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Abstract—General-purpose protein structure embedding can
be used for many important protein biology tasks, such as
protein design, drug design and binding affinity prediction.
Recent researches have shown that attention-based encoder layers
are more suitable to learn high-level features. Based on this key
observation, we treat low-level representation learning and high-
level representation learning separately, and propose a two-level
general-purpose protein structure embedding neural network,
called ContactLib-ATT. On the local embedding level, a simple
yet meaningful hydrogen-bond representation is learned. On
the global embedding level, attention-based encoder layers are
employed for global representation learning. In our experiments,
ContactLib-ATT achieves a SCOP superfamily classification
accuracy of 82.4% (i.e., 6.7% higher than state-of-the-art method)
on the SCOP40 2.07 dataset. Moreover, ContactLib-ATT is
demonstrated to successfully simulate a structure-based search
engine for remote homologous proteins, and our top-10 candidate
list contains at least one remote homolog with a probability of
91.9%. Source codes: https://github.com/xfcui/contactlib.

Index Terms—Protein Structure, Homology Search, Structure-
Based Homology Search, Alignment-Free Homology Search, Deep
Learning

I. INTRODUCTION

Proteins play critical functions in living organisms. In order
to understand how proteins function, homologous proteins
can be analyzed to find correlations between the conserved
function and the conserved structure. This is the main reason
that the SCOP database [1] is built and manually curated to
hierarchically classify proteins. Specifically, close homologs
sharing similar sequences are grouped as families, and remote
homologs sharing similar structures (or functions) are grouped
as superfamilies. Given an experimentally determined new
protein structure, accurate and fast superfamily classification
is a critical step for many biological studies [2], [3].

In the past two decades, many SCOP superfamily classifi-
cation methods have been proposed. These methods can be di-
vided into two categories: sequence-based and structure-based.
For sequence-based methods [2], [4], [5], hidden Markov
models (HMMs) are first built to represent superfamilies,
and pairwise alignments [6], [7] between the query protein
and the representative HMMs are then used to identify the
nearest superfamily. For structure-based methods [8], [9], pair-
wise sequence alignments and pairwise structure alignments
[10]–[12] between the query protein and each protein of a
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non-redundant SCOP database are first conducted, and the
alignment similarities are then analyzed to classify the query
protein. It can be seen that all these methods are based on
database scanning to calculate pairwise similarities between
the query protein and all SCOP superfamilies (represented as
HMMs, sequences or structures).

The SCOP superfamily classification problem remains chal-
lenging as a significant portion of PDB remains unclassified
[1]. As of January 28, 2021, 102, 550 PDB entries have been
classified in SCOP 2.07-2021-01-09 [1], while 174, 014 PDB
entries have been deposited in PDB [13]. This happens because
SCOP employs a sequence-based homology search algorithm
to automatically classify new proteins [1]. Consequently, new
proteins that do not have close homologs in SCOP are dif-
ficult to be classified because remote homologs do not share
similar sequences. Instead, protein structures are more reliable
evidences to find remote homologs, but the pairwise structure
alignment problem is proved to be NP-hard [14]. Although
many heuristic algorithms have been implemented [10]–[12],
database scanning with these heuristic algorithms is still not
practical for timely tasks. Therefore, a structure-based SCOP
superfamily classification algorithm without database scanning
is needed for timely tasks.

Recent developments in deep neural networks (DNNs)
enable new approaches to protein classifications and related
protein bioinformatics tasks. For example, protein sequence
embedding DNNs [15], [16] have been introduced for general-
purpose, and protein structure embedding DNNs [17], [18]
have been designed for alignment-free homology search.
Moreover, Transformer DNNs [19] have been proposed for
protein structure prediction [20], [21], protein design [22],
drug design [23] and antigen-antibody binding prediction [24].
Note that a general-purpose protein structure embedding based
on a Transformer DNN is still missing. Here, we would like
to explore this highly promising approach, and demonstrate
its advantages for structure-based SCOP superfamily classifi-
cations.

