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Abstract  57 

Multitask learning allows the simultaneous learning of multiple ‘communicating’ algorithms. It is 58 

increasingly adopted for biomedical applications, such as the modeling of disease progression. As data 59 

protection regulations limit data sharing for such analyses, an implementation of multitask learning on 60 

geographically distributed data sources would be highly desirable. Here, we describe the development 61 

of dsMTL, a computational framework for privacy-preserving, distributed multi-task machine learning 62 

that includes three supervised and one unsupervised algorithms. dsMTL is implemented as a library 63 

for the R programming language and builds on the DataSHIELD platform that supports the federated 64 

analysis of sensitive individual-level data. We provide a comparative evaluation of dsMTL for the 65 

identification of biological signatures in distributed datasets using two case studies, and evaluate the 66 

computational performance of the supervised and unsupervised algorithms. dsMTL provides an easy-67 

to-use framework for privacy-preserving, federated analysis of geographically distributed datasets, 68 

and has several application areas, including comorbidity modeling and translational research focused 69 

on the simultaneous prediction of different outcomes across datasets. dsMTL is available at 70 

https://github.com/transbioZI/dsMTLBase (server-side package) and 71 

https://github.com/transbioZI/dsMTLClient (client-side package). 72 
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Introduction 80 

The biology of many human illnesses is encoded in a vast number of genetic, epigenetic, molecular, 81 

and cellular parameters. The ability of Machine Learning (ML) to jointly analyze such parameters and 82 

derive algorithms with potential clinical utility has fueled a massive interest in biomedical ML 83 

applications. One of the fundamental requirements for such ML algorithms to perform well is the 84 

availability of data at a large scale, a challenge of steadily declining importance due to the ever-85 

increasing availability of biological data1-3. As data can often not be freely exchanged across institutions 86 

due tothe need for protection of the individual privacy, the utility of ‘bringing the algorithm to the data’ 87 

is becoming apparent. Technological solutions for this task have thus risen in popularity and exist in 88 

various forms. One of the most straightforward approaches is the so-called federated ML, where 89 

algorithms are simultaneously learned at different institutions and optimized through a privacy-90 

preserving exchange of parameters. Other approaches for this task include the training of ML 91 

algorithms on temporarily combined data stored in working memory4 or the more recently introduced 92 

‘swarm-learning’ approach5. One commonality of most ML algorithms, federated or not, is the 93 

assumption that all investigated observations (e.g. illness-affected individuals) represent the same 94 

underlying population. However, in biomedicine, this is rarely the case, as biological and technological 95 

factors frequently induce cohort-specific effects that limit the ability to identify reproducible biological 96 

findings. Multitask Learning (MTL) can address this issue through the simultaneous learning of 97 

outcome (e.g. diagnosis) associated patterns across datasets with dataset-specific, as well as shared, 98 

effects. Multi-task learning has numerous exciting application areas, such as comorbidity modeling, 99 

and has already been applied successfully for e.g. disease progression analysis6.  100 

Here, we describe the development of dsMTL (‘Federated Multi-Task Learning for DataSHIELD’), a 101 

package of the statistical software R, for Federated Multi-Task Learning (FeMTL) analysis (Figure 1) . 102 

dsMTL was developed for DataSHIELD7, a platform supporting the federated analysis of sensitive 103 

individual-level data that remains stored behind the data owner’s firewall throughout analysis8. dsMTL 104 

includes three supervised and one unsupervised federated multi-task learning algorithms that extend 105 
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algorithms previously developed for non-federated analysis (for R implementations, see 9,10). 106 

Specifically, the dsMTL_L21 approach allows for cross-task regularization, building on the popular 107 

LASSO method, in order to identify outcome-associated signatures with a reduced number of features 108 

shared across tasks. The non-federated version of this approach has previously been applied to 109 

simultaneously predict multiple oncological outcomes using gene expression data11. The dsMTL_trace 110 

approach constrains the coefficient vectors in a low-dimensional space during the training procedure 111 

to penalize the complexity of task relationships, resulting in an improved generalizability of the models. 112 

