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ABSTRACT 

 

Rhes (RASD2) is a thyroid hormone-induced gene that regulates striatal motor activity 

and promotes neurodegeneration in Huntington disease (HD) and tauopathy. Previously, 

we showed that Rhes moves between cultured striatal neurons and transports the HD 

protein, polyglutamine-expanded huntingtin (mHTT) via tunneling nanotube (TNT)-like 

membranous protrusions. However, similar intercellular Rhes transport has not yet been 

demonstrated in the intact brain. Here, we report that Rhes induces TNT-like protrusions 

in the striatal medium spiny neurons (MSNs) and transported between dopamine-1 

receptor (D1R)-MSNs and D2R-MSNs of intact striatum and organotypic brain slices. 

Notably, mHTT is robustly transported within the striatum and from the striatum to the 

cortical areas in the brain, and Rhes deletion diminishes such transport. Moreover, we 

also found transport of Rhes to the cortical regions following restricted expression in the 

MSNs of the striatum. Thus, Rhes is a first striatum-enriched protein demonstrated to 

move and transport mHTT between neurons and brain regions, providing new insights on 

interneuronal protein transport in the brain.  
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INTRODUCTION 

 

The brain’s striatum plays a critical role in motor, cognitive and psychiatric functions, and 

its dysregulation results in neurological and neurodegenerative illnesses, such as 

Huntington disease (HD). The most common cell types in the striatum are the medium-

sized spiny neurons (MSNs), and during postnatal brain development, the MSNs show 

the highest expression of Rhes (RASD2), a thyroid hormone-induced gene that regulates 

striatal motor activity (1-3). Rhes is enriched in the synaptic fractions, associates with 

membranes via the farnesylation domain, and mediates dopamine-related behaviors and 

G-protein coupled receptor and protein kinase A signaling (4-7). In response to 

psychostimulants, such as amphetamines or cocaine, Rhes also forms protein-protein 

complexes and alters proteomics in the striatum, while also inhibiting locomotor activities 

(8, 9). Rhes also regulates analgesia, tolerance, and dependency behaviors related to 

opioids [10].  

 

In addition to its N-terminal GTPase domain, Rhes also possesses a C-terminal SUMO 

E3-like domain that promotes SUMOylation of diverse substrates including mHTT and 

promotes its solubility and toxicity in cell and animal HD models (8, 10-19). Rhes interacts 

with mammalian target of rapamycin (mTOR) kinase and promotes L-DOPA-induced 

dyskinesia in Parkinson disease (20, 21). Apart from its role in striatal diseases, Rhes is 

also linked to tau pathology, and its mislocalization in human neurons is considered a 

hallmark of tauopathies (22, 23). These results indicate that Rhes orchestrates neuronal 

abnormalities associated with neurodegenerative diseases, but the precise mechanisms 

of its action remain largely unknown. However, given the known importance of neuronal 

communication in brain function, cell-to-cell communication is likely to be important. 

 

One intriguing new mode of cell communication occurs via transient and fragile 

membranous protrusions, such as tunneling nanotubes (TNTs) or cytonemes (henceforth 

TNT-like processes) (24-33). TNT-like processes are distinct from neurites or filopodia in 

cell culture in shape, size, length and strength. Currently, there are no cellular markers 

that distinguish TNT-like protrusion from neurites or filopodia. However, they are mostly 
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F-actin positive, characteristically do not adhere to the substratum, extend up to 100 µm 

in length, physically connect two cells, and are vulnerable to common fixation methods 

(34, 35). These TNT-like processes are readily observed in various cell types in culture 

and in vivo and can be induced in cancer tissues (36-40). TNT-like processes can 

transport organelles, such as endosomes, lysosomes, and mitochondria, to neighboring 

cells (41, 42). Drosophila cytonemes regulate morphogenetic signals during development 

and can function as glutamatergic synapses (43-45). The emerging evidence indicates 

that TNT-like protrusions may play a critical role in key organism development and 

growth, but their roles and regulation in the brain remain unclear (24, 46). 

 

We serendipitously discovered that Rhes promotes the formation of TNT-like 

membranous protrusions that transport cargoes such as endosomes and lysosomes (46-

48). Interestingly, Rhes itself is transported via the TNT-like protrusions and can interact 

with lysosomes and mitochondria in the neighboring cells (46-48). Notably, in HD, Rhes 

causes a several-fold enhancement of the cell-to-cell transport of mHTT, indicating a cell 

non-autonomous role of Rhes in HD. Although the exact mechanisms by which cargoes 

of Rhes-mediated TNTs, such as mHTT, enter the acceptor cell are unknown, our live-

cell time-lapse imaging studies have revealed the involvement of endocytic-like delivery 

mechanisms (46-48). 

 

These data, taken together, indicate that the Rhes moves from cell to cell via the TNT-

like membranous protrusions, but whether this movement and mHTT transport can occur 

in the intact brain is not known. Here, we address this question by developing new 

reporter tools and Cre recombinase transgenic mouse models and by live-cell imaging in 

organotypic brain slices and mouse brain that express MSN-specific reporter Rhes. 

 

RESULTS 

Rhes promotes protrusions and moves from D2R to D1R-MSN in cortico-striatal 

organotypic brain slices.  

We showed that Rhes travels between cells in the TNT-like protrusions in primary 

neurons and cell lines (47-49). But whether Rhes can induce TNT in MSNs of the striatum, 
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where it is highly expressed in not known. Here we determined using live cell imaging if 

Rhes can induce TNT-like protrusion in primary MSNs and in a cytoarchitecturally intact 

3D brain model. We established Flex (or "flip-excision") genetic switch (Cre-On) 

replication-deficient adeno-associated virus (AAVs) with PHP.eB serotype, the most 

efficient vector that transduce neurons (50), encoding either EGFP or EGFP-Rhes. This 

approach restricts the reporter signal to Cre-expressing neurons; therefore, only if the 

reporter can move from neuron to neuron will the signal be found in non-Cre expressing 

neurons. We used EGFP as a reporter for Rhes because of its photostability, which allow 

live-cell monitoring of the dynamic membranous protrusions.  

First, we determined if Rhes can induce TNT-like protrusions in primary D2R-

MSNs prepared from D2RCre mice and infected with AAV Cre-On EGFP or AAV Cre-On 

EGFP-Rhes (Fig. 1A). We found that the D2RCre-MSNs with AAV Cre-On EGFP 

expression showed typical neurites characteristic of morphologically crooked and 

bifurcated structures emanating from the cell body (Fig. 1B, inset b, blue arrow). In 

contrast, Cre-On EGFP-Rhes induced the formation of long (50-100 µm), straight, EGFP-

Rhes positive TNT-like protrusions emanating from cell body (open arrow), as well as 

from the neurites (closed arrow) of the D2R MSNs (Fig. 1C, inset c, arrow). These Rhes-

induced TNTs also contained characteristic round vesicle-like puncta at the surface (Fig. 

1C, inset c1, arrowhead), consistent with prior observations in striatal neuronal cells (47-

49). 

