holding out genes for cross-validation (Figure 4E). While we use202

AUPR as a metric for evaluating model performance, selecting a threshold203

for including edges in a GRN by precision or recall requires a target precision204

or recall to be chosen arbitrarily. Choosing the Inferelator confidence score205

threshold to include the edges in a final network that maximize MCC is a206

simple heuristic to select the size of a learned network that maximizes overlap207

with another network (e.g. a prior knowledge GRN or gold standard GRN)208

while minimizing links not in that network (Figure 4F). Maximum F1 score209

gives a less conservative GRN as true negatives are not considered and will210

not diminish the score. Both metrics balance similarity to the test network211
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with overall network size, and therefore represent straightforward heuristics212

that do not rely on arbitrary thresholds.213

In order to determine how the Inferelator 3.0 compares to similar network214

inference tools, we apply both CellOracle and SCENIC to the same network215

inference problem, where a set of genes are held out of the prior knowledge216

GRN and used for scoring. We see that the Inferelator 3.0 can make predic-217

tions on genes for which no prior information is known, but CellOracle and218

SCENIC cannot (Figure 4G). When provided with a complete prior knowl-219

edge GRN, testing on genes which are not held out, CellOracle outperforms220

the Inferelator, although the Inferelator is more robust to noise in the prior221

knowledge GRN (Figure 4H). This is a key advantage, as motif-generated222

prior knowledge GRNs are expected to be noisy.223

2.5. Large-scale Single-Cell Mouse Neuron Network Inference224

The Inferelator 3.0 is able to distribute work across multiple compu-225

tational nodes, allowing networks to be rapidly learned from > 105 cells226

(Supplemental Figure 5A). We show this by applying the Inferelator to227

a large (1.3 million cells of scRNAseq data), publicly available dataset of228

mouse brain cells (10x genomics) that is accompanied by 15,000 single-cell229

ATAC (scATAC) measurements. We separate the expression and scATAC230

data into broad categories; Excitatory neurons, Interneurons, Glial cells and231

Vascular cells (Figure 5A-E). After initial quality control, filtering, and cell232

type assignment, 766,402 scRNAseq and 7,751 scATAC observations remain233

(Figure 5F, Supplemental Figure 5B-D).234

scRNAseq data is further clustered within broad categories into clusters235

(Figure 5B) that are assigned to specific cell types based on marker expres-236

sion (Figure 5C, Supplemental Figure 6). scATAC data is aggregated into237

chromatin accessibility profiles for Excitatory neurons, Interneurons, and238

Glial cells (Figure 5D) based on accessibility profiles (Figure 5E), which are239

then used with the TRANSFAC mouse motif position-weight matrices to240

construct prior knowledge GRNs with the inferelator-prior pipeline. Most241

scRNAseq cell type clusters have thousands of cells, however rare cell type242

clusters are smaller (Figure 5G)243

After processing scRNAseq into 36 cell type clusters and scATAC data244

into 3 broad (Excitatory neurons, Interneurons, and Glial) prior GRNs, we245

used the Inferelator 3.0 to learn an aggregate mouse brain GRN. Each of246

the 36 clusters was assigned the most appropriate of the three prior GRNs247

and learned as a separate task using the AMuSR model selection framework.248

The resulting aggregate network contains 20,991 TF - gene regulatory edges,249

selected from the highest confidence predictions to maximize MCC (Figure250
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6A-B). A common regulatory core of 1,909 network edges is present in every251

task-specific network (Figure 6C). Task-specific networks from similar cell252

types tend to be highly similar, as measured by Jaccard index (Figure 6D).253

We learn very similar GRNs from each excitatory neuron task, and very254

similar GRNs from each interneuron task, although each of these broad cat-255

egories yields different regulatory networks. There are also notable examples256

where glial and vascular tasks produce GRNs that are distinctively different257

from other glial and vascular GRNs.258

Finally, we can examine specific TFs and compare networks between259

cell type categories (Supplemental Figure 7). The TFs Egr1 and Atf4 are260

expressed in all cell types and Egr1 is known to have an active role at261

embryonic day 18 (E18) (Sun et al., 2019). In our learned network, Egr1262

targets 103 genes, of which 20 are other TFs (Figure 6E-G). Half of these263

targets (49) are common to both neurons and glial cells, while 38 target264

genes are specific to neuronal GRNs and 16 target genes are specific to glial265

GRNs. We identify 14 targets for Atf4 (Figure 6H), the majority of which266

(8) are common to both neurons and glial cells, with only 1 target gene267

specific only to neuronal GRNs and 5 targets specific only to glial GRNs.268

3. Discussion269

We have developed the Inferelator 3.0 software package to scale to match270

the size of any network inference problem, with no organism-specific require-271

ments that preclude easy application to non-mammalian organisms. Model272

baselines can be easily established by shuffling labels or generating noised273

data sets, and cross-validation and scoring on holdout genes is built directly274

into the pipeline. We believe this is particularly important as evaluation of275

single-cell network inference tools on real-world problems has lagged behind276

the development of inference methods themselves. Single-cell data collection277

has focused on complex higher eukaryotes and left the single-cell network278

inference field bereft of reliable standards to test against. Recent collection279

of scRNAseq data from traditional model organisms provides an opportu-280

nity to identify successful and unsuccessful strategies for network inference.281

For example, we find that performance differences between our methods of282

model selection may be smaller than differences caused by data cleaning and283

preprocessing. Benchmarking using model organism data should be incor-284

porated in all single-cell method development, as it mitigates cherry-picking285

from complex network results and can prevent use of flawed performance286

metrics which are the only option when no reliable gold standard exists.287
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Unlike traditional RNA-seq that effectively measures the average gene288

expression of large number of cells, scRNAseq can yield individual measure-289

ments for many different cell types that are implementing distinct regula-290

tory programs. Learning GRNs from each of these cell types as a separate291

learning task in a multi-task framework allows cell type differences to be292

retained, while still taking advantage of the common regulatory programs.293

We demonstrate the use of this multi-task approach to simultaneously learn294

regulatory GRNs for a variety of mouse neuronal cell types from a very295

large (106) single-cell data set. This includes learning GRNs for rare cell296

types; by sharing information between cell types during regression, we are297

able to learn a core regulatory network while also retaining cell type specific298

interactions. As the GRNs that have been learned for each cell type are299

sparse and consist of the highest-confidence regulatory edges, they are very300

amenable to exploration and experimental validation.301

A number of limitations remain that impact our ability to accurately pre-302

dict gene expression and cell states. Most important is a disconnect between303

the linear modeling that we use to learn GRNs and the non-linear biophys-304

ical models that incorporate both transcription and RNA decay. Modeling305

strategies that more accurately reflect the underlying biology will improve306

GRN inference directly, and will also allow prediction of useful latent pa-307

rameters (e.g. RNA half-life) that are experimentally difficult to access. It308

is also difficult to determine if regulators are activating or repressing specific309

genes (Kamimoto et al., 2020), complicated further by biological complexity310

that allows TFs to switch between activation and repression (Papatsenko311

and Levine, 2008). Improving prediction of the directionality of network312

edges, and if directionality is stable in different contexts would also be a313

major advance. Many TFs bind cooperatively as protein complexes, or an-314

tagonistically via competitive binding, and explicit modeling of these TF-TF315

interactions would also improve GRN inference and make novel biological316

predictions. The modular Inferelator 3.0 framework will allow us to further317

explore these open problems in regulatory network inference without having318

to repeatedly reinvent and reimplement existing work. We expect this to be319

a valuable tool to build biologically-relevant GRNs for experimental follow-320

up, as well as a baseline for further development of computational methods321

in the network inference field.322

4. Methods323

Additional methods available in Supplemental Methods324
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4.1. Network Inference in Bacillus subtilis325

Microarray expression data for Bacillus subtilis was obtained from NCBI326

GEO; GSE67023 (Arrieta-Ortiz et al., 2015) (n=268) and GSE27219 (Nico-327

las et al., 2012) (n=266). GRNs were learned using each expression dataset328

separately in conjunction with a known prior network (Arrieta-Ortiz et al.,329

2015) (Supplemental Data 1). Performance was evaluated by AUPR on330

ten replicates by holding 20% of the genes in the known prior network out,331

learning the GRN, and then scoring based on the held-out genes. Baseline332

shuffled controls were performed by randomly shuffling the labels on the333

known prior network.334

Multi-task network inference uses the same B. subtilis prior for both335

tasks, with 20% of genes held out for scoring. Individual task networks are336

learned and rank-combined into an aggregate network. Performance was337

evaluated by AUPR on the held-out genes.338

4.2. Network Inference in Saccharomyces cerevisiae339

A large microarray dataset was obtained from NCBI GEO and normal-340

ized for a previous publication (Tchourine et al., 2018) (n=2,577; 10.5281/zen-341

odo.3247754). In short, this data was preprocessed with limma (Ritchie342

et al., 2015) and quantile normalized. A second microarray dataset con-343

sisting of a large dynamic perturbation screen (Hackett et al., 2020) was344

obtained from NCBI GEO accession GSE142864 (n=1,693). This dataset345

is log2 fold change of an experimental channel over a control channel which346

is the same for all observations. GRNs were learned using each expression347

dataset separately in conjunction with a known YEASTRACT prior network348

(Teixeira et al., 2018; Monteiro et al., 2020) (Supplemental Data 1). Per-349

formance was evaluated by AUPR on ten replicates by holding 20% of the350

genes in the known prior network out, learning the GRN, and then scoring351

based on the held-out genes in a separate gold standard (Tchourine et al.,352

2018). Baseline shuffled controls were performed by randomly shuffling the353

labels on the known prior network.354

Multi-task network inference uses the same YEASTRACT prior for both355

tasks, with 20% of genes held out for scoring. Individual task networks356

are learned and rank-combined into an aggregate network, which is then357

evaluated by AUPR on the held-out genes in the separate gold standard.358

4.3. Single-Cell Network Inference in Saccharomyces cerevisiae359

Single-cell expression data for Saccharomyces cerevisiae was obtained360

from NCBI GEO (GSE125162 (Jackson et al., 2020) and GSE144820 (Jariani361
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et al., 2020)). Individual cells (n=44,343) are organized into one of 14 groups362

based on experimental metadata and used as separate tasks in network infer-363

ence. Genes were filtered such that any gene with fewer than than 2217 total364

counts in all cells (1 count per 20 cells) was removed. Data was used as raw,365

unmodified counts, was Freeman-Tukey transformed (
√
x+ 1 +

√
x − 1),366

or was log2 pseudocount transformed (log2(x + 1)). Data was either not367

normalized, or depth normalized by scaling so that the sum of all counts368

for each cell is equal to the median of the sum of counts of all cells. For369

each set of parameters, network inference is run 10 times, using the YEAS-370

TRACT network as prior knowledge with 20% of genes held out for scoring.371

For noise-only controls, gene expression counts are simulated randomly such372

that for each gene i, xi ∼ N(µxi , σxi) and the sum for each cell is equal to373

the sum in the observed data. For shuffled controls, the gene labels on the374

prior knowledge network are randomly shuffled.375

4.4. Single-Cell Network Inference in Mus musculus neurons376

GRNs were learned using AMuSR on log2 pseudocount transformed377

count data for each of 36 cell type specific clusters as separate tasks with the378

appropriate prior knowledge network. An aggregate network was created by379

rank-summing each cell type GRN. MCC was calculated for this aggregate380

network based on a comparison to the union of the three prior knowledge381

networks, and the confidence score which maximized MCC was selected as382

a threshold to determine the size of the final network. Neuron specific edges383

were identified by aggregating filtered individual task networks with their384

respective confidence score to maximize MCC. Each edge that was shared385

with a glial or vascular network was excluded. The remaining neuron specific386

edges are interneuron specific, excitatory specific or shared.387
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5. Supplemental Methods388