In this manuscript, we introduce a novel attention-based
DNN, called ContactLib-ATT, to embed protein structures. As
our initial study, we applied ContactLib-ATT for the SCOP
superfamily classification problem [1]. More applications will
be explored in the future. The new ContactLib-ATT has
several key innovations comparing to previous methods in pro-
tein bioinformatics: (a) ContactLib-ATT employs a two level
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embedding method that incoperates a local embedding for
local contact contexts and a global embedding for the global
network of local contact contexts; (b) our local embedding is
a general framework that accepts either sequential or pairwise
features according to your definition of a contact context; (c)
our global embedding is based on attention-based encoder
layers [19] that has been shown to be a better choice to learn
high-level features [25]; (d) our classification method directly
classify protein structures without any database scanning and
consequently the running time of ContactLib-ATT is less than
one second.

In our experiments on SCOP 2.07 [1], ContactLib-ATT is
compared to state-of-the-art DNN methods. Comparing to the
convolution DNN introduced by DeepFold [17], ContactLib-
ATT boost the superfamily classification accuracy from 75.7%
to 82.4%. Especially, for the most challenging cases (i.e.,
short proteins with less than 64 residues), the superfamily
classification accuracy is increased by 10.7%. All these results
suggest that hydrogen bonds with self-attention are all you
need for general-purpose protein structure embedding.

II. METHODS

The main idea of our ContactLib-ATT method is as follow-
ing. A protein structure can be loosely defined as a network
of amino acids connected by peptide bonds and hydrogen
bonds. Here, peptide bonds form a chain structure that is
common among all proteins. However, hydrogen bonds form
a more complicated network structure that mimics secondary
structures and the global topologies of secondary structure
elements. Based on this key observation, local (i.e., close in
3D space) fragments around residue-residue contacts (includ-
ing hydrogen bonds) have been successfully used as local
fingerprints by alignment-free methods to find homologous
proteins [17], [26]–[28]. The idea of ContactLib-ATT is one
step further to combine these local fingerprints to a global one
using an attention-based encoder neural network [19].

As shown in Figure 1a, a new ContactLib-ATT method is
introduced in three steps. First, given a query protein structure,
each hydrogen bond (H-bond) and its context is abstracted and
converted into a local embedding vector (see Section II-A).
Then, the query protein structure as an H-bond network is
converted into a global embedding vector (see Section II-B).
This is done by incorporating attention-based encoder layers
[19]. Finally, the global embedding vector is used to classify
the query protein structure into its SCOP superfamily (see Sec-
tion II-C, [1]). Certainly, the global embedding vector can be
easily adopted for other structure-based protein bioinformatics
tasks, such as the homology search problem and the function
annotation problem.

The novel ContactLib-ATT model has at least two major
advantages over state-of-the-art convolution neural network
models, such as DeepFold [17]. First, the local patterns are
learned by dense layers instead of convolution layers. By
doing this, ContactLib-ATT is able to flexibly adopt more
biologically meaningful local information, such as the context
of an H-bond. Second, the global patterns are learned by

attention-based encoder layers [19] instead of convolution
layers. Recent researches have already shown that attention-
based layers are more suitable to learn high-level (e.g., global
and topological) features than convolution layers [25]. Indeed,
DeepFold cannot learn contact patterns between residues that
are far from the backbone chain (e.g., patch (i, j) of the
distance matrix shown in Figure 1b) because such remote
contacts cannot be covered by a small number of convolution
layers. Introducing more convolution layers would also involve
more padding (i.e., noises), which might become the majority
of input signals for short proteins.