Other characteristic features distinguishing TNTs-like structures from neurites or 

filopodia in culture are their sensitivity to commonly used fixation and ability to stretch 

above the substratum. (25, 51-53). We found that Rhes-induced TNTs in D2R-MSN are 

disintegrated by fixative, paraformaldehyde (PFA) (sFig. 1A, B, dotted region, arrow), 

while certain protrusions that are most likely neurites remained intact (sFig. 1A, B, dotted 

region, arrowhead, compare DIC image). PFA treatment also destroyed Rhes-induced 

TNT-like protrusions (arrow) while sparing filopodia-like structures (arrowhead) in the 

striatal neuronal cell line (sFig. 1C, D). We also found that Rhes positive TNT-like 

protrusions are distinguishable from Rhes positive neurites (sFig. 1E). As shown in two 

examples, we found Rhes positive neurites are attached to the substratum (sFig. 1E, F, 

inset e-f, arrowhead). In contrast, Rhes positive TNT-like protrusions hover above the 
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substratum and connect to nearby cell body (sFig. 1E, inset e, arrow) or neuronal 

processes (sFig. 1F, inset f, arrow).  

Taken together, these results demonstrate that Rhes induces characteristic TNT-

like structures that are distinct from neurites or filopodia in the primary MSNs. The data 

also show that these structures are highly fragile, further emphasizing the necessity of 

extracting dynamic information about TNT-like structures from live-cell imaging and 

reporter tools. 

We next determined whether TNT-like structures are formed by Rhes in vivo. Two 

distinct types of MSNs, expressing either D1R or D2R, have been well characterized in 

the striatum. Approaches involving in situ anatomical studies and transgenic (Tg) reporter 

mice have now established that less than 5% of the MSNs co-express D1R and D2R, and 

these double positive MSNs are distributed uniformly throughout the striatum (54-63).   

We used the organotypic cortico-striatal brain slices from postnatal 4-8-day old 

pups from D2RCre;D1RtdTomato mice and transduced the slices with AAV Cre-On EGFP or 

Cre-On EGFP-Rhes particles (Fig. 1D). As expected, the D2R neurons (Cre +) showed 

EGFP or EGFP-Rhes signals, marked by green fluorescence. Only a few EGFP-only 

positive protrusions (yellow arrow) were observed in the Cre-On EGFP cultures, but with 

no clear localization with D1RtdTomato (red) neurons (Fig. 1E, upper panel). By contrast, 

we observed multiple EGFP-Rhes-positive protrusions (white arrow) interacting and 

colocalizing (arrowhead) with D1RtdTomato (red) neurons (Fig. 1E, lower panel). A 3D 

rendering and orthogonal projections further confirmed a clear colocalization of EGFP-

Rhes protrusions with D1R-MSNs (Fig. 1D, arrowhead, Fig. 1F). Unlike their appearance 

in dissociated cultures (Fig. 1B), the EGFP-Rhes positive TNT-like protrusions in slices 

appeared crooked, similar to those seen in mouse cornea explants of transgenic mice 

expressing Cx3cr1GFP, CD11ceYFP, or MHC class IIGFP (64-66). These results indicate that 

Rhes induces TNT-like protrusions in a complex interconnected 3D organotypic brain 

slices. 

We also imaged EGFP-Rhes positive protrusions from the D2RCre-MSNs 

traversing through the D1RtdTomato-MSNs by time-lapse confocal imaging of organotypic 

cortico-striatal brain slices (Fig. 1G, inset g). We found a time-dependent induction (zero 

to 30 minutes) of EGFP-Rhes positive protrusions from the D2RCre-MSNs, which 
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associates with the D1RtdTomato-MSNs (Fig. 1G, inset g, arrow, upper panel). Using 3D 

intensity, we showed that these protrusions merge with the D1RtdTomato-MSN surface (Fig. 

1G, inset g, arrowhead, lower panel). This was consistently observed in three 

independent slice preparations, indicating potential Rhes delivery into D1R-MSN (Fig. 1H, 

arrowhead). Slices that express Cre-On EGFP alone did not show any obvious merging 

of EGFP protrusions with D1R-MSNs (sFig. 2). 

These results showed that Rhes can induce membranous protrusions and connect 

with the neighboring neurons in an intact 3D brain architecture. 

 

Rhes moves between D1R-MSN to D2R-MSN in the striatum. 

We next investigated the possible in vivo Rhes transport between MSNs by 

crossing D1RCre/+ mice with D2REGFP/+ mice. We tagged Rhes with TurboRFP, because 

of its intracellular stability, which allows RFP to be measured over a longer period of time. 

We confirmed that the AAV reporter construct expresses RFP-Rhes in a Cre-dependent 

manner and forms TNT-like protrusions (arrow) containing vesicular puncta-like bulb in 

their edge (arrowhead) in striatal neuronal cells in culture (sFig. 3A, B). 

We then injected Cre-On AAV-RFP-Rhes or AAV-RFP (control) particles into the 

striatum in one hemisphere of 2-month-old D1RCre;D2REGFP Tg mice brain, where D1R-

MSN (Cre+) is considered as donor and D2R-EGFP (Cre-) as acceptor (Fig. 2A). At 8 

weeks post-injection, the brain was perfused, and sections were processed for confocal 

imaging with DAPI as nuclear marker. RFP-Rhes (red, Fig. 2B, arrow) signals in the 

D1RCre-MSN and EGFP (green) signals in D2REGFP-MSN were detected in the striatum 

(Fig. 2B). In addition, we found a robust RFP-Rhes signal associated with D2R-EGFP+ 

neurons in the striatum, and this was consistent in three different mice (Fig. 2B, 

arrowhead). The RFP-Rhes signals were colocalized with EGFP neurons (Fig. 2B, 

orthogonal display, arrowhead) and were found in the perinuclear cytoplasm of the D2R 

MSNs (Fig. 2B, inset b, arrowhead). Using artistic rendering, we depicted the transported 

RFP-Rhes from D1R-MSN donor to D2R-MSN acceptor (Fig. 2B, inset b, lower panel). 

We also determined the numbers of D1R (RFP-Rhes), D2R (EGFP), and D2R 

neurons containing RFP-Rhes in 100 µm2 sized striatal areas at the injection site, 100  
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µm and 500  µm away from the injection site and in the cortical  areas of the brain sections 

of the D1RCre;D2REGFP Tg mice (Fig. 2C, insets c1-c3, Fig. 2D).  

At the injection site, we found 30% of D2REGFP only neurons (Fig. 2C, inset c1 

closed arrow, Fig. 2D) and 10% of D1RCre MSNs expressing RFP-Rhes (Fig. 2C, inset c2 

open arrow, Fig. 2D). We also observed at the injected site, ~30% of D2REGFP MSNs 

positive for one or more RFP-Rhes puncta (Fig. 2C, inset c2 arrowhead, Fig. 2D). Even 

at 100  µm and 500  µm away from the injection site, the 30% of D2REGFP neurons 

remained positive for RFP-Rhes (Fig. 2C, inset c3 arrowhead, Fig. 2D), indicating that 

Rhes transits from D1R-MSNs to D2R-MSNs in the striatum. No similar colocalization 

was observed in the contralateral side of the striatum, indicating that Rhes is unable to 

move from ipsilateral striatum to contralateral striatum (Fig. 2D). Interestingly, we also 

observed strong signals for RFP-Rhes in the cortex of D1RCre;D2REGFP mice (Fig. 2C, 

insets c4 arrowhead, Fig. 2D), indicating Rhes movement from striatum to cortex. 

