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1	-	Supplementary	Methods	

1.1	-	CALANGO	development	

1.1.1	-	Representing	current	genomic	knowledge	in	CALANGO	

	 Genomes	 and	 the	 associated	 genomic	 knowledge	 are	 represented	 in	

CALANGO	 as	 two	 sets	 of	 connected	 elements.	 The	 first	 set	 comprises	 genomic	

components,	each	representing	an	instance	of	a	given	class	of	elements	observed	

within	 genomes	 one	 wishes	 to	 evaluate.	 Supplementary	 Figure	 1A	 contains	 a	

representation	of	a	single	protein-coding	gene	composed	of	its	promoter	and	its	

coding	 region.	The	 coded	protein	 sequence	 can	be	 further	divided	 into	protein	

domains	 found	within	 them,	 and	promoter	 regions	 can	be	 further	divided	 into	

individual	transcription	factor	binding	sites.	In	CALANGO,	each	of	these	different	

genomic	 element	 types,	 among	 others	 (including	 user-defined	 types),	 can	 be	

used	 to	 define	 sets	 of	 genomic	 components,	 such	 as	 all	 protein	 domains	 or	

protein-coding	 genes	 observed	 in	 a	 given	 genome,	 allowing	 the	 analysis	 of	

genomes	 at	 different	 levels	 to	 investigate	 distinct	 biological	 questions	

(Supplementary	 Figure	 1A	 represents	 putative	 analyses	 at	 the	 protein	 (1),	

domain	(2)	and	promoter	(3)	levels,	respectively).		

The	 second	 concept	 is	 that	 of	 annotation	 terms,	 representing	 pieces	 of	

biological	knowledge	and	formally	defined	in	dictionaries	of	biological	terms	and	

their	 definitions.	 Such	 dictionaries	 are	 used	 to	 annotate	 individual	 genomic	

components	to	Domain-specific	genomic	knowledge:	GO	terms,	Pfam	identifiers	

or	binding	sites	of	specific	transcription	factors	can	used	to	annotate	individual	

protein-coding	 genes,	 protein	 domains,	 and	 binding	 sites	 within	 promoter	

regions,	 respectively.	 As	 we	 demonstrate,	 the	 association	 of	 distinct	 genomic	

elements	 and	 annotation	 schemas	 provides	 flexibility	 to	 explore	 genomic	

variation	 from	different	perspectives	and	to	detect	distinct	classes	of	biological	

phenomena.	 Supplementary	 Figure	 1A	 (4)	 indicates	 how	 genomic	 elements	

relate	to	their	respective	annotation	IDs	and	annotation	definitions.	An	analysis	

of	 protein	 domains	 annotated	 using	 GO	 terms,	 for	 instance,	 allows	 to	 survey	



current	functional	knowledge	about	protein	domains	that	are	associated	with	a	

QVAL,	 since	 GO	 is	 explicitly	 designed	 to	 provide	 a	 controlled	 and	 biologically	

meaningful	 functional	 description	 of	 gene	 products.	 Importantly,	 as	 we	

demonstrate	in	our	case	study,	non-homologous	protein	domains	are	annotated	

to	 the	 same	 GO	 terms	 when	 they	 perform	 the	 same	 biological	 role,	 allowing	

CALANGO	to	use	this	annotation	schema	to	capture	functional	associations	that	

may	not	detectable	at	the	sequence-level	in	an	approach	conceptually	similar	to	

gene-set	enrichment	analysis	strategies	[1].	

	

1.1.2	-	CALANGO	workflow	

Figure	 1	 contains	 the	 conceptual	 workflow	 of	 data	 pre-processing	 and	

CALANGO	 execution	 and	 will	 be	 used	 as	 a	 guide	 to	 explain	 a	 typical	 analysis	

using	 our	 software.	 As	 input,	 users	 are	 required	 to	 provide	 genomic,	

phylogenetic	 and	phenotypic	data	 (Figure	1A).	 Specifically,	 CALANGO	requires:	

1)	genomes	annotated	to	a	specific	dictionary	of	annotation	terms	(Figure	1B);	2)	

an	ultrametric	phylogenetic	tree	containing	all	species	to	be	analyzed;	3)	values	

for	 QVAL	 data	 under	 analysis,	 which	will	 be	 used	 to	 rank	 genomic	 data	when	

searching	 for	associations;	4)	a	dictionary	 file	 linking	annotation	terms	to	 their	

definitions.	Users	also	need	to	provide	group	labels	for	each	genome	to	be	used	

in	 output	 files	 and	may	 also	 use	 an	 optional	 normalizing	 factor	 to	 correct	 for	

differences	 across	 species,	 such	 as	 distinct	 counts	 of	 genomic	 elements	 or	

annotation	terms.	As	our	software	returns	as	results	annotation	terms	associated	

with	QVAL,	users	are	also	required	to	provide	cutoffs	to	be	used	when	producing	

graphical	output.	