A. Local embedding

The task of local embedding (as shown in Figure 1b) is to
abstract the local context of any H-bond of a query protein
structure, and then apply a deep neural network (DNN) to
convert any H-bond context to its embedding vector. The
H-bond context abstraction works as following. Initially, all
H-bonds within a query protein structure are computed by
DSSP. For the sake of simple explanations, we focus on
processing the hydrogen bond between donor residue i and
acceptor residue j (where i and j are residue indices defined by
PDB, [13]). For ContactLib-ATT, the context of this H-bond is
defined to be the k neighbor residues on either side of residue
i or j on the backbone chain, and the Cα atoms are used as
representatives of these 4k + 2 neighbor residues. Then, this
H-bond context is mapped to four patches (i.e., sub-matrices)
of the pairwise distance matrix between all Cα atoms, and the
four patches are merged as one pairwise distance matrix to
structurally represent the H-bond context. Previous researches
have already shown that similar patches around residue-residue
contacts carry critical fingerprint information to distinguish
protein structures [17], [26]–[28], and ContactLib-ATT is
based on this key observation.

Given an H-bond context, a DNN is applied to embed
the pairwise distances between 4k + 2 residues (i.e., repre-
sentative Cα atoms) to an H-bond vector. It can be shown
that the pairwise distance matrix is symmetric, and hence
only the upper triangle of the matrix is used as the input
of DNN. Similar to DeepFold [17] and TMscore [29], [30],
distance da,b between residues a and b is first converted to
1/(1 + (da,b/d0)

p), where d0 = 3.8 and p ∈ {1, 2, 3}. By
doing this, relatively shorter distances have greater impacts
to the embedded vector, and the impacts are upper bounded.
Then, two dense blocks are employed for embedding, where
each dense block contains a dense layer, a layer normalization
[31] and a ReLU activation [32]. Here, the number of the
output neurons equals to the dimension of the embedded H-
bond vector (E), and the number of hidden neurons equals
to 4E. Again, the main contribution of local embedding
is introducing H-bond contexts instead of finding the best
embedding DNN.

B. Global embedding

Using our local embedding, N H-bond contexts of the query
protein structure are embedded into N H-bond vectors. As
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Fig. 1. Illustrations of protein structure embedding and classification with ContactLib-ATT: (a) the pipeline of ContactLib-ATT has three steps; (b) the first
local embedding step to abstract and to embed local hydrogen bond (H-bond) contexts is described in Section II-A; (c) the second global embedding step
to embed a global H-bond network is described in Section II-B; and the third classification step (not shown in the Figure) as the first application of our
general-purpose protein structure embedding is described in Section II-C.
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shown in Figure 1c, the task of global embedding is to combine
local H-bond vectors into a global H-bond network vector
by an attention-based encoder neural network. Specifically, L
attention-based encoder layers (i.e., Transformer encoder lay-
ers, [19]) are employed to embed N local H-bond vectors to N
global H-bond network vectors, and a global average pooling
layer [33] is adopted to reduce the N H-bond network vectors
into a single one. To reduce the number of hyper-parameters
of ContactLib-ATT, the dimension of the global embedding
vector is set to be identical to that of the local embedding
vector (E). Moreover, for all attention-based encoder layers,
the number of heads is set to be E/64, and the dimension of
the feed-forward network is set to be 4E. These settings are
consistent with the original Transformer when E = 512 [19].

Our attention-based encoder neural network is based on
the understanding of protein folding such that all H-bonds
should contribute together to fold the protein into a compact
and stable structure. Thus, these H-bonds should be more
or less correlated, and an H-bond network can be virtually
constructed to model such correlations (i.e., edges) between
H-bonds (i.e., nodes). Here, the H-bond network is assumed to
be a complete graph, and it is open to introduce more efficient
or more effective sparse graphs [34], [35] to replace the
complete graph. Based on the H-bond network, the attention-
based encoder network is trained to understand the correlations
between H-bonds, and to incorporate local H-bond embedding
vector into global H-bond network embedding vector. As a
result, the H-bond network is converted to an embedding
vector as a representation of the query protein structure.

