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Abstract:
We propose the “study strap ensemble,” which combines advantages of

two common approaches to fitting prediction models when multiple train-
ing datasets (“studies”) are available: pooling studies and fitting one model
versus averaging predictions from multiple models each fit to individual
studies. The study strap ensemble fits models to bootstrapped datasets, or
“pseudo-studies.” These are generated by resampling from multiple stud-
ies with a hierarchical resampling scheme that generalizes the randomized
cluster bootstrap. The study strap is controlled by a tuning parameter that
determines the proportion of observations to draw from each study. When
the parameter is set to its lowest value, each pseudo-study is resampled from
only a single study. When it is high, the study strap ignores the multi-study
structure and generates pseudo-studies by merging the datasets and draw-
ing observations like a standard bootstrap. We empirically show the optimal
tuning value often lies in between, and prove that special cases of the study
strap draw the merged dataset and the set of original studies as pseudo-
studies. We extend the study strap approach with an ensemble weighting
scheme that utilizes information in the distribution of the covariates of the
test dataset.

Our work is motivated by neuroscience experiments using real-time neu-
rochemical sensing during awake behavior in humans. Current techniques
to perform this kind of research require measurements from an electrode
placed in the brain during awake neurosurgery and rely on prediction mod-
els to estimate neurotransmitter concentrations from the electrical measure-
ments recorded by the electrode. These models are trained by combining
multiple datasets that are collected in vitro under heterogeneous condi-
tions in order to promote accuracy of the models when applied to data
collected in the brain. A prevailing challenge is deciding how to combine
studies or ensemble models trained on different studies to enhance model
generalizability.

Our methods produce marked improvements in simulations and in this
application. All methods are available in the studyStrap CRAN package.

MSC 2010 subject classifications: Primary 62P10.
Keywords and phrases: Domain Adaptation; Domain Generalization;
Transfer Learning; Neuroscience.
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1. Introduction

1.1. Multi-Study Learning

It has become increasingly common to encounter settings where multiple datasets
(or “studies”) with common covariates and outcomes are available for training
prediction models. These opportunities arise, for example, in genetics (Zhang
et al., 2020), neuroimaging (Glocker et al., 2019) and HIV (Ramon, Belanche-
Muñoz and Pérez-Enciso, 2019). Leveraging training information from multiple
datasets is desirable since algorithms trained on data from one study often per-
form poorly when used for the same prediction task in other studies (Patil and
Parmigiani, 2018). Developing algorithms that explicitly account for the het-
erogeneity across datasets is critical to generating prediction models that are
replicable across settings.

Poor out-of-sample generalizability can result from different sources of “dataset
shift,” a discrepancy in the distribution of training and test data (Kouw and
Loog, 2019; Yang et al., 2020). Dataset shift can take different forms: 1) “virtual
drift” or “covariate shift,” occurs when there are differences in the distribution
f(X) of the covariates; 2) “concept shift” arises when the conditional proba-
bility f(y |X) changes; 3) “hybrid shift” presents when both f(y |X) and f(X)
change.

Methods proposed in the transfer learning literature aim to improve perfor-
mance of supervised learning in a new dataset (“domain”). Multi-source do-
main adaptation methods leverage multiple domains to improve performance
on a target dataset using available information on its covariates (Kouw and
Loog, 2019), while domain generalization uses data from multiple domains to
make a model more generalizable to an unseen dataset (Wang et al., 2021). In
the present work, we focus on domain generalization and multi-source domain
adaptation problems (Sun, Shi and Wu, 2015) motivated by neuroscience appli-
cations. Extensive literature on transfer learning and domain adaptation work
has proposed approaches to reweighting samples (Shimodaira, 2000; Sugiyama
et al., 2008) to align the distribution of data (e.g., the marginal the distribution
of the covariates) (Kouw and Loog, 2019; Sun, Shi and Wu, 2015). Here we
propose hierarchical resampling techniques coupled with covariate distribution-
based weighting schemes towards similar ends. We leverage ideas from the rich
literature in transfer learning and the rapidly growing “multi-study” statistics
perspective that proposes methods to combine studies in supervised (Guan,
Parmigiani and Patil, 2020; Ramchandran, Patil and Parmigiani, 2020; Ren
et al., 2021), unsupervised (De Vito et al., 2019; Roy et al., 2019) and inference
settings (Guo et al., 2021; Rashid et al., 2020).

Multi-study learning methods seek to leverage information from multiple
studies to improve the replicability of models. A standard approach in multi-
study settings is to simply pool studies together and fit a single model on this
merged dataset (Guan, Parmigiani and Patil, 2020; Sun, Shi and Wu, 2015),
which we refer to as “Training On the Merged Dataset” algorithm, or “TOM”.
While the larger sample size and the simplicity of the approach are attractive,
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this procedure can result in poor out-of-sample prediction performance when
there is high between-study heterogeneity in the joint distribution of the co-
variates or in the conditional distribution of the outcome given the covariates.
Ensembling, or combining predictions from models trained on different stud-
ies rather than combining the study data themselves, has been shown to be a
useful framework for accounting for heterogeneity and simultaneously borrow-
ing strength across different datasets (Guan, Parmigiani and Patil, 2020; Guo,
Shah and Barzilay, 2018; Patil and Parmigiani, 2018; Ramchandran, Patil and
Parmigiani, 2020; Sun, Shi and Wu, 2015). A simple form is the “Observed-
Studies Ensemble” (“OSE”), in which a model is fit on each study separately
and then the predictions from all the models are aggregated through a weighted
average.

1.2. A Multi-study Challenge in Neurochemical Sensing

Studying the neurobiological underpinnings of decision making is critical for
developing treatments for neurological and psychiatric conditions such as drug
addiction and Alzheimer’s disease. To study the brain circuitry involved in dis-
eases of the nervous system, neuroscientists often seek to measure changes in lev-
els of neurotransmitters (e.g., dopamine) used to relay messages between brain
cells. Historically such experiments have mostly been conducted in non-human
model organisms (Volkow, Wise and Baler, 2017). Until recently, however, brain
researchers have not had the tools necessary to measure fluctuations in neuro-
transmitter levels in humans on a time scale rapid enough to enable investi-
gating the link between these brain signals and real-time changes in behavior
and cognition (Kishida et al., 2016). Fast Scan Cyclic Voltammetry (FSCV)
is an invasive electrochemical technique that allows for the estimation of neu-
rotransmitter changes at a rapid time scale (10 measurements per second) in
awake humans who are performing decision-making tasks. Historically used in
rodent models, FSCV technology for humans has recently been developed (Bang
et al., 2020; Kishida et al., 2016; Moran et al., 2018), offering unprecedented op-
portunity to monitor human neurochemical levels that is currently impossible
to estimate with other common human neuroscience techniques such as non-
invasive brain imaging (e.g., Functional Magnetic Resonance Imaging (fMRI)
or Positron Emission Tomography (PET)).

FSCV presents, however, statistical challenges that must be resolved to en-
sure the generation of accurate neurotransmitter estimates. This is because this
approach inherently relies on statistical models to translate raw measurements
into estimates of neurotransmitter concentration. Briefly, the technique func-
tions by varying the voltage potential on an electrode and measuring the resul-
tant changes in electrical current. The recordings produce a high dimensional
time series signal. The vector of current measurements at each time point can
be used as covariates to predict neurotransmitter concentration. As FSCV does
not directly measure this outcome, one must train models on datasets generated
in vitro, where a ground truth (i.e., the true concentrations) is known.
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Models trained in this manner often suffer, however, from poor generaliz-
ability, as the environments in which in vitro datasets are constructed differ
markedly from that of the brain. To improve the generalizability of the mod-
els, it is common to train them on a dataset that pools together multiple in
vitro datasets (referred to as ”calibration” datasets in the FSCV literature),
each generated on a different electrode (Bang et al., 2020; Kishida et al., 2016;
Moran et al., 2018). In practice, this is a multi-study learning problem. While
different in vitro datasets share the same outcome and covariates, electrodes
are hand-made and differ subtly both in their general physical properties (e.g.,
the length of the electrode) and in the properties of their recorded signals (i.e.,
their electrical responses). As a result, data collected using different electrodes
exhibit considerable heterogeneity both in the marginal distribution of the co-
variates (i.e., the magnitude of current measurements recorded at a fixed set of
voltage potentials) and in the conditional distributions of the outcome (neuro-
transmitter concentration) given the covariates. Treating all observations made
on one electrode as a study allows for a systematic approach to account for
the fact that no one in vitro dataset will exactly capture the properties of data
collected in the brain. Indeed the original work to implement FSCV in humans
(Kishida et al., 2016) reports that training models on datasets that combine
“studies” (i.e., in vitro datasets) of multiple electrodes substantially improves
the cross-electrode generalizability and accuracy of estimates.

1.3. A General Framework for Multi-Study Training

In our neurochemical sensing application, as well as other contexts (Ventz,
Mazumder and Trippa, 2020), OSE and TOM each outperform each other at
times, but it can be difficult to predict under which conditions one will be su-
perior. We sought to create an encompassing framework combining advantages
of both approaches: 1) training models on datasets that combine observations
from multiple studies and 2) ensembling to improve out-of-sample performance.

We propose a method that generates an artificial collection of “studies” by
resampling the set of the observed studies in a manner that is useful for multi-
study ensemble learning. We term such collection a “study strap replicate” and
each member a “pseudo-study.” We refer to the original studies, without any
resampling, as “observed studies” and the resampling procedure as the “study
strap.” Each pseudo-study can then be used as a training dataset to fit a predic-
tion model. In a study strap replicate, each pseudo-study includes observations
from a subset of the observed studies, in different proportions. While one could
generate pseudo-studies by resampling from the merged dataset with replace-
ment (i.e., standard “bagging” or “bootstrap aggregation” (Breiman, 1996a)),
this would produce many bootstrap datasets that have observations from all or
many of the observed studies. Conversely, resampling from each of the observed
studies separately would result in pseudo-studies that only have observations
from a single study. To control the between pseudo-study heterogeneity in our
resampling approach, we randomly determine the number of observations to re-
sample from each observed study via a multinomial draw. For example, say we
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have 5 observed studies, each with 100 observations. A pseudo-study could be
constructed by drawing 30 observations from study 1, 10 from study 3, and 60
from study 5. We will analytically demonstrate that special cases of the study
strap generate both the set of observed studies and the merged dataset as as
“pseudo-studies.”

Our proposed study strap approach leverages the concept of bagging, which
implements bootstrap resampling in prediction settings (Breiman, 1996a). Train-
ing one or more learners on each of several bootstrap samples and then ensem-
bling the resulting models can enhance performance, often through a reduction
in variance. We also build on an existing hierarchical resampling approach (Davi-
son and Hinkley, 1997) (pp.100-102): the randomized cluster bootstrap, where
both clusters and observations within a cluster are resampled with replacement.
As we discuss below, standard (non-hierarchical) bagging of the merged dataset
as well as the randomized cluster bootstrap are special cases of the study strap
resampling scheme.