When	 searching	 for	 association	 of	 QVAL	 and	 annotation	 terms,	 both	

systematic	errors	and	known	biological	 facts	may	be	bias	sources.	Examples	of	

such	 issues	 are	 wrong	 gene	 models	 due	 to	 issues	 in	 genome	 assembly,	 gene	

prediction	 or	 genome	 annotation	 and	 an	 excess	 of	 information	 is	 available	 for	

model	 organisms	 when	 compared	 with	 non-model	 ones,	 especially	 regarding	

known	 isoforms.	 To	 deal	 with	 the	 aforementioned	 issues	 we	 provide	

calaguize_genome.pl,	 a	 resource	 to	 help	 obtaining	 high-quality	 annotated	



genomic	 data	 compatible	 with	 CALANGO	 (Figure	 1B).	 This	 program	

automatically	downloads,	extracts,	remove	redundancies	and	annotates	genomes	

from	a	species	list,	providing	at	the	end	both	the	genome	annotation	files	and	the	

dictionaries	describing	the	annotation	terms,	as	well	as	objective	quality	scores	

based	 on	 expected	 gene	 content	 as	 estimated	 by	 lineage	 specific,	 almost	

universal	 1-1	 orthologs	 [2].	 Currently,	 our	 in-house	 annotation	 tool	 supports	

InterProScan	[3]	as	source	of	de	novo	annotation	information	and	provides	only	

the	 annotation	 of	 protein	 to	 Gene	 Ontology	 terms	 and	 any	 of	 the	 individual	

databases	 InterProScan	 uses	 to	 annotate	 proteins	 to	 different	 dictionaries	 of	

biological	 sequences	 (e.g.	 Pfam,	 SMART	 [4],	 SUPERFAMILY	 [5]	 or	 CDD	 [6])	

(Figure	1B).	

CALANGO	requires	phylogenetic	information	in	order	to	use	comparative	

methods	and	compute	 statistics	 that	 take	 into	account	 the	 shared	evolutionary	

history	across	 species	 [7,	8].	This	 information	 is	 represented	as	a	phylogenetic	

tree,	 which	 may	 be	 provided	 as	 a	 newick	 or	 a	 nexus	 file	 (Figure	 1C).	 The	

comparative	method	implemented	in	CALANGO	expects	ultrametric	trees	where	

branch	lengths	are	proportional	to	time	(chronogram),	such	as	the	ones	provided	

by	TimeTree	[9].	

To	 start	 any	 analysis	 in	 CALANGO,	 users	 must	 provide	 files	 containing	

phylogenetic,	 annotation	 and	metadata	 information	 about	 species	 (Figure	 1D).	

Our	 tool	 initially	generates	a	vector	 for	each	genome,	where	each	 cell	 contains	

the	sum	of	a	specific	annotation	term	occurrence	in	that	genome	(Figure	1E).	For	

the	specific	hierarchical	structure	of	GO,	CALANGO	also	computes	sum	values	of	

internal	 ancestor	GO	nodes,	 creating	 additional	 annotation	 terms	not	 explicitly	

found	in	genome	annotation	files.	Each	cell	value	of	the	annotation	vector	may	be	

divided	 by	 a	 normalization	 factor,	 producing	 a	 data	 structure	 of	 a	 normalized	

annotation	vector	for	each	genome	(Figure	1F,	"norm"	column	from	"Metadata"	

table	used	to	normalize	annotation	term	counts).	For	GO	analysis,	CALANGO	may	

automatically	provide	the	sum	of	occurrences	of	all	GOs	found	in	each	genome	as	

normalizing	factor,	therefore	computing	relative	frequencies	for	each	GO	term.	



It	 should	 be	 noted,	 as	we	will	 demonstrate	 latter,	 that	 this	 normalizing	

procedure	 may	 introduce	 biases	 that	 should	 be	 considered	 when	 evaluating	

results.	A	major	bias	 is	 the	 fact	 that,	when	using	 the	 total	 counts	of	annotation	

terms	as	normalizing	 factors,	 the	sum	of	all	annotation	 frequencies	equals	one.	

Consequently,	 an	 increase	 in	 the	 occurrence	 of	 an	 annotation	 term	 in	 one	

genome	causes	a	decrease	in	the	frequencies	of	all	other	annotation	terms,	even	

when	 their	 occurrences	 are	 constant	 across	 genomes	 (Supplementary	 File	 1,	

section	 2.1	 -	Evaluating	annotation	term	frequencies	and	counts,	 Supplementary	

Figure	 1B-C).	 Therefore,	 one	 must	 be	 careful	 when	 interpreting	 CALANGO	

outputs	computed	from	relative	frequencies.	