Taken together, these results confirmed that Rhes can move from D1R-MSNs to 

D2R-MSNs within the striatum as well as from D1R-MSNs to the cortex in the mice brain. 

 

Rhes promotes mHTT spreading in the brain. 

We previously showed that Rhes is a major driver of the cell-to-cell transportation of 

mHTT in immortalized striatal cells (48). Our finding that Rhes is transported between 

neurons in vivo prompted us to investigate whether mHTT can also be transported by 

endogenous Rhes. We prepared lentiviral (LV) bicistronic vectors expressing EGFP and 

mCherry-tagged HTT containing N-terminal 171 aa with 18Q (LV-wtHTT) or 89Q (LV-

mHTT) poly-glutamine (Q) repeats, separated by the P2A sequence (67) (Fig. 3A). In this 

scenario, EGFP and mCherry-HTT will be expressed as two separate proteins in an 

infected cell, thereby allowing the investigation of HTT transport by monitoring the 

mCherry fluorescence. We first validated the LV vectors and confirmed similar expression 

levels of two separate proteins by western blotting in striatal neuronal cell line (Fig. 3B). 

We then stereotaxically injected LV-wtHTT or LV-mHTT unilaterally into the striatum of 2-

month-old WT and Rhes KO mice. After 2 months, the brains were fixed and processed 

for EGFP and mCherry fluorescence detection by confocal microscopy. As expected, we 

observed EGFP (green) and mCherry (HTT, red) co-expression at the injection site of the 
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striatum (Fig. 3C). We also detected the mCherry-mHTT expression alone in the 200   

µm2 area around the injection site, as well as 500  µm away from the injection site in the 

WT mice, indicating mHTT movement within the striatum (Fig. 3C, inset c1, arrowhead, 

Fig. 3D); however, the mCherry-HTT signal intensity was markedly reduced in the Rhes 

KO mice (Fig. 3C, inset c2, arrowhead, Fig. 3D). Moreover, little wtHTT was transported 

within the striatum compared to mHTT, and no significant differences were detected 

between WT and Rhes KO mice (Fig. 3C, insets c3, c4, Fig. 3D).  

 

Remarkably, besides striatum (Fig. 3E, inset c1-c4), a strong mCherry-mHTT expression 

was observed in the cortex of the WT mice, which was much diminished in the Rhes KO 

mice cortex (Fig. 3E, inset c1a-c4a, arrowhead, Fig. 3F). When compared to mHTT, only 

few wtHTT puncta were seen in WT and it was not significantly different than Rhes KO 

cortex (Fig. 3E, arrowhead, Fig. 3F). Most mHTT and wtHTT puncta were distributed 

perinuclearly in the cortical cells of WT and Rhes-KO brain (Fig. 3E, inset c1b-c4b, 

arrowhead).  

These observations indicate that the mHTT protein is transported between 

neurons and to cortical areas and that Rhes is a major driver for such transport. 

 

Rhes moves from the striatum to the cortical areas of the brain. 

The above data (Figs. 2 and 3) suggested that Rhes can move to the cortical 

region, indicating propensity for extrastriatal migration. First, we examined whether Rhes 

might be transferred between cortical neurons in vitro. We co-cultured cortical neurons of 

EGFP Tg mice and CamKIICre Tg mice and infected them with AAV Cre-On RFP or AAV 

Cre-On RFP-Rhes viral particles (Fig. 4A). Three days after the infection, we observed 

two distinct neuronal populations expressing Cre-On RFP in CamKIICre neurons (donor) 

and EGFP neurons (acceptor) without any apparent overlap (Fig. 4B). Little or no RFP 

signal was found in EGFP neurons (Fig. 4B, Inset b). Remarkably, a robust transport of 

Cre-On RFP-Rhes from CamKIICre (donor) neuron was found in the perinuclear regions 

of the EGFP (Cre –) cortical acceptor neurons (Fig. 4B, inset b1, arrowhead). Orthogonal 

rendering further confirmed that RFP-Rhes was colocalized with the EGFP neurons (Fig. 
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4B, inset b1, arrow). Overall, RFP-Rhes but not RFP alone is transported efficiently 

between cortical neurons (Fig. 4C). 

Next, we set out to determine further if the intraregional transport of Rhes can 

occur from the striatum to cortex using D1RCre mice (Fig. 4D). We stereotaxically injected 

AAV Cre-On RFP (control) or Cre-On RFP-Rhes particles unilaterally into the adult mouse 

striatum of Drd1aCre/+ Tg mice (Fig. 4D), in which D1R-positive MSNs are primarily 

restricted to the striatum, as confirmed in Drd1aEGFP mice (sFig. 4A). At ~8 weeks after 

injection, the Drd1aCre/+ Tg mouse brains were perfused, and sections were analyzed for 

RFP and RFP-Rhes signal by confocal microscopy. As expected, we found Cre-On RFP 

expression highly restricted to the striatum (Fig. 4E, upper panel, blue arrow). By contrast, 

the Cre-On RFP-Rhes signals were found in the striatum, but strong signals were also 

observed in the cortical areas (layer V and VI) of the brain (open arrow), with some signal 

also evident in the septum region (closed arrow) (Fig. 4E, lower panel). The RFP-Rhes, 

but not the RFP signal alone, was consistently found as perinuclear cytoplasmic 

structures in the cortical cells of the Drd1aCre/+ mouse cortex (Fig. 4E, insets e1-e4, 

arrowhead, and Fig 4F).  

We further confirmed the cortical transport of Rhes in Rgs9Cre mice (Fig. 4G) that 

primarily express Cre in the striatal MSNs (68, 69). As expected, striatal injection of Cre-

On RFP in the Rgs9Cre mouse striatum resulted in RFP expression effectively restricted 

to the striatum (sFig. 4B, Fig. 4H, upper panel). By contrast, striatal injection of Cre-On 

RFP-Rhes resulted in RFP-Rhes signals in the striatum and also cortical areas of the 

Rgs9Cre mice (Fig. 4H, lower panel, & Figs. 4I, 4J). Signal from RFP-Rhes, but not RFP 

alone, was observed in the perinuclear cytoplasm of the cortical cells (Fig. 4H, insets h1-

h4, arrowhead, and Fig 4J), consistent with the observations in D1RCre mice (Fig. 4E).  

Taken together, these results indicated that Rhes protein can transit efficiently in 

vitro between primary cortical neurons and in vivo from the striatum to the cortex.   