In a non-federated implementation, this method has previously been used to predict the response to 113 

different drugs, and the identified models showed a high degree of interpretability in the context of 114 

the represented drug mechanism12. dsMTL_net incorporates the task relationships that can be 115 

described as a graph, in order to improve biological interpretability. In a non-federated version, this 116 

technique has previously been used for the integrative analysis of heterogeneous cohorts13 and for the 117 

prediction of disease progression14. The dsMTL_iNMF approach is an unsupervised, integrative non-118 

negative matrix factorization method that aims at factorizing the cohorts’ data matrices into shared 119 

and dataset-specific components. Such modeling has been applied to explore dependencies in multi-120 

omics data for biomarker identification10,15. In addition to the FeMTL methods, we also implemented 121 

a federated version of conventional Lasso (dsLasso) 16 in dsMTL package due to its wide usage in 122 

biomedicine and as a benchmark for testing the performance of the federated MTL algorithms. 123 

To explore the utility of the dsMTL algorithms, we used a network comprising three servers. These 124 

servers hosted simulated data with variable degrees of cross-dataset heterogeneity, in order to test 125 

the ability of the MTL algorithms to suitably characterize shared and specific biological signatures. In 126 

addition, we analyzed actual RNA sequencing and microarray data across the three-server network, to 127 

show that the accurate analysis can be performed in acceptable runtime using dsMTL in real network 128 

latency.  129 

 130 
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Results 131 

Here we show the results for two case studies. The first case study aims at demonstrating the utility of 132 

the supervised dsMTL_L21 algorithm to identify ‘heterogeneous’ target signatures across the data 133 

network. With ‘heterogeneous’ we describe signatures that involve the same features (e.g. genes) but 134 

with potentially differing signs (indicating differential directions of influences) across datasets. In 135 

contrast, ‘homogeneous’ signatures relate to the same features and signs across datasets. The second 136 

case study focuses on the unsupervised dsMTL_iNMF method and explores the utility of the federated 137 

implementation, compared to the aggregation of local NMF models, to disentangle shared and cohort-138 

specific components across datasets. For all case studies, we evaluated the signature identification 139 

accuracy as the major metric. For predictions of clinical outcomes, the prediction accuracy was also 140 

demonstrated.  141 

 142 

Case study 1 – distributed MTL for identification of heterogeneous target signatures 143 

With the aim to identify ‘heterogeneous’ signatures, we compared the performance of dsMTL_L21, 144 

dsLasso and the bagging of glmnet models. As part of this, we explored the sensitivity of these methods 145 

to different sample sizes (n) relative to the gene number (p). Figure 2 shows the resulting prediction 146 

performance and gene selection accuracy, each averaged over 100 repetitions. dsLasso showed the 147 

worst prediction performance in this heterogeneous setting, and  dsMTL_L21 slightly outperformed 148 

the aggregation of local models (glmnet). Similarly, the gene selection accuracy of dsLasso was inferior 149 

to that of dsMTL_L21 and glmnet-bagging, which showed similar performance when the sample size is 150 

sufficiently large, e.g. the number of subjects approximately equal to the number of genes (n/p ~1). 151 

However, with a decreasing n/p ratio, dsMTL_L21 showed an increasing superiority over the other 152 

methods, especially for n/p=0.15, where the gene selection accuracy of dsMTL_L21 was over 2.8 times 153 

higher than that of the bagging technique.  154 

 155 
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Case study 2 – distributed iNMF for disentangling shared and cohort-specific signatures 156 

Figure 3 shows the performance of distributed and aggregated local NMF methods for disentangling 157 

shared and cohort-specific signatures from multi-cohort data, given different ‘severities’ of the 158 

signature heterogeneity. For both types of signatures, dsMTL_iNMF outperformed the ensemble of 159 

local NMF models for any heterogeneity severity setting. Notably, even with increasing heterogeneity, 160 

the accuracy of dsMTL_iNMF to capture shared genes remained stable at approximately 100%, 161 

illustrating the robustness of dsMTL_iNMF against the heterogeneity’s severity shown in Figure 3c. In 162 

contrast, for the ensemble of local NMF, the gene selection accuracy of the shared signature 163 

continuously decreased to approximately 50% (20% of outcome-associated genes were shared among 164 

cohorts), while the gene selection accuracy of cohort-specific signatures continuously increased to 75% 165 

(20% of outcome-associated genes were shared among cohorts ) as shown in Figures 3a and 3b.  166 