	 At	 this	 point,	 CALANGO	 computes	 several	 statistics	 to	 be	 used	 latter	 on	

during	the	interactive	exploration	of	the	results.	These	statistics	are	available	as	

both	 an	 R	 list	 object	 and	 as	 interactive	 HMTL	 files.	 Specifically,	 for	 each	

annotation	 term,	CALANGO	provides:	1)	a	phylogeny-aware	 linear	model	using	

the	 phylogenetically	 independent	 contrasts	 of	 QVAL	 and	 of	 the	

frequencies/counts	of	annotation	terms	as	 implemented	in	APE	package	[7];	2)	

correlations	 for	 QVAL	 and	 annotation	 term	 frequencies/counts,	 searching	 for	

both	 linear	 and	 non-linear	 associations	 (Pearson,	 Spearman	 and	 Kendall	

correlation	values	are	computed);	3)	individual	p-values	and	corrected	q-values	

for	PIC	linear	models	and	correlation	tests;	4)	common	statistics,	such	as	sum	of	

an	 annotation	 term	 across	 genomes,	 its	 standard	 deviation	 and	 coefficient	 of	

variation;	5)	tailored	statistics	to	detect	and	filter	out	commonly	observed	biases	

based	on	our	usage	of	CALANGO:	heterogeneity	and	prevalence	(see	below).	All	

these	statistics	may	be	used	to	rank	data	or	to	filter	spurious	associations	latter	

on	(Figure	1G).	

	 The	 interactive	 HTML5	 file	 allows	 one	 to	 further	 explore	 the	 findings	

using	any	modern	browser,	and	also	provide	an	easy	way	of	data	sharing	(Figure	

1H).	Currently,	our	tool	provides	four	main	kinds	of	interactive	results.	The	first	

one	 is	 a	 heatmap	 built	 using	 annotation	 terms	 and	 species	 under	 analysis.	

Annotation	terms	are	clustered	based	on	their	values,	while	species	are	grouped	

according	 to	 the	 user-provided	 phylogenetic	 tree,	 easily	 allowing	 the	 visual	

inspection	 of	 annotation	 term	 distribution	 across	 phylogenetic	 groups.	 Users	



may	also	provide	group	labels	which	will	be	highlighted	in	heatmaps.	Heatmaps	

may	also	be	zoomed	for	visual	exploration	and	saved	as	images	for	publication.	

They	 also	 display	 additional	 information	 about	 each	 cell	 in	 “on	 mouse	 over”	

events,	such	as	 their	numerical	values,	species	names,	annotation	term	IDs	and	

their	definitions	(Figure	1I).	

A	 second	 class	 of	 results	 are	 scatterplots	 of	 annotation	 terms	 as	

distributed	by	their	corrected	q-values	observed	in	phylogeny-aware	models	and	

common	correlation	tests	(Figure	1J).	Additionally,	dot	sizes	are	proportional	to	

the	 sum	of	annotation	 terms	across	genomes,	 and	 its	 transparency	 is	 inversely	

proportional	 to	 its	 coefficient	 of	 variation	 in	 such	 a	 way	 that	 interesting	

annotation	terms	(both	highly	frequent	and	variable	across	species)	are	likely	to	

be	highlighted.	These	scatterplots	are	also	interactive	in	several	ways:	users	may	

use	the	mouse	to	highlight	individual	data	for	each	annotation	term,	such	as	its	

ID	 and	 description.	 It	 is	 also	 possible	 to	 zoom	 in/out	 specific	 plot	 regions	 and	

export	specific	frames	as	image	files.	

	 The	third	result	is	a	dynamical	table	where	users	may	further	explore	and	

filter	results.	Each	line	corresponds	to	an	annotation	term,	and	columns	contain	

several	computed	statistics	(e.g.,	correlation	values,	q-values	for	PIC	linear	model	

and	 correlation	 tests,	 sum,	 prevalence,	 and	 coefficient	 of	 variation),	 individual	

counts	 of	 annotation	 terms	 in	 each	 genome	 and	 annotation	 term	 descriptions.	

This	table	is	also	interactive,	allowing	one	to	show	or	hide	specific	data	columns	

and	 filter	 the	 results	based	on	each	 individual	data	column,	 therefore	selecting	

specific	data	slices	for	further	inspection.	It	is	also	possible	to	rank	data	based	on	

individual	data	columns,	as	well	as	to	search	for	specific	annotation	IDs	and/or	

keywords	present	in	annotation	term	descriptions	(Figure	1K).	As	a	fourth	class	

of	 interactive	 results,	 the	 dynamic	 table	 contains	 links	 to	 individual	 plots	 of	

annotation	terms	results,	where	users	may	visualize	scatterplots,	 linear	models	

and	 confidence	 intervals	 for	 actual	 data	 values,	 ranked	 data	 and	 phylogenetic-

aware	 linear	models.	RDI	(Raw	data,	Descriptive	statistics,	and	Inference)	plots	

are	 also	 generated,	 allowing	 users	 to	 visually	 inspect	 how	 the	 frequency	 of	

annotation	terms	is	distributed	in	the	distinct	user-defined	groups	(Figure	1L).	



