What do we gain when tolerating loss? The information bottleneck, lossy compression, and detecting horizontal gene transfer

Apurva Narechania¹*, Rob DeSalle¹, Barun Mathema², Barry Kreiswirth, and Paul J. Planet¹,⁴,⁵*

¹Institute for Comparative Genomics, American Museum of Natural History, New York, NY
²Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
³Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ
⁴Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA
⁵Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

*Correspondence to: Apurva Narechania (anarechania@amnh.org) & Paul J. Planet (planetp@email.chop.edu)

Word Count
Abstract: 263
Body: 4824

Running Title: Information bottleneck for detecting recombination
Abstract

Most microbes have the capacity to acquire genetic material from their environment. Recombination of foreign DNA yields genomes that are, at least in part, incongruent with the vertical history of their species. Dominant approaches for detecting such horizontal gene transfer (HGT) and recombination are phylogenetic, requiring a painstaking series of analyses including sequence-based clustering, alignment, and phylogenetic tree reconstruction. Given the breakneck pace of genome sequencing, these traditional pan-genomic methods do not scale. Here we propose an alignment-free and tree-free technique based on the sequential information bottleneck (SIB), an optimization procedure designed to extract some portion of relevant information from one random variable conditioned on another. In our case, this joint probability distribution tabulates occurrence counts of k-mers with respect to their genomes of origin (the relevance information) with the expectation that HGT and recombination will create a strong signal that distinguishes certain sets of co-occurring k-mers. The technique is conceptualized as a rate-distortion problem. We measure distortion in the relevance information as k-mers are compressed into clusters based on their co-occurrence in the source genomes. This approach is similar to topic mining in the Natural Language Processing (NLP) literature. The result is model-free, unsupervised compression of k-mers into genomic topics that trace tracts of shared genome sequence whether vertically or horizontally acquired. We examine the performance of SIB on simulated data and on the known large-scale recombination event that formed the Staphylococcus aureus ST239 clade. We use this technique to detect recombined regions and recover the vertically inherited core genome with a fraction of the computing power required of current phylogenetic methods.
Introduction

Whole microbial genomes are being sequenced at an unprecedented rate.1 Focused sequencing of key organisms and broad sequencing of microbial environments have expanded our knowledge of evolution and the microbiosphere2-3. However, the production of data is outstripping our ability to analyze it4. Most work in molecular evolution is grounded in sequence alignment and phylogenetic tree reconstruction. However, whole genome alignment breaks down with increasing diversity, and tree-based techniques suffer from an exponential increase in compute time with broader taxon sampling. The evolution of microbes is particularly challenging because horizontally transferred elements contribute historical signal that is unrelated to vertical descent. Most dominant techniques for capturing horizontal gene transfer (HGT) and recombination require either alignment of reads across a reference genome (eg., single nucleotide polymorphism (SNP) based analysis or whole genome alignment5). Where global alignment is impossible, phylogenomic tools require all-against-all analyses designed to fix genes into aligned orthologous groups6-10. All of these approaches require careful curation, tree-building, HGT/Recombination detection analysis, and deliberate sampling to limit data to reasonable scales. For larger, unbiased datasets that include as much natural variation as possible, these approaches are not sustainable. To handle the onslaught of genomes, we need tools that can tolerate information loss without sacrificing knowledge of key evolutionary events.

Lossy compression, where an individual or algorithm makes decisions about which data are important (or relevant) from a large body of information11, may offer a solution. To do this in a principled way, the relevance of a given dataset can be measured as information retained
about some other correlated variable. For example, in unsupervised natural language processing (NLP) large corpora of texts are distilled to a few topics that reflect overall themes by comparing patterns of co-occurring words in the source texts. In topic modeling of this sort, the texts themselves are the relevance variable. The goal is to cluster the overall word distribution with respect to the documents from which they arise. If X is the original data distribution, T its compressed representation, and Y the relevance variable, the challenge is to pack X into as few clusters, T, as possible without sacrificing too much information, Y. This idea was first described by Tishby, Pereira and Bialek as the information bottleneck (IB)\(^1\). It was premised on rate distortion, Shannon’s original theory of lossy compression which yoked signal distortion to the rate at which that signal can be encoded\(^2\). Distortion is severe if the signal is forced through a small communication channel and gets cleaner as the channel widens. The IB’s primary innovation was the use of a relevance variable to quantify this distortion. Topic modeling was one of this technique’s first applications.