5.1. BEELINE Benchmarks389

Test data and networks for the BEELINE panel were obtained from390

Zenodo (DOI: 10.5281/zenodo.3378975). For tests without any prior net-391

work information, the Inferelator was provided with expression data and392

scored against the entire gold-standard network. For tests with prior in-393

formation, the Inferelator was provided with expression data and half the394

genes from the gold-standard network as a prior knowledge network. Scor-395

ing was performed on genes which were not provided in the prior knowledge396

network. Network inference was performed on each of expression data sets397

10 times, with different random seeds each time. The median AUPR of the398

10 network inference runs is reported as the performance for that specific399

expression data set. AUPR ratios are calculated using the baseline AUPR400

as defined in the BEELINE benchmarks. Scores for other methods are taken401

from supplemental data of the previously published BEELINE benchmark.402

5.2. Benchmarking CellOracle & Scenic403

CellOracle (v 0.7.5) was obtained from GitHub (https://github.com/404

morris-lab/CellOracle commit: cda023a) and installed into a new Ana-405

conda environment. pySCENIC (v0.11.2) was obtained from the python406

package manager pypi and installed into a new Anaconda environment. A407

benchmarking module was written for the Inferelator to run CellOracle408

and pySCENIC from the inferelator workflow. Data loading, crossvali-409

dation, simulation, and scoring functions are identical between all meth-410

ods. CellOracle was provided the prior knowledge network as a binary411

dataframe. pySCENIC was provided the prior knowledge network as a412

ranked-interaction feather database and TF lookup table, in accordance413

with the pySCENIC pipeline for generating prior knowledge databases for414

new organisms. Expression data for pySCENIC was log pseudocount trans-415

formed and scaled. Expression data for CellOracle was provided as raw416

counts, which was then log pseudocount transformed and scaled during Cel-417

lOracle run.418

5.3. Inferelator 3.0 Single-Cell Computational Speed Profiling419

144,682 mouse cells from the mouse neuronal subcluster EXC IT 1 were420

used with the mouse excitatory neuron prior knowledge network to deter-421

mine Inferelator 3.0 runtime. To benchmark the python-based multiprocess-422

ing engine, the Inferelator was deployed to a single 28-core (Intel R© Xeon R©423

E5-2690) node. The Dask implementations of the Inferelator and pySCENIC424
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were deployed to 5 28-core (Intel R© Xeon R© E5-2690) nodes for a total of425

140 cpu cores. Either all 144,682 mouse cells were used, or a subset was426

randomly selected for each run, and used to learn a single GRN. Runtime427

was determined by the length of workflow execution, which includes loading428

data, running all regressions, and producing output files. We were unable429

to run the full 144k cell data set with pySCENIC due to runtime limitations430

(with GENIE3) or cryptic memory-related errors (with GRNBOOST2).431

5.4. Preprocessing Mus musculus single-cell data432

Single-cell expression data from Mus musculus brain samples taken at433

E18 was obtained from 10x genomics (10x Genomics, 2017). SCANPY was434

used to preprocess and cluster the scRNAseq dataset. Genes present in fewer435

than 2% of cells were removed. Cells were filtered out when fewer than 1000436

genes were detected, the cell had more than 20,000 total gene counts, or the437

cell had more than 7% of gene counts assigned to mitochondrial transcripts.438

Transcript counts were then log transformed and normalized and scaled.439

Cells were assigned to mitotic or post mitotic phase based on cell cycle440

marker genes using score genes cell cycle (Satija et al., 2015). In order to441

focus on neuronal cells, all 374,369 mitotic cells were removed. Remaining442

cells were clustered by Leiden clustering (Resolution = 0.5) using the first443

300 principal components of the 2000 most highly variable genes. Broad cell444

types were assigned to each cluster based on the expression of marker genes445

Neurod6 for Excitatory neurons, Gad1 for Interneurons, and Apoe for glial446

cells. Cells from each broad cell type were then re-clustered into clusters447

based on the 2000 most highly variable genes within the cluster. Specific cell448

types were assigned to each subcluster based on the expression of marker449

genes(Di Bella et al., 2020). Ambiguous clusters were discarded, removing450

151,765 cells, leaving resulting in 36 specific cell type clusters that consist451

of 766,402 total cells.452

Single-cell ATAC data from Mus musculus brain samples taken at E18453

was obtained from 10x genomics; datasets are from samples prepared fresh454

(10x Genomics, 2019c), samples dissociated and cryopreserved (10x Ge-455

nomics, 2019a), and samples flash-frozen (10x Genomics, 2019b). ChromA456

(Gabitto et al., 2020) and SnapATAC (Fang et al., 2021) were used to pro-457

cess the scATACseq datasets. Consensus peaks were called on the 3 datasets458

using ChromA. Each dataset was then run through the SnapATAC pipeline459

using the consensus peaks. Cells were clustered and labels from the scR-460

NAseq object were transferred to the scATAC data. Cells that did not461

have an assignment score ≥ .5 were discarded. Assigned barcodes were split462
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by cell class( EXC, IN or GL). ChromA was run again for each cell class463

generating 3 sets of cell class specific peaks.464

Aggregated chromatin accessibility profiles were used with TRANSFAC465

v2020.1 motifs and the inferelator-prior (v0.3.0) pipeline to create prior466

knowledge connectivity matrices between TFs and target genes for exci-467

tatory neurons, interneurons, and glial cells. Vascular cells were not present468

in the scATAC data sufficiently to allow construction of a vascular cell prior469

with this method, and so vascular cells were assigned the glial prior for470

network inference.471

5.5. Saccharomyces cerevisiae prior knowledge networks472

A prior knowledge matrix consists of a signed or unsigned connectiv-473

ity matrix between regulatory transcription factors (TFs) and target genes.474

This matrix can be obtained experimentally or by mining regulatory databases.475

For a TF - gene relationships to be directly causal, the TF must localize to476

the gene, and gene expression must change in response to perturbations in477

the TF. However, these criteria do not have to be met at all times. It is478

reasonable to expect that in many (or most) cell states, a TF may not lo-479

calize to a target gene, or expression of the gene may not be affected by480

perturbations in the TF.481

Prior knowledge and gold standard networks are selected with these cri-482

teria in mind. The YEASTRACT prior knowledge network was obtained483

from the YEASTRACT database (Teixeira et al., 2018; Monteiro et al.,484

2020) (http://www.yeastract.com/; Downloaded 07/13/2019) which is485

constructed from published yeast TF localization and gene expression data.486

This prior knowledge network has 11,486 TF - gene edges from the YEAS-487

TRACT database for which evidence exists that the TF localizes to the488

target gene, and that the target gene expression changes upon TF pertur-489

bation. The yeast gold standard network was constructed in an earlier work490

(Tchourine et al., 2018) and consists of 1,403 edges, which have multiple491

pieces of both DNA localization and target gene perturbation evidence.492

5.6. TF Motif-Based Connectivity Matrix (inferelator-prior)493

Scanning genomic sequence near promoter regions for TF motifs allows494

for the construction of motif-derived priors which can be further constrained495

experimentally by incorporating information about chromatin accessibility496

(Miraldi et al., 2019). We have further refined the generation of prior knowl-497

edge matrices with the python inferelator-prior package, which takes as in-498

put a gene annotation GTF file, a genomic FASTA file, and a TF motif file,499

and generates an unsigned connectivity matrix. It has dependencies on the500
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common scientific computing packages NumPy (Harris et al., 2020), SciPy501

(Virtanen et al., 2020), and scikit-learn (Pedregosa et al., 2011). In addition,502

it uses the BEDTools kit (Quinlan and Hall, 2010) and associated python in-503

terface pybedtools (Dale et al., 2011). The inferelator-prior package (v0.3.0504

was used to generate the networks in this manuscript) is available on github505

(https://github.com/flatironinstitute/inferelator-prior) and can506

be installed through the python package manager pip.507

5.6.1. Motif Databases508

DNA binding motifs were obtained from published databases. CISBP509

(Lambert et al., 2019) motifs were obtained from CIS-BP (http://cisbp.510

ccbr.utoronto.ca/; Build 2.00; Downloaded 11/25/2020) and processed511

into a MEME-format file with the PWMtoMEME module of inferelator-512

prior. JASPAR (Fornes et al., 2020) motifs were obtained as MEME files513

from JASPAR (http://jaspar.genereg.net/; 8th Release; Downloaded514

11/25/2020) . TRANSFAC (Matys et al., 2006) motifs were licensed from515

geneXplain (http://genexplain.com/transfac/; Version 2020.1; Down-516

loaded 09/13/2020) and processed into a MEME-format file with the inferelator-517

prior motif parsing tools.518

5.6.2. Motif Scanning519

Genomic regions of interest are identified by locating annotated Tran-520

scription Start Sites (TSS) and opening a window that is appropriate for521

the organism. For microbial species with a compact genome (e.g. yeast),522

regions of interest are defined as 1000bp upstream and 100bp downstream523

of the TSS. For complex eukaryotes with large intergenic regions (e.g. mam-524

mals), regions of interest are defined as 50000bp upstream and 2500bp down-525

stream of the TSS. This is further constrained by intersecting the genomic526

regions of interest with a user-provided BED file, which can be derived from527

a chromatin accessibility experiment (ATAC-seq) or any other method of528

identifying chromatin of interest. Within these regions of interest, motif529

locations are identified using the Find Original Motif Occurrences (FIMO)530

(Grant et al., 2011) tool from the MEME suite (Bailey et al., 2009), called531

in parallel on motif chunks to speed up processing. Each motif hit identified532

by FIMO is then scored for information content (IC) (Kim et al., 2003). ICi,533

ranging between 0 and 2 bits, is calculated for each base i in the binding534

site, where pb,i is the probability of the base b at position i of the motif and535

pb,bg is the background probability of base b in the genome (Equation 1).536

Effective information content (EIC) (Equation 2) is the sum of all motif at537
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position i is ICi penalized with the `2-norm of the hit ICi and the consensus538

motif base at position i, ICi,consensus.539

ICi = pb,i log2

(
pb,i
pb,bg

)
(1)

EIC =
∑
i

ICi−| ICi− ICi,consensus |22 (2)