In our neurochemical sensing application, models are trained after the co-
variates of the test set (signals recorded in the brain) have been observed. Past
FSCV work has reported that using training sets where the joint distribution of
the covariates is similar to that of the test set improves prediction performance
(Kishida et al., 2016). Motivated by this observation, we propose to upweight
models trained on datasets that have similar covariate profiles to that of the
target task or population. We extend this concept to the study strap by only
training models to be included as members of an ensemble if the corresponding
pseudo-studies share a covariate distribution similar to that of the test set.

2. Methods

2.1. Notation and Problem Statement

We consider K training (observed) studies with common outcomes and covari-
ates, and make predictions on data collected in a separate study (study K + 1).
The observed training studies are noted by {S1, ...,SK} where Sk = [yk |Xk],
yk is the outcome variable in the kth study and Xk is its design matrix. The
studies have sample sizes n1, ..., nK and we define N =

∑
k nk. We denote

the set {1, 2, ...,K} as [K]. We assume the data from each study are gener-
ated independently across studies. The covariates from study k are drawn from
the distribution fXk

(Xk), and the outcome from fyk
(yk |Xk). Subscripts will be

dropped when we can do so without ambiguity. We allow for between-study het-
erogeneity, allowing both the underlying marginal distributions, f(Xk), f(yk)
and the conditional distribution, f(yk |Xk) to vary across studies. These are
known in the dataset shift literature as “covariate shift” and “concept drift”
respectively (Yang et al., 2020).

We aim to make predictions for target study K + 1, possibly using its design
matrix, XK+1. We propose methods for 1) general prediction on an exchangeable
study without knowledge of the covariate profile and 2) customized prediction
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on an exchangeable study, with knowledge of the covariate profiles of all samples
(or a representative subsample) in the new (target) study. In 1) {S1, ...,SK} are
observed. In 2) {XK+1,S1, ...,SK} are observed.

Denote a model trained on data from the kth study by Ŷk(·) and the pre-
dictions made with this model on the covariates of study K + 1 by Ŷk(Xk+1).
When we discuss ensembles, we express them in terms of the original models.
For example, the observed-studies ensemble ŶOSE(·) trains a single model on
each study and then ensembles the resulting models:

ŶOSE (XK+1) =
K∑

k=1

wkŶk (XK+1) (2.1)

where wk is the weight on the predictions of the kth model.

2.2. Multi-study Ensembling via Stacking

One approach for determining the weights in (2.1) is the multi-study counterpart
of stacking (Breiman, 1996b) introduced in Patil and Parmigiani (2018). First a

model is fit on each observed study. Then a regression is fit to y and X̂ defined
as

y =

y1

...
yK


N×1

X̂ =

 Ŷ1(X1) Ŷ2(X1) ... ŶK(X1)
...

...
. . .

...

Ŷ1(XK) Ŷ2(XK) ... ŶK(XK)


N×K

using non-negative least squares (NNLS). The weights ŵ are the NNLS coeffi-
cient estimates. In multi-study prediction, this type of stacking rewards cross-
study prediction performance. We use it in several cases, and include implemen-
tation details in Supplementary Section A.3.

2.3. Study Strap

We propose the study strap, a general approach to generating collections of
pseudo-studies for both general and customized prediction. The pseudo-studies
serve as training datasets to which any statistical learning approach can be
applied. The study strap is a hierarchical resampling scheme which generates
each pseudo-study by first selecting the proportion of observations to resample
from each of the observed studies (and implicitly which observed studies to
resample from) in a “study-level” resampling step. Then in the “observation-
level” step, individual observations are resampled from each observed study
(with or without replacement) according to the proportions drawn in the first
step. The first stage of the resampling procedure is controlled by b, the “bag size”
tuning parameter. The sample size of a psuedo-study depends on the sample
sizes of the observed studies, n1, ..., nK .
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Fig 1: Illustration of the effect of the bag size tuning parameter b on the resulting
pseudo-studies. This example assumes K = 10, and observed study sample sizes: n1 =
. . . = n10 = 1000. We show four example pseudo-studies. The black rectangles show
the bag size, b, and example study bags. The remainder of the column is the study strap
replicate, with gray blocks denoting a pseudo-study. n

(r)
j is the number of observations

resampled from the jth observed study in the rth pseudo-study.

Formally, in pseudo-code, for pseudo-study r, round
(
nk ∗A(r)

k /b
)

observa-

tions are resampled from observed study k, where A
(r)
k is the kth element of the

multinomial draw A(r) ∼ MultinomialK

(
b, 1

K1K

)
. The function round(·) maps

a real number to the closest integer. We refer to A(r) as the “study bag.” b,
the “bag size” tuning parameter, is used to control the degree to which multi-
ple studies contribute observations to the composition of a pseudo-study. When
b = 1, all observations for a given pseudo-study are drawn from one observed
study. When b ≤ K, b is the maximum number of observed studies that could be
selected to contribute observations to a pseudo-study. When b = K, the study
strap draws pseudo-studies similarly to the randomized cluster bootstrap. As b
grows large, each of the observed studies will tend to be represented (see Sup-
plement Proposition 7) and contribute equal proportions of their sample size

to a given pseudo-study: nkA
(r)
k /b

p−→ nk/K as b → ∞ (for fixed nk) by the
Weak Law of Large Numbers. The number of observed studies that contribute
to a given pseudo-study, C(r) =

∑
k 1Ak>0, is random with a distribution that

depends on b. We show in the Supplement (Proposition 6) that this distribu-
tion has the form: P (C(r) = c | b) =

(
K
c

)
c!S(b, c)/Kb, where S(b, c) is Sterling’s

number of the second kind.
The bag size also determines the proportion of observations that can be re-

sampled from a study. Since we draw round
(
nk ∗A(r)

k /b
)

observations from

the kth study, 1/b is interpretable as the smallest non-zero proportion of obser-
vations one can resample from any of the K studies (i.e., round(nk/b) is the
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smallest number of (non-zero) observations that could be be drawn from study
k). Described another way, at each iteration, the study strap randomly cuts
each study into b roughly equally sized pieces. It then draws an A(r) and ran-

domly selects A
(r)
1 of the pieces from study 1, A

(r)
2 of the pieces from study 2

and so forth. It then combines these selected pieces into a pseudo-study. Since
n1 and n2 differ, the size of the pieces and thus the number of observations con-
tributed may differ between the studies. The size of a pseudo-study may also
differ from the sizes of the observed studies. For example, let b = 5, K = 3,
n1 = 50, n2 = 75, n3 = 150 and the rth study bag, A(r) = [1 0 4]T . We
generate the pseudo-study by resampling one fifth of study 1’s 50 observations

(i.e., n1 ∗ A(r)
1 /b = 50 ∗ 1/5 = 10 observations) and four fifths of study 3’s 150

observations. Other examples of pseudo-studies generated at different bag sizes
are illustrated in Figure 1.

We denote the rth pseudo-study as S(r) and a model trained on the rth

pseudo-study as Ŷ(r)(·). Similar to how bagging is used in single-study statistical
learning (Breiman, 1996a), the study strap can be used to create an ensemble
learner, termed Study Strap Ensemble (SSE). A full algorithmic description is
included in the Supplement (Algorithm 2).

One constraint of the study strap is that observed studies with larger sample
sizes will contribute, on average, more observations to pseudo-studies, because
observations are resampled in proportion to study sample size. One may instead
wish to resample equal numbers of observations from the kth and lth observed

studies (conditional on A
(r)
k = A

(r)
l ) even if the kth study has a larger sample

size. To address this, we introduce the generalized study strap resampling scheme,
which augments the basic study strap with additional parameters, N∗K×1.

Whereas the standard study strap involves drawing round
(
nk ∗A(r)

k /b
)

ob-

servations from the kth observed study when constructing a pseudo-study, the

generalized study strap resamples round
(
N∗k ∗A

(r)
k /b

)
. This allows control over

both the number of observations contributed by each of the observed studies to
a pseudo-study and the induced sample size of a pseudo-study. We provide a
detailed algorithmic description in the Supplement (Algorithm 3).

While one could use other resampling schemes such as standard bagging or
the randomized cluster bootstrap in multi-study ensemble learning, they do not
offer as fine control over the composition of a pseudo-study. Standard bagging
resamples in a manner that ignores study membership, thereby providing no
way to control how many studies contribute observations to each pseudo-study.
Although the randomized cluster bootstrap incorporates the multi-study struc-
ture of the problem via its hierarchical procedure, the resampling scheme is
restrictive: it resamples with a fixed bag size, b = K, and draws Aknk obser-
vations from the selected studies. The study strap, on the other hand, affords
greater control over the degree of between pseudo-study heterogeneity through
the bag size, b and the generalized study strap sample size parameters allows
one to adjust the size of the pseudo-study. Indeed, the generalized study strap
resampling scheme can be viewed as a generalization of the randomized cluster
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bootstrap method described above (a connection proven below). This distinc-
tion is crucial since, as shown later, the performance of an ensemble fit on a
study strap replicate can be enhanced substantially by tuning the bag size.

2.4. Analytical Results

We present analytical results to demonstrate that the study strap resampling
scheme provides a flexible and useful multi-study prediction framework that en-
compasses earlier methods. We specifically show that the merged dataset (used
in the TOM approach), standard (non-hierarchical) bagging, the set of observed
studies (used in OSE) and the randomized cluster bootstrap are special cases
of the study strap, that arise from specific values of b and N∗. The proofs are
in Supplementary Section A.2.

Proposition 1. If the bag size b = 1 and sampling is done without replace-
ment, then the set of observed studies (used in OSE) is drawn as the study strap
replicate with probability 1.

Proposition 2. In the generalized study strap, let the bag size b = K, sample
size parameters N∗k = Knk, ∀ k ∈ [K], and assume sampling without replace-
ment. Then the merged dataset (used in TOM) is drawn as the study strap
replicate with probability 1.

Proposition 2 demonstrates how to generate the merged dataset within the
generalized study strap resampling procedure. A further and more general con-
nection between the merged dataset and the standard study strap arises when
b = n̄ =∆ round( 1

K

∑K
k=1 nk). This is discussed next.

Proposition 3. The standard study strap with b = n̄ and sampling without
replacement is approximately a delete N − n̄ jackknife bagging of the merged
dataset.

Proposition 4. Let n = n1 = ... = nK . The generalized study strap with b = N ,
N∗k = N, ∀ k ∈ [K] and sampling with replacement is a non-hierarchical bagging
of the merged dataset.

Proposition 5. The generalized study strap with b = K, N∗k = Knk,∀ k ∈ [K]
and sampling with replacement is the randomized cluster bootstrap.