C. SCOP superfamily classification with data augmentation
and multi-tasking

Once the query protein structure is converted to an embed-
ding vector, it can be easily used for many structure-based
applications [17], [18], [36]. Here, one application to classify
SCOP superfamilies [1] is demonstrated. Specifically, a dense
layer and a softmax activation is simply used as our classifica-
tion DNN. Given query protein structure q, let yq be the true
SCOP superfamily, ŷq be the predicted SCOP superfamily,
and vq be the embedded H-bond network vector. Then, the
loss function for q is set to be CE(yq, ŷq)+ 0.1×RMS(vq),
where CE is the cross entropy loss and RMS is the root mean
square loss. Here, the cross entropy loss has been widely used
with softmax activation, and the root mean square loss has
been used by DeepFold [17] as an embedding regularization.
Now, it can be seen that ContactLib-ATT is an end-to-end
deep learning model, and the embedded vectors are optimized
for the classification task.

In order to maximize the utilities of the limited data, data
augmentation techniques can be adopted. Here, it is important
to understand the risk of using all available data: the trained
model will be overfitted to query protein structures that have
many close homologs in SCOP, which tend to be efficiently
found by sequence alignments. Thus, it is safer to train the
model with only remote homologs, but that would significantly
reduce the size of training data. Current implementation of

TABLE I
COMPARISON OF METHODOLOGIES

Input Local Global
Features Embedding Embedding

DeepFold Full Structure Convolution Convolution
DeepFold-ATT Full Structure Convolution Attention
ContactLib-DNN H-bond Contexts DNN DNN
ContactLib-ATT H-bond Contexts DNN Attention

ContactLib-ATT incorporate two simple data augmentations.
First, protein structures are pre-clustered by sequence sim-
ilarities, and for each training epoch, only one structure is
randomly selected from each cluster. Consequently, the model
does not see close homologs frequently. Second, Gaussian
noises are added to all atom coordinates of the selected protein
structures so that even if the model sees the same protein
structure multiple times, the actual input structures are slightly
different.

In order to avoid overfitting, multi-tasking techniques can
be adopted. Current implementation of ContactLib-ATT in-
corporates simple multi-tasking classifications on the SCOP
class level, the SCOP fold level and the SCOP superfamily
level at the same time. This approach is chosen because su-
perfamily annotations implies class and fold annotations, and
high-quality embedding for superfamily classification should
also be good at class and fold classifications. Moreover, it
provides possibilities for the ContactLib-ATT model to learn
the underlying logic of the hierarchical SCOP classifications.
In the future, we would like to evaluate more multi-tasking
approaches for ContactLib-ATT.

III. RESULTS

To evaluate the classification accuracies of different meth-
ods, a subset of SCOP 2.07 [1] is built as following. First,
protein domains of SCOP 2.07 are filtered by a maximum se-
quence identity of 40%, a minimum sequence length of 20, and
a minimum H-bond count of 20. Then, protein domains from
SCOP 2.06 (i.e., a subset of SCOP 2.07) are randomly divided
into training and validation subsets. For each superfamily, one
domain is randomly selected and reserved for training. For
the unreserved domains, 20% are randomly selected as the
validation dataset, and the remaining 80% are combined with
the reserved domains as the training dataset. Finally, protein
domains present in SCOP 2.07 but not in SCOP 2.06 are
used as the testing dataset. As a result, 11, 029, 2, 280 and
272 protein domains are selected for training, validation and
testing, respectively.

To demonstrate the advantages of the novel ContactLib-
ATT model, three more deep learning methods are tested.
For the first model, six convolution blocks and one global
average pooling layer is adopted from DeepFold [17] to
embed the query protein structure. Then, unlike DeepFold,
the classification model introduced in Section II-C is adopted
to classify the embedded structure. For the second model, the
last two convolution blocks of the first model is replaced by
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TABLE II
ACCURACIES ON THE VALIDATION DATASET