	

1.1.3	-	CALANGO	package	dependencies	

CALANGO	is	written	in	R	language	and	uses	several	R	libraries	to	handle	

the	 different	 data	 types	 needed.	 The	 CALANGO	 analysis	 routines	 import	

functions	from	packages	ape	[39]	(to	read	nexus	and	newick	phylogenetic	trees	

and	 resolve	multichotomies,	 and	 to	 calculate	 phylogeny-independent	 contrasts	

and	 the	 correlation	 structures	 arising	 from	 phylogenetic	 relationships);	 taxize	

[10]	 (to	 retrieve	 and	 process	 taxonomical	 hierarchies);	 GO.db	 [11]	 and	

AnnotationDbi	[12]	(to	process	GO	annotation	data);	KEGGREST	[13]	(to	process	

KEGG	databases);	and	nlme	[14]	(to	fit	models	using	generalized	least	squares).	

CALANGO	 also	 imports	 functions	 from	 several	 packages	 to	 compose	 its	 visual	

output,	namely:	dendextend	 [15],	rmarkdown	 [16]	heatmaply	 [17],	ggplot2	 [18],	

plotly	[19],	DT	[20],	htmltools	[21]	and	htmlwidgets	[22].	Other	general-purpose	

packages	 used	 within	 CALANGO	 are	 pbmcapply	 [23]	 (for	 progress	 bars	 when	

using	parallel	processing);	assertthat	 [24]	 (for	 input	verification);	BiocManager	

[25]	 (to	 retrieve	 and	 update	 dependencies	 from	 Bioconductor,	 namely	

KEGGREST,	 GO.db	 and	 AnnotateDbi);	 and	 pkgdown	 [26]	 (to	 automatically	

generate	 the	project	home	page).	Package	updates	on	 the	CALANGO	repository	

are	 automatically	 verified	 using	 Github	 Actions	 on	 the	 latest	 R	 versions	 for	

Windows	 and	Mac	OS,	 as	well	 as	 for	 both	 the	 release	 and	devel	R	 versions	 on	

Ubuntu	 20.04	 LTS,	 to	 ensure	 code	 integrity.	 Future	 versions	 of	 CALANGO	 are	

planned	 to	 reduce	 the	number	of	distinct	dependencies	 so	 as	 to	make	 the	 tool	

more	resilient	to	changes	in	external	package	functionalities.	

	

1.2	–	Removal	of	genes	of	viral	origin	

	 For	 each	 protein-coding	 gene	 in	 all	 80	E.	coli	genomes,	 we	 generated	 a	

BED	 file	 containing	 the	 ids	 of	 coded	 proteins	 and	 the	 genomic	 coordinates	 of	

their	 corresponding	 genes.	 We	 proceeded	 by	 generating	 BED	 files	 for	 each	

predicted	 integrated	 prophage	 from	 the	 output	 of	 PHASTER.	 We	 then	 used	

bedtools	 [27]	 to	 remove	 all	 protein-coding	 genes	 located	 within	 prophage	



coordinates,	generating	simulated	bacterial	genomes	where	genes	of	viral	origin	

were	removed.	

2	-	Supplementary	results	

2.1	-	Evaluating	annotation	term	frequencies	and	counts	

	 When	 evaluating	 annotation	 terms	 associated	 with	 QVAL,	 CALANGO	

allows	users	 to	use	 either	 raw	 count	data	 of	 annotation	 terms	or	 to	normalize	

these	values	 to	account	 for	biologically	meaningful	differences	across	genomes.	

This	normalization	procedure	may	be	interesting	when	evaluating	genomes	that	

have,	 for	 instance,	 considerable	 variation	 in	 their	 number	 of	 protein-coding	

genes,	which	may	cause	annotation	term	counts	to	be	more	abundant	in	genomes	

with	larger	numbers	of	genes.	

	 On	 the	 other	 hand,	 normalization	 using	 a	 common	 factor	 induces	

dependencies	 in	 the	 relative	 frequencies	 for	 each	 annotation	 term,	 as	 the	

resulting	 values	 must	 add	 to	 one	 (Supplementary	 Figure	 1B).	 This	 causes	 a	

mathematical	 artifact	 that	 can	 produce	 spurious	 significant	 associations	 of	

frequency	of	terms	having	constant	or	near-constant	count	values,	due	to	relative	

frequencies	of	other	terms	whose	counts	are	associated	with	QVAL.		