5.6.3. Connectivity Matrix540

A TF-gene binding score is calculated separately for each TF and gene.541

Each motif hit for a TF within the region of interest around the gene is542

identified. Overlapping motif hits are resolved by taking the maximum IC543

for each overlapping base, penalized with the `2-norm of differences from the544

motif consensus sequence. To account for cooperative TF binding effects,545

any motif hits within 100 bases (25 bases for yeast) are combined, and their546

EIC scores are summed. The TF-gene binding score is the maximum TF547

EIC after accounting for overlapping and adjacent TF motifs, and all TF-548

gene scores are assembled into a Genes x TFs score matrix.549

This unfiltered TF-gene score matrix is not sparse as motifs for many550

TFs are expected to occur often by chance, and TF-gene scores for each TF551

are not comparable to scores for other TFs as motif position-weight matri-552

ces have differing information content. Scores for each TF are clustered us-553

ing the density-based k-nearest neighbors algorithm DBSCAN (Ester et al.,554

1996) (MinPts = 0.001 * number of genes, eps = 1). The cluster of TF-gene555

edges with the highest score values, and any high-score outliers, are retained556

in the connectivity matrix, and other TF-gene edges are discarded.557

5.6.4. CellOracle Connectivity Matrix558

CellOracle (Kamimoto et al., 2020) was cloned from github (v0.6.5;559

https://github.com/morris-lab/CellOracle; a0da790). CellOracle was560

provided a BED file with promoter locations for each gene (200bp upstream561

of transcription start site to 50bp downstream of transcription start site) and562

the appropriate MEME file for each motif database. Connectivity matrices563

were predicted using a false positive rate of 0.02 and a motif score thresh-564

old of 6. The inferelator-prior pipeline was run using the same promoter565

locations and MEME files so that the resulting networks are directly com-566

parable, and the Jaccard index between each network and the YEASTRACT567

network was calculated. Each motif-based network was used as a prior for568

inferelator network inference on Saccharomyces cerevisiae, with the same569

2577 genome-wide expression microarray measurements (Tchourine et al.,570
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2018). 20% of the genes were held out of the prior networks and used for571

scoring the resulting network inference. The motif-based network files have572

been included in Supplemental Data 1.573

5.7. Network Inference (The Inferelator)574

The Inferelator modeling of gene regulatory networks relies on three main575

modeling assumptions. First, because many transcription factors (TFs) are576

post transcriptionally controlled and their expression level may not reflect577

their underlying biological activity, we assume that the activity of a TF can578

be estimated using expression levels of known targets from prior interactions579

data (Arrieta-Ortiz et al., 2015; Fu et al., 2011). Second, we assume that580

gene expression can be modeled as a weighted sum of the activities of TFs581

(Bonneau et al., 2006; Castro et al., 2019). Finally, we assume that each582

gene is regulated by a small subset of TFs and regularize the linear model583

to enforce sparsity.584

The Inferelator was initially developed and distributed as an R package585

(Bonneau et al., 2006; Greenfield et al., 2010; Madar et al., 2010; Greenfield586

et al., 2013). We have rewritten it as a python package with dependen-587

cies on the common scientific computing packages NumPy (Harris et al.,588

2020), SciPy (Virtanen et al., 2020), pandas (Wes McKinney, 2010), Ann-589

Data (Wolf et al., 2018), and scikit-learn (Pedregosa et al., 2011). Scaling is590

implemented either locally through python or as a distributed computation591

with the Dask (Rocklin, 2015) parallelization library. The inferelator pack-592

age (v0.5.6 was used to generate the networks in this manuscript) is avail-593

able on github (https://github.com/flatironinstitute/inferelator)594

and can be installed through the python package manager pip. The Infere-595

lator takes as input gene expression data and prior information on network596

structure, and outputs ranked regulatory hypotheses of the relative strength597

and direction of each interaction with an associated confidence score.598

5.8. Transcription Factor Activity599

The expression level of a TF is often not suitable to describe its activity600

(Schacht et al., 2014). Transcription factor activity (TFA) is an estimate of601

the latent activity of a TF that is inducing or repressing transcription of its602

targets in a sample. A gene expression dataset (X) is a Samples x Genes603

matrix where Xi,j is the observed mRNA expression level (i ∈ Samples and604

j ∈ Genes), measured either by microarray, RNA-seq, or single cell RNA605

sequencing (scRNA-seq).606
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Xi,j =
∑
k

Ai,kPk,j (3)

We estimate TFA by solving (Equation 3) for activity (Ai,k), where k ∈607

TFs, and P is a TFs x Genes prior connectivity matrix. Pk,j is non-zero if608

gene j is regulated by TF k and 0 if it is not. In matrix notation, X = AP,609

and Â is estimated by minimizing ‖ ÂP −X ‖22. This is calculated by the610

pseudoinverse P† and solving Â = XP†. The resulting Â is a Samples x TF611

activities matrix where Âi,k is the estimated latent TFA for sample i and612

TF k. In cases where all values in P for a TF are 0, that TF is removed613

from P and the expression X of that TF is used in place of activity.614

5.9. Inferelator Network Inference615

Linear models (Equation 4) are separately constructed for each gene j.616

Xi =
∑
k

Âi,kβk (4)

In addition to the model selection methods described here, we have imple-617

mented a module which takes any scikit-learn regression object (for example,618

elastic net (Zou and Hastie, 2005)). Model selection and regularization tech-619

niques are applied to enforce the biological property of sparsity. If the co-620

efficient βj,k is non-zero, it is evidence for a regulatory relationship between621

TF k and gene j.622

Sj,k = 1−
σ2allTFs

σ2TFkleaveout

(5)

For each gene j, the amount of variance explained by each regulatory TF623

k is calculated as the ratio between the variance of the residuals in the full624

model and the variance of the residuals when the linear model is refit by625

ordinary least squares (OLS) and k is left out (Equation 5).626

In order to mitigate the effect of outliers and sampling error, model se-627

lection is repeated multiple times using input expression data X that has628

been bootstrapped (resampled with replacement). Predicted TF-gene inter-629

actions are ranked for each bootstrap by amount of variance explained and630

then rank-combined into a unified network prediction. Confidence scores are631

assigned based on the combined rank for each interaction, and the overall632

network is compared to a gold standard and performance is evaluated by633

area under the precision-recall curve.634
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The effects of setting hyperparameters can be tested by cross-validation635

on the prior and gold standard networks. This strategy holds out a subset636

of genes (rows) from the prior knowledge network P. Network inference637

performance is then evaluated on only those held-out genes, using the gold638

standard network.639

5.9.1. Model Selection: Bayesian Best Subset Regression640

Bayesian Best Subset Regression (BBSR) is a model selection method de-641

scribed in detail in (Greenfield et al., 2013). Initial feature selection for this642

method is necessary as best subset regression on all possible combinations of643

hundreds of TF features is computationally intractible. We therefore select644

ten TF features with the highest context likelihood of relatedness between645

expression of each gene and activity of each TF. This method is described646

in detail in (Madar et al., 2010).647

First, gene expression and TF activity are discretized into equal-width648

bins (n=10) and mutual information is calculated based on their discrete649

probability distributions (Equation 6) to create a mutual information matrix650

Mdyn.651

Mdyn
j,k = p(Xj , Âk) log

p(Xj , Âk)

p(Xj)p(Âk)
(6)

M stat
k1,k2 = p(Âk1 , Âk2) log

p(Âk1 , Âk2)

p(Âk1)p(Âk2)
(7)

Mutual information is also calculated between activity of each TF (Equation652

7) to create a mutual information matrix Mstat.653

zdynj,k =
Mj, kdyn −

∑
j
Mj,kdyn

ni

σdynk

(8)

zstatj,k =
Mj, kdyn −

∑
j
Mj,kstat

ni

σstatk

(9)

zmixedj,k =
√

(zdynj,k )2 + (zstatj,k )2 (10)

A mixed context likelihood of relatedness score is then calculated as a654

pseudo-zscore by calculating Zdyn (Equation 8) and Zstat (Equation 9). Any655

values less than 0 in Zdyn or Zstat are set to 0, and then they are combined656

into a mixed context likelihood of relatedness matrix Zmixed (Equation 10).657
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For each gene j, the 10 TFs with the highest mixed context likelihood of658

relatedness values are selected for regression.659

For best subset regression, a linear model is fit with OLS for every com-660

bination of the selected predictor variables.661

ρ(β, σ2|Xj) = ρ(β|Xj , σ
2)ρ(σ2|Xi) (11)

ρ(σ2|Xi) ∝ IG(
n

2
,
SSR

2
+

(β0 − βOLS)GX′XG(β0 − βOLS)

2
) (12)

We define β0 as our null prior for the model parameters (zeros), βOLS as the662

model coefficients from OLS, SSR as the sum of squared residuals, and G663

as a g-prior diagonal matrix where the diagonal values represent a weight664

for each predictor variable. g-prior weights in G close to 0 favor β values665

close to β0. Large g-prior weights favor β values close to βOLS. By default,666

we select g-prior weights of 1 for all predictor variables. From the joint667

posterior distribution (Equation 11) we can calculate the marginal posterior668

distribution of σ2 (Equation 12), where IG is the inverse gamma distribution.669

The Bayesian information criterion (BIC) is calculated for each model, where670

n is the number of observations and k is the number of predictors (Equation671

13).672

BIC = n ln (σ2)− k ln (n) (13)

E[σ2] =
SSR
2 + (β0−βOLS)GX′XG(β0−βOLS)

2
n
2 − 1

(14)

E[BIC] = n(ln (
SSR

2
+

(β0 − βOLS)GX′XG(β0 − βOLS)

2
)−Digamma(

n

2
))−k ln(n)

(15)
We calculate the expected posterior distribution of σ2 (Equation 14) for each673

subset of predictors, and use it to determine the model BIC (Equation 15).674

We then select the model with the smallest E[BIC]. The predictors in the675

selected subset model for gene j are TFs which regulate its expression.676

5.9.2. Model Selection: StARS-LASSO677

Least absolute shrinkage and selection operator (LASSO) (Zou, 2006)678

combined with the Stability Approach to Regularization Selection (StARS)679

(Liu et al., 2010) is a model selection method described in detail in (Miraldi680

et al., 2019). In short, the StARS-LASSO approach is to select the optimal681

λ parameter for (Equation 16). N random subsamples of X and Â without682

replacement subnetworks Sn,λ are defined as the non-zero coefficients βn,λ683
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after LASSO regression. Initially, λ is set large, so that each subnetwork684

Sn is highly sparse, and is then decreased, resulting in increasingly dense685

networks. Edge instability is calculated as the fraction of times subnetworks686

disagree about the presence of an network edge. As λ decreases, the sub-687

networks are expected to have increasing edge instability initially and then688

decreasing edge instability as λ approaches 0, as (Equation 16) reduces to689

OLS and each subnetwork becomes dense.690

min
β

1

2n
|X − Âβ|22 − λ|β|1 (16)