 

DISCUSSION 

In this report, we provide compelling evidence that the brain-enriched protein Rhes can 

move from neuron to neuron in dissociated neuron preparations, in brain slices, and in 

intact mouse brains. Previous work has shown that prion proteins, as well as misfolded 
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proteins, such as a-synuclein, amyloid, and tau, can move from neuron to neuron, 

although the mechanisms are not fully understood (70, 71). The Arc protein, which shows 

virus-like properties, can be transported between neurons via extracellular 

vesicles/exosomes (72, 73). Rhes does not share homology with prions or with Arc 

protein, nor is it present in exosomes (sFig. 5). The findings presented here broaden the 

transport mechanisms for structurally unrelated proteins between neurons.  

 

Our data suggest that neuron-to-neuron Rhes transport involves TNT-like mechanisms. 

Rhes is expressed in PC12 cells (10, 74), in which TNTs were first reported (75). We 

confirmed that the depletion of endogenous Rhes in the PC12 cells diminishes TNTs, 

indicating Rhes is required for TNTs formation or maintenance (sFig. 6). Rhes, in addition 

to engineering actin-based TNT-like membranous protrusions, travels by this route and is 

delivered to the acceptor cells (46-48). Clues by which this occurs emerged from time-

lapse cell imaging studies showing that the TNT-like protrusions touch the acceptor cells 

and deliver vesicle-like puncta in a process that resembles endocytosis-like mechanisms 

of cargo uptake (46, 48). The live-cell imaging of brain slices further demonstrated that 

the protrusions and their related delivery mechanisms are likely operational in vivo (Fig. 

1) and that Rhes transport from neuron to neuron in the adult brain (Fig. 2) can occur by 

a protrusion-based mechanism (46, 48).  

Anatomical and electrophysiological studies have shown that D1R and D2R MSNs 

are interconnected by collateral axons (76-79). Our present work showed that Rhes 

moves between MSNs, adding a new dimension to neuronal communication in the 

striatum. Beyond the MSNs, the interneurons of the striatum are also positive for EGFP-

positivity in D2REGFP mice (80). Therefore, the possibility that Rhes might be transported 

to other cell types, such as interneurons in the striatum, cannot be ruled out.  

Neuron to neuron communication via synapses and neuron to glia via extracellular 

fluid is necessary for neuronal functioning. Rhes-mediated TNT-like communication may 

provide a network of direct routes connecting the cell body and the synapses of neurons 

in the brain. Rhes is highly abundant in the neuronal synapses, where it may bridge 

synapses via the tiny TNT-like protrusions to transport proteins or vesicular cargoes 
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depending upon the functional and metabolic demands of neurons and their disease 

state.  

Previous studies have reported the cell-to-cell transport of mHTT in human HD 

patient striatum, as well as in mouse and Drosophila HD models (81-86). Extracellular 

vesicles and endocytosis are suspected to be involved in the mHTT delivery and uptake 

(87, 88), however, the details of the molecular mechanism that drives mHTT transport 

between neurons in the brain are unclear. Consistent with earlier work (89), we showed 

that mHTT can be transported by TNT-like protrusions and that Rhes accelerates this 

process several fold (48). In this report, we confirm that mHTT transport occurs in WT 

mice; however, the transport is markedly diminished in the Rhes-KO brain (Fig. 3), 

indicating that Rhes is a physiological mediator of mHTT transport in vivo.  

Several studies have indicated that mHTT has prion-like properties that may 

contribute to its cell-to-cell transmission (83, 86, 90-92). Previous work showed that TNTs 

may serve as a route for the transport of prion-like protein between cultured cells (93, 94). 

An interesting possibility is that Rhes may increase the transmission of prion-like mHTT 

in vivo via the TNT-like processes. Recent work has shown that tau pathology and 

spreading can occur via TNTs, and Rhes is a critical determinant of tau pathology (22, 

23, 93, 95, 96). Remarkably, the spread of tau pathology can occur from the striatum, and 

tau is also associated with HD pathology (97-101). We found Rhes interacts with striatal 

low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) (8), which is involved in 

tau uptake and spread (102). Thus, Rhes may have a binary function in 

neurodegenerative disease pathology by promoting transport of both misfolded tau and 

mHTT from the striatum. 

One intriguing question is how Rhes moves from the striatum to the cortex (Fig. 

4). Our data supports the model that Rhes promotes the formation of TNT-like processes 

from the MSN to connect to the axonal projections arising from the cortex (corticostriatal 

fibers), thereby allowing retrograde transport of Rhes (Fig. 5). Retrograde transport of 

proteins, and particularly the plant protein horseradish peroxidase (HRP), is well 

documented. HRP is transported in membrane-bound vesicles within the axons of 

ganglion cells in the optic tectum of the chick and rat sciatic nerves (103-105). HRP 

injected into the striatum was later found in various regions of the cortex in macaque 
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monkeys (106). Similar to HRP (105), Rhes is found localized with lysosomes in the 

acceptor cells (48), indicating that HRP and Rhes might share similar destination 

mechanisms. On lysosomes Rhes might influence mTORC1 signaling and autophagy 

(107). Besides lysosomes, Rhes is also localized to endosomes and damaged 

mitochondria in the acceptor cells (47, 48). Therefore, we predict that conserved 

intercellular retrograde transport and docking mechanisms are involved in transporting 

Rhes from the TNT-like protrusions of the striatal MSNs to the cortex (Fig. 5). 

Our in vitro studies also indicated an involvement of Rhes in cell-to-cell transport 

of receptors, such as D1R, D2R, and histamine-3 receptor, but not of TMEM214, an ER-

associated transmembrane protein (sFig. 7), suggesting that this specific transport of 

cargoes by Rhes may modulate cell autonomous signaling between neurons in an 

unprecedented manner. Future work should clarify the cellular and molecular 

mechanisms by which Rhes moves and transports cargoes between neurons and their 

physiological role in the brain. 

In summary, our results demonstrate that Rhes transits and transports mHTT in 

the brain most likely involving protrusion-based communication routes between neurons 

and interconnecting neural pathways. The findings presented here indicate the potential 

of developing new therapeutic approaches for interfering with Rhes-mediated mHTT 

spreading in the brain to slow or prevent HD.  

 

MATERIALS AND METHODS 

 

Animals 

Surgery and stereotaxic injections were made in adult animals (8 weeks old). Animals 

were housed in groups of three to five on a 12:12 h light-dark cycle and food and water 

were ad libitum provided. All protocols were approved by the Institutional Animal Care 

and Use Committee at The Scripps Research Institute, Florida. 

 

For Rhes_Flex Cre-On expression we used previously well-characterized Cre or reporter 

transgenic mice. D1RCre mice were obtained from MMRRC (030989-UCD-Hemi-F; 

B6.FVB(Cg)-Tg(Drd1-Cre)EY262Gsat/Mmucd), D2RCre mice were purchased from 
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MMRRC (032108-UCD-Hemi-F; B6.FVB(Cg)-Tg(Drd2-Cre)ER44Gsat/Mmucd), D2REGFP 

mice were purchased from MMRRC (000230-UNC-Hemi-M; Tg(Drd2-

EGFP)S118Gsat/Mmnc). CamKIICre transgenic mice (005359 B6.Cg-Tg(Camk2a-

cre)T29-1Stl/J, homozygous), D1RTd-Tomato mice (016204; B6.Cg-Tg(Drd1a-

tdTomato)6Calak/J, Hemi-M) and EGFP transgenic mice (006567; C57BL/6-Tg(CAG-

EGFP)131Osb/LeySopJ, homozygous) were obtained from The Jackson Laboratory. 