Topic modeling has become an important part of the NLP literature with a number of wider applications to unsupervised machine learning. The dominant technique in the field is Latent Dirchilet Allocation (LDA)\(^3\), a probabilistic method, that like the IB, considers each document as a mixture of topics. Some groups have applied this idea to whole genomes\(^4\), and since the publication of STRUCTURE, LDA has become foundational in the genetics literature where populations are inferred by the distribution of alleles at measured loci\(^5\).

Despite LDA’s popularity and success, a number of authors have shown that unbalanced sampling can lead to erroneous or missed population assignments\(^6\). LDA also makes a number of statistical assumptions including the assignment of hyperparameters and a Dirchilet prior\(^7\).
In contrast, the IB is model free and less likely to suffer from size sample bias. The distortion measure emerges from the analysis of the relevance variable, revealing underlying topics without having to set any distributional parameters other than the number of clusters expected.

Because it is model free, the IB is a powerful approach for microbial genomics where very little is known about the diversity of the organisms in nature or their distribution. Genomes are living documents that can be sliced into words of arbitrary size. This metaphor is straightforward and has been explored with respect to other NLP techniques elsewhere\(^1\)\(^\text{21}2\)\(^23\). In a genomic context, where words are k-mers (X) and documents (Y) are their genomes of origin, we hypothesized that IB derived topics (T) may represent co-occurring groups of k-mers that highlight shared ancestry. These topics might include k-mers arranged in co-linear blocks corresponding to a single element, or k-mers distributed across the genome that were inherited in concert. In either case, compression of these k-mers into topics is guided by how often they co-occur with respect to their genomes of origin. This mechanism will tend to group adjacent k-mers in a recombined region because the recombination event is likely restricted to just a subset of taxa. Additionally, shared tracts of co-occurring k-mers common to all genomes, offer a simple, operational definition of a genomic “core”.\(^7\)\(^6\) For microbial genomes where HGT is rampant\(^2\)\(^4\)\(^2\)\(^5\), we can therefore use the technique to learn which portions of the genome form the vertically inherited core, and which portions have been recombined, or inherited horizontally. In the NLP topic modeling analogy, the core genome of a species could be considered the set of meaningful words across every book in a specialized library, while recombined regions are like themes or ideas restricted to only certain shelves.
Here we apply the IB to microbial genomes. Remarkably, our approach identifies recombination tracts without making any attempt to model evolution, annotate genes, reconstruct trees, or build alignments. In addition, the IB treats genic and intergenic portions of the genome equally, obviating the need for gene-based pangenomic analysis26. Applying the information bottleneck to a k-mer occurrence matrix identifies genome segments with shared vertical or horizontal evolutionary history in a fraction of the time used by other approaches.

\textbf{Theory and Implementation}

Consider a set of genomes each of which is chopped into overlapping k-mers. One way to measure the overall relatedness of two of these genomes is to compare their k-mer conditional distributions. To do this we can define

$$p(x|y) = \frac{n(x|y)}{\sum_y n(x|y)}$$

where \(X\) is the set of all k-mers, \(Y\) the set of all genomes, and \(n(x|y)\) is the occurrence count of the k-mer, \(x\), in genome \(y\). The exercise would then be to group genomes with similar k-mer distributions across all k-mers. In the natural language processing literature, this idea was formalized as distributional clustering27.

However, finding the right distance or distortion measure between these distributions is non-trivial. It is especially difficult when the important features of the signal are unknown.