Class Fold Superfamily

DeepFold 91.5±0.3% 79.8±0.2% 75.7±0.3%
DeepFold-ATT 92.8±0.2% 81.5±0.4% 78.0±0.4%
ContactLib-DNN 92.0±0.5% 78.5±0.5% 76.0±0.4%
ContactLib-ATT00 93.6±0.3% 81.8±0.5% 79.5±0.3%
ContactLib-ATT01 94.5±0.3% 82.9±0.1% 80.2±0.3%
ContactLib-ATT10 93.6±0.3% 82.6±0.4% 80.3±0.5%
ContactLib-ATT11 94.5±0.2% 85.0±0.3% 82.4±0.5%

two attention-based encoder layers [19]. For the last model,
the attention-based encoder layers of ContactLib-ATT are
replaced by the local embedding model introduced in Section
II-A. These three models are simply referred as DeepFold,
DeepFold-ATT and ContactLib-DNN in this study, and they
are compared to our ContactLib-ATT in Table I.

In order to evaluate the contributions of different compo-
nents described in Section II-C, four variants of ContactLib-
ATT are tested. Specifically, ContactLib-ATT00 is the base
model without data augmentation (DA) and multi-tasking
(MT); ContactLib-ATT01 is the advance model with only
MT; ContactLib-ATT10 is the advance model with only DA;
and ContactLib-ATT11 (or simply ContactLib-ATT) is the
complete model with both DA and MT. Moreover, our H-
bond context includes k = 8 neighbor residues, our global
embedding employs L = 3 attention-based encoder layers
[19], and both local and global embedded vectors have a
dimension of E = 1, 024. Increasing or decreasing one
of these three hyper-parameters by a factor of two has no
significant impacts on accuracies, and thus the results are not
included here.

Finally, the experiments are designed as following. To make
it fair, all tested deep learning models employ the same
configuration of layer normalizations [31], dropout regular-
izations [37], ReLU activations [32], and classification models
(described in Section II-C). Each method is first trained on the
training dataset, and then evaluated on the validation dataset
and the testing dataset. Since the tested methods can only
predict SCOP superfamilies [1], the SCOP fold (or class)
containing the predicted superfamily is presumed to be the
predicted fold (or class). The accuracy of a model is defined as
the percentage of the correctly predicted SCOP classifications
(e.g., classes, folds or superfamilies) over all predictions. The
above process is repeated five times and the mean accuracies
and the standard deviations are calculated.

A. Comparison to state-of-the-art methods

In this experiment, our ContactLib-ATT is compared to
state-of-the-art deep learning methods. It is shown that
ContactLib-ATT achieves the highest accuracies on both the
validation dataset and the testing dataset. Moreover, the out-
standing performance is mainly because of the H-bond con-
texts, the attention-based global embedding, the data augmen-
tation and the multi-tasking introduced by ContactLib-ATT.

TABLE III
ACCURACIES ON THE TESTING DATASET

Class Fold Superfamily

DeepFold 87.0±1.6% 74.4±1.3% 69.7±0.9%
DeepFold-ATT 90.1±1.2% 75.8±1.2% 71.0±1.2%
ContactLib-DNN 88.0±1.3% 70.6±1.4% 65.6±1.6%
ContactLib-ATT00 88.0±1.1% 74.1±0.9% 71.0±0.8%
ContactLib-ATT01 90.2±1.2% 76.2±1.3% 73.1±0.9%
ContactLib-ATT10 89.4±1.3% 75.4±1.6% 72.2±1.2%
ContactLib-ATT11 91.2±0.8% 77.0±0.4% 74.0±0.6%

From Table II, it can be seen that ContactLib-ATT11 is
always the most accurate method for all SCOP classifications
on the validation dataset. For example, the mean superfamily
classification accuracy of ContactLib-ATT11 is 82.4%, which
is 6.7% higher than that of DeepFold [17]. Considering that the
standard deviation of the accuracy is 0.5%, the improvement
of 6.7% is statistically significant. Actually, without data aug-
mentation and multi-tasking, ContactLib-ATT00 already out-
performs other tested methods by at least 1.5% on superfamily
classifications. Using either data augmentation or multi-tasking
slightly improves the accuracies by up-to 0.8%. However,
using both of them boosts the accuracies by 2.9%. Therefore,
all of the deep learning model, the data augmentation and the
multi-tasking of ContactLib-ATT contributes to the accuracy
improvements.