We choose the largest value of λ such that the edge instability is less than691

0.05, which is interpretable as all subnetworks share > 95% of edges. This692

selection represents a balance between increasing the network size and min-693

imizing the instability that occurs when data is sampled.694

5.10. Multiple Task Network Inference695

We separate biological samples which represent different states into sep-696

arate tasks, learn networks from these tasks, and then combine task-specific697

networks into an ensemble network. One method of solving these states is698

to sequentially apply a single-task method for network inference (i.e. 5.9.1699

or 5.9.2). The networks generated for each task are then rank-combined700

into a unified network. The Adaptive Multiple Sparse Regression (AMuSR)701

method, described in detail in (Castro et al., 2019), uses a multi-task learn-702

ing framework, where each task is solved together.703

arg min
B,S

1

2n
‖Xd,i − (Sd +B)Âd‖22 + λs‖S‖1,1 + λb‖B‖1,∞ (17)

Ŵ = B̂ + Ŝ (18)

In (Equation 17), B is a block-sparse weight matrix in which the weights704

for any feature are the same across all tasks. S is a sparse weight matrix705

in which the weights for features can vary between tasks. The combination706

W of B and S (Equation 18) are model weights representing regulatory707

interactions between TFs and genes. In short, this method uses adaptive708

penalties to favor regulatory interactions shared across multiple tasks in B,709

while recognizing dataset specific interactions in S. Model hyperparameters710

λs and λb are identified by grid search, selecting the model that minimizes711

the extended Bayesian Information Criterion (eBIC) (Equation 19), where712

D is the number of task datasets, and for dataset d, nd is the number of713

observations, X
(d)
i is gene expression for gene i, Â(d) is TF activity estimates,714
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W∗,d is model weights, kd is the number of non-zero predictors, and pd is715

the total number of predictors. For this work, we choose to set the eBIC716

paramater γ to 1.717

eBIC =
1

D

∑
nd ln

1

nd
‖X(d)

i − Â
(d)TW∗,d‖22 + kd lnnd + 2γ ln

(
pd
kd

)
(19)

5.11. Network Performance Metrics718

Prior work has used the area under the Precision (Equation 20) - Re-719

call (Equation 21) curve to determine performance, by comparing to some720

known, gold-standard network. Here we add two metrics; Matthews cor-721

relation coefficient (Matthews, 1975) (MCC) (Equation 22) and F1 score722

(Equation 23). MCC can be calculated directly from the confusion matrix723

True Positive (TP), False Positive (FP), True Negative (TN), and False724

Negative (FN) values.725

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(22)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(23)

We compute an MCC and F1 score for each cutoff along ranked interac-726

tions in order to generate MCC and F1 scores for all possible networks in727

growing ranked order. The maximum MCC along ranked interactions gives728

the subnetwork that has maximum similarity to the comparison network,729

accounting for TP, FP, TN, and FN. The maximum F1 along ranked inter-730

actions gives the subnetwork that has maximum similarity to the comparison731

network accounting for TP, FP, and FN.732

5.12. Visualization733

Figures were generated with R (R Core Team, 2020) and the common734

ggplot2 (Wickham, 2016), umap (McInnes et al., 2018), and tidyverse pack-735

ages (Wickham et al., 2019). Additional figures were generated with python736

using scanpy (Wolf et al., 2018), matplotlib (Hunter, 2007), and seaborn737

(Waskom, 2021). Network diagrams were created with the python package738
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jp gene viz (Watters, 2019). Schematic figures were created in Adobe Illus-739

trator, and other figures were adjusted in Illustrator to improve panelling740

and layout.741

Availability of Data and Materials742

The datasets supporting the conclusions of this article are available in743

the NCBI GEO repository with accession IDs: GSE125162, GSE144820,744

GSE67023, GSE27219, GSE142864. A large number of GEO records were745

compiled and normalized in a previous work Tchourine et al. (2018) into a746

combined dataset which is available on Zenodo (DOI: 10.5281/zenodo.3247754).747

Single-cell mouse datasets are publicly available from 10x genomics 10x Ge-748

nomics (2017, 2019c,a,b) under a Creative Commons Attribution (CC-BY749

4.0) license. Software packages developed for this article are available on750

github (https://github.com/flatironinstitute/inferelator and https:751

//github.com/flatironinstitute/inferelator-prior) and have been re-752

leased as python packages through PyPi (https://pypi.org/project/inferelator/753

and https://pypi.org/project/inferelator-prior/). Specific analysis754

scripts for this work have been included in Supplemental Data 1.755
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Additional Files771

• Supplemental Data 1 is a .tar.gz file containing the prior knowledge772

networks used in this work, the gold standard networks used in this773
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work, and the python scripts used to generate the learned networks in774

this work775

• Supplemental Data 2 is a .tar.gz file containing the mouse E18 neuronal776

network learned in Figure 6 of this work777

• Supplemental Table 1 is a .tsv file containing the crossvalidation per-778

formance results from Figure 2779

• Supplemental Table 2 is a .tsv file containing the crossvalidation per-780

formance results from Figure 3781

• Supplemental Table 3 is a .tsv file containing the crossvalidation per-782

formance results from Figure 4B-D783

• Supplemental Table 4 is a .tsv file containing the crossvalidation per-784

formance results from Figure 4G785

• Supplemental Table 5 is a .tsv file containing the crossvalidation per-786

formance results from Supplemental Figure 5A787

• Supplemental Table 6 is a .tsv file containing the crossvalidation per-788

formance results from Figure 4H789

• Supplemental Table 7 is a .tsv file containing the crossvalidation per-790

formance results from Supplemental Figure 3791
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6. Response to Reviewers792

We’d like to thank all of the reviewers for the time that they’ve spent793

evaluating this manuscript. We believe that the revised manuscript is sub-794

stantially improved thanks to these comments. To summarize, the most795

important concern raised by reviewers 1, 3, and 4 is that there is no ade-796

quate benchmark against other network inference algorithms. Reviewer 1797

has also raised several textual concerns, suggested tests for robustness, and798

requested clarification on two points related to model design. Reviewer 2799

has raised a mathematical argument suggesting that this method is flawed800

in concept. Reviewer 3 has also raised several specific concerns about the801

prior and testing networks and the interpretation of inferred networks. Fi-802

nally, Reviewer 4 has raised several interesting points related to some subtle803

observations in our model performance.804

6.1. Summary of Changes805

As the most general concern, we address benchmarking first. We initially806

chose not to include competitive benchmarks against other network inference807

methods. A neutral benchmarking panel (as recommended by Reviewer 1)808

is an excellent suggestion and we have included an evaluation of the Inferela-809

tor on the BEELINE standard as a new supplemental figure (Supplemental810

Figure 3). We note that the BEELINE benchmarking is not designed for811

network inference tools which utilize prior network knowledge during infer-812

ence (it is a benchmark built around pseudotime). While the Inferelator is813

adequate to that benchmark, additional benchmarking is necessary.814

We have additionally tested two other single-cell network inference tools815

which utilize prior network knowledge (SCENIC and CellOracle) on the816

yeast single-cell network inference problem as a benchmark. Yeast is a817

model organism with real-world single-cell data and which has a reliable818

gold standard that we can use for performance quantification. We report819

these results in figure 4, panels G-H. We also report the performance of the820

GRNBOOST2 network inference method which does not utilize prior data821

(one component of the SCENIC pipeline) in figure 4H.822

In short, the Inferelator is the only method which can learn edges for823

genes which no prior knowledge is known, and is robust to noise in the prior824

knowledge network. CellOracle performs very well when given a prior knowl-825

edge network and asked to make predictions within that network, although826

it is more sensitive to noise in the prior knowledge network. We have revised827

our runtime benchmark in Supplemental Figure 5A to include SCENIC. We828

have also revised the discussion to include the comparative results and to829
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emphasize the importance of the model organism benchmark we’ve chosen830

for this work.831

In accordance with Reviewer 1’s suggestions, we have revised the in-832

troduction to cover prior work and community benchmarks. We have also833

revised the discussion to better justify the modeling strategy in the context834

of the results we show. Supplemental Figure 4 now includes performance835

metrics for the yeast benchmark when networks are learned on all cells to-836

gether, instead of by task group. We have modified figure 1 to emphasize837

that we are scoring on information held out of the modeling.838

We have predominantly responded to Reviewer 2 in this document, pro-839

viding specific theoretical and experimental results to contradict the asser-840

tion that our modeling strategy is fatally flawed. We have added a prior841

knowledge network experiment where false positive edges are added prior to842

modeling in Figure 4H in part to specifically refute the reviewer’s assertions.843

We have added a section to our methods to answer Reviewer 3’s questions844

about the selection of our prior knowledge and gold standard networks.845

Reviewer 4 requested interpretation of several subtle observations in our846

results. We have modified Figure 4B-D and added runtime benchmarks for847

SCENIC to Supplemental Figure 5.848

We also note that during this revision, we identified a minor error in849

the construction of the yeast single-cell expression data (several genes were850

inadvertently dropped when different data sets were merged). We have fixed851

that error and repeated all analyses that used that data set; no conclusions852

have changed.853

Point by point responses to the reviewer comments follow.854
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6.2. Reviewer 1855

Comments to the Author Inferelator 3.0 is a new version of the Inferela-856

tor that provides a workflow for five different regression and model selection857

modules. This version supports single-cell gene expression data and has858

better scalability, as shown through experiments with the 10x 1.3 million859

cell mouse neuronal dataset. The authors highlight their method for select-860

ing regulatory edges to retain in a GRN - ranking regulatory edges by the861

amount of target gene variance explained, and selecting a threshold that862

maximizes MCC against a known gold standard. The Inferelator tool seems863

to be well-documented and available through PyPi and Github.864

Some major comments suggested for revision:865

1. Introduction needs a lot of work. Lacks comprehensive discussion of866

previous work and of many related methods (such as those in this867

benchmarking paper https://www.nature.com/articles/s41592-019-868

0690-6) and further explanation of 3 model selection methods used in869

paper.870

• We have revised the introduction to give a clearer description of871

the inferelator, as well as the two most comparable other meth-872

ods (CellOracle and SCENIC). We note that in the interest of873

space, we now rely on the excellent work of three benchmarking874

papers, including the BEELINE benchmarking paper, to describe875

the many other extant methods for network inference.876

2. The paper does no comparison (of performance, time, memory, or877

other measures) of Inferelator to other existing methods, including878

SCENIC and others mentioned. Please see benchmarking paper here879

for ideas on metrics: https://www.nature.com/articles/s41592-880

019-0690-6881

• This is an excellent suggestion. We have chosen to apply the882

inferelator to the simulated BEELINE benchmarks, and report883

those results in Supplemental Figure 3. Only the BBSR method884

for model selection was tested, as there are no separable tasks for885

AMuSR in the BEELINE simulated data, and the overall net-886

work size is too small to use a stability-based model selection887

method like StARS-LASSO. We do note however, that the BEE-888

LINE framework was not developed for network inference meth-889

ods which utilize prior network knowledge (this is why the BEE-890

LINE benchmark evaluates the GENIE3 and GRNBOOST2 com-891
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ponents of SCENIC without running the full SCENIC pipeline;892