Imagine compressing music into MP3s without data on which frequencies are most important.
for human perception, or determining themes from a body of literature if words were
decoupled from their books. Even when important components of the signals are known, most
clustering algorithms will resort to domain specific, pairwise distances or quantization to find a
compressed set of classes with either high levels of internal connectivity or low levels of
internal distortion. However, domain specific distortions reduce the usefulness of these
clustering techniques. For example, in bioinformatics, clustering based on sequence alignment
is subject to all the vagaries of the alignment procedure and parameters therein.

An antidote to these narrow clustering applications is to operate in an information
theoretic space where the primary measurement is relevant quantization\(^{12}\). The IB extends
Shannon’s rate distortion theory by guiding it with an additional, orienting variable. Tishby et
al\(^{12}\) enriched a theory about transmission efficiency with the concept of relevance \((Y)\), or the
value of the information transmitted. The choice of \(Y\) defines relevant features in the signal. If \(X\)
and \(Y\) are tabulated as a joint probability distribution, the information that \(X\) provides about \(Y\) is
squeezed through a simpler representation, \(T\). For the technique to work, the two variables in
our joint distribution \(p(x,y)\) must be non-independent, or more precisely, must have positive
mutual information, \(I(X,Y)\):

\[
I(X,Y) = \sum_x \sum_y p(x)p(y|x) \log \frac{p(y|x)}{p(y)}
\]

\(T\) is now a meaningful compression of the data, maximizing the mutual information between
the clusters and documents, \(I(T;Y)\), while minimizing the mutual information between the
words and the clusters, \(I(T;X)\). The IB is a classic optimization problem.
With the distribution in hand and implemented as a k-mer occurrence matrix, we can quantify the set of all k-mers directly by minimizing information lost about their source genomes. If X is compressed into T then we can find the optimal assignments for X by minimizing the following Lagrangian with respect to Y:

$$\mathcal{L}[p(t|x)] = I(X;T) - \beta I(X;Y)$$

This formulation balances the compactness of X, with the erosion of information about Y. β is a multiplier that slides through the optimization landscape. As beta approaches 0, k-mers are clumped into fewer and fewer clusters, emphasizing compression. As beta approaches infinity, every k-mer is its own cluster, preserving all relevant information. Of course, collapsing all k-mers into one cluster is overly reductive, and assigning each k-mer to its own cluster is meaningless. The IB negotiates these two extremes (Figure 1). In NLP, the result is a set of clusters that coalesce into topics over a body of literature. In genomics, these same clusters might yield co-occurring and/or spatially co-located k-mers with distinct biological and/or evolutionary meaning.

Remarkably, minimizing the Lagrangian above has an exact, optimal solution. The most surprising outcome of this solution is that the relative entropy, or Kullback Liebler divergence, emerges as the distortion measure for the information bottleneck. The relative entropy is a fundamental quantity in information theory, and in the IB context, it measures the distortion between the points, x (k-mers), as they are quantized into their clusters, t, with respect to the relevance variable, y (genomes):
Calculation of the optimal solution requires soft clustering, that is, any given k-mer can exist in more than one cluster. But soft clustering can be slow and difficult to devise. Early implementations of the information bottleneck therefore settled on hard clustering approximations. In hard or deterministic clustering, each k-mer is assigned to only one cluster, an assumption that eases computational burden but does not generally arrive at globally optimal solutions.

The most obvious hard clustering algorithm is agglomerative, or bottom-up. Consider again the set of all genomes, X, and their compressed representation, T. If we start with a scenario where every k-mer in X occupies its own singleton cluster, we can systematically reduce the dimensionality by merging clusters that minimize some distortion score. This greedy merging procedure produces a tree. But agglomerative clustering does not yield stable cluster membership. The tree varies every time the process is reinitialized. Worse, its computation is expensive, requiring cubic time complexity and quadratic memory complexity. In a genomic context where we routinely deal with billions of k-mers, this approach is a nonstarter.