Supplementary	Figure	1B	illustrates	 five	hypothetical	genomes	with	two	

annotation	 terms,	 one	 occurring	 once	 in	 each	 of	 them	 (e.g.,	 a	 universal	 1-1	

ortholog,	 represented	 as	 an	 orange	 box),	 and	 another	 having	 a	 variable	 count	

occurrence	 that	 is	 associated	with	 a	QVAL	 vector	 (blue	 box).	When	 computing	

associations	 from	 count	 data,	 we	 only	 observe	 the	 blue	 term	 to	 be	 associated	

with	QVAL	(Supplementary	Figure	1B,	“Blue	count”	and	“Orange	count”	plots),	as	

expected.	

When	examining	relative	frequencies,	however,	we	notice	the	emergence	

of	a	spurious	association	of	orange	frequencies	with	the	QVAL,	in	addition	to	the	

expected	 association	 of	 blue	 terms	 (Supplementary	 figure	 1B,	 “Blue	 freq”	 and	

“Orange	 freq”	 plots).	 This	 results	 from	 the	 dependency	 structure	 between	 the	

blue	terms	and	the	QVAL	“contaminating”	the	QVAL-independent	orange	counts	

via	 the	 normalization	 denominator,	 which	 results	 in	 a	 negative	 correlation	



between	 the	 orange	 and	 blue	 frequencies	 (Supplementary	 Figure	 1B,	 “Blue	 &	

Orange	freq”	plot).	

		 In	 this	work	we	 used	 CALANGO	 to	 survey	 both	 annotation	 term	 counts	

and	 relative	 frequencies	 for	 possible	 associations	 with	 prophage	 densities	

(Supplementary	 Table	 2,	 Supplementary	 Figure	 1C).	 Although	 the	 majority	 of	

positively	 associated	 terms	 were	 observed	 to	 be	 the	 same	 when	 considering	

either	count	or	relative	frequencies,	we	found	most	of	the	negatively	associated	

terms	to	be	detected	only	when	considering	relative	frequencies	(Supplementary	

Figure	1C).	

Furthermore,	manual	 inspection	of	 the	annotation	 terms	detected	 in	 the	

second	 case	 found	 a	 considerable	 fraction	 of	 them	 to	 correspond	 to	 core	

housekeeping	 cellular	 processes	 (Supplementary	 Table	 2),	 further	 suggesting	

that	 their	 counts	 are	 likely	 to	 be	 near	 constant	 across	 genomes,	 and	 that	 the	

negative	associations	found	in	frequency	data	is	likely	to	be	an	artifact	caused	by	

the	 issue	 highlighted	 earlier.	 Taken	 together,	 these	 experiments	 demonstrate	

that	relative	frequencies	are	not	the	most	adequate	representation	of	annotation	

term	occurrence	for	our	investigation,	which	motivated	our	decision	to	proceed	

with	count	data.		

	

2.2	 -	Annotation	 terms	associated	with	prophage	density	after	removal	of	

genes	of	viral	origin	

	 When	searching	for	biological	functions	associated	with	prophage	density	

in	E.	coli	genomes,	we	know	beforehand	the	location	of	all	predicted	prophages.	

Therefore,	 it	 is	 possible	 to	 remove	 all	 genes	 predicted	 as	 having	 viral	 origin	

(Supplementary	 Methods,	 section	 “Removal	 of	 genes	 of	 viral	 origin”)	 and	

objectively	evaluate	the	effect	of	this	procedure	on	associated	annotation	terms.	

Such	genomes	 lacking	genes	 located	within	prophage	genomes	were	annotated	

using	 InterProScan	 [3],	 ordered	 according	 to	 their	 original	 prophage	 densities	

before	the	removal	of	viral	genes	and	evaluated	using	CALANGO	with	the	same	

criteria	 for	 significance	 (corrected	 q-values	 for	 phylogeny-aware	models	 <	 0.1	

and	occurrence	greater	than	five	when	considering	all	genomes).	



	 For	the	domain2Pfam	experiment	after	excluding	genes	of	viral	origin,	we	

found	86	Pfam	IDs	still	associated	with	prophage	density	(Supplementary	Table	

2,	sheet	“domain2PfamCountLessPhages”),	57	of	which	in	common	with	the	ones	

found	 in	 the	 original	 domain2Pfam	 experiment	 including	 viral	 genes	

(Supplementary	Table	2,	sheet	“domain2PfamCount”).	The	125	distinct	Pfam	IDs	

manually	 curated	as	of	viral	origin	and	associated	with	prophage	density	were	

found	to	occur	23,310	times	across	the	80	E.	coli	genomes.	The	removal	of	known	

genes	 of	 viral	 origin	 decreased	 the	 occurrence	 of	 these	 domains	 to	 6,040,	 a	

reduction	 of	 74%,	 therefore	 demonstrating	 we	 have	 been	 able	 to	 remove	 the	

majority	of	such	domains.	Furthermore,	only	two	out	of	125	domains	were	still	

found	to	be	associated	with	prophage	density	in	this	experiment.	