SCENIC requires prior knowledge).893

We have therefore chosen to also benchmark SCENIC and Cel-894

lOracle on the yeast single-cell network inference problem which895

has a reliable gold standard. We report those results in Figure896

4G-H. In summary, CellOracle has a number of desirable char-897

acteristics in a network inference method, and performs well at898

evaluating a prior network for edges to retain. However, it is not899

capable of making predictions outside the prior network. The900

inferelator performance is somewhat lower than CellOracle when901

scored against a gold standard which was not held out of the prior902

network, but is capable of making novel predictions outside of the903

prior network (and therefore performs well when scored against904

a gold standard held out of the prior network). SCENIC is not905

capable of making predictions outside of a prior network, and906

performs poorly when making predictions within a prior network.907

We have also added a set of runtime benchmarks for SCENIC to908

Supplemental Figure 5 (CellOracle has not reached a develop-909

ment stage where it would be fair to include in a benchmark for910

runtime).911

3. The paper more or less proposes to port their existing regression meth-912

ods to single cell data without assessing how peculiarities of single cell913

data are affected by their approaches. For example, the authors dis-914

cuss the noise inherent in single cell data, robustness of their regression915

methods to varying levels of dropout noise (as these can vary from ex-916

periment to experiment) can be shown on known ground truth data917

generated artificially or using benchmarks from the DREAM GRN918

challenge.919

• This is largely correct - we believe that single-cell data is under-920

sampled, but the increased scale of data collection makes that921

drawback less critical. We have found Svensson 2020 (https://922

doi.org/10.1038/s41587-019-0379-5) to be generally correct923

in all aspects when it comes to interpreting single-cell count data.924

We note that the most successful methods for single-cell network925

inference generally do not use models which include single-cell926

peculiarities (like zero-inflation), but instead rely on models that927

are robust to noise (CellOracle, for example, uses bagging regres-928

sion, which is in our opinion an elegant choice to minimize the929

influence of noise, and that method performs quite well).930
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We have added several sentences to the results to explain this:931

Single-cell data is undersampled and noisy, but large numbers of932

observations are collected in parallel. As network inference is a933

population-level analysis which must already be robust against934

noise, we reason that data preprocessing techniques that improve935

per-cell analyses (like imputation) are unnecessary. We demon-936

strate that this is valid by quantitatively evaluating networks937

learned from Saccharomyces cerevisiae scRNAseq data with a938

previously-defined yeast gold standard.”939

4. Another interesting experiment is to assess the robustness of networks940

using subsampling of the single cell data, networks should be robust941

between subsampling strategies.942

• This is an excellent suggestion, and the reviewer’s point related943

to noise is something we have considered at length. We have per-944

formed the suggested subsampling experiment in prior work and945

found that performance increases as a function of cell count up946

to a point where it plateaus (https://doi.org/10.7554/eLife.947

51254 Fig 5B). This is consistent with our expectation is that948

sampling noise in single-cell expression data is manageable via949

increasing N.950

We therefore choose instead to investigate the effect of noise on951

the prior knowledge network, which is noise that we cannot com-952

pensate for experimentally (the effect of noise in the prior was a953

question raised by Reviewer 4). We have tested the performance954

of the Inferelator on yeast single-cell network inference when the955

prior network has random noise added and reported the results in956

Figure 4H. We find that addition of spurious, false edges to the957

prior knowledge network does decrease performance, but only958

modestly, indicating that the Inferelator is robust to noise in the959

prior knowledge network. A comparison to SCENIC and CellOr-960

acle has been provided, in addition to negative controls.961

5. Another single-cell specific concern I have is the time lag between TF962

activity and target expression within a cell. Due to mixing in bulk963

samples this seems to be less of a concern, but within a single cell964

sample simultaneous observation of both activities may be sparse.965

• We are unfortunately unable to directly observe TF activity (di-966

rect measurement of activity would be exceptionally useful, and967

we hope to have that data someday). Instead, we estimate TF968
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activity based on the expression of known gene targets. This969

estimate is done per-cell and depends on the current cell gene970

expression, and not the TF expression in the past. We there-971

fore do not expect there to be a ’time lag’ between TF activity972

and target expression, as we do not currently incorporate time973

or pseudotime information in our single-cell network modeling.974

Applying an explicitly dynamic model to network inference is an975

area we are actively exploring, but represents an entirely different976

modeling approach and would not be suitable for addition to this977

work.978

6. Finally, what is the justification of doing the inference ”per cell type”,979

clustering or partitioning data to some arbitrary level using Leiden or980

Louvain does not necessarily define regulatory program-specific cells.981

Indeed other approaches such as SCENIC are more local in their learn-982

ing of regulatory networks. What effect does the resolution of this983

clustering or the neighborhood have on their inference?984

• SCENIC does not locally estimate GRNs. SCENIC is explicitly a985

global method, using prior network knowledge to identify regula-986

tory units in a provisional draft network created from global gene987

”adjacencies”. This global GRN is then applied to each cell (with988

the AUCell function) to determine how well each regulatory unit989

explains gene expression in that cell as a metric, not as part of990

the learning process.991

We propose (as does CellOracle, which clusters as part of its core992

workflow) that using a neighborhood-based clustering approach993

allows us to identify groups of cells which are running different994

gene regulatory programs. This is of particular value when we are995

unable to directly observe chromatin state in complex eukaryotes,996

as TF - gene relationships are likely to be dependent on having the997

ability to access specific enhancer or promoter regions. Treating998

these cells with different chromatin states as separate learning999

tasks allows our method to learn common regulatory network1000

components which are active in multiple tasks as well as cluster-1001

specific network components which are active in a limited number1002

of clusters.1003

To illustrate the value of task-wise learning, we have added per-1004

formance metrics for network inference on the yeast single-cell1005

data without task separation to Supplemental Figure 4. We see1006
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that overall performance is substantially diminished when learn-1007

ing a network on all cells together, without tasks.1008

Minor comments:1009

1. The authors state in the introduction ”a major difficulty is that bi-1010

ological systems have large numbers of both regulators and targets;1011

there is poor network identifiability because many plausible networks1012

can explain observed expression data and the regulation of gene ex-1013

pression in an organism” It is unclear if the difficulty is due to the1014

large numbers of regulators and targets (as it was previously stated1015

that only 6% of the human genomes are TFs) or due to redundancy1016

of networks/pathways.1017

• Network size is a difficulty but many large problems exist in ma-1018

chine learning, and so is not insurmountable. Many pathways are1019

redundant or interdependent in ways that simply cannot be de-1020

convoluted computationally (instead requiring careful biological1021

perturbation, which may or may not be possible). We can realis-1022

tically generate thousands of networks which offer approximately1023

equal explanatory power, and determining which network is cor-1024

rect is an unsolved problem. We have revised the introduction to1025

make this point clearer.1026

2. The claim in the discussion that ”many of the performance differences1027

between gene regulatory network inference methods are not due to1028

clever methods for model selection, but are instead the result of differ-1029

ences in data cleaning and preprocessing” is a strong one and requires1030

further citation or evidence.1031

• We refer to Figure 4, where preprocessing differences dwarf the1032

differences between model selection methods (despite using three1033

model selection methods which have very different characteris-1034

tics). This statement is intended to emphasize the importance of1035

using common preprocessing and scoring techniques when com-1036

paring network inference methods, as these techniques can in-1037

troduce or obscure correlations in both predictable and unpre-1038

dictable ways. We understand this to be commonly accepted1039

wisdom in the statistical learning field (An early warning about1040

data preprocessing from the 19th century is an interesting read:1041

https://doi.org/10.1098/rspl.1896.0076). We have revised1042

the statement to be more specific: ”For example, we find that1043

performance differences between our methods of model selection1044

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2021. ; https://doi.org/10.1101/2021.05.03.442499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442499
http://creativecommons.org/licenses/by/4.0/


may be smaller than differences caused by data cleaning and pre-1045

processing.”1046

3. Please report AUPRC ratio (to the random baseline) instead of AUPRC1047

for better understanding of model performance.1048

• We have reported an AUPRC ratio in addition to AUC for the1049

BEELINE comparison in Supplemental Figure 3. However, we1050

respectfully decline to do so for other analysis in this work. Re-1051

porting AUC as a ratio to baseline is a practice that we do not1052

feel is advisable. We can generate several model baselines - for1053

example, a model baseline from shuffling labels and a model base-1054

line from replacing data are not identical, and may not be equal1055

to a model baseline calculated based on the gold standard den-1056

sity. It is a best practice to generate multiple baselines to control1057

for different things and report them separately. Furthermore, the1058

interpretation of a model that reports an AUPR of 0.5 over a1059

baseline of 0.05 would differ from a model that reports an AUPR1060

of 0.01 over a baseline of 0.001 and this substantial difference1061

would be lost with ratios.1062

4. List as a limitation that model is not able to add or learn edges that1063

do not exist in prior networks1064

• This is not a limitation of this modeling strategy. A key advan-1065

tage of our work is that we are able to add or learn edges, even1066

when there is no information about a gene in the prior. Model1067

performance as reported in figures 2-4 is based on holding genes1068

out of the prior networks entirely and scoring on these genes for1069

which the model has no prior information. We have modified1070

Figure 1 to clarify this.1071
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6.3. Reviewer 21072

This manuscript discusses an update to Inferelator (version 3.0). This1073

manuscript builds on several other work by the authors (e.g. Inferelator-1074

Amusr) and utilizes these methods that are previously developed as part of1075

the study.1076

Due to this reliance on previous methods, the issues present in the au-1077

thors’ previous work (PMID: 30677040, Catro et al 2019) is also inherited1078

in this work and has tainted the results. Consequently, unless theses major1079

issues are addressed, there is not much point in reviewing other aspects of1080

the manuscript. As a result, I focus on detailing these issues and hope that1081

the authors would address and rectify them before moving forward.1082

The main issue is with the algorithm Inferelator-AMuSr. From the algo-1083

rithmic side, this method (PMID: 30677040) is quite interesting and utilizes1084

block sparsity and different regularization techniques to learn gene regula-1085

tory networks. Unfortunately, the problem formulation is flawed and fol-1086

lows a circular logic. This method uses gene (and TF) expression values1087

across different conditions + a prior network of gene-TF associations (e.g.1088

from ChIP-seq data) as its input. It first uses these datasets to learn TF1089

activity and then uses TF activities (in place of TF expression) to recon-1090

struct the network. However, it is relatively easy to show that in the best1091

case scenario, this algorithm recovers the prior network (without discov-1092

ering anything new). While in the practical case in which the algorithms1093

themselves rely on various assumptions and add errors, it finds the original1094

prior network + added errors, but treats the added errors as new discoveries1095

(which is quite dangerous to the research community). I have provided a1096

two-page document attached, focusing on the single-task learning version of1097

the method, describing and showing this flaw. The same problem also exists1098

in the multi-task version of it, but for simplicity I focused here on the single1099