RGS9Cre mice were produced as described before (68). Double transgenic mice (D1RTd-

Tomato/D2RCre, and D1RCre/D2REGFP) were obtained by crossing the male D1RTd-Tomato with 

female D2RCre and the female D1RCre with male D2REGFP, respectively. Female with the 

Cre transgenes were used for breading, according with the suggestions from the 

company. Heterozygous condition for the Cre transgene was used for all the experiments, 

with exception of RGS9-Cre, which was used in homozygous form.  

 

Constructs details. Cre-On RFP and Cre-On Turbo RFP-Rhes was cloned in pAAV 

(FLEX Cre-On) vector under EF1A promoter (VectorBuilder).  Similarly, the Cre-On EGFP 

and Cre-On EGFP-Rhes is cloned in pAAV (FLEX Cre-On) under CAG promoter 

(VectorBuilder). Human RASD2 (NM_014310.3) sequences was used for Rhes 

expression. The details of vector and cloning can be found in sFig. 8. The vectors were 

packaged in AAV-PHP.eB serotype and ultra-purified using VectorBuilder service 

(www.vectorbuilder.com).  The mCherry-HTT N171 18Q or 89Q were cloned in 3rd 

generation Lentiviral vector for bi-cistronic expression of EGFP and the gene of interest 

(Addgene, 24129) and transfected in HEK 293T cells along with packaging plasmids. 

After 24 hr. of transfection media was changed and cells were incubated for additional 48 

hrs. Supernatant was collected and virus was purified, and the titer was determined by 

infecting HEK 293T cells by a serial dilution. pEGFP-N-Drd1 plasmid was a gift from Kirk 

Mykytyn (Addgene, 104358), GFP-DRD2 plasmid was a gift from Jean-Michel Arrang 

(Addgene, 24099), pH3R-mCherry-N1 plasmid was a gift from Dorus Gadella (Addgene, 

84327), and Tmem214 pmRFP-N2 plasmid was a gift from  Eric Schirmer (Addgene, 

62047). Scrambled gRNA and rat-specific gRNA CRISPR constructs were custom made 

from VectorBuilder. 
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Stereotaxic striatal injections 

Intrastriatal surgery for AAV/lentivirus infusion was carried out using the stereotaxic 

coordinates as described in our previous studies (11, 108). Briefly, adult (8-10 weeks old) 

male and female mice were injected with the virus according to the designed experiment. 

For surgery the mice anesthetized through the constant delivery of isoflurane in oxygen 

while mounted in a stereotaxic frame (David Kopf Instruments). Unilateral injection was 

made into the striatum at the following coordinates: ML = ±1.6, AP = +1.0; DV = –3.6 from 

bregma. Viruses were injected in 0.5 µl volume. The following viruses were used: AAV 

RFP-Rhes (Flex) Cre-On 1.24 x 1012 gc/ml; AAV RFP (Flex) Cre-On 2.39 x 1012 gc/ml; 

AAV GFP-Rhes (Flex) Cre-On 1.28 x 1012 gc/ml; AAV GFP (Flex) Cre-On 2.12 x 1012 

gc/ml; Lentivirus GFP-P2A-mCherry HTT N171-18Q 1.0 x 1012 gc/ml; Lentivirus GFP-

P2A-mCherry HTT N171-89Q 1.0 x 1012 gc/ml.  

 

Tissue fixation for imaging  

Tissue was minimally processed to avoid loss of endogenous fluorescent signal. Briefly, 

8-weeks after the stereotaxic injection, mice were anesthetized and perfused with cold 

saline solution (10 ml, 1.5 ml/min rate perfusion), followed by 4% paraformaldehyde (10 

ml, 1.5 ml/min rate perfusion). Mouse brains were collected and postfixed overnight in 4% 

paraformaldehyde, cryoprotected in a sucrose/PBS gradient at 4ºC (10, 20, 30%), and 

then embedded in Tissue-Tek OCT compound (Sakura). Coronal sections (20 µm) were 

collected on Superfrost/Plus slides, counterstained with DAPI, and mounted using 

Fluoromount-G mounting medium (ThermoFisher Scientific). Images were obtained with 

the Zeiss LSM 880 microscope and processed using ZEN software (Zeiss). 

 

Organotypic cultures 

Organotypic cortico-striatal slices were prepared from transgenic postnatal 4-8 days old 

mouse pups of both sexes from D2RCre+/-;D1RtdTomato+/- mice, as described in our earlier 

work (109). In brief, the animals were quickly decapitated, and the brain removed, the 

cerebellum and frontal hemisphere were cut. Cortico-striatal coronal slices (350 µm thick) 

were obtained using a vibratome (Leica). Slices were collected and kept in dissection 

media [Minimum Essential media (MEM, M7278, Millipore Sigma), 1% GlutaMAX 
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(ThermoFisher Scientific) and 1% penicillin/streptomycin (ThermoFisher Scientific)]. 

Single slice was placed on interface-style Millicell culture inserts (PICM0RG50, 30 µm, 

hydrophilic PTFE, 0.4 µm pore size) in 6-well culture plates containing 1 ml of sterile slice 

culture medium [50 % MEM, 25 % Basal medium eagle (BME, B1522, Millipore Sigma), 

25% heat inactivated horse serum (ThermoFisher Scientific), 0.6 % Glucose (G8769, 

Millipore Sigma), 2 mM GlutaMAX, 1% antibiotic antimycotic (15240096, ThermoFisher 

Scientific). Brain slices were incubated at 37°C in 5% CO2. Two days later 800 µl culture 

medium was removed and replaced with 800 µl culture medium. On day 5 culture medium 

was replaced with low-serum Neurobasal-N1 medium (94.5% Neurobasal plus medium, 

0.5% heat-inactivated horse serum, 1X  N1 supplement, 2 mM glutamine, 0.6% glucose, 

1% antibiotic antimycotic). Culture medium (Neurobasal-N1 medium) was exchanged 

every 3-to-4-days. On day 7 in vitro slice cultures were infected with 0.5 µl of Cre-On GFP 

or Cre-On GFP-Rhes using a droplet method (109). For live imaging (7-10 days after 

infection), slices were cut out of the insert (still attached to membrane) and were 

transferred  into glass-bottom dishes (D11140H, Matsunami Glass) with a drop of imaging 

media (A14291DJ, ThermoFisher Scientific) and were imaged using a Zeiss LSM 880 

microscope, and the videos were analyzed by using the ZEN software.  