The	 first	 one	 is	 PF06316	 (Enterobacterial	 Ail/Lom	 protein),	 a	 protein	

domain	found	virulence-related	outer	membrane	protein	family	that	is	observed	

in	bacteriophage	genes,	where	 it	 plays	 a	 role	 in	 lysogenic	 cycles	 [28],	 and	also	

contributes	to	a	pathogenicity	phenotype	in	gram-negative	bacteria	by	allowing	

both	resistance	to	complement	activity	and	the	ability	to	adhere	and	invade	host	

cells	[29].	Furthermore,	this	domain	has	289	copies	in	bacterial	genomes	before	

the	removal	of	genes	of	viral	origin,	but	only	14	copies	(4.84%)	remain	after	the	

removal	of	such	genes.	These	observations	suggest	a	scenario	of	bacteriophage-

mediated	 horizontal	 gene	 transfer	 followed	by	 prophage	 degeneration	 and	 the	

eventual	 maintenance	 of	 virulence	 factors	 in	 pathogenic	 lineages	 as	 a	

consequence	of	fitness	increase.	The	second	Pfam	domain	is	PF07799	(Protein	of	

unknown	 function	 (DUF1643)),	 a	 DUF	 found	 in	 several	 proteins	 in	 Archaea,	

Bacteria	 and	 bacteriophages	 that	 remains	 to	 be	 characterized	 [3]	 and	 was	

observed	in	11	copies	in	both	experiments.	

	 As	 for	 the	 set	 of	 56	 protein	 domains	 expected	 to	 contribute	 to	 a	

pathogenicity	 phenotype	 in	 E.	 coli,	 42	 of	 them	 (75%)	 are	 still	 significantly	

associated	 with	 prophage	 density	 after	 the	 removal	 of	 genes	 of	 viral	 origin	

(Supplementary	 Table	 2,	 sheets	 domain2PfamCount”	 and	

“domain2PfamCountLessPhages”).	Additionally,	27	and	39	of	such	domains	have	

exactly	 the	 same	 number	 of	 occurrences	 or	 differ	 by	 one,	 respectively,	 when	

comparing	 the	output	 of	 the	domain2Pfam	 experiments	with	 and	without	 viral	



genes	 (Supplementary	 Table	 3,	 Supplementary	 Figure	 S1),	 indicating	 that	 the	

removal	 of	 viral	 genes	 did	 not	 alter	 the	 occurrence	 of	 the	 majority	 of	 such	

protein	domains,	and	that	most	are	located	outside	predicted	prophages.	

We	 performed	 the	 same	 in	 silico	 procedure	 in	 domain2GO	 annotation	

schema	 to	 remove	 genes	 of	 viral	 origin	 and	 evaluate	 GO	 terms	 that	 remain	

associated	 with	 prophage	 density,	 again	 finding	 that	 the	 vast	 majority	 of	

annotation	 terms	 describing	 viral	 lifestyle	 functions	 not	 to	 be	 significantly	

associated	 with	 prophage	 densities	 once	 viral	 genes	 are	 removed	

(Supplementary	 Table	 2,	 sheet	 “domain2GOCountLessPhages”).	Most	 GO	 terms	

describing	pathogenicity	mechanisms,	on	the	other	hand,	are	also	observed	in	E.	

coli	genomes	 after	 removing	 the	 genes	 of	 viral	 origin,	 suggesting	 most	 of	 the	

domains	 annotated	 to	 these	 GO	 terms	 are	 located	 outside	 the	 regions	 of	

integrated	prophages	(Supplementary	Figure	2).	