task version.1100

• For the sake of brevity, we will focus our response on the1101

specific claims in the accessory PDF without reproducing it1102

in its entirety1103

1. The issue here, however, is that W = PT is trivially a solution to the1104

two-step procedure above. We can see that by replacing this choice of1105

W in Eq 3 to have X = PA’. But remembering that A’ was found by1106

solving X = PA (matrix A that satisfies this equation), we can see1107

that X = PA’ is trivially satisfied. This implies that W = PT is the1108

solution to the AMUSR two-step procedure.1109
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• The reviewer has identified a very valid concern; overfitting is a1110

very real danger for any machine or statistical learning method.1111

In this work, we explore the use of several regularization methods1112

that produce sparse model coefficients (BBSR, StARS-LASSO,1113

and AMuSR) to mitigate overfitting risks. Model selection meth-1114

ods which regularize W will result in recovery of a sparse W1115

where W may or may not have the same structure as P.1116

As a trivial conceptual counterexample to illustrate this point,1117

allow P to be a TFs by genes prior matrix where every value is1118

1. The activity estimate A’ will then have a rank of 1, where all1119

TF activities are co-linear. As additional predictors provide no1120

additional information, regularization should result in a matrix W1121

which has at most one non-zero entry for each gene, and W 6= P.1122

As a second conceptual counterexample to illustrate this point,1123

allow P to be a TFs by genes prior matrix where for half of the1124

columns, every value is 0 (as a note, every value is 0 for 43% of1125

the genes in our YEASTRACT prior knowledge network P). The1126

corresponding rows of the pseudoinverse P† will then also be all1127

zeros. A’ will be entirely independent of gene g which has no1128

non-zero values in the prior matrix, as the gene g row in P† is1129

all zeros. A’ will still be a valid predictor matrix, and we can1130

regress expression of gene g against A’ to select TF activities1131

which predict expression of g. These selected predictors will be1132

represented as non-zero entries in weight matrix W for this gene1133

g, and W 6= P.1134

As a real-world counterexample, we have performed a number1135

of tests where the expression matrix X is replaced with noise1136

(the Noise controls, labeled ’N’ in Figure 4 and Supplemental1137

Figure 4), and we see that performance on held-out genes drops1138

as expected. To further explore this, we have performed a test1139

where we take prior matrix P and randomly add false positive1140

edges (reported in Figure 4H), evaluating performance against1141

the gold standard network without holding out any genes from1142

the prior network. If the reviewer’s assertion of circularity is1143

correct, we would expect that W would also be filled with false1144

positive edges, and performance would drop dramatically as noise1145

increases. We see that this is not the case.1146

2. In the best-case scenario, when the algorithms used to solve the two-1147

step procedure above do not use any approximation and do not add1148
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errors, one simply recovers matrix P, which we already knew. In the1149

more dangerous practical case, algorithms (those that use different1150

regularization terms with block sparsity, etc.), add errors and find W1151

that is PT + added error. Then, this focuses the attention to the1152

difference of W and PT as new discoveries, while in reality these are1153

simply added errors by algorithms1154

• While some connections added by network inference are undoubt-1155

edly spurious, it is not the case that all must be. As a trivial1156

counterexample, imagine three genes (A, B, and C) where genes1157

A and B are strongly positively correlated and genes A and C are1158

strongly negatively correlated. If the prior network contains an1159

edge linking TF-1 to gene A, the activity of TF-1 will correlate1160

with expression of gene A. The activity of TF-1 is then likely to1161

be a useful predictor for the expression of genes B and C, able1162

to explain a substantial amount of the variance observed in the1163

data. An output network W where TF-1 is connected to genes1164

A, B, and C is therefore a perfectly reasonable learned network1165

which has new edges which are not present in the prior P.1166

As a real-world counterexample, we note that the results reported1167

in Figures 2-4 are reported on genes for which no prior informa-1168

tion was provided. If the reviewer’s assertion that all learned1169

edges are errors by the algorithm is correct, we would expect this1170

to perform no better than the negative controls where labels have1171

been shuffled which are presented in figure 4 (the Shuffled con-1172

trol, labeled ’S’ in Figure 4 and Supplemental Figure 4). We see1173

that this is not the case.1174

• We have shown that the specific mathematical concerns here are ad-1175

dressed in our modeling, but would also like to emphasize that the over-1176

all point that this reviewer is making is VERY valid. In the absence1177

of some constraints, which invariably take the form of prior knowledge1178

related to the network structure, the only information available from1179

expression is correlative in nature, yielding networks edge that rep-1180

resent co-expression and have no association with causality. For this1181

reason, the other methods we have benchmarked both incorporate the1182

same prior information - SCENIC requires a prior TF-Gene ranking1183

file and TF-Gene binary motif connection file, and CellOracle requires1184

a genes by TFs prior matrix of the same type as the prior we use. We1185

explicitly embed our prior information into a latent TF activity layer.1186
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We believe that it is very important to be clear about this inclusion,1187

as it does create risks (as the reviewer has intuited). The modeling1188

may recover the existing network information that we put in, and lit-1189

tle else. This is a systemic problem for the network inference field1190

and highlights the importance of the negative controls which we have1191

included in this work (and which are sadly not ubiquitous when eval-1192

uating network inference tools). A comprehensive examination of the1193

circularity problems in the current state of the art for network infer-1194

ence would be a very interesting paper that would add substantially1195

to the literature, but would effectively be an entirely new manuscript1196

and therefore would not fit into this work (I would love to read it if1197

the reviewer were interested in writing it).1198
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6.4. Reviewer 31199

INTRODUCTION This paper describes Inferelator 3.0, the latest itera-1200

tion of the Inferelator family of GRN inference algorithms. The latest version1201

differs from the previous version in that it is a Python implementation that1202

uses large-scale parallelization to enable processing of single-cell RNA-Seq1203

(scRNA-Seq) data from up to 105 cells. Otherwise, its basic pipeline and1204

gene-expression modeling methodology are similar to those previously re-1205

ported in Castro (et al., 2019) from the same lab. The paper does not make1206

any claims about how accurate this new algorithm is compared to Inferelator1207

2.0, compared to any of the other leading algorithms that are available, or1208

on any absolute scale. Primarily, it describes and evaluates several variants1209

the authors tried before settling on the final Inferelator 3.0 algorithm.1210

INTEREST TO POTENTIAL READERS It is not clear who the in-1211

tended audience for this paper is. Logical possibilities would be other re-1212

searchers working on network inference, potential users of network inference1213

algorithms, and possibly those interested in the biology of the networks pro-1214

duced. The first two groups will be interested only if the paper provides1215

rigorous performance comparisons to other algorithms, including Inferelator1216

2 and many or most of the leading competitors. Those interested in the bio-1217

logical implications of the networks themselves would require a much deeper1218

analysis of the resulting networks than is currently provided.1219

MAJOR CLAIMS I was not able to identify any claims other than1220

that certain alternative ways of implementing components of Inferelator 3.01221

worked better than others. Looking at the subsections of Results:1222

1. 2.1 The natural claim here would be that the new Python implemen-1223

tation runs faster than the previous implementation. However, no1224

statements regarding speed or other desirable qualities are made.1225

2. 2.2. This section compares two expression modeling algorithms the1226

authors considered using, BBSR and StARS-LASSO, and concludes1227

that there is no difference. It also describes AMuSR, published by1228

many of the same authors in 2019, as being better than either of BBSR1229

or StARS-LASSO at dealing with batch effects, so they use AMuSR1230

in Inferelator 3.0. This reports on the authors’ thought process during1231

the design of Inferelator 3.0, but it does not make any claims about1232

Inferelator 3.0 itself.1233

3. 2.3. This section compares different ways the authors considered1234

putting together a prior network for Inferelator. They observe that1235

two of the methods produce networks that are similar to each other1236

but not similar to the network obtained from the Yeastract database.1237

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2021. ; https://doi.org/10.1101/2021.05.03.442499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442499
http://creativecommons.org/licenses/by/4.0/


This raises questions about the status of Yeastract as a gold standard1238

(see below), but it does not make any specific claims. For example, it1239

does not claim that the Inferelator-prior accessory package they im-1240

plemented is any better than the existing CellOracle package.1241

4. 2.4 This section reports on various preprocessing approaches the au-1242

thors considered when implementing Inferelator 3.0, but it does not1243

make any claims about Inferelator 3.0 itself.1244

5. 2.5 This section describes how Inferelator 3.0 was run on large datasets1245

comprising mouse single-cell RNA-Seq and ATAC-Seq data. There is1246

no validation of the network. A few sentences are devoted to describ-1247

ing the targets of TFs Egr1 and Atf4. While some readers may be1248

interested in these two TFs, there is little introduction or explanation1249

of why they are of particular interest, among 1500 other TFs.1250

• We thank the reviewer for these comments. The manuscript has1251

been revised to clarify the major claims related to performance in1252

our manuscript, and we have added a number of benchmarks against1253

comparable network inference tools. The reviewer will find this re-1254

vised manuscript greatly improved by their suggestions for explicit1255

comparisons to other network inference leading methods. Based on1256

this high-quality benchmarking, we claim several specific advantages1257

over other extant network inference methods related to discovering in-1258

formation not present in the prior knowledge network and robustness1259

to noise in that network.1260

We would like to note that CellOracle is a contemporaneously de-1261

veloped method (it is currently in an alpha state with an associated1262

preprint). Both the inferelator-prior and CellOracle methods for gen-1263

erating prior knowledge networks from motif data are functional, al-1264

though they generate different prior knowledge networks using dif-1265

ferent selection criteria. We do not claim that our method for gen-1266

erating prior knowledge networks is superior (their methodology is1267

quite sound). We do claim that our benchmarking (using real-world1268

model-organism data, and testing on a reliable gold standard using1269

information held out of the modeling process) is superior to other net-1270

work inference benchmarks which do not adhere to good practices for1271

machine learning.1272

The reviewer’s note that we have not validated the large mouse neu-1273

ronal network in this work is correct; unfortunately, no rigorous gold1274

standard exists or can be reasonably constructed (a systematic prob-1275

lem which afflicts all work on mammalian network inference). Several1276
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network-wide analyses for the mouse neuronal network are provided1277