 

Primary neuron culture, and co-culture experiments 

 Primary neuron culture was performed as described in Sharma and Subramaniam, JCB, 

2019 (48). In brief, striata of postnatal day 1 D2RCre mice were removed and digested at 

37°C for 15 min in a final concentration of 0.25% papain and resuspended in neuronal 

plating media (Neurobasal-A media; Thermo Fisher Scientific), with 5% FBS, 0.5 mM 

glutamax, and 1% penicillin-streptomycin. Tissues were dissociated by trituration with a 

pipette. Further, cells were plated in 35-mm glass-bottom dishes (D11140H; Matsunami) 

coated with 100 µg/ml poly-D-lysine at the density of 2 × 105 cells per dish. Dishes were 

maintained in a 37°C, 5% CO2 incubator. After the cells adhered (1–3 h after plating), 

plating media were replaced with growth media (Neurobasal-A media, 2% B27, 0.5 mM 

glutamax, and 1% penicillin-streptomycin). Neurons were infected with AAV Cre-On 

EGFP or Cre-On EGFP-Rhes at DIV 10 (MOI 10). Confocal mages were acquired after 

48 hr. in live cell imaging solution as described earlier (48). For fixation experiments, 
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similar strategy was used for primary neuron culture as above. Live cell imaging was 

acquired of primary neurons or striatal neuronal cells expressing GFP-Rhes. Later cells 

were fixed with 1% PFA for 10 seconds and images were captured from the same field to 

assess the effect of PFA fixation on TNTs stability.   For co-culture experiments, primary 

cortical neurons were prepared from CamK-IICre mice and EGFP Tg mice. Cells were 

plated in 1:1 ratio and cultured and infected using AAV Cre-On RFP or Cre-On RFP-Rhes 

(MOI 10) as mentioned above. Percentage of EGFP neurons positive for RFP signal  for 

RFP Cre-On and RFP-Rhes Cre-On groups were quantified. PC12 stably expressing 

scramble or rat-Rasd2 gRNA were grown as described before (107).  

 

Confocal imaging 

Fixed tissue and organotypic cultures were imaged using Zeiss LSM880 confocal system. 

Whole coronal reconstructions were acquired using a 20x objective, with a Z-stack of 

three planes. High magnification images and partial cortico-striatal reconstructions were 

acquired using a 63x objective, optical Zoom was adjusted according to the field of 

interest. Live imaging of organotypic slices were acquired using a 40x objective with a 0.5 

optical zoom. Primary neurons, and striatal neuronal cells transfected with reporter Rhes 

and reporter cargoes were live-cell imaged as described before (48).  

 

Quantification 

Confocal images were used to quantify the protein expression using the ImageJ software. 

Average from two to three sections from each mouse were used for group analysis, and 

average of two to three different areas from each region (injection site, at 100 µm and 

500 µm from the injection site, contralateral striatum) were analyzed. Proportion of D1, 

D2 and cortical cells with Rhes, as well as D2 alone without Rhes, after injection was 

made by quantifying each kind of neuron in 100 µm2 areas from each region. Total 

number of nuclei stained with DAPI was consider as 100% for each 100 µm2 analyzed. 

Similarly, ipsilateral cortical areas intensity of RFP or RFP-Rhes were determined in 

D1RCre and Rgs9Cre mice brain sections in 100 µm2 area. 
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Transportation of the mCherry-HTT (N171-18Q) protein or the mCherry-mHTT (N171-

89Q) was measured using the ImageJ software, by quantifying the relative intensity for 

the HTT or mHTT expression (mCherry, red channel). Average of two areas (200 µm2) 

from each region (injection site, 500 µm from the injection site and cortex) were analyzed 

for group results (site injection was identified by the EGFP expression). 

 

Exosome isolation 

The exosomes isolation was performed using a protocol described previously (110, 111). 

Briefly, the striatum tissue was dissected out, weighed, and transferred to a 50 ml tube 

containing 75 U/ml of collagenase in PBS (total volume of PBS was 6 ml). The tissue was 

then incubated in a shaking water bath at 37°C for a total of 30 min. Tube was mixed 3 

times during incubation by gentle inversion (after 10 min incubation). The collagenase 

was diluted by adding ice cold PBS (up to 44 ml to make the total volume 50 ml). Once 

the tissue was settled down, around 48 ml PBS was discarded. The washing step was 

repeated one more time to further dilute out collagenase. Protease and phosphatase 

inhibitor (Millipore Sigma) were added to a final concentration 1× in remaining 2 ml PBS. 

Tissue was introduced to gentle pipetting (10 stroke).  The dissociated tissue was spun 

at 300 × g for 5 min at 4°C, the pellet was collected for input and the supernatant was 

transferred to a fresh tube, spun at 2000 × g for 10 min at 4°C. Pellet was discarded and 

supernatant was spun at 10,000 × g for 30 min at 4°C. The supernatant was overlaid on 

sucrose cushion (10%, 20%, 30%, 40% and 50%). The gradient was spun for 3 h at 

180,000 × g (average) at 4°C (SW41 Beckman ultra-centrifuge). After the spin the top of 

the gradient was removed and discarded, and the 10% fraction (F1) was designated 

number 1. Fractions 2 (20%), 3 (30%) 4 (40%) and 5 (50%) were subsequently collected 

and protein was precipitated via methanol chloroform method (47). Exosome isolation 

was confirmed by flotillin antibody in western blot.  

 

Western blotting. Striatal neuronal cells (STHdhQ7/Q7) grown in growth medium 

containing Dulbecco’s modified Eagle’s medium with high glucose (Thermo Fisher 

Scientific) with10% FBS, transfected with indicated plasmids or infected with AAVs and 

lysed in RIPA buffer and equal proteins were loaded onto the SDS page and transferred 
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as described before (112). Primary antibodies against-Rhes (1:500, FabGennix #RHES-

101AP), GFP (1:5000, Cell Signaling, #2956) , mCherry (1:5000, Novus Biologicals, 

#NBP2-25157), Flotillin (1:1000, Cell Signaling, # 18634) and secondary antibodies 

conjugated to HRP (1:10000, Jackson labs) were used. 

Statistical analysis 

Data are presented as mean ± SEM as indicated. Variance was found to be similar 

between the groups tested. Statistical analysis was performed with a Student’s t test or 

one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test or 

two-way ANOVA followed by Bonferroni post-hoc test. Significance was set at p < 0.05. 

All statistical tests were performed using Prism 9.0 (GraphPad software). 
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LEGENDS 

 

Figure 1. Rhes promotes TNT-like protrusions in MSNs. (A) AAV Flex Cre-On  viral 

vector design and infection of AAV.PHP.eB Cre-On EGFP or EGFP-Rhes viral particles, 

into the D1RCre (Drd1aCre) mice primary medium spiny neurons (MSNs). (B, C) Confocal 

images of 8-10 DIV D2RCre-MSN expressing AAV Cre-On GFP (B) or AAV Cre-On GFP-

Rhes (C)  (MOI 10). Inset b, blue arrow indicates crooked and highly bifurcated neurites. 