Instead, we implemented a sequential clustering procedure where the number of clusters is defined at the outset and remains consistent throughout the calculation. From an initial random distribution of all k-mers across this set of clusters, we draw one k-mer out, and represent it as a singleton. Now using greedy optimization, we merge this singleton into one of

\[D_{KL} = \sum_y p(y|x) \log \frac{p(y|x)}{p(y|t)} \]
the existing bulk clusters. Slonim’s sequential information bottleneck (SIB) employs the

Jensen-Shannon divergence in the cost of merging a k-mer, \(x \), into a cluster, \(t \):

\[
d(x, t) = (p(x) + p(t)) \times D_{JS}(p(y|x), p(y|t))
\]

A k-mer will join a new cluster only if its new address reduces the total distortion. Otherwise it will remain in its existing cluster. With respect to our initial random conditions, this algorithm is guaranteed to converge to a local optimum. We mitigate the risk of getting trapped in local optima by testing several random initializations.

Once the clusters stabilize, we quantify the information captured by calculating the normalized mutual information, \(NMI = I(T;X) / I(X;Y) \). Trivially, \(NMI = 1 \) when each k-mer occupies its own cluster. The curve traced between \(T = 1 \) (\(NMI = 0 \)) and \(T = x \) is called the relevance compression curve. This is analogous to the optimization of \(\beta \) in the Lagranian above, but for the deterministic case involving hard clustering. As with \(\beta \), the shape of this curve describes the compressibility of the data.

The most important aspect of the SIB, and the reason we chose it for this work, is that it makes the concept of the information bottleneck accessible to modern genomics. The time complexity is linear in the number of k-mers and the number of clusters. This improvement makes information theoretic NLP a useful tool to discover genomic topics encoded as clusters of co-occurring k-mers.

Results and Discussion
221

222 The bottleneck in test: one large, simulated HGT event

223 The simple example in Figure 2 illustrates how the bottleneck works in practice. In
224 SimBac34, we simulated four 1 megabase genomes with a single 200 kilobase recombination
225 event. The event is common to genomes 0, 2 and 3, but is not found in strain 1. We initialized
226 the simulation with a random distribution of 19-mers across five clusters. To learn the true
227 distribution, we leveraged information in our relevance variable, the source genomes. The inset
228 table shows how this distribution evolves as we iterate through the sequential information
229 bottleneck (SIB). Since the relevance variable is expected to drive the unsupervised
230 compression of these k-mers, we also included the genomes in this table. Counts across each
231 row therefore reflect how many times a k-mer in that cluster is found in a particular genome.
232 The SIB starts by randomly distributing the k-mers, destroying all information available
233 in the original occurrence matrix. At the outset, the normalized mutual information is therefore
234 zero. With each SIB loop, we attempt to reclaim as much of this information as possible given
235 the number of clusters we choose to model. Because the technique is inherently lossy, the SIB
236 will never recover all of the information originally encoded, but aims to extract the most salient
237 themes, or topics.

238 In the example shown here, after the first loop, cluster 3 (the cluster designations are
239 arbitrary) has attracted the most k-mers in roughly even proportion across the genomes. The
240 normalized mutual information has also jumped to 0.69, indicating that just one pass of sorting
241 k-mers into five bins effectively captures 70\% of the information available in the original
242 occurrence matrix. The second and third loops refine the other clusters into mutually exclusive
sets and add to cluster 3, which strengthens into a genomic “core” defined here as the cluster of k-mers with the highest average representation across all genomes and the lowest index of dispersion.

By the third pass through the k-mers, the SIB reaches a plateau in the normalized mutual information, and the counts of k-mers across clusters and genomes have stabilized. For this particular set of starting conditions, the SIB reclaims nearly 91% of the information in the original matrix. To put this in perspective, we have effectively reduced the outsized, uninterpretable dimensions of our original data – 1.25 million unique k-mers – into the 5 clusters we set out to model, while sacrificing only 9% of the original information present in the relevance variable.