Taken together, these results show how the parameter b, varying between 1
and N , provides a tuning mechanism that generates a spectrum of resampling
schemes. When b = 1 the study strap generates each pseudo-study by resampling
from a single study. As b grows large (e.g., when b = n̄), the study strap increas-
ingly ignores study membership and resamples like a standard (non-hierarchical)
bagging of the the merged dataset.

2.5. Covariate Profile Similarity Weighting

We now focus on “customized training,” when the covariates of the test set
are available at the time of model building. “Customized training” has been
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proposed in both single-study (Kouw and Loog, 2019; Powers, Hastie and Tib-
shirani, 2015) and multi-study settings (Sun, Shi and Wu, 2015). For exam-
ple, “multi-source domain adaptation” contains a rich literature on combining
datasets in a manner aimed at tailoring prediction to a target dataset. We high-
light similarities and differences after describing our method in more detail.

We implemented an approach we refer to as “Covariate Profile Similarity”
(CPS) weighting, a weighting scheme that upweights models trained on datasets
with feature profiles that are similar to that of the target study, XK+1. This ap-
proach is motivated by the observation, in the FSCV literature, that combining
multiple studies exhibiting covariate distributions similar to that of the test set
substantially improves predictive performance and model generalizability. Past
work (Kishida et al., 2016) has reported using a K-means clustering approach
to select a subset of observed studies (based upon covariate similarity) to merge
into one dataset and fit a single model. Here we propose a weighting scheme that
can be used in an ensembling setting to leverage information from all available
studies.

For a given study or pseudo-study replicate k, we define a similarity met-
ric, sk = S (XK+1,Xk) ∈ R+ such that larger values correspond to greater
similarity. This concept is inspired by Minkowski distances and stress func-
tions utilized in the multidimensional scaling literature (Kruskal, 1964a,b; Shep-
ard, 1962). An example metric may simply be the inverse of the `2 distance
between the sample means of the covariates in the two studies considered:
S(Xk,XK+1) = ‖x̄k − x̄K+1‖−12 . The similarity metric can then be used to
adjust the weights for the predictions from the kth study to obtain final weights
vk = skwk/

∑K
k=1 skwk. We provide a detailed algorithmic description in the

Supplement (Algorithm 1).

2.6. Ensembling with the Covariate-Matched Study Strap

While generating pseudo-study replicates has the potential to create power-
ful training sets, it may also require a large number of pseudo-studies before
observed studies with high similarity to the target are well-represented. To ad-
dress this issue, we developed an alternative adaptive approach to embedding
covariate similarity into the study strap framework. This algorithm generates
pseudo-study replicates via a study strap, but only trains models on pseudo-
studies that have a covariate profile similar to that of the target study. This is
accomplished through an accept/reject step where the threshold for covariate
similarity is updated to be increasingly selective: each accepted pseudo-study
updates the threshold to be the similarity metric of the current pseudo-study.
The algorithm runs until a certain number of successive pseudo-studies are gen-
erated without acceptance for model training. Since the method is stochastic,
we propose iterating through multiple accept/reject paths and ensembling all
accepted models. This reduces between-seed variability in performance. We ab-
breviate this method as “AR” for “Accept/Reject.” See the supplement for a
full description (Algorithm 4). As in the SSE, we can weight predictions based
upon, for example, stacking or CPS.
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Leveraging the marginal distribution of covariates in training and test data is
a crucial part of transfer learning, dataset shift and domain adaptation (Kouw
and Loog, 2019; Sun, Shi and Wu, 2015). A number of methods propose to
align the marginal distribution of the covariates between training and test stud-
ies by reweighting samples before model training (Kouw and Loog, 2019; Sun
et al., 2011). Reweighting is often conducted with techniques such as importance
sampling (Shimodaira, 2000) or kernel-based methods (e.g., Kernel Density Es-
timation (Bickel, Brückner and Scheffer, 2009), Kernel Mean Matching (Huang
et al., 2007)). These methods seek to estimate weights for each data point in the
training set (or even a weight for each element in the design matrix) and then fit
models on the reweighted data. Mansour, Mohri and Rostamizadeh (2009) pro-
posed an ensembling scheme that weights the predictions from models that have
already been trained. These weights were calculated based on the distribution of
the covariates of each training study. Their work was motivated by large datasets
where reweighting individual samples could prove computationally intensive. In
our application also, reweighting samples would incur prohibitive computational
expense as the sample size is about 300,000 and dimension p = 1000. Aligning
the distribution of covariates in the study strap with many previous methods
would require an optimization step to be solved for each pseudo-study. Thus we
too propose reweighting predictions based on a measure of covariate similarity
between the training and test set, that could be calculated quickly and could
also be integrated into our resampling scheme via an accept/reject step. How-
ever, our approach differs in that the weights associated with each model are
not a function of the covariates of a test data point (i.e., we kept the weights
fixed for all observations in a test study) as it is in Mansour, Mohri and Ros-
tamizadeh (2009). This was motivated by the observation that the magnitude
of heterogeneity of the covariates within a study pales in comparison to the
heterogeneity across studies. As a result we expect that the profile of weights
would be very similar across observations within the test study.

3. Simulations

We sought to design our simulation experiments to emulate characteristics of
the data from our motivating application. For example, the datasets exhibited
heterogeneity in the conditional distribution of the outcome given the covariates
(Supplemental Figure S.7) and heterogeneity in the distribution of the covari-
ates. Importantly, we observed a number of clusters of studies that exhibited
similar covariate profiles (Figure 4) and conditional distributions (Supplemen-
tal Figure S.7). For example, we noticed multiple groups (clusters) of studies
within which the means of the covariates were very similar. The studies that
exhibited similar covariate distributions also tended to have similar profiles of
marginal covariate correlations (i.e., univariate correlations between each co-
variate and the outcome). We therefore simulated datasets to test the impact
of: 1) between-study heterogeneity in f(Xk), 2) between-study heterogeneity in
f(yk |Xk), and 3) study clusters across which (1) and (2) vary. We illustrate the
simulation framework in Supplemental Figure S.1a.
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3.1. Design of Simulation Experiments

We conducted simulations with 100 iterations, each with K = 16 training stud-
ies (observed studies) and one test study, under various conditions. For each
iteration, we fit different methods and estimated out-of-study prediction perfor-
mance using the root mean squared error (RMSE) on the test study. We define

RMSE =
√

1
n ‖y − ŷ‖22, where ŷ ∈ Rn are predicted values. Below we represent

each iteration as a single data point in the box plots.
The sample size of each observed study is nk = 400 for all studies. We in-

cluded 20 covariates (p = 20). These choices mimic the ratio of p/nk in the
neuroscience data where p/nk ≈ 1000/20000. We used smaller p and nk in the
simulations because running simulation experiments with the dataset size of the
neuroscience data would be prohibitively computationally intensive. Our out-
come followed yk |Xk ∼ Nnk

(Xkβk, I). We set 10 of the true model coefficients
to be exactly 0, so as to simulate the sparse nature of the neuroscience data.
We randomly generated the pth nonzero model coefficient from the kth study as
βk,p ∼ N(µβp

, σ2
β) to induce between-study heterogeneity in f(yk |Xk), where

µβp
∼ Unif(−10, 10). To explore the impact of varying degrees of between-study

heterogeneity in the true model, we simulated datasets where the variance (σ2
β)

of the distribution from which we drew the true model coefficients ranged across
four levels: σ2

β = 0.05, 0.25, 1, 3. We chose our range to include both favor-
able and less favorable scenarios for the TOM algorithm, which serves as the
reference. The performance of the TOM algorithm ranged from nearly perfect
(RMSE is bounded below by 1 since Var (yki

|xki
) = 1), to roughy 150 times

that, suggesting that we include a wide range of scenarios. We describe further
parameter choices in Supplementary Section B.1.

To induce heterogeneity in f(Xk), we randomly drew the overall mean of
covariate p as µ∗p ∼ N(5, 10), and then drew study specific covariate means
µXk

∼ Np(µ∗, σ2
XI) so that σ2

X affects the degree of between-study heterogeneity
in the means of the covariates. The ith observation in the kth study is distributed
as, xki ∼ Np(µXk

,ΣX) where ΣX is a randomly generated covariance matrix
that was held constant across studies, but varied between iterations. Levels of
σ2
X were selected to mimic the ratio of between-study to within-study variability

in the covariates that we estimated in the neuroscience dataset. We describe this
further in Supplementary Section B.1.

We modeled clusters as groups of studies that shared similar covariate distri-
butions and conditional distributions of f(yk |Xk). The true model coefficients
varied across studies within a cluster by a degree proportional to the between-
study variability in model coefficients. If β∗c is a baseline vector of true model
coefficients for studies in the cth cluster, then the true model coefficients for
the jth study in the cth cluster is βc = β∗c + ετc,j where ετc,j is drawn from
Unif(−σ2

β/20, σ2
β/20). This within-cluster variation was added to ensure that

studies within a cluster did not have the same model coefficients or covariate
distributions. We simulated study sets with either no clusters or four clusters
with four studies per cluster. The number of training and test studies was se-
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lected to allow for an even studies/cluster ratios, close to the number of studies
(K = 15) in our application.

3.2. Prediction Approaches Considered in Simulation Experiments

We compared performance of methods for 1) constructing training sets and 2)
weighting predictions from different models in the ensemble. For 1) we consid-
ered the observed-studies ensemble, study strap ensemble, trained on the merged
dataset and Accept/Reject algorithms. We applied average, stacking and CPS
weights to each approach. We explore performance in general and customized
(CPS and AR) prediction tasks. The study strap used in the SSE and AR al-
gorithms sampled observations without replacement.

We opted to use the LASSO as our single-study learner. The LASSO is
commonly used in the human FSCV literature (Moran et al., 2018) because
it addresses sparsity, a challenge in our case as well. The LASSO can also be
useful in other multi-study settings. Given the sparsity of the simulations, we
encountered the challenge that a generic similarity measure comparing covari-
ate profile similarity would equally weight all covariates, including the covari-
ates that did not impact the conditional distribution of f(yk |Xk). To address
this issue, we weight the covariate-wise similarity by a function of the cor-
responding coefficient estimates. Specifically, we used the similarity measure:

SK+1,(r) =
∥∥∥(x̄(r) − x̄K+1

)
� g(β̂)

∥∥∥−2
2

, where � indicates element-wise multi-

plication (the Hadamard Product) and where the pth element is

g(β̂)p =
1

K

( K∑
k=1

|β̂k,p|
σ̂2
k,p

∗ 1

K

K∑
k=1

σ̂2
k,p

)
,

with variance of β̂k,p, σ̂2
k,p, estimated with 500 bootstrap iterations. Our simi-

larity measure was motivated by Sammon mappings and distance measures pro-
posed in multidimensional scaling methods (Sammon, 1969). Our single-study
learner sets some coefficients exactly to zero, implying that some of the weights
in our similarity measure will also be zero, as desirable.