in Supplemental Figure 7, but the most appropriate validation for this1278

network is experimental. We will add a reference to our manuscript1279

currently in-press which learns new biology by experimentally validat-1280

ing an inferred network.1281

RIGOROUS EVIDENCE TO SUPPORT THE CLAIMS1282

1. Both the Inferelator-internal claims that are made in the current ver-1283

sion of the paper and the comparative claims that might be made1284

in a revision require rigorous evaluation of network accuracy. That1285

starts with a clear definition of what it means for a network edge to1286

be correct. For instance, is the binding of the TF in the regulatory1287

DNA of the target gene necessary for correctness? Is it sufficient for1288

correctness? What about if the predicted target changes in expression1289

level when the TF is perturbed? Such a change could be caused by1290

many mechanisms, including mechanisms that are mediated by cell1291

states such as growth rate or metabolic state rather than regulatory1292

networks. Would such changes be considered sufficient for an edge1293

to be correct? Is a change in expression necessary for an edge to be1294

correct?1295

• The reviewer has identified a subtle, but very important point.1296

In the Inferelator framework, an edge is an hypothesis supported1297

by the input data, for which we report summary statistics such as1298

variance explained, and ranked confidence over bootstraps. Our1299

statistical learning explanation is that the framework does not1300

make any assumptions about the interpretation of an edge; this1301

is the purview of the user, who should select a prior knowledge1302

network and a gold standard based on how they expect their1303

biological system to function.1304

As biologists, we argue that binding to DNA is not necessary,1305

which is fortunate - even in a well studied model organism like1306

Saccharomyces cerevisiae, the number of TFs which have been1307

conclusively shown to bind DNA is very limited (most in vivo1308

studies of TF binding are, strictly speaking, studies of localiza-1309

tion only). We do expect that a TF which causally regulates a1310

gene will localize to that gene in some cellular states. Differen-1311

tial expression of a target gene after a TF is perturbed is also1312

not strictly necessary, although we expect that it will occur in1313

some cellular states. The most accurate answer to the reviewer’s1314
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question is that both localization and expression changes are con-1315

ditionally necessary for a TF - gene regulatory edge, but in any1316

arbitrary cellular state it is not necessary that they occur. We1317

have added a clarification on this point to the methods section.1318

2. Once the intended meaning of the network is made clear, the gold1319

standard for evaluation must match the intended meaning. If binding1320

is considered necessary for correctness, the network should be eval-1321

uated against evidence of binding. If functional effect is considered1322

necessary, it should be evaluated against perturbation-response data.1323

• We have selected a prior knowledge network based on criteria1324

that match our biological interpretation. The YEASTRACT1325

prior knowledge network is consists of TF - gene edges for which1326

some evidence exists for both localization and for gene expression1327

changes upon TF perturbation. The yeast gold standard which1328

we use was selected for the same criteria, although with a more1329

rigorous requirement for experimental support.1330

Unfortunately, rigorous celltype-specific genome-scale TF pertur-1331

bation data is still unavailable for many mammalian systems,1332

and consequently the prior knowledge networks we use from the1333

inferelator-prior pipeline represent predicted TF - gene localiza-1334

tion. This highlights why we consider experimental validation1335

to be important, as expression changes when we perturb the TF1336

provides strong supporting evidence.1337

The gold standards the authors use for B. subtilis and S. cerevisiae1338

are described as being curated and/or literature derived. Most edges1339

in Yeastract are derived from a small number of large scale, high-1340

throughput datasets. To the best of my knowledge, no judgments are1341

made as to the quality of the data or the conclusions. Thus, Yeas-1342

tract is better described as a compilation of (mostly) high-throughput1343

datasets with references, rather than a curated network. While it is1344

literature derived in the sense that there are papers associated with1345

the high-throughput datasets, one should not conclude from this that1346

these literature-derived edges are in any sense more accurate or reliable1347

than high-throughput datasets typically are. And Yeastract includes1348

datasets that are quite old and generally believed to be less reliable1349

than more some more recent datasets.1350

• The reviewer is correct about the YEASTRACT database. While1351

the YEASTRACT prior knowledge network is useful, we do agree1352
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that it is not ideally suited for use as a gold standard (largely for1353

the reasons that the reviewer has identified). We therefore use1354

a curated S. cerevisiae curated gold standard, as described in1355

https://doi.org/10.1016/j.celrep.2018.03.048.1356

This gold standard has edges which have evidence from at least1357

three experiments, and which have evidence of both TF local-1358

ization and gene expression changes after perturbation. We note1359

that this results in a relatively small gold standard network, but1360

as these are (we believe) the highest confidence edges, it is still1361

a valid way to benchmark using ranked measures (e.g. AUPR).1362

We are careful not to use unranked metrics (like Jaccard) when1363

evaluating network performance against this gold standard. We1364

have clarified this in the methods section.1365

3. Potential readers who are interested in using network inference algo-1366

rithms need to know which algorithm they should choose, based on1367

accuracy comparison and possibly resource requirements. They also1368

need to know what level of performance they should expect if choose1369

Inferelator 3.0. For example, if they take all edges scoring above some1370

threshold, what fraction of those edges can they expect to be supported1371

by evidence from the gold standard?1372

• A key aspect of this work is how to properly threshold a regu-1373

latory network. Metrics like the F1 score or the matthews cor-1374

relation coefficient proposed here use information from the gold1375

standard or prior knowledge network to identify optimal thresh-1376

olds for retaining edges. We argue that this principled method1377

of choosing thresholds is superior to selection of some threshold,1378

provided that the network used for scoring is of useful quality.1379

These metrics are valuable as they take into account true posi-1380

tives, false positives, and false negatives in a way that an accuracy1381

measure would not - particularly as biological networks are highly1382

imbalanced in positive and negative edges, a situation where an1383

accuracy metric is generally unwise.1384

To directly address the concern of the reviewer, we have chosen1385

to compare our work to SCENIC and CellOracle as they are the1386

most comparable alternatives for single-cell network inference.1387

The preprocessing (e.g. TF activity) and model selection meth-1388

ods built for older versions of the Inferelator developed in R (e.g.1389

the BBSR model selection method) have been reimplemented in1390

the python-based package which we present here. Based on our1391
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extensive software testing framework, we are confident that the1392

output of these reimplemented methods are valid and equiva-1393

lent to those in the Inferelator 2.0. Our expectation is that the1394

performance of the original R package and the current python1395

package would be very similar when using the same preprocess-1396

ing and model selection methods, if the out-of-date R package1397

were capable of handling data at this scale (it is not able to han-1398

dle the staggering number of observations present in single-cell1399

data sets).1400
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6.5. Reviewer 41401

Major:1402

1. Using the prior network reconstruction from both CellOracle and Inferelator-1403

prior results in lower AUPR than using one from YEASTRACT. Do1404

the authors have an explanation for this? How accurate/complete does1405

this prior need to be?1406

• This is a very interesting observation on a topic that we’ve con-1407

sidered at some length. To put it simply - the strategy of using1408

TF motifs to scan regulatory regions for potential binding will re-1409

sult in poor results for many (or perhaps most) TFs. We suspect1410

the reasons for this are twofold - first is that TF motifs them-1411

selves are of highly variable reliability. Some TFs (e.g. GAL4)1412

have been extensively studied and the DNA binding has been1413

directly measured, but most TF motifs are derived from ChIP1414

data, which is more indirect. Lower quality motifs will just give1415

poorer estimates of regulation.1416

The second reason is that both motif-scanning pipelines treat TFs1417

as discrete units that can be modeled in isolation, and that’s just1418

not reflective of the underlying biology in many cases. Some TFs1419

bind cooperatively with other TFs or chromatin readers, and we1420

are unable to account for these types of interaction effects. We1421

also suspect that motifs derived only from ChIP localization data1422

for TFs are less likely to be reliable, as localization is driven by1423

factors other than DNA sequence, but we have not directly tested1424

that hypothesis.1425

That said, we do not believe that the prior for the inferelator1426

needs to be particularly accurate or complete. TFs for which no1427

accurate predictions have been made in the prior network will1428

unfortunately likely be poorly modeled in the final network, but1429

so long as there is some signal in the noise we believe that mod-1430

eling performance will be reasonable. We’ve tested this in Figure1431

4H by taking a the YEASTRACT prior network (which we be-1432

lieve to be the most accurate prior knowledge network we have1433

available) and filling it with randomly generated edges. The re-1434

sulting network inference performance is quite stable, given that1435

the true prior network edges are outnumbered (up to 10:1) by1436

false positive edges.1437

2. Interestingly, in applying Inferelator 3.0 to single-cell yeast data, the1438

authors found decreases in performance associated with depth-normalized1439
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data, suggesting total counts per cell carries some information in in-1440

ference. This doesn’t seem to be the case when using BBSR model1441

selection. Can the authors speculate on why this is the case?1442

• This is also a very interesting observation of a subtle effect. As a1443

best-subset regression method that uses the Bayesian Information1444

Criterion, BBSR model selection favors simpler models. There is1445

an initial feature selection based on mutual information which1446

greatly restricts the number of considered features prior to best-1447

subset regression (this is unfortunately necessary as best-subset1448

regression scales exponentially with the number of predictors).1449

Predictor variables (TFs) which are only weakly linked to gene1450

expression through correlation from total count depth are likely1451

to be excluded in this intial filter and not considered during re-1452

gression. We note that the performance of AMuSR and BBSR1453

are very similar when cell count depth is normalized - the dif-1454

ference is that AMuSR performs better on non-depth-normalized1455

expression data, and BBSR performance does not change. Inter-1456

pretation of the original Figure 4 was needlessly difficult as the1457

y-axis was scaled differently in panels B, C, and D. We have fixed1458

the y-axis scaling in panels B, C, and D in the revised Figure 41459

so that they are identical.1460

3. I’d be interested to understand the limits of Inferelator 3.0 in terms1461

of scalability, which seems to be the main draw of this tool. Recon-1462

struction on 1.3 million single-cells seems impressive (even if divided1463

into 36 clusters), I wonder how long that took, and how scalability1464

compares to previous versions and other single-cell based methods.1465

• This is an excellent question, as this is a lot of data. Our in-1466

ference approach uses bootstrapping networks (internally rank-1467

ing network edges by variance explained), and the full network1468

reported in figures 5 & 6 took approximately 3350 cpu-hours to1469

calculate each bootstrap network (around 10 minutes per cpu per1470

gene). We tested this again on the newest version of the Infere-1471

lator (which has some additional optimizations) and the newest1472

version of Dask and found it decreased to 1400 cpu-hours (the1473

output is identical). We’re fortunate to have excellent computa-1474

tional resources, but this is a lot of computational time.1475

We have included a runtime benchmark (without task learning)1476

as Supplemental Figure 5A that compares runtime between the1477

Inferelator and SCENIC, the most scalable of the existing net-1478
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work inference tools. At 140k cells, the Inferelator can complete1479