In a genomic context, we hypothesized that the spatial organization of k-mer clusters would correspond to areas of common ancestry. In Figure 2, we mapped k-mers from various clusters to the genome backbones of strain 1 and strain 2. Cluster 3 occupies the outer tracks of both strains. This cluster emerges as a dense block of shared genome sequence and corresponds to our definition of a bottleneck-defined core. But the block is interrupted by our simulated recombination event. Since this event is restricted to only genomes 0, 2 and 3, the region is absent from the core. Its k-mers are instead captured by cluster 4 while cluster 1 serves as a counterpoint, containing the ancestral state prior to the simulated event.

Several smaller, simulated HGT events

Though large hybridization events like the one we simulated here do occur (see our analysis of ST239 S. aureus below), smaller and more abundant events typify most microbial
To see how the bottleneck performs in this more challenging case, we simulated ten 1 megabase genomes with a background mutation rate of 0.01 and a recombination rate of 0.0001, resulting in 57 discrete events averaging 500 basepairs in size (from 6 to 2884 bases). In Figure 3, the innermost track marks the locations of these events.

The ability to detect horizontally transferred sequence is strongly dependent on its evolutionary distance from the genome background. To visualize this dependence, we modulated the divergence of our 57 recombination events (an arbitrary number derived from the first simulation) and measured the effect on the core cluster, one of 60 modeled for this simulation. The innermost histogram in Figure 3 shows the core pattern with an external (between species) divergence rate of 0.1, an order of magnitude higher than the background. We observe clear “valleys” in the k-mer distribution of the core that are coincident with the positions of our 57 events. But this pattern steadily disappears as we sweep through lower rates of divergence (0.05, 0.03, and 0.01). The outermost track models the same mutation rate as the background, resulting in dulled or partially filled valleys in the core genome. Plots of core k-mers function almost as a photographic negative, highlighting blank spaces as regions of potential evolutionary interest.

The k-mers that would otherwise occupy these gaps, are sorted into other clusters because they are unique to only a subset of the genomes, and carry the recombination signal.

As we have shown in our first simulation, k-mers corresponding to the ancestral state should fall into a different cluster. Note that this does not necessarily mean that each side (donor and recipient) of an HGT event has its own cluster. Recall that compression is driven by genome origin. If a single common ancestor sustains multiple transfer events, all k-mers from those
events will merge into a single cluster because they are shared by the same subset of descendants.

The accounting becomes increasingly complicated when events overlap. Overlapping events might mix across clusters depending on their arrangement and how frequently they have been overwritten. When detection becomes difficult, we instead rely on an evolutionary event’s imprint on the core cluster. This approach exploits the idea of the core as a photographic negative or a clonal frame. The pattern of HGT events in this negative is evident by eye, but if the number of input genomes and the number of modeled clusters is large, visual inspection is a burden, and subject to error in interpretation. Instead we introduce a method based in change point detection to automatically detect changes in k-mer frequency. We specifically employ Bayesian change point detection to model probabilities of change in the k-mer frequency stream. As shown in Figure 4 change point probabilities spike at the start and end of HGT events.

In addition to change point detection, we note that if counts of k-mers in an HGT region are significantly lower than the rest of the core’s background (Wilcoxon, p < 0.05), these depletions can qualify as a simple signal marking some combination of HGT events. With these criteria, at a divergence rate of 0.1, the bottleneck captures 56 of the 57 simulated events, missing only the smallest.

The k-mer skim

Accounting for every overlapping k-mer in each strain is an unnecessarily close reading of our genomic text. We can save on both memory and computation by selecting fewer k-mers
(skimming) from our source genomes with some set space between each sample. In Figure 5 we show that even when sampling every 25th 19-mer in our ten 1 Mbase simulated genomes, we still detect 55 of our 57 recombination events. Because the bottleneck relies on the signal inherent in k-mer co-occurrence, as we reduce the density of our k-mer sampling, we lose detection of the smallest events first. However, the compute time savings more than compensate for this loss in sensitivity. While analyzing every 19-mer requires nearly 12 minutes, skimming every 25th reduces the runtime to 30 seconds. This compares favorably with the efficiency of both ClonalFrameML and Gubbins, the two dominant HGT detection methods in the literature. ClonalFrameML requires 110 seconds and captures only 47 of our 57 events. Gubbins finds 54 in 21 seconds. However, both ClonalFrameML and Gubbins require alignment and phylogenetic tree reconstruction, which both add massive prior computational cost and time.