When tuning the bag size for the SSE and AR algorithms, we used a hold-one-
study-out cross validation scheme within the observed studies. We also tuned
the LASSO tuning parameter λ using a hold-one-study-out cross validation. We
kept this tuning parameter fixed across the methods.

3.3. Simulation Results

We present simulation results in Figure 2 and Table 1. We provide results in
terms of ensembling architecture (OSE, SSE and AR) and weighting schemes:
Average (Avg), Covariate Profile Similarity (CPS) and Stacking (STA). We vary
three attributes of interest in our simulation: heterogeneity in covariates across
studies (σ2

X), heterogeneity in coefficients across studies (σ2
β), and whether or
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not there is clustering. Simulation results with a greater range of values for σ2
β

and σ2
X are in Supplementary Section B.2.
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Fig 2: Simulation results for different levels of between-study heterogeneity in true
model coefficients, σ2

β (varies across columns), and distribution of covariates, σ2
X

(varies across rows). Each observation in a plot is the log ratio of the out-of-study-
RMSE from a single test study (from the corresponding method) to the out-of-study-
RMSE of the TOM algorithm (RMSETOM ). Each box plot is comprised of 100 itera-
tions.
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Table 1
Simulation Results (RMSE / RMSETOM ) without clusters (top) and with clusters

(bottom). Bold indicates superior performance; no bolded entry in a row indicates that no
method was superior to the TOM approach after accounting for Monte Carlo error. Multiple

bolded entries indicates (approximate) ties. Monte Carlo error (up to two significant
figures) is indicated in parentheses below the corresponding entry. The top row of the
methods titles indicates ensembling architecture. The bottom row indicates weighting

schemes: Avg (Average), CPS (Covariate Profile Similarity) and STA (Stacking).

Observed Studies Study Straps Accept/Reject

σ2
β (σ2

X) Avg CPS STA Avg CPS STA Avg CPS STA

0.05 (0.0025) 0.99 1.01 0.99 0.99 1.00 1.00 1.00 1.01 1.00
(0.0034) (0.016) (0.0026) (0.004) (0.015) (0.0029) (0.018) (0.03) (0.0026)

3.00 0.98 1.01 0.99 0.99 1.00 1.01 1.01 1.01 1.02
(0.0057) (0.023) (0.004) (0.0055) (0.014) (0.009) (0.019) (0.024) (0.0053)

0.05 (400.00) 3.60 3.01 2.09 6.07 5.78 0.95 5.01 5.01 4.23
(0.81) (0.66) (0.48) (1.1) (1) (0.14) (0.92) (0.91) (0.9)

3.00 1.55 1.42 1.21 2.14 2.05 1.40 1.85 1.83 1.47
(0.25) (0.22) (0.16) (0.27) (0.26) (0.19) (0.32) (0.39) (0.16)

Observed Studies Study Straps Accept/Reject

σ2
β (σ2

X) Avg CPS STA Avg CPS STA Avg CPS STA

0.05 (0.0025) 1.00 0.85 1.00 1.00 0.91 1.00 0.89 0.83 0.99
(0.0056) (0.017) (0.0049) (0.0053) (0.014) (0.004) (0.02) (0.025) (0.0037)

3.00 0.99 0.81 0.99 0.99 0.88 0.99 0.84 0.77 1.01
(0.008) (0.022) (0.0063) (0.0071) (0.015) (0.0053) (0.022) (0.029) (0.0047)

0.05 (400.00) 5.10 0.28 1.69 4.65 0.61 0.69 2.48 0.36 1.35
(0.58) (0.02) (0.19) (0.41) (0.085) (0.14) (0.31) (0.029) (0.19)

3.00 8.19 0.47 2.24 4.71 0.70 0.78 2.47 0.56 1.51
(0.7) (0.026) (0.26) (0.46) (0.058) (0.056) (0.32) (0.033) (0.17)

When heterogeneity in the covariates is low and there is no clustering, en-
sembling methods tend to perform comparably to merging the data and fitting
a single model (i.e., the TOM). As heterogeneity in the covariates rises in the
no-clustering case, ensembling methods tend to perform comparatively worse to
the TOM (with the exception of SSE with stacking weights).

Our proposed approaches (SSE, AR) yield the largest improvements in per-
formance in settings where there is study clustering. In this setting, CPS weight-
ing with any ensembling scheme confers substantial benefit. Similarly, the AR
algorithm improves performance relative to other ensembling methods, but is
strongest when paired with CPS weights. The SSE with stacking weights also
exhibits considerable gains in performance above non-customized prediction
methods. Importantly, the SSE with stacking weights improves performance
considerably (even in the no-clustering case) in many of the settings explored
and rarely degrades performance. This approach is flexible as it does not require
access to the covariates of the test set or specification of a similarity measure.

Importantly, the results emphasize the utility of the hierarchical nature of
study strap resampling. We investigated the effect of bag size on performance,
graphing the test-set RMSEs against b for the AR algorithm (Figure 3a) and
for the SSE (Figure 3b; Supplemental Figure S.4). We present results for the
AR and SSE algorithms in simulations with clusters to emphasize the utility
of bag size tuning. In the AR algorithm, as σ2

X grows, so does the optimal bag
size. We emphasize this relationship further in the Supplement (Figure S.5).
Correctly tuning the bag size can substantially enhance prediction performance
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Fig 3: Average test performance as a function of bag size. Points are connected with
lines for clarity. The vertical scale is the log of the RMSE in the test study, and divided
by the corresponding RMSE of the TOM. Horizontal line indicates performance of the
TOM. (a) AR with average weights.Vertical lines indicate the optimal bag size which
increases with σ2

X . (b) SSE with stacking weights achieves optimal performance at
intermediate values of bag size for larger values of σ2

X .

of the algorithm. Similar to the AR, the SSE tended to perform better at lower
bag sizes when σ2

X was small. But at these low levels of heterogeneity in the
covariates, performance of the SSE varied only moderately as a function of the
bag size. Exploring the dependence of the SSE performance on the bag size in
these settings required zooming in (i.e., scaling the y-axis), where the impact of
mild Monte Carlo error made the bag size curve appear wiggly. The benefit of
tuning the bag size for the SSE is, however, very strong at higher levels of σ2

X .
While the optimal bag size with average weights was occasionally in the mid-
dle, the benefit of the bag size was most evident when using stacking weights.
In the SSE algorithm, the optimal bag size with stacking weights occurred at
intermediate values of b in simulation settings with larger values of σ2

X . Indeed,
the performance at intermediate values of b was vastly superior to the extremes.
This emphasizes the benefit of the study strap: the study strap ensemble with
stacking weights, when using a bag size within a fairly wide neighborhood of
the optimal value, substantially outperforms a standard bagging without re-
placement (equivalent to the SSE with b = nk), the OSE (i.e. the SSE with
b = 1) with stacking weights, or the TOM. The study strap at b = K = 16
is equivalent to a randomized cluster bootstrap sampled without replacement
and with a smaller pseudo-study sample size than a pseudo-study produced by
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a standard randomized cluster bootstrap. That the performance of the study
strap at b = K is substantially worse than at the optimal bag size suggests
that relying on standard hierarchical resampling schemes that use a fixed bag
size may be suboptimal for multi-study ensembling. Figure 3b underscores the
spectrum between the OSE and the TOM algorithm, generated through varying
the bag size b. The performance of high bag sizes is nearly identical to that of
the TOM algorithm and the low bag sizes approaches that of the OSE (the SSE
with b = 1) as expected.

CPS weights appear to be most effective for lower bag sizes. Indeed, the
optimal bag size for the SSE with CPS weights tends to occur at b = 1 or close
to it (Supplemental Figure S.4). More sophisticated bag size tuning schemes
may be an important area of future research: in many cases the tuned bag size
for the AR and SSE algorithms were close but not equal to the optimal bag size
for out-of-sample testing.

Taken together, these simulations demonstrate that the study strap frame-
work and CPS weights confer substantial benefit particularly when clustering
exists in the studies. In cases where our methods do not improve performance,
they rarely degrade it compared to standard ensembling methods. Importantly,
the simulations broadly display the utility of the bag size.

4. Neurochemical Sensing Application

The scientific motivation for our multi-study approach arises from the appli-
cation of voltammetry to estimate neurotransmitter concentration in awake,
behaving human participants (Kishida et al., 2016). We focus on the estimation
of dopamine, an important molecule that is thought to underlie learning, reward,
and many psychiatric and neurological conditions such as drug addiction and
Parkinson’s disease (Volkow, Wise and Baler, 2017). To estimate neurotrans-
mitter concentration, investigators train models on datasets generated in vitro
(i.e., where true concentrations are know) and then apply them to measurements
made in the brain. Technically, electrodes used to make these measurements (in
vitro or in vivo) vary slightly in their construction and slight variations in the
experimental setup in which the measurements are made are unavoidable. Thus,
each electrode generates a different in vitro dataset, which is representative of
a unique observed study in our approach. Our goal was to improve the gener-
alizability of models generated using in vitro data by developing methods that
would generate more reliable neurochemical concentration estimates when ap-
plied to measurements made in a different context (e.g., the brain). However, no
gold standard measure exists to measure neurotransmitters in the brain. Thus
to assess model generalizability, we trained models on a subset of studies (i.e.,
in vitro observed studies, each produced on a different electrode) and evaluated
model performance on held out studies (different in vitro observed studies, each
produced on a different electrode).
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4.1. Data Description

The data studied here are from 15 studies (in vitro datasets) each including
roughly 20,000 observations. The covariates are electrical measurements (cur-
rent measured in nanoamps (nA)) collected at 1000 discrete voltage potentials
(i.e., the number of covariates, p = 1000). The vector of covariates for each
observation is called a “Cyclic Voltammogram” (CV) which can also be viewed
as a single functional covariate. In each observation, the outcome is a measure-
ment of neurotransmitter concentration in nanomolars (nM). Neuroscientists
have analyzed voltammetry data based not only on the raw covariates them-
selves (Rodeberg et al., 2017) but also on a numerical estimate of the derivative
of the raw covariates (the derivative of the current with respect to voltage po-
tential index), in an effort to improve between-study comparability (Bang et al.,
2020; Kishida et al., 2016). For this reason, we present results using both. The
data are described in greater depth in the Supplement (Section C.1).