 167 

Efficiencyof supervised dsMTL  168 

We aimed at determining the efficiency of supervised dsMTL using the real molecular data and the 169 

actual latency of a distributed network. Using a three-server scenario (see Table 2 Supplementary 170 

Results; two servers at the Central Institute of Mental Health, Mannheim; one server at BioQuant, 171 

Heidelberg University) we analyzed four case-control gene expression datasets of patients with 172 

schizophrenia and controls (median n=80; 8013 genes). Supplementary Table 3 shows the comparison 173 

between dsLasso and mean-regularized dsMTL_net, which were trained (cross-validation + training) 174 

and tested in approximately 8min and 10min, respectively, with the time-difference being due to the 175 

increased network access of dsMTL. The prediction accuracy of dsMTL was slightly higher than that of 176 

dsLasso, consistent with our previous study13. Regarding model interpretability, dsLasso captured a 177 

signature comprising 38 genes but could not distinguish shared and cohort-specific effects. Mean 178 

regularized dsMTL identified a signature with 10 genes shared among all cohorts, with 163 genes 179 

shared by two cohorts, as well as three cohort-specific signatures comprising 1532 genes.  180 
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 181 

Efficiency of unsupervised dsMTL  182 

The cohorts and server information is shown in Supplementary Table 4. It took 34.9 minutes (1,003 183 

times network accesses) to train a dsMTL_iNMF model with 5 random initializations (~7 min for each 184 

initialization). The factorization rank k=4 was selected as the optimal parameter. In Supplementary 185 

Figure 1, the objective curve illustrates that the training time was sufficient for model convergence. In 186 

this analysis, a shared signature comprising 473 genes between SCZ and BIP was identified, while two 187 

disease-specific signatures containing 37 genes for SCZ and 152 genes for BIP, respectively, were found.  188 

 189 

 190 

 191 

Discussion 192 

We here present dsMTL – a secure, federated multi-task learning package for the programming 193 

language R, building on DataSHIELD as an ecosystem for privacy-preserving and distributed analysis. 194 

Multi-task learning allows the investigation of research questions that are difficult to address using 195 

conventionalML, such as the identification of heterogeneous, albeit related, signatures across datasets. 196 

The implementation of a privacy-preserving framework for the distributed application of MTL is an 197 

essential requirement for the large-scale adoption of MTL. Using such a distributed server setup, we 198 

demonstrate the applicability and utility of dsMTL to identify biomarker signatures in different settings. 199 

For applications where the target biomarker signatures are different, but relate to an overlapping set 200 

of features (explored here as the ‘heterogeneous’ case), conventional machine learning would not be 201 

a meaningful algorithm choice. We show that MTL is able to identify the target signatures with high 202 

confidence and may thus be a reasonable choice for a diverse set of interesting analyses. As mentioned 203 

above, a particularly noteworthy application is comorbidity modeling, where the target signatures 204 
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index the shared (although potentially heterogeneously manifested) biology of multiple, clinically 205 

comorbid conditions. Such analyses could potentially be a powerful, machine learning-based extension 206 

of comorbidity modeling approaches based on univariate statistics that have already been very useful 207 

for characterizing the shared biology of comorbid illness17. We show that unsupervised MTL can 208 

disentangle the shared from cohort-specific effects, demonstrating its potential utility for comorbidity 209 

analysis. Other applications for this method include the analysis of biological patterns shared across 210 

clinical symptom domains, between clinical and demographic characteristics, or with digital measures, 211 

such as ecological momentary assessments. 212 

The use of dsMTL follows the concept of the so-called “freely composing script” in the DataSHIELD 213 

ecosystem. It organizes a given dsMTL workflow as a free composition of dsMTL, DataSHIELD, and local 214 