network runs in around an hour, but with equal resources the run-1480

time of SCENIC using GENIE3 is out of a testable range, and1481

SCENIC using GRNBOOST2 dies with cryptic memory errors.1482

Prior iterations of the Inferelator were written for bulk RNA-seq1483

data at a much lower scale. We are quite confident, based on1484

how much of it had to be rewritten to efficiently utilize memory,1485

that earlier versions of the Inferelator are not able to handle 140k1486

cells either. That having been said, we intend to continue devel-1487

oping the Inferelator, as every time we catch up to the size of1488

large single-cell data sets, someone publishes something 10 times1489

larger. There are a number of techniques for scalability that we1490

think we can take advantage of, now that we are built around a1491

powerful (dask) parallelization library.1492

4. Benchmarking: it would be useful to put this tool in context of others1493

in terms of AUPR, runtime, etc. (i.e. some of the ones mentioned in1494

the background section)1495

• This is a suggestion raised by (all) other reviewers, and we have1496

added several benchmarks. We have included performance bench-1497

marks against the synthetic data in BEELINE (Supplemental1498

Figure 4), and added SCENIC and CellOracle to the yeast single-1499

cell benchmarking in Figure 4. We have also contextualized the1500

advantage of task-based learning by adding the non-task per-1501

formance against the yeast single-cell benchmark to Supplemen-1502

tal Figure 4. Finally, we have added a runtime benchmark of1503

SCENIC to our runtime benchmarking in Supplemental Figure1504

5.1505

Minor1506

1. missing pointer in line 1931507

2. References seem to be garbled in lines 284-71508

• We have corrected these errors.1509
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Figure 1: Learning Gene Regulatory Networks with the Inferelator (A) The response
to the sugar galactose in Saccharomyces cerevisiae is mediated by the Gal4 and Gal80
TFs, a prototypical mechanism for altering cellular gene expression in response to stimuli.
(B) Gal4 and Gal80 regulation represented as an unsigned directed graph connecting
regulatory TFs to target genes. (C) Genome-wide Gene Regulatory Networks (GRNs)
are inferred from gene expression data and prior knowledge about network connections
using the Inferelator, and the resulting networks are scored by comparison with a gold
standard of known interactions. A subset of genes are held out of the prior knowledge and
used for evaluating performance.
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Figure 2: Network Inference Performance on Multiple Model Organism Datasets (A)
Schematic of Inferelator workflow and a brief summary of the differences between GRN
model selection methods (B) Results from 10 replicates of GRN inference for each model-
ing method on (i) Bacillus subtilis GSE67023 (B1), GSE27219 (B2) and (ii) Saccharomyces
cerevisiae GSE142864 (S1), and Tchourine et al. (2018) (S2). Precision-recall curves are
shown for replicates where 20% of genes are held out of the prior and used for evaluation,
with a smoothed consensus curve. AUPR is plotted for each cross-validation result in
gray, with mean ± standard deviation in color. Experiments labeled with (S) are shuffled
controls, where the labels on the prior adjacency matrix have been randomly shuffled. 10
shuffled replicates are shown as gray dots, with mean ± standard deviation in black. (C)
Results from 10 replicates of GRN inference using two datasets as two network inference
tasks on (i) Bacillus subtilis and (ii) Saccharomyces cerevisiae. AMuSR is a multi-task
learning method; BBSR and StARS-LASSO are run on each task separately and then
combined into a unified GRN. Precision-recall curves and AUPR are plotted as in B.
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Figure 3: Construction and Performance of Network Connectivity Priors Using TF Mo-
tif Scanning (A) Schematic of inferelator-prior workflow, scanning identified regulatory
regions (e.g. by ATAC) for TF motifs to construct adjacency matrices (B) Jaccard simi-
larity index between Saccharomyces cerevisiae prior adjacency matrices generated by the
inferelator-prior package, by the CellOracle package, and obtained from the YEASTRACT
database. Prior matrices were generated using TF motifs from the CIS-BP, JASPAR, and
TRANSFAC databases with each pipeline (n is the number of edges in each prior adjacency
matrix). (C) The performance of Inferelator network inference using each motif-derived
prior. Performance is evaluated by AUPR, scoring against genes held out of the prior
adjacency matrix, based on inference using 2577 genome-wide microarray experiments.
Experiments labeled with (S) are shuffled controls, where the labels on the prior adja-
cency matrix have been randomly shuffled.
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Figure 4: Network Inference Performance Using Saccharomyces cerevisiae Single-Cell
Data (A) Uniform Manifold Approximation and Projection (UMAP) plot of yeast scR-
NAseq data, colored by the experimental grouping of individual cells (tasks). (B) The
effect of preprocessing methods on network inference using BBSR model selection on 14
task-specific expression datasets, as measured by AUPR. Colored dots represent mean ±
standard deviation of all replicates. Data is either untransformed (raw counts), trans-
formed by Freeman-Tukey Transform (FTT), or transformed by log2(x1) pseudocount.
Non-normalized data is compared to data normalized so that all cells have identical count
depth. Network inference performance is compared to two baseline controls; data which
has been replaced by Gaussian noise (N) and network inference using shuffled labels in the
prior network (S). (C) Performance evaluated as in B on StARS-LASSO model selection.
(D) Performance evaluated as in B on AMuSR model selection. (E) Precision-recall of
a network constructed using FTT-transformed, non-normalized AMuSR model selection,
as determined by the recovery of the prior network. Dashed red line is the retention
threshold identified by Matthews Correlation Coefficient. (F) Matthews Correlation Co-
efficient (MCC) of the same network as in E. Dashed red line is the confidence score of
the maximum MCC. (G) Performance evaluated as in B comparing the Inferelator (FTT-
transformed, non-normalized AMuSR) against the SCENIC and CellOracle network in-
ference pipelines. (H) Performance of the Inferelator (FTT-transformed, non-normalized
AMuSR) compared to SCENIC and CellOracle without holding genes out of the prior
knowledge network. Additional edges are added randomly to the prior knowledge network
as a percentage of the true edges in the prior. Colored dashed lines represent controls for
each method where the labels on the prior knowledge network are randomly shuffled. The
black dashed line represents performance of the GRNBOOST2 algorithm, which identifies
gene adjacencies as the first part of the SCENIC pipeline without using prior knowledge.
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Figure 5: Processing Large Single-Cell Mouse Brain Data for Network Inference (A)
UMAP plot of all mouse brain scRNAseq data with Excitatory neurons, Interneurons,
Glial cells and Vascular cells colored. (B) UMAP plot of cells from each broad category
colored by louvain clusters and labeled by cell type. (C) Heatmap of normalized gene
expression for marker genes that distinguish cluster cell types within broad categories.
(D) UMAP plot of mouse brain scATAC data with Excitatory neurons, Interneurons, and
Glial cells colored. (E) Heatmap of normalized mean gene accessibility for marker genes
that distinguish broad categories of cells. (F) The number of scRNA-seq and scATAC
cells in each of the broad categories. (G) The number of scRNA-seq cells in each cell type
specific cluster.
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Figure 6: Learned GRN For The Mouse Brain (A) MCC for the aggregate network based
on Inferelator prediction confidence. The dashed line shows the confidence score which
maximizes MCC. Network edges at and above this line are retained in the final network.
(B) Aggregate GRN learned. (C) Network edges which are present in every individual
task. (D) Jaccard similarity index between each task network (E) Network targets of the
EGR1 TF in neurons. (F) Network targets of the EGR1 TF in both neurons and glial
cells. (G) Network targets of the EGR1 TF in glial cells. (H) Network of the ATF4 TF
where blue edges are neuron specific, orange edges are glial specific, and black edges are
present in both categories.
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Supplemental Figure 1: Learning Bacillus subtilis and Saccharomyces cerevisiae networks
by tasks. (A) PCA depicts batch effects between datasets for both (i) Bacillus subtilis and
(ii) Saccharomyces cerevisiae. Learning networks by treating the independently collected
datasets as separate tasks allows for sharing regulatory commonalities while respecting
experimental variance. (B) The number of shared edges between the two datasets, for both
model organisms (i) and (ii), shows a high number of overlapping edges. Edges are ranked
by their corresponding variance explained for each of the three different model selection
approaches: AMuSR, BBSR, and StARS-LASSO. (C) Across the three different model
selection approaches, AMuSR learns the highest number of overlapping edges between the
respective datasets for model organisms (i) and (ii).
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Supplemental Figure 2: Network construction using TF motifs in Saccharomyces cere-
visiae. (A) Motifs annotated for GAL4 in the CIS-BP motif database. (B) Histogram
of scores linking GAL4 to target genes. Genes in black have been omitted from the final
connectivity matrix, and genes in red have been included. (C) Network connecting GAL4
and target genes. Green edges are present in the YEASTRACT database. (D) Histogram
of out degree for each TF in the complete network. (E-H) Network analysis as A-D for
the JASPAR motif database. (I-L) Network analysis as A-D for the TRANSFAC PRO
motif database.
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Supplemental Figure 3: Inferelator performance on BEELINE simulated network data.
(A) Network inference performance of the Inferelator with BBSR model selection as mea-
sured by AUPR against the ground truth with no prior network information provided.
Dashed lines are the expected baseline of a random predictor. (B) Network inference
performance of the Inferelator with BBSR model selection as measured by AUPR against
half of the ground truth with the other half of the ground truth provided as prior network
information. Each point is the median performance of 10 differently-seeded splits. (C)
Comparison of the AUPR ratio over the baseline for the Inferelator to each of the network
inference methods used in the original BEELINE benchmark.
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Supplemental Figure 4: Extended single-cell yeast network performance metrics as mea-
sured by (i) AUPR, (ii) Matthews Correlation Coefficient (MCC), and (iii) F1 score. Each
gray dot represents performance of one network inference run. Colored dots represent the
mean and standard deviation. (A) Single-cell yeast network inference performance of
BBSR model selection Plots with a gray background are the same plots as used in main-
text Figure 4. (B) Performance of StARS-LASSO model selection. (C) Performance
of AMuSR model selection. (D) Performance of BBSR model selection where all cells
are used without splitting into multiple tasks. (E) Performance of StARS-LASSO model
selection where all cells are used without splitting into multiple tasks.
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Supplemental Figure 5: (A) Computational performance as measured by runtime in
seconds using the Dask engine (140 cpu cores) for the Inferelator 3.0 (BBSR or StARS-
LASSO), and for SCENIC (GENIE3 or GRNBOOST2). Performance is also measured for
the Inferelator 3.0 or using the python-based multprocessing (MP) engine (28 cpu cores).
Expression data is sampled from 144,000 mouse cells and 9,782 genes are modeled for
network inference. Runtime is shown for 10 replicate runs for each quantity of cells. (B)
Number of cells removed during preprocessing for Quality Control (QC), as Mitotic, and
as Ambiguous by neuronal marker. Post-mitotic, non-ambiguous cells are retained and
clustered. (C) Number of single-cell counts per cell in each of 36 cell type-specific groups,
and in the groups removed during preprocessing. (D) Number of genes per cell in each of
36 cell type-specific groups, and in the groups removed during preprocessing

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2021. ; https://doi.org/10.1101/2021.05.03.442499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442499
http://creativecommons.org/licenses/by/4.0/


Supplemental Figure 6: (A) Cell class marker expression for each annotated subcluster
in mouse single-cell brain data. (B) UMAP of 766,402 mouse brain cells colored by cell
class marker expression. (C) UMAP of 1.3M mouse brain cells colored by the assigned cell
cycle phase. (D) UMAP of 766,402 mouse brain cells colored by 36 assigned subcluster.
(E) Cell type marker expression by assigned subcluster.
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Supplemental Figure 7: (A) List of TFs that have identical target genes in GRNs for both
Excitatory neurons (EXC) and Interneurons (IN), that have only target genes in Excita-
tory neurons, and that have only target genes in Interneurons. (B) List of TFs that have
no shared target genes in GRNs for Excitatory neurons and in GRNs for interneurons. (C)
TFs that have some shared target genes in GRNs for Excitatory neurons and interneurons,
but also have some target genes specific to Excitatory neurons or interneurons.
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