4.2. Modeling and Methods

We applied our proposed methods to these data using Principal Component
Regression (PCR). We found that PCR produced superior cross-study predic-
tive performance compared to regularized regression methods often used in hu-
man FSCV (Kishida et al., 2016) (Supplemental Figure S.9). Use of PCR is
common in FSCV in rodent experiments (Rodeberg et al., 2017); however, our
application of it differs from the standard practice (Keithley and Wightman,
2011; Rodeberg et al., 2017). Kishida et al. (2016) demonstrated that the man-
ner in which PCR is typically applied in rodent FSCV studies (Keithley and
Wightman, 2011) results in lower prediction performance than methods cur-
rently implemented in human FSCV. Our success with utilizing PCR required
larger training datasets and tuning the number of retained principal components
using cross-validation, both of which are uncommon practices in the FSCV lit-
erature (Keithley and Wightman, 2011; Rodeberg et al., 2017). As a sensitivity
analysis, we implemented functional data analytic methods such as functional
regression and functional Principal Components Regression (fPCR) using basis
splines and found that these exhibited inferior performance in this application.
All methods were tested with a hold-one-study-out validation to estimate out-
of-study prediction error (RMSE). Since the outcome is chemical concentration,
we imposed the non-negativity constraint ŷ+i = max(0, ŷi) to ensure scientific
coherence of the predictions. This only slightly impacted performance.

We selected tuning parameters with a hold-one-study out cross validation
scheme. As we also implemented a hold-one-study out procedure to estimate out-
of-study prediction performance, we tuned the tuning parameters only within
the studies serving as training studies for that fold. To ensure parameter tuning
was not responsible for differences in performance between methods, the tuning
parameter value was held constant across all of the methods explored (e.g.,
TOM, AR, OSE).
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Fig 4: Average covariate profiles. Each curve corresponds to a study (electrode) and
is colored by the overall average current. Studies exhibit both variation and clustering
in average current.

In designing our similarity measure, we were motivated by the observation
that the vector of covariates was high dimensional but the vector of model co-
efficients appeared sparse (based upon coefficient estimates from regularization
methods such as the LASSO). As we describe in greater detail (Supplement Sec-
tion C.1), our similarity measure was based upon a dimension reduction step
where for each study νk = g (Xk) , νk ∈ R8 is a vector summarizing the av-
erage covariate profile of the kth study. We then used as a similarity measure
SK+1,k = ||νK+1 − νk||−22 (Supplemental Figure S.8). We used this measure
taken on the raw covariates when fitting models on both the original covariates
and their numerical derivative.

Given the stochastic nature of our methods, we ran the AR method on 10
separate seeds (each on 10 AR paths) and present the results averaged across
seeds. We show the variability in performance between seeds in the Supplemental
Figure S.10. Even on seeds associated with the poorest overall performance, our
methods still show substantial relative improvement. The study strap used in
the SSE and AR algorithms sampled observations without replacement.

As the FSCV data were big, memory considerations even on a computing
cluster were a challenge. We thus implemented stacking on a subset of the
observations for the SSE and AR algorithms because the design matrix of the
stacking regression was large. For the bag size tuning curve, we ran all bag sizes
on the AR algorithm on a single path and with a subset of data (nk = 2500). We
selected different bag sizes than in the simulations to accommodate the different
sample sizes.

4.3. Results

Figure 4 summarizes heterogeneity and clustering in the mean covariate pro-
files of the studies. Figure 5 summarize the main results using the raw and
differentiated covariates. The results demonstrate the strength of the covariate
profile similarity weighting scheme. While the observed-studies ensemble, and
the weighted versions of it (CPS weights and stacking weights) perform sub-
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Fig 5: Predictive performance of methods on data using raw covariates (left) and the
derivative (right). Dotted line indicates relative performance of the TOM algorithm
(Mean raw: RMSETOM = 416.53; Mean derivative: RMSETOM = 359.64).

stantially worse than the TOM algorithm, an analysis of the performance of the
OSE illustrates the benefits of CPS weights. CPS weighting of the OSE algo-
rithm produced substantial improvements compared to simple average weights.
The CPS weights produced a 53.9% and 60.7% reduction in RMSE relative to
OSE with simple average weights for the raw and derivative respectively. While
weighting the OSE with CPS weights is inferior to using stacking weights, the
similarity measure associated with CPS weights allows for the integration of
an accept/reject step within the study strap framework. Indeed, the AR algo-
rithm exhibited the strongest performance among all the methods examined.
This demonstrates that even when the TOM is superior to existing ensembling
approaches used in multi-study learning (i.e., OSE with average or stacking
weights), our novel ensembling approaches can substantially out-compete TOM
in some scenarios.

Importantly, the use of differentiated covariates shifts the optimal bag size of
the AR algorithm with average weights towards higher bag sizes. As apparent
in Figure 6, the optimal bag size lies, on average, between roughly 12 and 24
for the raw data, and between 35 and 85 for the derivative. Interestingly, a
shift in the optimal bag size for the SSE algorithm with stacking and CPS
(but not average) weights also shifts in a similar manner after differentiation
(Supplemental Figure S.11). Differentiation modifies the distribution and the
between-study heterogeneity of the covariates (Supplemental Figure S.6), likely
reducing heterogeneity. The optimal bag size to accommodate the heterogeneity
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Table 2

Relative Mean Squared Error of Prediction Methods in the Voltammetry Data.
Entries are RMSE / RMSETOM . Bold indicates best performance among those

considered. The top row of the methods titles indicates ensembling architecture. The
bottom row indicates weighting schemes: Avg (Average), CPS (Covariate Profile

Similarity) and STA (Stacking).

Covariate Observed Studies Study Straps Accept/Reject

Processing Avg CPS Stack Avg CPS Stack Avg CPS Stack

Raw 4.788 2.435 1.449 1.056 1.032 1.082 0.893 0.884 0.972
Derivative 2.808 1.506 1.427 1.036 1.029 1.033 0.960 0.953 0.967
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Fig 6: Average Accept/Reject performance on test set as a function of bag size. Deriva-
tive shifts the optimal bag size to higher values. Vertical lines indicate optimal bag size.
RMSEs are standardized to the RMSE of the TOM algorithm.

also shifts, demonstrating the utility of the concept.
While the AR algorithm improved performance by 11.6% relative to the TOM

approach when applied to the raw covariates, this number fell to 4.7% when
using the derivative. This is consistent with the shift in the optimal bag size
associated with using the derivative and echoes a similar pattern in the simula-
tions: as the bag size increases, the benefit of the SSE or AR algorithms, as well
as the CPS and stacking weighting schemes, diminishes (Supplemental Figures
S.3 and S.4). Relative to the raw covariates, using the derivative improved the
performance of all approaches and almost uniformly reduced the difference in
performance between any two methods.

5. Discussion

We introduce a generalization of multi-study ensemble learning, the study strap,
a hierarchical resampling scheme to flexibly generate pseudo-study replicates
and to ensemble models trained on these rather than the observed studies. We
complement this method with a weighting scheme that incorporates covariate
similarity between training data and target populations. Our simulations and
data analysis indicate that these methods are robust in that they perform at
least as well as our benchmark. The greatest improvements occur when there is
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clustering of studies. When that is the case, the observed assignment of units to
studies is not the most effective way to capture heterogeneity in the distributions
of the data, and one might be better off creating clusters in silico instead of
relying entirely on the originally observed study labels.

We observe that the bag size tuning parameter b of the study strap can help
adapt the learning to varying levels of heterogeneity. Our data application pro-
vides an example. Using a numerical estimate of the derivative of the covariates
as a preprocessing step shifted the optimal bag size to larger values (towards a
non-hierarchical bagging of the merged dataset) compared to the optimal bag
size of the raw covariates. Similarly, in simulations we saw a consistent shift
in the optimal bag size as we varied the degree of between-study heterogeneity
in the covariates. Lastly, the optimal bag size is often far from the bag size
required to generate pseudo-studies in a manner similar to the standard (non-
hierarchical) and randomized cluster bootstrap.

The CPS-based methods implemented here address many of the concerns
that chemometric procedures commonly used for FSCV seek to address. Before
generating neurotransmitter concentration estimates, standard FSCV statisti-
cal methods aim to detect the presence of covariate shift as a proxy for concept
shift (Johnson, Rodeberg and Wightman, 2016). Concept shifts commonly arise
in FSCV due to between-electrode differences or “drifts” in the electrochemical
properties of electrodes upon exposure to, for example, biological tissue (John-
son, Rodeberg and Wightman, 2016). These drifts are accompanied by a shift in
the covariate profile. Investigators have historically utilized hypothesis tests to
determine whether f(Xtrain) differ significantly from f(Xtest). CPS weighting
and the AR algorithm seek to address this challenge by upweighting studies (or
pseudo-studies) that exhibit similar covariate profiles. Our studyStrap software
package provides over 20 generic similarity measures for the ensembling meth-
ods. Context-specific similarity measures (as used in the FSCV data analysis)
may be preferable if subject matter knowledge can guide their development.
However, even general measures, such as that used in our simulations, may be
helpful in a range of scenarios. The similarity measures used here are far from
exhaustive. For example, one could extend our approach to nonlinear methods
such as kernel-based measures (Gong et al., 2012; Hu et al., 2020) or stochastic
neighborhood embeddings (Xu et al., 2019).

Our results demonstrate that despite the statistical challenges present in
FSCV research, substantial improvements in cross-electrode generalizability are
feasible. Statistical research into this topic is critical as FSCV in humans is new
and has, in some domains, unprecedented capacity to provide insight into brain
mechanisms underlying human behavior. Moreover, FSCV highlights an impor-
tant role for statistics in neuroscience: novel applications of statistical learning
were instrumental in its successful implementation in humans. These statisti-
cal methods have even enabled researchers to use FSCV to measure multiple
neurotransmitters simultaneously, a feat thought not to be possible with this
technology, even in rodent models (Bang et al., 2020; Montague and Kishida,
2018; Moran et al., 2018).

The study strap and our approach to covariate weighting may be useful in a
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range of transfer learning settings. Importantly, the study strap achieved con-
siderable gains in performance both with CPS weights and without them(e.g.,
the study strap with stacking weights). Thus our work is relevant for both do-
main adaptation (Farahani et al., 2020) and domain generalization (Wang et al.,
2021). The methods proposed here may also be useful in multi-task learning,
a related transfer learning area in which one seeks to enhance the performance
on each of multiple related tasks (i.e., “domains” or studies) by simultaneously
training on all tasks (Zhang and Yang, 2021). We hope the methods here are a
contribution to the rich literature on transfer learning and multi-study methods,
broadly defined.

We conclude by adressing some limitations of our work. An unsolved challenge
is to provide an explicit analytical expression for prediction error (RMSE) as
a function of the bag size parameter, b. While the bag size appears to help
account for heterogeneity in the marginal distribution of the covariates in the
simulations as well as the neuroscience data, it is clear that the relationship is
neither linear nor monotonic and the shape of the relationship appear to vary
between settings. Although the AR algorithm was associated with the greatest
improvement in performance in the FSCV data, it is the most computationally
intensive. Future work may thus seek to replace the accept/reject step with an
optimization procedure to increase the speed of the algorithm.

Future work may exploit the functional nature of the FSCV data explicitly, al-
though we found that the functional methods that we implemented (e.g., fPCR)
produced inferior performance to standard PCR. Moreover, neither the present
work nor any standard methods in the FSCV field, to our knowledge, account
for the time-series nature of the data in estimating neurochemical concentration.