R commands (e.g. R base functions, customer-defined functions and CRAN packages) into a script, such 215 

that the geo-distribution of datasets and the federated computation are transparent to users. This 216 

concept is similar to that of the “freely composing apps” used in a recently presented federated ML 217 

application18, which allows flexible scheduling of functions in the form of apps and improves the 218 

federated data analysis flexibility for users.  In addition to dsMTL, other packages in the DataSHIELD 219 

ecosystem exist for e.g. “big data” storage and management19, various statistical tests7,19 and deep 220 

learning19,20.  221 

Interesting future developments of the dsMTL approach could include the implementation of 222 

asynchronous communication, which provides a probabilistically approximate solution but faster 223 

convergence21,22. Furthermore, integration of other popular systems for ML, such as  tensorflow23, for 224 

which interfaces with the R language already exist, would provide valuable additions to the DataSHIELD 225 

system. Finally, a noteworthy consideration is an architecture underlying the distributed data 226 

infrastructure. DataSHIELD builds on a centralized (“client-server”) architecture and each data provider 227 

needs to install a well-configured data warehouse. Such infrastructure is suitable for long-term 228 

collaboration scenarios and large consortia projects that conduct a broad spectrum of complex 229 

analyses requiring high flexibility. However, in other scenarios that require more temporary and easy-230 
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compute collaboration setups, a server-free or decentralized architecture24 might be more suitable, 231 

because the cost of data provider for participating is low. 232 

In conclusion, the dsMTL library for the programming language R provides an easy-to-use framework 233 

for privacy-preserving, federated analysis of geographically distributed datasets. Due to its ability to 234 

disentangle shared and cohort-specific effects across these datasets, dsMTL has numerous interesting 235 

application areas, including comorbidity modeling and translational research focused on the 236 

simultaneous prediction of different outcomes across datasets.  237 

 238 

 239 

Methods 240 

Modeling 241 

All methods part of dsMTL share the identical form,  242 

𝐦𝐢𝐧
𝛉

𝓛(𝛉) + 𝛌𝐒(𝛉) + 𝐂ℵ(𝛉) 243 

where ℒ(𝜃) is the data fitting term (or loss function), the major determinant of the solutions obtained 244 

from model training. ℵ(𝜃)  and 𝑆(𝜃)  are the penalties of 𝜃  with the aim to incorporate the prior 245 

information. ℵ(𝜃) is a non-smooth function and able to create sparsity, while 𝑆(𝜃) is smooth. 𝜆 and 𝐶 246 

are the hyper-parameters to control the strength of the penalties. More technical details can be found 247 

in the supplementary methods. 248 

In dsMTL, two approaches for sharing information across cohorts are included, 1) shared parameters 249 

and 2) cross-task regularization, leading to a slightly different distributed computation. The shared 250 

parameters are estimated using all cohorts. For cross-task regularization, the cohort-specific 251 

parameters are estimated using only the local data, and then tuned by considering parameters from 252 

other cohorts.  253 
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Efficiency 254 

Most dsMTL methods aim at training an entire regularization tree. The determination of the λ 255 

sequence controls the tree's growth and is essential for computational speed. The λ sequence should 256 

be accurately scaled to both capture the highest posterior and avoid overwhelming computations. 257 

Inspired by a previous study25, we estimate the largest and smallest λ from the data by characterizing 258 

the optima of the objective using the first-order optimal condition and then interpolate the entire λ 259 

sequence on a log scale (see supplementary methods for more details). In addition, several options are 260 

provided to improve the speed of the algorithms by decreasing the precision of the results, i.e., 1) the 261 

number of digits of parameters for transformation can be specified to reduce the network latency; 2) 262 

several termination rules are provided, some of which are relaxed; 3) the depth of the regularization 263 

tree can be shortened. More details can be found in supplementary methods.  264 

Besides the efficiency of the federated ML/MTL methodology, the import/export of “big data” cohorts 265 

is also crucial for computational efficiency, where e.g. uncompressed GWAS data requires tens of 266 

gigabytes, leading to time-consuming data import. dsMTL was designed to support a wide variety of 267 

data types. For this, an architecture package resourcer19 developed by the DataSHIELD community was 268 

incorporated to facilitate the efficient import and export of large-scale datasets in compressed formats. 269 

For example, in DataSHIELD, GWAS data of the PLINK file formats can be read and processed using the 270 

software PLINK26 as the backend19. 271 

Security 272 

dsMTL was developed based on DataSHIELD8, which provides comprehensive security mechanisms not 273 

specific to machine learning applications. For example, 1) DataSHIELD requires the data analysis to 274 

only occur behind the firewall; 2) each server is only allowed to communicate with a set of clients with 275 

fixed IP addresses; 3) the network communication is protected by an SSL protocol; 4) an R parser8 276 

implemented on the server rejects the calling of unwanted functions; and 5) the so-called ‘disclosure 277 

control’8 on the server ensures that the returned response does not contain any disclosive information. 278 
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In addition, several permissions can be set by the data providers to fully control the usage of their data. 279 