Using novel H-bond contexts instead of full structures
is one reason why our ContactLib-ATT model outperforms
existing methods. This is well illustrated by comparing the
results of DeepFold-ATT and ContactLib-ATT00 in Table II.
It can be seen that using H-bond contexts with the DNN-
based local embedding (introduced in Section II-A) produces
more accurate predictions than using full structures with the
convolution local embedding (introduced by DeepFold, [17]).
One possible explanation is that DeepFold focuses on contact
patterns near the diagonal of the distance matrix, and ignores
contact patterns far from the diagonal (e.g., patch (i, j) of the
distance matrix shown in Figure 1b). This explanation is also
supported by our observations in Section III-B

Employing new attention-based global embedding is another
reason why the new ContactLib-ATT model outperforms exist-
ing methods. Comparing the results of ContactLib-DNN and
ContactLib-ATT in Table II, one can observe that the attention-
based global embedding achieves higher accuracies than the
simple DNN-based global embedding. Similarly, comparing
the results of DeepFold and DeepFold-ATT, the attention-
based global embedding outperforms the convolution-based
global embedding. These observations are consistent with pre-
vious researches showing that attention-based encoder layers
yield better results for global feature learning [25].

As shown in Table III, ContactLib-ATT11 is again the most
accurate method on the testing dataset. Comparing to the
results on the validation dataset, the accuracies of all tested
methods are dropped by at least 2.7%. Actually, the accuracy
of the TMalign-based [11] nearest neighbor classification
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TABLE IV
SUPERFAMILY CLASSIFICATION ACCURACIES FOR DIFFERENT TRAINING

SUPERFAMILY SIZES

Size 1 [2, 4) [4, 8) [8, 16) [16, 32) [32, ∞)

DeepFold 21.3% 43.7% 59.7% 69.5% 82.2% 88.6%
DeepFold-ATT 19.8% 42.3% 60.8% 76.1% 86.1% 90.0%
ContactLib-DNN 26.5% 49.6% 62.0% 75.7% 80.7% 85.9%
ContactLib-ATT 30.1% 53.8% 73.8% 83.2% 87.9% 91.0%

Count 89 173 230 320 442 1026

TABLE V
SUPERFAMILY CLASSIFICATION ACCURACIES FOR DIFFERENT QUERY

SEQUENCE LENGTHS

Length [20, 64) [64, 128) [128, 256) [256, 512) [512, ∞)

DeepFold 49.3% 73.8% 77.1% 80.3% 80.0%
DeepFold-ATT 57.3% 76.8% 78.4% 83.1% 66.0%
ContactLib-DNN 56.1% 71.2% 76.5% 84.6% 88.2%
ContactLib-ATT 60.0% 80.3% 83.7% 86.6% 87.4%

Count 82 740 935 496 27

(described in Section III-C) is also significantly dropped by
at most 11.8%. This suggests that the testing dataset is indeed
more challenging than the validation dataset (also discussed
in Section III-C), and this could be one explanation for the
dropped accuracies. Another explanation is the widely known
generalization issue.

B. Understanding when ContactLib-ATT works

To figure out when ContactLib-ATT works, the superfamily
classification accuracies on different subsets of the validation
dataset are analyzed. In the first experiment, the number
of training homologs in the same superfamily of the query
protein is counted, and the validation dataset is divided into
subsets based on this superfamily size. As shown in Table
IV, as the superfamily size increases, the prediction accuracy
increases. For the relatively small superfamilies with less than
eight members, using H-bond contexts are at least 8.8% more
accurate than using full structures. For the relatively large su-
perfamilies with at least eight members, ContactLib-ATT with
the attention-based global embedding makes up-to 6.6% more
accurate predictions than ContactLib-DNN with the DNN-
based global embedding. Therefore, H-bond contexts boost
the few-shot learning accuracies, while attention techniques
maximize the big-data utilities. This is why ContactLib-ATT
outperforms other tested methods despite the superfamily size.