Finally, although we have shown progress in enhancing between-electrode
generalizability of the models, we cannot verify the generalizability of models
trained on in vitro data when applied to data collected in vivo, as this would re-
quire an additional gold standard measure of neurochemical concentration in the
human brain for which assays do not currently exist. We hope that by enhancing
cross-electrode generalizability, generalization of models to data collected in the
brain is also improved.

In summary, the study strap and covariate profile similarity weighting are
flexible ensembling and weighting schemes that can improve predictive perfor-
mance in multi-study settings. We hope the present work will contribute to the
generalizability of prediction algorithms in neuroscience and beyond.

5.1. Reproducibility

We provide the studyStrap package on CRAN which implements the previously
proposed TOM algorithm, OSE and multi-study stacking. It also implements our
proposed methods, the study strap ensemble, CPS weighting and the Covariate-
Matched Study Strap.

Code and instructions to reproduce analyses are available at: https://github.
com/gloewing/studyStrap_Figures
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Data from the neuroscience application is available at: https://osf.io/

tb8fx/
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Appendix A: METHODS AND PROOFS

A.1. Algorithms

Algorithm 1 Ensembling with Covariate Profile Similarity Weighting

Require: S(·, ·), similarity function, S1, ...,SK , datasets from K studies,
w, weights (e.g., simple average or Stacking weights)

1: for each k in [K] do
2: sk ← S(XK+1,Xk) (Calculate similarity metric; store in vector s)
3: Train Ŷk(·) on Sk (Fit model on kth study)

4: Ŷk ← Ŷk(XK+1) (Predict on test study; store in matrix Ŷ)
5: end for
6: return Ŷ, s (Return predictions matrix & similarity metrics vector)

7: v ← sw/
∑K

k=1 skwk (Calculate weights)

8: ŷ∗ ← Ŷw (Take weighted average of prediction vectors)
9: return ŷ∗

Algorithm 2 Ensembling with the Study Strap

Require: b, bag size, R, number of study straps,
S1, ...,SK , datasets from K studies,W(·), weight function, sampling with or
without replacement indicator

1: for each r in [R] do

2: A(r) ←MultinomialK

(
b, 1

K1K

)
(Study proportions)

3: for each k ∈ [K] do

4: Resample nk ∗A(r)
k /b rows from Sk without replacement

5: Add resampled rows from Sk to S(r)
6: end for
7: Train Ŷ(r)(·) on study strap S(r) (Fit model on rth study strap)

8: Ŷr ← Ŷ(r)(XK+1) (Predict on test study; store in matrix Ŷ)
9: end for

10: return Ŷ (Return matrix of predictions)
11: w ←W(·) (Calculate weights)

12: ŷ∗ ← Ŷw (Weighted average of study strap predictions)
13: return ŷ∗
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Algorithm 3 Ensembling with the Generalized Study Strap

Require: b, bag size, R, number of study straps, N∗K×1, study strap size
parameter, S1, ...,SK , datasets from K studies, W(·), weight function, sam-
pling with or without replacement indicator

1: for each r in [R] do

2: A(r) ←MultinomialK

(
b, 1

K1K

)
(Study proportions)

3: for each k ∈ [K] do

4: Resample round(N∗k ∗A
(r)
k /b) rows from Sk without replacement

5: Add resampled rows from Sk to S(r)
6: end for
7: Train Ŷ(r)(·) on study strap S(r) (Fit model on rth study strap)

8: Ŷr ← Ŷ(r)(XK+1) (Predict on test study; store in matrix Ŷ)
9: end for

10: return Ŷ (Return matrix of predictions)
11: w ←W(·) (Calculate weights)

12: ŷ∗ ← Ŷw (Weighted average of study strap predictions)
13: return ŷ∗
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Algorithm 4 Ensembling with the Covariate Matched Study Strap (Accep-
t/Reject)

Require: b, η, convergence criteria, S(·, ·), similarity metric,
W(·), weight function, paths, p, S1, ...,SK , datasets from K studies, sam-
pling with or without replacement indicator

1: count ← 0 (count tracks number of consecutive unaccepted straps)
2: r ← 1 (r counts number of accepted straps)
3: τ ← −∞ (τ : similarity threshold; τ ← −∞ ensures 1th strap is accepted)

4: for path in p do
5: while count < η do
6: count ← count + 1
7: Generate S(r) (Random candidate study strap as above (2))
8: s(r) ← S(XK+1,X(r)) (Calculate similarity metric)
9: if s(r) > τ then

10: τ ← s(r) (Update threshold to similarity metric)

11: Train Ŷ(r)(·) on S(r) (Fit model on accepted study strap)

12: Ŷr ← Ŷ(r)(XK+1) (Predict on test study; store in Ŷ)
13: count ← 0 (Accepted study strap restarts counter)
14: r ← r + 1
15: end if
16: end while
17: τ ← 0 (Path completion restarts acceptance threshold)
18: end for
19: return Ŷ (Return matrix of predictions)
20: w ←W(·) (Calculate weights)

21: ŷ∗ ← Ŷw (Weighted average of accepted study straps)
22: return ŷ∗

A.2. Proofs

First, observe that under standard (non-hierarchical) bagging, the number of
times an observation is represented in a given bootstrap sample follows the Bi-
nomial distribution Bin(N, 1

N ) where N =
∑

k nk is the total sample size. In the
study strap, we implement a hierarchical resampling scheme. From the multi-

nomial specification of the vector of counts A(r), the count A
(r)
k corresponding

to the kth study is marginally distributed as a Bin(b, 1/K).
If one resamples observations with replacement, then the number of times

the ith observation of the kth study is included in the pseudo-study replicate

is distributed as C
(r)
ik |A

(r)
k ∼ Bin(n

(r)
k , 1/nk) where n

(r)
k = nkA

(r)
k /b. If one

resamples without replacement, then U
(r)
ik is an indicator that the ith observation

of the kth study is represented in the rth pseudo-study replicate, where U
(r)
ik

(r)
k ∼

Ber(A
(r)
k /b).
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We point out that under standard (non-hierarchical) delete N − s jackknife

resampling (bagging without replacement) of the merged dataset, Z
(r)
ik , an in-

dicator that the ith observation of the kth study is included in the rth pseudo-
study, follows Ber(s/N), where N =

∑
k nk is the total sample size of the merged

dataset and s is the number of observations resampled from the merged dataset.

Proposition 1. If the bag size b = 1 and sampling is done without replacement,
then the set of observed studies (used in the OSE) is drawn as the study strap
replicate with probability 1.

Proof. First, observe that for the rth pseudo-study replicate, all of the obser-
vations in S(r) are resampled from a single study, say Sk, since we draw the

rth study bag from a MultinomialK
(
1, 1

K1K

)
. That is, A

(r)
k = 1 and A

(r)
j =

0 ∀ j 6= k ∈ [K]. Then A
(r)
k nk/b = nk observations are resampled from

the kth study and 0 observations are sampled from all other training stud-
ies. When the pseudo-study is resampled without replacement, all observa-
tions from the kth study are resampled so the rth pseudo-study and the kth

study are identical (i.e., S(r) = Sk). Since we require each pseudo-study to be
unique, (i.e., S(i) 6= S(j) ∀ i 6= j ∈ [R]), there are exactly K distinct study
bags (i.e., R = K) and corresponding pseudo-studies. Thus, {S1,S2, ...,SK} =
{S(1),S(2), ...,S(K)}.

It follows directly from the above that that a model fit on a study strap
ensemble with b = 1 and sampling without replacement produces an ensemble
identical to the observed-studies ensemble. That is,

ŶOSE(XK+1) =

K∑
k=1

wkŶk(XK+1)

=
K∑

k=1

wkŶ(k)(XK+1)

=
R∑

r=1

wrŶ
(r)(XK+1)

= ŶSSE(XK+1).

The above proofs stipulate that we cannot have multiple identical pseudo-
studies in a study strap replicate in order to achieve an exact equivalence be-
tween specific cases of the study strap and the collection of observed studies.
Although we feel this stipulation is principled, it is trivial to show that the vec-
tor of predictions generated from a study strap ensemble with no limitations on
the number of identical models in an ensemble would converge in probability
to that produced by the observed-studies ensemble (i.e., as R → ∞), through
appealing to the Weak Law of Large Numbers:
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1

R

R∑
r=1

Ŷ(r)(XK+1)
p→ 1

K

K∑
k=1

Ŷk(XK+1)

Proposition 2. In the generalized study strap, let the bag size b = K, sample
size parameters N∗k = Knk, ∀ k ∈ [K], and assume sampling without replace-
ment. Then the merged dataset (used for TOM) is drawn as the study strap
replicate with probability 1.

Proof. Observe that when the pseudo-study is resampled without replacement,

this requires that A
(r)
k N∗k/b = A

(r)
k nk ≤ nk ∀ k ∈ [K] in order to ensure that

no observation is resampled more than once. Thus, the only feasible study bag

is A(r) = 1K (i.e., A
(r)
k = 1 ∀ k ∈ [K]) as any other study bag will result

in A
(r)
k nk > nk for some k ∈ [K]. That is, the only possible pseudo-study

is constructed by sampling nk observations without replacement from the kth

study ∀ k ∈ [K], the merged dataset.

Proposition 3. The standard study strap with b = n̄ and sampling without
replacement is approximately a delete N − n̄ jackknife bagging of the merged
dataset.

Proof. Recall that under standard (non-hierarchical) delete N − s jacknife re-

sampling of the merged dataset, the indicator Z
(r)
ik that the ith observation in the

kth is represented in the rth pseudo-study is distributed as Ber(s/N), where N

is the total sample size of the merged dataset (i.e., N =
∑K

k=1 nk), and s is the
number of observations that we resample (without replacement). Now if we let

s = b = n̄, we have b/N = n̄/
∑K

k=1 nk ≈ 1/K, where the approximation is up to

the rounding error to ensure an integer bag size (since n̄ =∆ round( 1
K

∑K
k=1 nk)).

Thus, Z
(r)
ik
··∼ Ber(b/N) ≡ Ber(1/K).