	

2.1.2	–	Using	CALANGO	to	survey	downstream	hypotheses	

Example	1	–	association	between	phage	density	and	pathogenicity	

CALANGO	 provides	 as	 output	 both	 dynamical	 HTML	 files	 and	 R	 objects	

that	 can	be	used	 to	 survey	 specific	hypothesis	 that	may	emerge	after	 an	 initial	

analysis.	 In	 this	 section,	 we	 provide	 detailed	 information	 about	 how	 to	 use	

specific	 data	 available	 after	 a	 typical	 execution	 of	 CALANGO	 pipeline	 for	 this	

purpose.	As	we	found	the	density	of	prophage	genomes	to	be	significantly	higher	

in	 pathogenic	 lineages	 through	 a	 common	 statistic	 (Figure	 2A),	we	 used	 the	 R	

output	 object	 as	 provided	 by	 CALANGO	 to	 evaluate	 whether	 the	 association	

remains	 after	 taking	 into	 account	 phylogenetic	 data.	 Specifically,	 we	 used	 the	

threshBayes()	 function	 from	 the	 phytools	 package	 [30]	 to	 compute	 the	

correlation	 between	 a	 binary	 trait	 (pathogenic	 versus	 non-pathogenic)	 and	 a	

continuous	one	(phage	density	per	Mb)	while	using	phylogenetic	information	to	

compute	independent	mean	correlation	(r)	from	the	posterior	sample	contrasts	

(1,000,000	 generations	 after	 the	 removal	 of	 the	 first	 250,000	 generations	 as	

“burn-in”).	 We	 found	 a	 correlation	 of	 0.58,	 indicating	 that	 the	 association	 of	



pathogenicity	 and	 higher	 prophage	 densities	 is	 still	 observed	 under	 a	

comparative	biology	framework.	

	

Example	2	–	association	between	phage-related	genes	and	phage	density	

CALANGO	requires	the	formal	description	of	annotation	term	IDs	used	to	

annotate	genomic	components	(Figure	1H).	Such	descriptions	may	also	be	used	

to	search	for	specific	keywords	within	annotation	terms	found	to	be	associated	

with	QVAL	under	analysis	and	check	for	subsequent	hypotheses.	Specifically,	we	

were	 interested	 in	 evaluating	 whether	 CALANGO	 can	 detect	 a	 greater-than-

expected	 number	 of	 protein	 domains	 of	 viral	 origin	 associated	 with	 prophage	

density.	

	 From	the	set	of	3,335	distinct	Pfam	IDs	observed	more	than	five	times	in	

the	 80	 E.	 coli	genomes,	 a	 total	 of	 110	 (~3,30%)	 are	 explicitly	 annotated	 as	 a	

bacteriophage	 sequence	 (defined	 as	 the	 ones	 containing	 the	 string	 “phage”	 in	

domain	 ID	 definitions,	 followed	 by	 manual	 curation).	 As	 for	 the	 230	 protein	

domains	found	to	be	associated	with	prophage	density,	a	total	of	55	(~23,91%)	

fulfill	the	same	search	criteria,	a	value	700x	greater	and	significantly	higher	than	

the	one	observed	in	all	Pfam	IDs	evaluated	by	CALANGO	(Fisher’s	exact	test,	p-

value	<	2.2e-16).	

All	of	 the	55	domains	described	as	having	bacteriophage	origin	on	 their	

Pfam	description	and	associated	with	prophage	density	have	positive	correlation	

values,	 as	 expected	 for	 proteins	 playing	 a	 role	 in	 viral	 life	 cycle.	 This	 analysis	

demonstrates	 how	 CALANGO	 output	 can	 be	 used	 to	 objectively	 evaluate	 a	

specific	hypothesis	(are	the	genes	annotated	as	of	viral	origin	more	represented	

in	our	dataset	of	associated	domains	than	what	would	be	expected	by	chance?)	

and	 provides	 further	 evidence	 that	 CALANGO	 can	 support	 the	 detection	 of	

annotation	terms	associated	with	QVAL	due	to	potential	causal	relationships.	

	

2.1.3	–	Anti-viral	mechanisms	are	positively	and	negatively	associated	with	

prophage	density	



We	 found	 five	 Pfam	 IDs	 associated	with	 prophage	 density	 that	 are	 also	

components	of	 bacterial	 immune	 systems	 to	prevent	 viral	 infections,	with	 four	

positive	 associations	 and	 one	 negative.	 Among	 the	 positive	 associations	 we	

found	two	DNA	methylases	(PF05063	-	MT-A70	and	PF01555	-	DNA	methylase),	

one	 DNA-binding	 domain	 found	 in	 CRISPR	 negative	 transcriptional	 regulators	

(PF13412	 -	 Winged	 helix-turn-helix	 DNA-binding)	 [31]	 and	 a	 restriction	

component	 of	 type	 I	 restriction-modification	 systems	 (PF13588	 -	 Type	 I	

restriction	 enzyme	 R	 protein	 N	 terminus	 (HSDR_N))	 (Figure	 4C).	 All	 positive	

associations	 are	 not	 observed	 after	 the	 removal	 of	 genes	 of	 viral	 origin,	

indicating	 that	 a	 considerable	 fraction	 of	 these	 domains	 is	 found	 within	

prophages	(Supplementary	Table	6).	