Inset c, white open arrow indicates straight TNT-like protrusions from cell body of the 

GFP-Rhes expressing D2RCre neuron. Closed arrow indicates TNT-like protrusion from 

the neurites of the GFP-Rhes expressing D2RCre neuron. Arrowhead indicates GFP-Rhes 

positive vesicle-like blub commonly observed in Rhes-induced TNT-like protrusion. (D) 

Organotypic cortico-striatal brain slice culture from D2RCre;D1RtdTomato mice infected with 

AAV.PHP.eB Cre-On EGFP or EGFP-Rhes viral particles. (E) Confocal live-slice images 

and insets of organotypic cortico-striatal brain slices from D2RCre;D1RtdTomato mice 

transduced with Cre-On EGFP  or Cre-On EGFP-Rhes AAV viral particles. Yellow and 

white arrow show neuronal processes of GFP or GFP-Rhes from Cre(+) D2RCre MSNs 

(green), respectively. The arrowhead shows GFP-Rhes puncta colocalization in Cre (–) 

D1RtdTomato MSN (red). 3D rendering and orthogonal (ortho, single plane) display shows 

EGFP-Rhes puncta are inside the D1RtdTomato MSN (arrowhead). (F) Pearson’s coefficient 

for colocalization between EGFP or EGFP-Rhes and tdTomato (n = 12, D1RtdTomato 

neurons from 3 slices); data are mean ± SEM; Student’s t-test, ****p<0.0001. (G) Confocal 

time-lapse imaging of brain slices of D2RCre-MSN (green) and D1RtdTomato MSN (red) 

(D2RCre;D1RtdTomato mice) infected with AAV Cre-On EGFP-Rhes. Inset g (upper panel) 

shows EGFP-Rhes-positive TNT-like protrusions (0–30 mins) in the brain slices 

connecting D2RCre-MSN (green) to D1RtdTomato-MSN (red). Inset g (lower panel) 3D 

intensity shows dynamic movement of Rhes dots from D2RCre-MSN into D1RtdTomato MSN 

(arrowhead) at different time points (0–20 min). (H) Confocal time-lapse imaging of brain 

slice showing 3D intensity of dynamic movement of Rhes dots from D2RCre-MSN into 

D1RtdTomato MSN (arrowhead) from three different brain slice experiments. 
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Figure 2. Rhes moves from D1R-MSN to D2R-MSN in vivo. (A) Cre-On in vivo model 

to investigate transport of Rhes from D1R-MSN to D2R-MSN in the striatum (using 

ML = ±1.6, AP = +1.0; DV = –3.6 coordinates) of D1RCre;D2REGFP mice injected with AAV 

Cre-On RFP-Rhes. D1R-MSN will serve as Cre+ donor neuron and D2R-EGFP as Cre- 

acceptor neuron. (B) Confocal images of brain sections from three different 

D1RCre;D2REGFP mice injected with Cre-On RFP-Rhes in the striatum. Arrow indicates 

expression of RFP-Rhes in D1RCre(+) neurons. Arrowhead indicates RFP-Rhes 

expression in D2REGFP Cre (–) neurons. Arrowhead in the orthogonal display shows RFP-

Rhes puncta are colocalized with D2REGFP neuron. Artistic rendering of inset b is shown. 

(C) A horizontal reconstruction of confocal images of D1RCre;D2REGFP mice injected with 

Cre-On RFP-Rhes in the striatum. At the injected site, inset c1 shows D2REGFP neuron 

(closed arrow) and inset c2 shows D1RCre neurons expressing RFP-Rhes (open arrow) 

and D2REGFP neurons with RFP-Rhes (arrowhead).  Inset c3 shows RFP-Rhes 

(arrowhead) in D2REGFP neuron, 500  µm away from the injected site and inset c4 shows 

RFP-Rhes in the ipsilateral cortical cells. (D) Bar graph shows quantification of the % of 

indicated neurons from the injected site, and 100 µm and 500 µm away from the injection 

in the striatum, ipsilateral cortex (as shown in C), as well as contralateral striatum. (n = 

5/injection/mixed sex). Data are mean ± SEM, **p < 0.01, ***p < 0.001, Two-way ANOVA, 

Bonferroni post hoc test. 

 

Figure 3. Rhes promotes cell to cell transport of mHTT in vivo. (A) Graphical 

representation of EGFP-P2A-mCherry N171-18Q (wtHTT) or EGFP-P2A-mCherry N171-

89Q (mHTT)  lentiviral vectors and injection of lentivirus into the striatum (using ML = ±1.6, 

AP = +1.0; DV = –3.6 coordinates) of WT or Rhes KO mice. (B) Western blotting of striatal 

neuronal cells expressing wtHTT or mHTT. (C) Confocal image of the horizontal 

reconstruction of a portion of brain section showing expression of EGFP (green) and 

wtHTT or mHTT (mCherry, red) at the injection site and 500  µm away from the injection 

site in WT and Rhes KO mice. Insets c1-c4 show enlarged portion of a selected region in 

the 500 µm away from the injection site in the striatum. Arrowhead indicates perinuclear 

localization of mHTT. Cell nuclei stained with DAPI (blue). (D) Bar graph shows 

quantification of intensity of HTT in 200  µm2 striatal area in the injected site, and 500 µm 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.27.457956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457956


 21 

away from the injected site (n = 5/injection/mixed sex). Data are mean ± SEM, ****p < 

0.0001; n.s-not significant, One-way ANOVA, Tukey’s multiple comparisons test.  (E) 

Confocal images of brain sections from WT and Rhes KO mice showing the expression 

of EGFP (green) and wtHTT or mHTT (mCherry, red) and cell nuclei stained with DAPI 

(blue). Insets c1-c4 show magnified images from striatum and inset c1a-c4a and c1b-c4b 

from cortex. Arrowhead shows expression of mHTT or wtHTT in the cortex. (F) Bar graph 

shows quantification of intensity of HTT in 200  µm2 striatal area in the ipsilateral cortex. 

(n = 5injection/mixed sex). Data are mean ± SEM, ****p < 0.0001; n.s-not significant, One-

way ANOVA, Tukey’s multiple comparisons test..   

 

Figure 4: Rhes moves from striatum to cortex. (A) Cre-On AAV Flex  viral vector 

design (upper panel) and primary cortical neuron co-culture model (lower panel) to 

investigate Rhes transport in vitro. Primary cortical neurons were co-cultured from Cam-

KIICre mice (donor neuron) and EGFP Tg mice (acceptor neuron) and infected with Cre-

On AAV Flex RFP or Cre-On AAV Flex RFP-Rhes. (B) Confocal images of primary 

cortical neuron co-culture from Cam-KIICre mice and EGFP Tg mice. Red arrow indicates 

Cam-KIICre neurons (Cre+ donor neurons) expressing Cre-On RFP alone (upper panel) 

or Cre-On RFP-Rhes (lower panel). Green arrow indicates EGFP neurons (Cre–, 

acceptor neuron). Inset b and b1, enlarged portion of EGFP acceptor neuron. Arrowhead 

indicates Cre-On RFP-Rhes in EGFP acceptor neuron. Orthogonal display show 

colocalization of Cre-On RFP-Rhes in the EGFP acceptor neuron (arrow). (C) 

Quantification of EGFP neurons positive for RFP signal (%) for RFP Cre-On (n= 29) and 

RFP-Rhes Cre-On groups (n = 41). Data are mean ± SEM; Student’s t-test, ****p<0.0001. 