Because the IB is alignment-free and tree-free, it is theoretically capable of handling larger datasets than any existing technology in reasonable amounts of time. To test this, we simulated 1000 1 Mb genomes with the same parameters as the smaller dataset shown in Figure 3. The simulation generated 620 unique recombination events. ClonalFrameML detected 564 (91%). Including time required to build a guide tree, this calculation consumed 32.5 CPU hours. Gubbins was slightly more accurate and significantly faster: 583 (95%) events over 16.3 CPU hours. Using Figure 5 as a guide, we ran the 1000 genome dataset through the SIB using a 25 base-pair skim. We detected an HGT imprint at 92% of sites in 1.5 CPU hours.

How well does the IB hold up under extreme evolutionary pressure?
To evaluate the performance of our technique with respect to recombination size and divergence rate, we simulated sets of ten 1 megabase (Mb) genomes for each variable. We set default parameters to 0.01 for background rate, 0.001 for recombination rate, 0.1 for HGT divergence rate, and 500 base pairs for average recombination tract size. We performed 100 replicates at each size and rate, and measured the imprint of the simulated events on the core cluster without the skim feature. Figure 6A shows this sweep for recombination tract length, and Figure 6B, for recombination tract divergence. In both cases, we observe saturating behavior. We see recombination imprints at 90% accuracy when events are larger than 100 base pairs with divergence rates of at least 0.02. Notably, our procedure can detect HGT in at least half of events that diverge at the very low rate of 0.005, well below the background. And only the very smallest recombination events (less than 7 basepairs) elude our technique completely.

Recombination tract length and divergence have direct and measureable effects on the efficacy of detection. As long as the total length of all recombination events is less than half the size of the genome, the core remains intact, and we can easily isolate HGT events of sufficient size and divergence. But recombination and background mutation rates are problematic because they redefine the core. For example, at high rates of recombination, every base of a 1 Mb genome is likely scrambled. Under such flux, some sites recombine several times. A high background mutation rate also disrupts stretches of common sequence that mark the core. As these rates increase, the core genome itself erodes. To measure this phenomenon, we again simulated 100 sets of ten 1 Mb genomes across a variety of recombination and background mutation rates. All three curves in Figure 7 show a steep decline in the size of the core with
increasing recombination rate. At rates of 0.01 and 0.1, we see no shared core at all. Each genome has essentially rewritten itself into something distinct from all others. Core genome signal grows stronger with lower background mutation, but even with background mutation set to essentially zero, a high recombination rate destroys the core.

The bottleneck in action: one large, real world hybridization event

We used genomes from ST239 *Staphylococcus aureus* to illustrate that our method can corroborate known, large scale recombination events found in nature. The ST239 strain is a hybrid: a segment from a CC30 (clonal complex 30) donor replaced nearly 20% of the homologous region in a CC8 strain. The evolutionary histories of genes across these segments are incongruent. Previous studies compared the histories of thousands of genes to reach this conclusion. Here, we attempt to localize this same phenomenon using the co-occurrence pattern of k-mers alone. We chose 10 genomes (GCA_000146385.1, GCA_000012045.1, GCA_000011505.1, GCA_000011265.1, GCA_000013425.1, GCA_000204665.1, GCA_0000159535.2, GCA_000027045.1, GCA_000017085.1, and SA21300), sampled from both the donor clade (CC30), the recipient clade (CC8), and genomes outside of the evolutionary event. When cut into overlapping 19-mers (no skim), these 10 genomes dissolve into 28.8 million k-mers, 4.72 million of which are unique.