These permissions describe the degree of accessibility of data and functions on the server i.e. “which 280 

users can perform what actions on what data”. In an extremely secure example, a user could be 281 

granted to check the summary of a given dataset but cannot perform any actions because no functions 282 

were granted. With these settings, DataSHIELD allows customizing the security protection strategies 283 

according to the specific requirements of the applications. For statistical and machine learning analyses, 284 

DataSHIELD assumes that summary statistics are safe to share.   285 

dsMTL inherits all these security mechanisms. In addition, we considered potential ML-specific privacy 286 

leaks, such as membership inference attacks27 and model inverse attacks28. Inverse attacks aim at 287 

extracting the individual observation-level information from the models. Membership inference 288 

attempts to decide if an individual was included in a given training set using the model. All these 289 

techniques require a complete model for inference. Since multi-task learning returns multiple matrices, 290 

returning an incomplete model could be one strategy against these attacks. For example, dsMTL_iNMF 291 

in dsMTL only returns the homogenous matrix (H), whereas the cohort-specific components (𝑉𝑘,𝑊𝑘) 292 

never leave the server. For example, in a two-server scenario, one (H) out of five output matrices is 293 

transmitted between the client and the servers. With such an incomplete model, inverse construction 294 

of the raw data matrix becomes difficult, and the risk of an inverse attack and membership inference 295 

is reduced. For most biomedical analyses, the H matrix is sufficient for subsequent studies. In addition, 296 

if the analyst was authorized to access the raw data of the server, the so-called “data key mechanism” 297 

(see supplement) would allow the analyst to retrieve all component matrices. For supervised multi-298 

task learning methods in dsMTL, all models have to be aggregated within the clients, and thus we 299 

suggest the data providers enable the option on the server that rejects a returned coefficient vector 300 

containing parameter numbers exceeding the number of subjects. In this way, the model is not 301 

saturated and more robust to an inverse attack.  302 

Proof of concept with simulation and actual data 303 
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Two case studies and speed-tests were conducted to demonstrate the suitability of dsMTL methods to 304 

analyze heterogeneous cohorts, compared to federated ML methods and ensemble of local models 305 

regarding the prediction performance, interpretability and computational speed. An overview of 306 

methodological aspects related to the case studies is detailed below. For an extensive methodological 307 

description, please see the supplementary Methods.  308 

Case study 1. In this case study, the heterogeneous cohorts were generated with the same set of 309 

outcome-associated genes. These however showed different directionality of their respective 310 

associations with the outcome. A three-server scenario was simulated. 150 out of 500 features with 311 

random signs across cohorts were simulated. Seven tests were created for simulating different n/p 312 

(
sample size 

gene number
) ratios. The n/p ratio was {1.2, 1, 0.9, 0.6, 0.5, 0.3, 0.15}  with the number of subjects 313 

{600, 500, 450, 300, 250, 150, 75} for each test. 500 genes were created for each server. The test 314 

sample consisted of 200 subjects for each server. Data were generated as follows: 315 

Given gene number p = 500, the models of three cohorts were {𝑤(1), 𝑤(3), 𝑤(3)} where 𝑤(.) = p × 1. 316 

A shared signature comprising 150 genes was generated for each 𝑤(.) but with random signs, 𝑤(.)
𝑖 =317 

{
2 × (𝜌 − 0.5) × 𝑁(1, 0.1) 1 < 𝑖 < 150 

0 others
, 𝜌~Bernoulli(

1

2
).  The expression values of each subject 318 

across cohorts were generated as x = 1 × p where 𝑥𝑗~𝑁(0,1). The numeric outcome (e.g. symptom 319 

severity) y = xw(𝑖)  in cohort i   was standardized in a normal distribution 𝑁(0, 1) , then model-320 

irrelevant noise with 50% of the variance of the true signal was added y = y + 𝑁(0, 0.5).  321 

dsMTL_L21 and dsLasso were trained as the federated learning system, and the hyper-parameter was 322 