(D)  Stereotaxic injection of AAV Cre-On RFP or RFP-Rhes viral particles using ML = ±1.6, 

AP = +1.0; DV = –3.6  coordinates into the D1RCre (Drd1aCre) mice striatum. (E) Coronal 

brain section of the D1RCre mice injected with Cre-On RFP or RFP-Rhes in the striatum 

with cell nuclei stained with DAPI (blue) and dotted circle showing RFP or RFP-Rhes 

signals (red) in the injected area. RFP alone signal in the striatum (blue arrow). RFP-

Rhes signals in the cortical region (open arrow) and septal regions (closed arrow). Insets 

e1-e4  shows the high magnification image of the cortical region. Insets e3-e4 shows 

perinuclear cytoplasmic accumulation of Rhes in the cortical cells (arrowhead). (F) 
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Quantification of percent of cortical cells in the cortex of D1RCre mice injected with Cre-

On RFP or RFP-Rhes in the striatum showing the expression of RFP/RFP-Rhes. Data 

are mean ± SEM; Student’s t-test, **p <0.01 (n = 4/injection). (G) Stereotaxic injection of 

AAV Cre-On RFP or RFP-Rhes viral particles into the Rgs9Cre mice striatum using 

ML = ±1.6, AP = +1.0; DV = –3.6 coordinates. (H) Confocal image of striatum and cortical 

regions of Rgs9Cre mice injected with Cre-On RFP or RFP-Rhes in the striatum with cell 

nuclei stained with DAPI (blue). Insets h1-h4  shows the high magnification image of the 

cortical region. Insets h3-h4 shows perinuclear cytoplasmic accumulation of Rhes in the 

cortical cells (arrowhead). (I) A vertical reconstruction of confocal images of Rgs9Cre mice 

brain injected with RFP-Rhes in the striatum. Arrowhead indicates an accumulation of 

RFP-Rhes in the cortex. (J) Quantification of percent of cortical cells expressing RFP-

Rhes in Rgs9Cre mice injected with Cre-On RFP-Rhes in the striatum. Data are mean ± 

SEM; Student’s t-test, **p <0.01 (n = 3/injection).  

 

Figure 5. Neuron to neuron Rhes transport model. Our data indicate that Rhes moves 

between MSNs in the striatum as well as to the cortical areas. Live-cell imaging data from 

primary neurons and organotypic slices data indicate TNT-like membranous protrusions 

are the key routes Rhes contact the neighboring neurons. Thus, we predict that Rhes 

transports and facilitates mHTT movements in vivo potentially via the direct physical 

contact of neurons via membranous protrusions. Both collateral contact between MSNs 

and cortical-striatal contacts of MSN to the cortical projections may occur via TNT-like 

membranous protrusions.   

 

Supplementary Figure (sFig) 1. (A-B) Live-cell confocal imaging showing Cre-On 

EGFP-Rhes-induced TNT-like protrusion in D2RCre-MSN before paraformaldehyde (PFA, 

1%) fixation (A)  and after PFA fixation (B). (C-D) Live-cell confocal imaging showing 

EGFP-Rhes-induced TNT-like protrusions in striatal neuronal cell lines before PFA 

fixation (C)  and after PFA fixation (D). Differential interference contrast (DIC). Rhes-

induced TNT-like protrusions (arrow) are destroyed after PFA treatment Arrowhead 

indicates neurite (A-B), filopodia-like protrusion (C-D) remain intact after 

PFA.  (E) Confocal and DIC image of D2RCre-MSN expressing EGFP-Rhes shows two 
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different planes (substrate plane or above substrate). Inset e, arrowhead points to 

neurites visible in the substrate plane. At this plane the TNT-like cellular protrusion 

becomes out of focus (dim).  Inset e, arrow points to the visible TNT-like protrusion above 

the substratum, where the neurites become out of focus (dim).  (F) Confocal and DIC 

image of D2RCre-MSN expressing Cre-On GFP-Rhes shows two different planes 

(substrate plane or above substrate). Inset f, arrowhead points to neurites visible in the 

substrate plane. At this plane, the TNT-like cellular protrusions become dim. Inset f, arrow 

points to the visible TNT-like protrusions above the substratum (plane 1 and plane 2). At 

these planes the neurite-like processes are dim. 

 

Supplementary Figure 2. (A) Confocal time-lapse imaging of D2RCre-MSN (green) and 

D1RtdTomato-MSN (red) from D2RCre; D1RtdTomato organotypic cortico-striatal brain slices 

infected with AAV Cre-On GFP (B) Inset (upper panel) shows GFP and tdTomato MSNs 

(arrowhead) time lapse imaging from 0–30 mins. 3D intensity inset (lower panel) shows 

lack of apparent association at different time points (0–30 min). (C) Confocal time-lapse 

imaging of the organotypic cortico-striatal brain slices infected with AAV Cre-On GFP 

showing 3D intensity of D2RCre-MSN and D1RtdTomato-MSN from three different brain slice 

experiments. 

 

Supplementary Figure 3. (A) Western blot for Rhes in the lysates from striatal neuronal 

cells transfected with or without cDNA of Cre and RFP-Rhes Cre-On vector. (B) Striatal 

cells expressing Cre-On RFP-Rhes and forming a long (inset b1, arrow) and short (inset 

b2, arrowhead) TNT-like cellular protrusions.  

 

Supplementary Figure 4. (A) Coronal brain sections of Drd1aEGFP mice showing 

expression of EGFP in D1R-MSNs with nuclear stain (DAPI). (B) Sagittal brain section of 

Rgs9Cre mice injected with Cre-On RFP in the striatum.  

 

Supplementary Figure 5. Western blot for Rhes and flotillin, an exosome marker, in the 

striatal lysate from WT or Rhes KO mice after differential sucrose gradient fractionation.  
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Supplementary Figure 6. Rhes promotes TNTs in PC12 cells. (A) Western blot and 

quantification (B) of knock down of Rhes by CRISPR Rhes gRNA in PC12 cells that are 

stably selected with puromycin. WT and Rhes–/–  mice striatum used as positive control. 

(C) DIC live-cell imaging of stable PC12 cells and magnified insets. Arrows indicate TNTs. 

(D) % of cells connected with TNTs (scrambled n = 132; Rhes gRNA n =108). Mean ± 

SEM, unpaired t-test, ***p<0.001; ****p<0.0001. 

 

Supplementary Figure 7. Rhes promotes cargo transport between striatal neuronal 

cells. Live-cell confocal and differential interference contrast (DIC) images of striatal 

neuronal cells transfected with indicated reporter constructs. Arrow indicates Rhes tunnel 

connecting cell 1 to cell 2, and positive for D1R, D2R, H3R but not TMEM214 delivered 

to cell 2 (arrowhead). 

 

Supplementary Figure 8. (A) Flex Cre-On AAV RFP or AAV RFP-Rhes construct 

design. (B) Flex Cre-On AAV GFP or AAV GFP-Rhes construct design.    
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