Figure 8 highlights two of these 10 genomes, and three of the 60 clusters we modeled for this analysis. Both *S. aureus* COL (CC8) and *S. aureus* T0131 (ST239) share a large, congruent core. The gap in this core characterizes the dimensions of the recombination event, whose k-mers are split into two other clusters, shown here as the second and third tracks. Like subtopics
in a vast library, the bottleneck learns the complete structural evolution of the clade as tracts, or topics, of co-occurring sequence. The clusters themselves comprise an evolutionary model for the structural event and the core genome. This evolutionary model is derived not from traditional character-based phylogenetic analysis, but from the presence/absence pattern of k-mers squeezed into a predefined number of groups. Genome origin guides the k-mer sort by forming the basis of the distortion measure. We lose information in a controlled and quantitative way, and we short circuit the long and arduous tasks phylogenomic analyses require with an information theoretic procedure that runs for 2 hours on 1 CPU.

By definition, this sort of lossy compression is not perfect. In Figure 8, seemingly unrelated contaminants pollute the recombined region’s clusters. This is equivalent to channel noise. It recalls Shannon’s original formulation of the rate distortion problem. When we force all the signal in our k-mer occurrence matrix through a narrow five cluster channel, portions of the original message emerge garbled. In this case, modeling more clusters increases the rate of transmission, and reduces the distortion of the message received.

With respect to the information bottleneck, we can quantify this effect using a relevance-compression curve. Figure 9 shows curves for the ST239 genomes alongside 10 genomes of *Mycobacterium tuberculosis* and *Helicobacter pylori*. In all three cases, as the number of clusters modeled increases, we capture more normalized mutual information. The theoretical extremes for this curve are intuitive. At the origin, all the relevant information is destroyed. At the other end, we retain too much relevant information to interpret. The curve traced between these two extremes is a fingerprint of the data. A convex shape suggests natural structure easily modeled with just a few clusters. We see this in *M. tuberculosis*, a
species thought to be largely clonal with little recombination. On the other hand, data that resists compression flattens this curve. Highly recombinogenic species like *H. pylori* suffer this sort of steep information loss. Theoretically, the space above the curve for each species is unachievable by any process, forming an upper bound. The relevance-compression curve therefore defines absolute limits on the quantity and quality of information communicated as we sweep through a dilating channel. This approach introduces a new type of comparative genomics based not on alignments and trees, but on compression. We interpret the shape of the relevance compression curve as a proxy for evolutionary mode. A convex curve implies fewer recombination events and more vertical signal, whereas a flattened curve may signal a species with a more open pangenome.

In the case of ST239, asking for just two clusters – a very narrow channel – captures more than 40% of the relevant information. Remarkably, these two clusters separate the core from the recombined region. Even the simplest model learns the most prominent evolutionary process. Further along the curve, fifteen clusters capture almost all of the information. Beyond fifteen, the curve elbows, and modeling gains are slight. In this way, the relevance-compression curve defines the optimal number of clusters. But in the light of evolution this bend may have a deeper meaning. Fifteen clusters are enough to adequately capture the complete set of k-mer aggregation patterns across our chosen genomes. This point of diminishing returns may signify an opportunity for interpretive balance: not so many clusters that we drown dominant evolutionary events, and not so few that we neglect to model subtle k-mer co-occurrence patterns. This particular use of the well-known elbow method in our information theoretic
context puts a crude limit on the dominant evolutionary paths taken by the genomic elements that comprise our species.

Conclusion (words=149)

The information bottleneck, a lossy compression technique borrowed from the information theoretic and Natural Language Processing literature, is well suited to detecting evolutionary patterns in sets of co-occurring k-mers. Here we have shown that we can detect simulated and real recombination events while highlighting a core set of k-mers that comprise the vertically inherited portion of any set of genomes. Moreover, the compressibility of any given set of genomes, as embodied in their relevance compression curves, offers a new way to compare the pangenomes of very different clades in the microbial tree of life. In our application, the bottleneck is informed by genome origin, our relevance variable. But the technique is general. The information bottleneck can be used for any biological contingency matrix where the goal is to cluster a variable into interpretable groups by preserving as much information as possible in the variable to which it is linked.