selected using 10 fold in-cohort cross-validation. For glmnet, the ensemble technique was only applied 323 

on the gene selection due to the consistent gene set of their signatures. The mean squared error (mse) 324 

was used as the measure of prediction performance. To account for the sampling variance, we 325 

repeated each analysis 100 times.  326 
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Case study 2. In this case study, two heterogeneous RNA-seq cohorts were created to simulate a 327 

comorbidity analysis, where the genes were separated to be part of either a shared signature among 328 

cohorts, cohort-specific signatures or diagnosis-unassociated genes. The dsMTL_iNMF was compared 329 

to the ensemble of local NMF regarding the selection accuracy of shared/cohot-specific genes, in 330 

particular impacted by the severity of heterogeneity. Here the severity of heterogeneity refers to the 331 

proportion of the genes harbored by the shared signature over all diagnosis-associated genes. The data 332 

simulation protocol for RNA-seq data can be found in the Supplementary Methods.   333 

A two-server scenario was simulated. As shown in Supplementary Table 1, for the data of each server, 334 

1000 genes and 200 subjects were simulated, 50% of the genes were diagnosis-unassociated and the 335 

remaining genes were part of the disease signature. The genes comprised by shared signatures were 336 

identical for data of two servers, and the genes comprised by cohort-specific signatures did not overlap. 337 

The case-control ratio was balanced for each server. Four tests were performed by varying the 338 

proportion of genes in the shared signature over all diagnosis-associated genes from 20% to 80%. 339 

The training of dsMTL_iNMF results in three outputs related to the original input data: the shared gene 340 

‘exposure’ (H), cohort-specific gene ‘exposure’ (V) and sample ‘exposure’ (W). We measured the 341 

association between the sample exposure and the diagnosis as the weight of each latent factor. The 342 

shared( or specific) gene signature was identified as the weighted summation of the shared (or specific) 343 

gene exposures over latent factors. To quantify the important genes related to a given signature, we 344 

binarized the gene signature according to the mean (0-1 vector, values larger than the mean were 345 

assigned). To assess the performance of the gene identification, we associated the selected genes set 346 

with the ground truth (0-1 vector, signature genes were 1). The assessment was applied to shared and 347 

cohort-specific genes in parallel. Based on this metric, three gene sets were derived as output from 348 

dsMTL_iNMF, called dsMTL_iNMF-H, dsMTL_iNMF-V1 and dsMTL_iNMF-V2, and these related to the 349 

shared, cohort 1 specific and cohort 2 specific gene signature, respectively. The same strategy was 350 

applied to analyze the ensemble of local NMF models. For each cohort, the specific gene signature was 351 

the weighted summation of gene exposure over latent factors, and then binarized as the specific gene 352 
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set  (called local-NMF1 and local-NMF2). The shared gene signature was identified as the sum of  the 353 

specific gene signature over cohorts, and then binarized as the shared gene set(NMF-bagging). We 354 

then compared 1) NMF-bagging and dsMTL_iNMF-H for the accuracy related to the isolation of shared 355 

genes; 2) dsMTL_iNMF-V1 and local-NMF1 as well as dsMTL_iNMF-V2 and local-NMF2 for the accuracy 356 

of isolating cohort-specific genes. 357 

Computational speed of supervised dsMTL. We aimed at identifying the efficiency of supervised 358 

dsMTL using real molecular data and given the real network latency. Four independent schizophrenia 359 

case-control cohorts were used for this analysis. The training cohorts consisted of three datasets 360 

comprising prefrontal cortex gene expression data (available from the GEO repository under accession 361 

numbers GSE53987, GSE21138 and GSE35977). A detailed description of these datasets can be found 362 

in their respective original publications29-31. The dataset used for algorithm testing was from the HBCC 363 

(n=422) cohort comprising genome-wide gene expression data quantified by microarray (dbGAP ID: 364 

phs000979.v3.p2). A detailed description of this dataset can be found in the original publication32. As 365 

shown in Supplementary Table 2, three servers were used for training algorithms. Two servers were 366 

held at the Central Institute of Mental Health, Mannheim while the third was positioned at the 367 