Now, to demonstrate the stated approximate equivalence, let us show for a

study strap with bag size b = n̄ that the indicator variable, U
(r)
ik , of whether the

ith observation in the kth study is represented in the rth pseudo-study is ap-
proximately marginally distributed as Ber(1/K). First, recall that in generating

the rth pseudo-study, we resample n
(r)
k = (nkA

(r)
k /b) observations from the kth

study, where A
(r)
k ∼ Bin(b, 1/K). Now the probability that the ith observation

in the kth study is represented in a given pseudo-study follows approximately

the conditional distribution U
(r)
ik

(r)
k ∼ Ber(A

(r)
k /b), where the approximation is

up to the rounding error to ensure an integer sample size for the rth pseudo-
study. Therefore, the marginal probability that the ith observation in the kth

study is represented in the rth pseudo-study can be (approximately) expressed
as:

imsart-generic ver. 2014/10/16 file: output.tex date: August 26, 2021

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2021. ; https://doi.org/10.1101/856385doi: bioRxiv preprint 

https://doi.org/10.1101/856385
http://creativecommons.org/licenses/by-nc-nd/4.0/


Loewinger et al./Study Strap & Covariate Profile Similarity Weighting 6

P
(
U

(r)
ik = 1

)
=

b∑
a=0

P
(
U

(r)
ik = 1 |A(r)

k = a
)
P
(
A

(r)
k = a

)
=

b∑
a=0

(a
b

)(b
a

)(
1

K

)a(
1− 1

K

)b−a

=
b∑

a=1

(
b− 1

a− 1

)(
1

K

)a(
1− 1

K

)b−a

(Binomial identity)

=
1

K

b∗∑
a∗=0

(
b∗

a∗

)(
1

K

)a∗ (
1− 1

K

)b∗−a∗

=
1

K
∀ b ∈ [N ]

Proposition 4. Let n = n1 = ... = nK . The generalized study strap with b = N ,
N∗k = N, ∀ k ∈ [K] and sampling with replacement is a non-hierarchical bagging
of the merged dataset.

Proof. Recall that under standard (non-hierarchical) bagging of the merged
dataset (with replacement), the number of times an observation is represented
in a given bootstrap sample follows the distribution Bin(N, 1

N ) where N =∑
k nk. In the generalized study strap with the parameters stated above, we

implement a hierarchical resampling scheme where the number of times the ith

observation of the kth study is included in the rth pseudo-study is C
(r)
k,i |A

(r)
k ∼

Bin(A
(r)
k , 1/nk) and A

(r)
k is marginally distributed as Bin(N, 1/K). Then by the

Law of Total Probability, C
(r)
k,i ∼ Bin

(
b, 1/(Knk)

)
≡ Bin(N, 1

N ), a standard
bagging resampling scheme.

Proposition 5. The generalized study strap with b = K, N∗k = Knk,∀ k ∈ [K]
and sampling with replacement is the randomized cluster bootstrap.

Proof. Recall that in the randomized cluster bootstrap (“Strategy 1”) one sam-
ples K study labels (with replacement) from which to resample observations.
That is, for the primary or study-level sampling step of the rth pseudo-study,
A(r) ∼ MultinomialK(K, 1

K1K). Then, in the secondary or observation-level
sampling step, observations are resampled according to the observed study sam-

ple sizes selected in the primary step: A
(r)
k nk observations are sampled with

replacement from the kth observed study.

Observe that when b = K and N∗k = Knk, the generalized study strap (re-
sampled with replacement) follows the same resampling scheme. Since b = K,
the generalized study strap inherits the primary level resampling step A(r) ∼
MultinomialK(K, 1

K1K). In the observation-level step, Aknk observations from
the kth observed study are resampled with replacement in the study strap
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round

(
A

(r)
k N∗k
b

)
= round

(
A

(r)
k Knk
K

)
= round(A

(r)
k nk)

= A
(r)
k nk
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The following distribution can be derived as the classical occupancy problem
(see Williamson et al. (2009) for a review and proofs), but we include a derivation
for completeness.

Proposition 6. The number of observed studies represented in a given pseudo-
study, C(r) =

∑
k 1Ak>0, follows the distribution, P(C(r) = c) =

(
K
c

)
K!S(b, c)/Kb

Proof. We derive P(C(r) = c). Recall that C(r) is the number of non-zero counts
in the multinomial draw, A(r) ∼ MultinomialK(b, 1

K1) and denote S(b, c) as
Stirling’s number of the second kind (Williamson et al., 2009). The number of
non-zero entries of A(r) is derived by assigning b elements into c of the total K
cells since the probabilities are uniform across the cells. There are Kb possible
permutations for the multinomial draw and

(
K
c

)
permutations of selecting c of

the K possible cells. Assigning b elements into all of the c cells (i.e., such that
none of the c cells are empty) has K!S(b, c) permutations. Thus, the probability
that a pseudo-study contains observations resampled from c ≤ K observed
studies is

P(C(r) = c) =

(
K

c

)
K!S(b, c)/Kb

Proposition 7. The number of observed studies represented in a given pseudo-
study, C(r) =

∑
k 1Ak>0, converges in probability to K as b→∞:

lim
b→∞

P(C(r) = K) = 1

Proof.

lim
b→∞

P(C(r) = K) = lim
b→∞

(
K

K

)
K!S(b,K)/Kb

= lim
b→∞

K!

Kb

[
1

K!

K∑
i=0

(−1)i
(
K

i

)
(K − i)b

]

= lim
b→∞

{
1 +

K∑
i=1

(−1)i
(
K

i

)(
K − i
K

)b
}

= 1 +
K∑
i=1

(−1)i
(
K

i

)
lim
b→∞

(
K − i
K

)b

︸ ︷︷ ︸
= 0 ∀ i ∈ {1,...,K}

= 1

where interchange of the limit and sum follows as K is fixed and thus the sum
is finite.
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A.3. Stacking Strategy

We used non-negative least squares with an intercept to generate weights. We
found that standardizing the weights led to a degradation of performance and
so we proceeded without standardizing the coefficient estimates. Thus, the final
predictions are:

ŶStacking = ŵ0 ∗ 1 +
K∑

k=1

ŵkŶk(XK+1)

A.4. Study Strap Stacking Strategy

Below is how we implemented the stacking regression for the study strap en-
semble (and AR). This regresses X̂S on yS , where

yS =


y1

y2

...
yK


N×1

X̂S =


Ŷ(1)(X1) Ŷ(2)(X1) ... Ŷ(R)(X1)

Ŷ(1)(X2) Ŷ(2)(X2) ... Ŷ(R)(X2)
...

...
. . .

...

Ŷ(1)(XK) Ŷ(2)(XK) ... Ŷ(K)(XK)


N×R

and Ŷ(r)(Xk) are the predictions on the design matrix of training study k using
the model trained on the rth pseudo-study; yk are the labels from training study
k. The stacking procedure then proceeds as above.

A.5. Alternative Study Strap Stacking Strategy

Below is an additional way one could implement the study strap (or AR) ana-

logue of the stacking. This regresses X̂S on yS , where

yS =


y(1)

y(2)

...
y(R)


N∗×1

X̂S =


Ŷ(1)(X(1)) Ŷ(2)(X(1)) ... Ŷ(R)(X(1))

Ŷ(1)(X(2)) Ŷ(2)(X(2)) ... Ŷ(R)(X(2))
...

...
. . .

...

Ŷ(1)(X(R)) Ŷ(2)(X(R)) ... Ŷ(K)(X(R))


N∗×R

and Ŷ(r)(X(j)) are the predictions on the design matrix of the jth pseudo-study
using the model trained on the rth pseudo-study; y(j) are the labels from pseudo-
study r. N∗ =

∑R
r=1 n

(r) The stacking procedure then proceeds as in standard
stacking.

One could similarly construct the stacking regression to weight the OSE or
standard Study-Strap Ensemble using the design matrices of the accepted study
straps in the AR algorithm (and the models from the OSE or standard OSE
respectively). The above variations on standard stacking highlight the flexibility
introduced by the study strap framework.
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Appendix B: SIMULATIONS SUPPLEMENTARY MATERIAL

B.1. Simulation Parameters

Here we describe additional details related to the simulations. When tuning
the λ tuning parameter for the LASSO, we used a hold-one-study out cross
validation scheme and used the same λ across studies and methods within a
given simulation iteration. In other words, we used the same λ for all methods
(i.e., TOM, OSE, SSE, AR) to improve comparability across methods. We tested
43 values of λ between 0.0001 and 5. When tuning the study strap for the bag
size, we fit models to 150 pseudo-studies at each of 21 bag sizes between b = 1
and b = 1000. We used a hold-one-study-out cross validation scheme to tune the
bag size. When generating the study strap bag size performance curve we used
250 pseudo-studies per bag size. When testing the final study strap ensemble
with the tuned b, we used 500 study straps. We used fewer pseudo-studies during
tuning stages to reduce the computational effort (since we were doing a hold-
one-study-out cross validation scheme, it was computationally intensive).

When we were tuning the AR bag size, we used a convergence criterion of
10000 consecutive pseudo-studies without an acceptance. We averaged across 3
paths. We used the same parameters for the AR bag size performance curve.
For the final AR implementation with the tuned b, we used 5 paths and a con-
vergence criteria of 100000 consecutive pseudo-studies without an acceptance.
We felt these parameters struck the balance of being computationally feasible
and also sufficient for our purposes.

In selecting our degree of between-study heterogeneity in covariates, we tried
to mimic the ratio of between-to-within study variance of covariates (averaged
across covariates). Specifically, for each covariate, we estimated the variance of
covariate means (across studies) divided by the average within-study variance of
that covariate. We then averaged this ratio across all 1000 covariates. Formally,
we estimated this ratio, denoted as φ,

φ̂ =
1

p

p∑
j=1

ˆV ar(x̄j)
1
K

∑K
k=1 σ̂

2
k,j

= 131.86

where x̄j ∈ RK ; x̄k,j = 1
nk

∑nk

i=1 xki,j ; σ̂
2
k,j = ˆV ar(xk,j); and xk,j ∈ Rnk .

B.2. Additional Simulation Figures and Tables
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Table 1
Simulation Results (RMSE / RMSETOM ) without clusters (top) and with clusters

(bottom). Bold indicates superior performance; no bolded entry in a row indicates that no
method was superior to the TOM approach after accounting for Monte Carlo error. Multiple

bolded entries indicates (approximate) ties. Monte Carlo error (up to two significant
figures) is indicated in parentheses below the corresponding entry. The top row of the
methods titles indicates ensembling architecture. The bottom row indicates weighting

schemes: Avg (Average), CPS (Covariate Profile Similarity) and STA (Stacking).