Software implementation: NECK (https://github.com/narechan/neck)

Figure Legends

Figure 1. The information bottleneck. In the information bottleneck a distribution, \(X \), is compressed into \(T \) while retaining as much information as possible about a correlated relevance variable, \(Y \). The joint distribution, \(p(x,y) \), has positive mutual information and the goal of the information bottleneck is to capture as much of that information as possible at interpretive
scale. The technique is a classic optimization problem wherein the mutual information between T and X is minimized, while the mutual information between T and Y is maximized. At optimality, T is presumed to be a lossy but adequate model of X.

Figure 2. One simulated HGT event. A simple set of four simulated genomes with a single large transfer event is shown. The transfer occurs in the common ancestor to genomes 0, 2, and 3. The inset chart clearly shows that the k-mers corresponding to this event are captured by cluster 4, while the ancestral state is captured by cluster 1. K-mers from these clusters map to the location of the simulated event in genomes 0, 2 and 3 and genomes 1, respectively. Cluster 3 is the core and contains only one gap corresponding to the HGT region.

Figure 3. Several simulated HGT events. The innermost ring of this circos plot shows the locations of 57 simulated HGT events across 10 1 Mbase genomes. The remaining concentric tracks plot the core set of k-mers as calculated by the information bottleneck. In the outermost frequency plot, the 57 HGT events diverge at the same mutation rate as the background, 0.01. Going in towards the center, we increase the HGT divergence rate of the events to 0.03, 0.05, and 0.1. Gaps in the core correspond with the simulated HGT events whose k-mers are sorted into other clusters.

Figure 4. Bayesian change point detection. The two innermost rings mirror those in Figure 3. The outermost ring plots the posterior probabilities of change in the k-mer frequencies.
Figure 5. The k-mer skim. Here we show the decrease in HGT detection sensitivity as a function of the density of k-mers sampled. The higher the k-mer skim factor (defined as the number of positions skipped before the next k-mer is sampled), the lower the density of k-mers subject to the information bottleneck. The inset shows the plateau behavior near the origin for k-mer skim factors of 1, 5, 10, 25, and 50.

Figure 6. Varying HGT length and divergence. HGT detection rates are shown with respect to increasing HGT length and divergence.

Figure 7. Varying recombination and background mutation rates. We measure the fraction of unique k-mers in each simulation captured by the core genome cluster as a function of recombination rate and background mutation rate. The core genome signal is strongest at low rates of recombination and background mutation. At higher recombination rates, there is no evidence for a core genome of any kind regardless of the background mutation rate.

Figure 8. Modelling ST239's hybridization event. We selected 10 *S. aureus* genomes to track the ST239 hybridization event with the information bottleneck. COL was chosen to represent the CC30 donor strain, and T0131 the CC8 acceptor. Of the 60 clusters we calculated, we show the three that capture the hybridization event. The innermost track is a frequency plot of k-mers that define the core. The second and third tracks are flipsides of the HGT event that created ST239.
Figure 9. Relevance compression curves. In an information bottleneck experiment, the relevance compression curve traces the increase in normalized mutual information with the number of clusters modeled. The curves quantify the amount of information lost at a given modeling threshold. We show how this type of relationship can function as a marker for evolutionary strategy by calculating curves for three very different groups of microbes: *M. tuberculosis*, a species thought to demonstrate little if any HGT; *S. aureus*, a species considered largely clonal with occasional HGT; and *H. pylori*, a species known to employ HGT as an engine for diversity.
References

\[\min I(T;X) \quad T \quad \max I(T;Y) \]
Figure 5.
Figure 7

The graph illustrates the fraction of unique k-mers in the core relative to the log recombination rate. Different colors represent varying levels of recombination rate: 0.01 (blue), 0.001 (red), and 0.0001 (green). As the log recombination rate increases, the fraction of unique k-mers decreases, indicating a significant impact on the genetic diversity within the core.
Figure 8

SaCOL

SaT0131

Figure 8
Figure 9