In the Second experiment, the validation dataset is divided
into subsets based on the query sequence length. As shown
in Table V, the prediction accuracy increases as the sequence
length increases. Comparing to DeepFold [17], ContactLib-
DNN is significantly more accurate for short proteins with less
than 64 residues (56.1% v.s. 49.3%) and long proteins with at
least 512 residues (88.2% v.s. 80.0%). In fact, our implementa-
tion of DeepFold employs six convolution layers with a kernel

Fig. 2. Case study of SCOP superfamily a.118.8: only fragment similarities
are observed by TMalign between query protein D2MR3A1 and its nearest
training homolog D1RZ4A2, while both proteins belong to SCOP family
a.118.8.9.

size of five and a stride step of two. Consequently, each neuron
of the last convolution layer covers 253 neurons (i.e., residues)
of the input layer. If the query sequence length is significantly
smaller than 253, most of the input signals become padding
zeros (i.e., noises). If the query sequence length is significantly
bigger than 253, remote contact patterns (that are more than
253 residues away on the backbone) cannot be captured by a
single neuron. Therefore, the number of convolution layers of
DeepFold is a trade-off parameter that cannot optimize both
short and long proteins. This problem is well addressed by
H-bond contexts that are independent from the depth of the
deep learning model.

One limitation of the attention-based global embedding is
also illustrated in Table V. Similar to nature language pro-
cessing problems [19], insufficient number (e.g., 27) of long
proteins becomes an accuracy bottleneck (87.4% v.s. 88.2%)
of attention-based global embedding. This issue might be
eased as the number of large protein structures increases with
recent developments on Cryo-EM large molecule structure
determination techniques [38], [39]. Handling large proteins
is also a known challenge for future SCOP releases [1].

C. Understanding when ContactLib-ATT fails

To figure out why ContactLib-ATT occasionally fails, an
interesting case study on SCOP superfamily a.118.8 [1] is
discussed in this section. The superfamily is chosen based
on the following observations. The superfamily is relatively
big with 39, 8 and 10 proteins in the training dataset, the
validation dataset and the testing dataset, respectively. Recall
that the model is trained five times with random initializations.
Using the five trained models, the validation accuracies of the
superfamily range between 50% and 88% with an average
of 75%. However, the testing accuracies of the superfamily
range between 20% and 60% with an average of 32%. In
summary, the validation accuracies suggest that there are
sufficient training data to train an accurate model, but the
testing accuracies are significantly lower.

In order to understand the challenge to classify SCOP
superfamily a.118.8, an alignment between a query structure
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and its nearest (i.e., from the same SCOP family) training
homolog is shown in Figure 2. It can be seen that the training
homolog is much shorter than the query protein. Actually,
eight of the ten query proteins of the testing dataset are more
than 100 residues longer than their nearest training homologs.
One possible explanation is that these structures contain two
domains, which are treated as a single domain in SCOP.
Indeed, it is known to be a common error of SCOP [1]. If the
SCOP domain partition is correct, this raises new challenges
for ContactLib-ATT to make predictions based on fragment
instead of global similarities. This problem should be better
handled by DeepFold [17] because it primarily depends on
fragment similarities.

Consensus approaches can help to ease the fragment sim-
ilarity problem of SCOP superfamily a.118.8. Our consensus
solution is based on the key observation that the true homologs
tend to remain in the top-k list if we train and test the
model several times, while the false homologs do not share
similar trends. Recall that the model is trained five times in
our experiments, and each trained model produces a softmax
probability distribution. If the average of the five distributions
is calculated as the consensus distribution, the testing accuracy
is increased from 32% to 60%. If the same consensus method
is applied to the experiment shown in Table III, the super-
family classification accuracy will be increased from 74.0%
to 76.8%. This suggests us to investigate stochastic weight
averaging [40], [41] for ContactLib-ATT, and we would like
to investigate more possibilities in future releases.