Observed Studies Study Straps Accept/Reject

σ2
β (σ2

X) Avg CPS STA Avg CPS STA Avg CPS STA

0.05 (0.0025) 0.99 1.01 0.99 0.99 1.00 1.00 1.00 1.01 1.00
(0.0034) (0.016) (0.0026) (0.004) (0.015) (0.0029) (0.018) (0.03) (0.0026)

0.25 0.98 1.01 0.99 1.00 1.02 1.01 1.01 1.01 1.01
(0.0048) (0.02) (0.0036) (0.0046) (0.017) (0.0086) (0.019) (0.024) (0.0053)

1.00 0.98 1.01 0.99 0.99 1.00 1.01 1.01 1.03 1.01
(0.0059) (0.022) (0.0043) (0.0053) (0.014) (0.0087) (0.016) (0.023) (0.0047)

3.00 0.98 1.01 0.99 0.99 1.00 1.01 1.01 1.01 1.02
(0.0057) (0.023) (0.004) (0.0055) (0.014) (0.009) (0.019) (0.024) (0.0053)

0.05 (25.00) 1.05 0.99 0.85 2.20 2.13 0.94 1.99 2.02 1.13
(0.092) (0.086) (0.073) (0.24) (0.24) (0.073) (0.25) (0.27) (0.09)

0.25 1.08 1.04 1.09 1.38 1.37 1.00 1.20 1.22 1.16
(0.11) (0.1) (0.11) (0.13) (0.13) (0.066) (0.13) (0.15) (0.098)

1.00 1.21 1.17 1.13 1.25 1.25 1.06 1.09 1.11 1.11
(0.13) (0.12) (0.11) (0.12) (0.12) (0.068) (0.097) (0.099) (0.096)

3.00 1.36 1.28 1.23 1.25 1.24 1.30 1.16 1.15 1.24
(0.17) (0.16) (0.14) (0.14) (0.14) (0.14) (0.14) (0.13) (0.12)

0.05 (400.00) 3.60 3.01 2.09 6.07 5.78 0.95 5.01 5.01 4.23
(0.81) (0.66) (0.48) (1.1) (1) (0.14) (0.92) (0.91) (0.9)

0.25 3.14 2.76 1.66 5.33 5.08 1.63 4.62 4.66 2.27
(0.68) (0.62) (0.35) (1.2) (1.2) (0.37) (0.94) (0.98) (0.41)

1.00 1.84 1.70 1.26 2.97 2.89 1.49 2.82 2.76 2.01
(0.3) (0.26) (0.19) (0.42) (0.42) (0.23) (0.46) (0.47) (0.39)

3.00 1.55 1.42 1.21 2.14 2.05 1.40 1.85 1.83 1.47
(0.25) (0.22) (0.16) (0.27) (0.26) (0.19) (0.32) (0.39) (0.16)

Observed Studies Study Straps Accept/Reject

σ2
β (σ2

X) Avg CPS STA Avg CPS STA Avg CPS STA

0.05 (0.0025) 1.00 0.85 1.00 1.00 0.91 1.00 0.89 0.83 0.99
(0.0056) (0.017) (0.0049) (0.0053) (0.014) (0.004) (0.02) (0.025) (0.0037)

0.25 0.99 0.82 0.99 0.99 0.90 0.99 0.88 0.82 1.00
(0.0074) (0.02) (0.0064) (0.0069) (0.015) (0.0058) (0.019) (0.028) (0.0041)

1.00 0.99 0.81 0.99 0.99 0.89 0.99 0.89 0.83 1.01
(0.008) (0.021) (0.0066) (0.0072) (0.016) (0.0059) (0.015) (0.024) (0.0046)

3.00 0.99 0.81 0.99 0.99 0.88 0.99 0.84 0.77 1.01
(0.008) (0.022) (0.0063) (0.0071) (0.015) (0.0053) (0.022) (0.029) (0.0047)

0.05 (25.00) 2.49 0.55 1.26 2.53 0.66 0.80 1.29 0.64 1.15
(0.19) (0.016) (0.087) (0.23) (0.024) (0.05) (0.091) (0.023) (0.082)

0.25 4.30 0.51 2.10 2.78 0.67 1.13 1.71 0.61 1.59
(0.29) (0.012) (0.15) (0.23) (0.026) (0.083) (0.15) (0.023) (0.14)

1.00 (25.00) 5.82 0.42 2.84 2.87 0.72 1.34 1.83 0.54 2.00
(0.4) (0.012) (0.21) (0.25) (0.049) (0.12) (0.17) (0.022) (0.18)

3.00 (25.00) 5.93 0.43 2.92 2.60 0.69 1.49 2.01 0.53 2.09
(0.42) (0.019) (0.23) (0.21) (0.044) (0.13) (0.18) (0.025) (0.18)

0.05 (400.00) 5.10 0.28 1.69 4.65 0.61 0.69 2.48 0.36 1.35
(0.58) (0.02) (0.19) (0.41) (0.085) (0.14) (0.31) (0.029) (0.19)

0.25 6.01 0.28 1.74 4.97 0.61 0.68 2.09 0.42 1.30
(0.61) (0.019) (0.19) (0.44) (0.08) (0.13) (0.23) (0.044) (0.17)

1.00 7.49 0.35 2.08 5.00 0.62 0.94 2.31 0.45 1.59
(0.62) (0.021) (0.21) (0.44) (0.067) (0.15) (0.26) (0.029) (0.21)

3.00 8.19 0.47 2.24 4.71 0.70 0.78 2.47 0.56 1.51
(0.7) (0.026) (0.26) (0.46) (0.058) (0.056) (0.32) (0.033) (0.17)
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(a)

Fig S.1: (A) General simulation framework.
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(a) No Clusters

(b) Clusters

Fig S.2: Simulation results on log scale across different cluster sizes and between-
study variability (σβ) in β. Each observation in a plot is the out-of-study-RMSE
from a single test study (i.e., each whisker plot is comprised of 100 points). b∗

indicates the selected bag size (from tuning) for the study strap ensemble and
AR, respectively. Dotted line indicates the relative performance of the TOM
algorithm.
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(a) No Clusters

(b) Clusters

Fig S.3: Average performance of AR algorithm on test set as a function of bag
size. Relative performance of TOM indicated with black line.
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(a) No Clusters.

(b) Clusters

Fig S.4: Performance of SSE algorithm on test set as a function of bag size.
Relative performance of TOM indicated with black line.
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Fig S.5: AR algorithm bag size curve: Optimal bag size scales with σ2
X . Color

indicates σ2
β. Minor noise was added to points for clarity.

Appendix C: NEUROSCIENCE DATA

C.1. Data Description

The data was collected by exposing an electrode in a flow cell (in vitro) to differ-
ent prepared concentrations (cj) of a neurotransmitter, dopamine, a naturally
occurring brain chemical (where the concentration is known to the investiga-
tor). Many measurements are taken at a given concentration (these different
measurements are referred to as “Replicate” below). While measurements are
taken across time, time is ignored in the training set (i.e., each observation is
treated as independent). The rows of the dataset then correspond to a measure-
ment (observation) at a given concentration, at a given time point. Furthermore,
these data are paired with a vector of labels of known neurotransmitter concen-
trations ([DA]i). The structure of the data for the kth electrode is presented in
Table 2.

A sample of the average covariates of four of the 15 electrodes is presented in
Figure S.6 for both the raw and derivative pre-processing versions. The figure
highlights the standardization in covariates that the derivative provides.

Similarity Metric

In order to compare the covariates of two studies, we developed a measure
that summarizes the covariate profile of a given observation. Our similarity
measure was designed based upon the observation that the inflection points
in the average CV of each dataset appeared to differ both in magnitude and
the in the voltage potential (i.e., the covariate index) at which they occurred.
These features are the coordinates of the inflection points of the CVs (Figure
S.8b): ν contains theses coordinates collapsed into a single vector (i.e., ν ∈ R8).
Then to compare, the ith and jth studies, we calculate the distance between the
average ν of each study via the similarity metric, sij = ||νi − νj | |22 (Figure S.8a).
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(a) Raw (b) Derivative

Fig S.6: Between-electrode variability: a comparison of average CVs (the covari-
ates) of four different electrodes/studies. The x-axis is the covariate index (i.e.,
the jth Voltage Potential is the jth covariate) and the y-axis is the magnitude of
the corresponding covariate. Data are presented here since the 1000 covariates
can also be viewed as a single functional covariate. The covariates are all on the
same scale and units.

Studies/electrodes differed not only in the average magnitude of the covariates
(i.e., the height of the figures), but also the covariates that were concentration-
sensitive (i.e., which coefficients, β were non-zero). This measure was designed to
account for this by measuring distance in terms the covariate index and height.

C.2. Modeling and Methods

We estimated the derivative of the covariates with respect to the voltage po-
tential using the diff() function in R, since the measurements were taken at
evenly spaced intervals (in time and in voltage potential).

(a) (b)

Fig S.8: (a) Inflection points of the average of the two studies. (b) Similarity
metric: sum of the squared lengths of the diagonal dotted lines.
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(a) Raw (b) Derivative

Fig S.7: Marginal correlation coefficient estimates (ρ̂kp
) between each covariate

and the outcome from four example studies for each covariate.

Fig S.9: Predictive performance of TOM algorithm for both the raw and deriva-
tive data preprocessing. LASSO and PCR hyperparameters both tuned via hold-
one-study-out CV.
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[DA] Replicate x1 x2 · · · x1000

c1 1 x1,1 x1,2 · · · x1,1000
c1 1 x2,1 x2,2 · · · x2,1000
· · · · · · · · · · · · · · · · · ·
c1 700 · · · · · · · · · · · ·
c2 1 · · · · · · · · · · · ·
c2 2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
c2 700 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
c30 700 x2,1 x2,2 · · · x2,1000

Table 2
Structure of the data for the kth electrode/study

(a) Raw (b) Derivative

Fig S.10: Between-seed variability in average performance (relative to the TOM
algorithm). Each point is the mean RMSE/RMSETOM for a single seed, aver-
aged across all held-out-studies.
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(a) Raw Original Scale (b) Raw Zoomed in

(c) Derivative Original Scale (d) Derivative Zoomed in

Fig S.11: Average Study Strap Ensemble Bag Size Curve: Derivative shifts the op-
timal bag size to higher values). Vertical lines indicate optimal bag size. RMSEs are
standardized to the RMSE of the TOM algorithm fit on the Raw and Derivative re-
spectively.

imsart-generic ver. 2014/10/16 file: output.tex date: August 26, 2021

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2021. ; https://doi.org/10.1101/856385doi: bioRxiv preprint 

https://doi.org/10.1101/856385
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Multi-Study Learning
	A Multi-study Challenge in Neurochemical Sensing
	A General Framework for Multi-Study Training

	Methods
	Notation and Problem Statement
	Multi-study Ensembling via Stacking
	Study Strap
	Analytical Results
	Covariate Profile Similarity Weighting
	Ensembling with the Covariate-Matched Study Strap

	Simulations
	Design of Simulation Experiments
	Prediction Approaches Considered in Simulation Experiments
	Simulation Results

	Neurochemical Sensing Application
	Data Description
	Modeling and Methods
	Results

	Discussion
	Reproducibility
	Acknowledgements

	References
	METHODS AND PROOFS
	Algorithms
	Proofs
	Stacking Strategy
	Study Strap Stacking Strategy
	Alternative Study Strap Stacking Strategy

	SIMULATIONS SUPPLEMENTARY MATERIAL
	Simulation Parameters
	Additional Simulation Figures and Tables

	NEUROSCIENCE DATA
	Data Description
	Modeling and Methods