BioQuant institute, Heidelberg.  368 

Using this data, we repeated a previously described analysis13, in order to evaluate computational 369 

speed in a federated analysis setting. Here we show the formulation of the mean regularized MTL using 370 

dsMTL_net: 371 

The cohort-level batch effect was assumed to be Gaussian noise affecting the true coefficient of gene 372 

i and cohort j 𝑤𝑖𝑗 = 𝑤𝑖 + 𝜖𝑗 , 𝜖𝑗 ∈ 𝑁(𝜇, 𝜎) . Hence, the average model 𝑤𝑖̅̅ ̅  across cohorts was an 373 

unbiased estimator for the true coefficient, and therefore the squared penalty |𝑤𝑖𝑗 − 𝑤𝑖̅̅ ̅|
2

 was 374 

incorporated to penalize the departure of each model j to the mean. The complete formulation was 375 

min
𝑊

∑ ∑
1

𝑛𝑘

𝑛𝑘
𝑖=1 log(1 + 𝑒

−𝑌𝑖
(𝑘)

(𝑋𝑖
(𝑘)

𝑊,𝑘)
)3

𝑘=1 + 𝜆||𝑊||1 + 𝐶||𝑊𝐺||2
2, 376 
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where  𝐺 =

[
 
 
 
 

2

3
0

−1

3
−1

3

2

3
0

0
−1

3

2

3

2

3

−1

3
0

0
2

3

−1

3
−1

3
0

2

3 ]
 
 
 
 

 377 

 378 

Computational speed of unsupervised dsMTL. Here, we analyzed the time efficiency in applying 379 

dsMTL_iNMF on two real datasets based on the real network latency. Two processed RNA-seq case-380 

control cohorts comprising patients with schizophrenia (GSE16437633 ) and bipolar disorder 381 

(GSE13449734) were retrieved from the GEO database and converted into a matrix format for the 382 

analysis. As shown in Supplementary Table 4, the data were stored on servers in Mannheim and 383 

Heidelberg.  384 

 385 

 386 

 387 

Figures 388 

 389 

Figure 1. Schematic illustration of dsMTL using comorbidity modeling of schizophrenia and 390 

cardiovascular disease as an example. Multiple datasets stored at different institutions are used as a 391 

basis for federated MTL. dsMTL was developed in the DataSHIELD ecosystem, which provides 392 
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functionality regarding data management, transmission and security. Data are analyzed behind a given 393 

institution’s firewall and only algorithm parameters that do not disclose personally identifiable 394 

information are exchanged across the network. dsMTL contains algorithms for supervised and 395 

unsupervised multi-task machine learning. The former aims at identifying shared, but potentially 396 

heterogeneous signatures across tasks (here, diagnostic classification for schizophrenia and 397 

cardiovascular disease). Unsupervised learning separates the original data into shared and cohort-398 

specific components, and aims at revealing the corresponding outcome-associated biological profiles.  399 

 400 

 401 

Figure 2. Analysis of ‘heterogeneous’ signatures of continuous outcomes in simulated data stored 402 

on three servers. The figure shows the a) prediction accuracy expressed as the mean squared error 403 

and b) the feature selection accuracy for different subject/feature number ratios. The respective 404 

values were averaged across the three servers, and across 100 repetitions, in order to account for the 405 

effect of sampling variability.  406 

 407 

 408 

 409 
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 410 

 411 

Figure 3. The gene identification accuracy for shared and specific signatures using simulated data. a) 412 

the identification accuracy of important genes for cohort 1. b) the identification accuracy of important 413 

genes for cohort 2. c) the identification accuracy of genes comprised in the shared signature. Local-414 

NMF1 and Local-NMF2 were the cohort-specific gene sets identified by local NMF, which were 415 

combined into “NMF-bagging” for the shared gene set. dsMTL_iNMF-H was the predicted shared gene 416 

set using dsMTL_iNMF. dsMTL_iNMF-V1 and dsMTL_iNMF-V2 were the predicted cohort-specific gene 417 

sets identified using dsMTL_iNMF (see Supplementary Figure 1). The proportion of genes harbored by 418 

the shared signature was varied from 20% to 80% illustrating the impact of the heterogeneity severity. 419 

The model was trained using rank=4 as model parameter. The results for a broader spectrum of rank 420 

choices can be found in Supplementary Figure 2 illustrating that the superior performance of 421 

dsMTL_iNMF was not due to the choice of ranks. 422 

 423 
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