Interestingly,	 both	 the	DNA	methylases	 and	 the	negative	 transcriptional	

regulator	may	confer	advantages	for	bacteriophages	to	evade	bacterial	 immune	

systems.	 As	 for	 PF13588,	 it	 is	 worth	 noting	 that	 we	 also	 found	 a	 domain	

described	 as	 a	 component	 of	 restriction-modification	 mechanism	 to	 be	

negatively	 associated	 with	 prophage	 density	 (PF04313	 -	 Type	 I	 restriction	

enzyme	R	protein	N	 terminus	 (HSDR_N),	 Supplementary	 Figure	 3Q),	 suggesting	

that	some	restriction	systems	may	occupy	distinct	biological	roles	in	extremes	of	

phage	 density.	 A	 possible	 hypothesis	 is	 that	 some	 restriction-modification	

systems	may	be	horizontally	 transferred	by	bacteriophage	genomes	and	confer	

bacterial	 resistance	 to	 additional	 bacteriophage	 phage	 infections	 to	 avoid	

competition	 [32].	 As	 for	 the	 negatively	 associated	 restriction	 system,	 it	 is	 a	

component	 of	 bacterial	 genomes	 observed	 outside	 prophage	 regions	 that	may	

provide	 a	 more	 general	 bacteriophage	 infection	 resistance	 in	 E.	 coli	with	 few	

integrated	 prophages.	 Also,	 the	 loss	 of	 such	 systems	 in	 lineages	 with	 greater	

values	 of	 prophage	 density	may	 suggest	 such	 loss	may	 be	 advantageous	 for	 a	

parasitic	lifestyle.	We	again	highlight	that	CALANGO	output	produces	hypotheses	

that	 are	 testable	 through	 genome	 edition	 of	 specific	 genomic	 components	

followed	by	relative	fitness	evaluation	in	controlled	environments.	

	

2.1.4	–	Stress	response	genes	associated	with	E.	coli	



We	 found	 54	 Pfam	 domains	 annotated	 as	 stress	 response	 mechanisms	

that	 play	 roles	 in	 several	 stress-related	 biological	 processes	 (Supplementary	

Table	3).	Approximately	30%	 these	domains	 code	 for	 core	biological	 functions	

observed	mostly	as	single-copy	universal	orthologs,	such	as	components	of	DNA	

repair	 pathways,	 oxidative	 stress	 pathways,	 transcription	 factors,	 chaperones	

and	 heat	 shock	 proteins	 (Supplementary	 Table	 4).	 As	 they	 do	 not	 vary	 across	

genomes,	they	may	not	be	the	ones	accounting	for	the	association	of	GO:0006950	

and	prophage	density.	

The	other	38	domains	were	observed	in	accessory	proteins	found	in	some	

E.	 coli	 lineages	 but	 not	 in	 others.	 Among	 them	 we	 observed	 components	 of	

restriction-modification	systems,	DNA	repair	pathways,	 colicins,	 toxin-antitoxin	

systems,	 Tellurite	 resistance,	 and	 transcription	 factors.	 Only	 two	 of	 these	 38	

domains	were	 also	 detected	 in	domain2Pfam	 experiment,	 indicating	 again	 that	

most	 of	 these	 Pfam	 IDs	 are	 not	 individually	 detectable	 as	 associated	 with	

prophage	 density	 but,	 when	 annotated	 to	 GO,	 the	 variation	 patterns	 of	 these	

genomic	elements	are	aggregated	in	the	function	level	and	eventually	contribute	

for	 the	 association	 to	 emerge.	 Additionally,	 a	 total	 of	 five	 (13.16%)	 of	 these	

domains	are	more	represented	in	regions	of	viral	origin	than	in	host’s	genomes,	

and	 28	 of	 them	 (73.7%)	 are	 found	 in	 at	 least	 one	 bacteriophage	 genome,	

indicating	 that	 the	pool	of	stress	response	domains	 is	present	 in	both	host	and	

viral	genomes	(Supplementary	Table	5).	

Among	 the	 stress-response	domains	we	 also	 found	 some	 candidates	 for	

cellular	 responses	 to	 viral	 infections,	 such	 as	 the	 DNA	 repair	 pathways	 and	

restriction-modification	 mechanisms.	 However,	 domains	 belonging	 to	 these	

categories	 were	 observed	 both	 in	 regions	 of	 viral	 origin	 and	 host’s	 genomes	

(Supplementary	 Table	 5),	 providing	 additional	 evidence	 that	 anti-viral	

mechanisms	carried	out	by	bacteriophages	may	comprise	an	advantage	for	both	

hosts	and	integrated	viruses	by	preventing	competition	through	additional	viral	

infection.	We	also	found	other	stress	response	domains	that	may	confer	a	fitness	

increase,	such	as	virulence	factors,	warfare	mechanisms	and	defense	systems.	
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