D. Homology Search Engine with ContactLib-ATT

In this section, an application of SCOP superfamily clas-
sification [1] is analyzed. Specifically, ContactLib-ATT is
demonstrated to be a high-quality search engine to find remote
homologous proteins within the same SCOP superfamily. To
simulate a search engine, ContactLib-ATT and DeepFold [17]
is modified to return the top-k candidate list of superfamilies
and a randomly selected representative for each candidate
superfamily. For references, one sequence-based alignment
method (NWalign, [42]) and one structure-based alignment
method (TMalign, [11]) is tested. In this experiment, the
validation dataset is used as query proteins, and the training
dataset is used as the protein database to be searched. As
widely accepted, a high-quality search engine should return
a candidate list instantly (i.e., in less than a second), and the
candidate list should contain at least one true homolog. Thus,
the running time and the hit rate (i.e., the probability) that the
top-k candidate list includes one true homolog is reported.

As shown in Table VI, if the top-10 list returned by
ContactLib-ATT is manually checked by an expert, a protein
homolog can be found with a probability of 91.9%. Although
different datasets are used, this hit rate is significantly higher
than the best results reported by state-of-the-art alignment-
free homology search methods [17], [26], [27], [43]. One
common feature shared by these alignment-free methods and
ContactLib-ATT is that they complete the database search
instantly. On the other hand, although structure alignment

TABLE VI
HIT RATES AND RUNNING TIMES AS A HOMOLOGY SEARCH ENGINE

Top-1 Top-5 Top-10 Top-20 Time

NWalign 0.3% 2.3% 5.0% 9.8% 3.0 mins
TMalign 90.6% 95.6% 96.5% 97.6% 16.3 mins
DeepFold 75.7% 85.3% 88.4% 90.7% instant
ContactLib-ATT 82.4% 89.5% 91.9% 93.8% instant

tools, such as TMalign [11], are more accurate, they are not
fast enough as search engines. Moreover, sequence alignment
tools, such as NWalign [42], yield low accuracies because
sequences are not as reliable as structures to find remote
protein homologs. In summary, ContactLib-ATT is the best
alignment-free method to implement a search engine for
remote protein homologs because it is not only more accurate
but also sufficiently fast.

IV. CONCLUSION

In summary, we have introduced ContactLib-ATT, a
general-purpose attention-based protein structure embedding
framework. When applying on the SCOP superfamily clas-
sification problem, ContactLib-ATT achieves an accuracy of
82.4%, which is 6.7% higher than the classic convolution
neural network. ContactLib-ATT achieves such significant im-
provements because it employs a novel two-level embedding
approach so that local features and global features are em-
bedded separately. This idea comes from recent Transformer
researches on computer vision showing that the best local
embedding model is not necessarily the same as the best
global embedding model, and attention-based encoder layers
should be the first choice for global embedding [25], [44].
Moreover, ContactLib-ATT is an end-to-end deep learning
model that does not rely on any database scanning. As a
result, classification is done instantly. All these observations
well support our conclusion that attention is all you need for
general-purpose protein structure embedding.

In the future, we would like explore more possibilities
to improve ContactLib-ATT. For example, ContactLib-ATT
is capable of handling a variety of input features, such as
amino acid features (e.g., residue type), local structure features
(e.g., torsion angles), relative structure features (e.g., relative
spatial encoding, [22]). Domain partition is also required to
handle multi-domain structures properly. Stochastic weight
averaging [40], [41] will be implemented, and hopefully better
generalization abilities will be demonstrated. We also would
like to try to visualize and to understand what is learned by
ContactLib-ATT [45]. More applications on protein design,
drug design and protein docking will be explored. Finally,
we would like to build a structure-based search engine for
homologous proteins.
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