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Real-Time Brain-Machine Interface Achieves High-Velocity Prosthetic Finger Movements 

using a Biologically-Inspired Neural Network Decoder  

Abstract 

Despite the rapid progress and interest in brain-machine interfaces that restore motor function, 

the performance of prosthetic fingers and limbs has yet to mimic native function. The algorithm 

that converts brain signals to a control signal for the prosthetic device is one of the limitations in 

achieving rapid and realistic finger movements. To achieve more realistic finger movements, we 

developed a shallow feed-forward neural network, loosely inspired by the biological neural 

pathway, to decode real-time two-degree-of-freedom finger movements. Using a two-step 

training method, a recalibrated feedback intention–trained (ReFIT) neural network achieved a 

higher throughput with higher finger velocities and more natural appearing finger movements 

than the ReFIT Kalman filter, which represents the current standard. The neural network 

decoders introduced herein are the first to demonstrate real-time decoding of continuous 

movements at a level superior to the current state-of-the-art and could provide a starting point to 

using neural networks for the development of more naturalistic brain-controlled prostheses. 

 

Introduction 

Brain-machine interfaces (BMIs) offer hope to the very high numbers of Americans (~1.7%) 

with sensorimotor impairments1. To this end, cortical BMIs have allowed human patients using 

brain-controlled robot arms to perform a variety of motor tasks such as bringing a drink to the 

mouth2 or stacking cups3. Motor decoding algorithms are required to convert brain signals into a 

control signal, usually with position and velocity updates, for the prosthetic device. Despite the 
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potentially non-linear relationship between neural activity and motor movements4,5, linear 

algorithms – including ridge regression, Kalman filtering, and Poisson processes – represent 

state-of-the-art performance in motor decoding2,6-8. Even with the rapid progress, many 

recognize that further developments are necessary to restore quick and naturalistic movements2.  

Some gains in performance have already been achieved by adding non-linearities to 

classic linear decoders to leverage the likely non-linear relationship between neural activity and 

motor movements. For example, since neural activity is markedly different when moving 

compared to stationary postures, decoders have been introduced to move a prosthesis only when 

the desire to move is detected4,7,9. To leverage the non-linear relationship between kinematics 

and motor cortex neural activity, the classic Kalman filter has been adapted by expanding its 

state space10 or with Gaussian mixture models11 so that the algorithm can adopt different linear 

relationships in different movement contexts. In a particularly novel implementation, Sachs et 

al.12 implemented a weighted combination of two Wiener filters trained for either fast 

movements or near-zero velocities so that continuously decoded velocities largely draw upon the 

fast Wiener filter at the beginning of the trial and the slow-movement filter as the cursor 

approaches the target. However, for many of these approaches, performance is improved only for 

very specific tasks, and a general-purpose nonlinear approach is lacking.  

Artificial neural network decoders, with their capability to model complex non-linear 

relationships, have long been thought to hold tremendous promise for brain-machine interfaces. 

They may ultimately also represent the most biomimetic motor decoder to transform motor 

cortex activity to realistic motor movements. However, early neural network decoders, prior to 

recent advancements in hardware, toolboxes, and training methods, were not found to improve 

performance over standard linear methods when decoding continuous motor movements13,14. 
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Many advanced techniques employing recurrent neural networks and variational inference 

techniques show great promise for predicting prosthetic kinematics from brain signals (in offline 

testing). However, these techniques are often employed to perform classification15, as opposed to 

continuous motor decoding, and not used in real-time control of prosthetic devices (in online 

testing), likely because of the computational complexity16,17. Sussillo et al.18, however, did 

demonstrate real-time control of a computer cursor with a recurrent neural network in a non-

human primate implanted with motor cortex arrays. However, this did not outperform a ReFIT 

Kalman filter in the same animals6,18. George et al.19 demonstrated control of hand and finger 

movements in human amputees with peripheral nerve interfaces using a convolutional neural 

network but again did not outperform a linear Kalman filter. 

 In this work, for the first time, we demonstrate a ReFIT neural network for decoding 

brain activity to control random and continuous two-degrees-of-freedom movements in real time 

using Utah arrays in rhesus macaques. The ReFIT neural network is compared with the ReFIT 

Kalman filter, which we use to represent the current state-of-the-art in linear decoders. The 

ReFIT Kalman Filter, introduced by Gilja et al.6, is a two-step training process that first 

computes the weights of a classic Kalman filter and then modifies the weights when the 

prosthesis direction is not toward the actual target. In this study, we find that the ReFIT neural 

network decoder substantially outperforms our previous implementation of the ReFIT Kalman 

filter20-22 with >60% increase in throughput by utilizing high-velocity movements without 

compromising the ability to stop. This enables the use of shallow artificial networks, which may 

resemble biological motor pathways, for motor decoding applications and may be the bridge 

toward high-velocity, naturalistic robotic prostheses.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.29.456981


5 

 

Results 

Two adult male rhesus macaques were implanted with Utah arrays (Blackrock Microsystems, 

Salt Lake City, Utah) in the hand area of the primary motor cortex (M1), as shown in Fig. 1a. 

The macaques were trained to sit in a chair and perform a finger target task in which a hand 

manipulandum was used to control virtual fingers on a computer screen in front of the animal. 

During online BMI experiments, spike-band power (SBP) was used as the neural feature. SBP is 

the time-averaged power in the 300-1000-Hz frequency band that provides a high signal-to-noise 

ratio correlate of the dominant single-unit spiking rate, and usually outperforms threshold 

crossings as a feature23. A two-degree-of-freedom finger task was previously developed by 

Nason et al.21, where the monkeys used two individual finger groups to acquire simultaneous 

targets along an arc. Monkey N used his index (D2) finger individually and his middle-ring-

small (D3-5) fingers as a group, and Monkey W used D2 and D3 as one group and D4 and D5 as 

the second group. However, unlike the previous task using center-out targets, targets herein were 

acquired randomly to increase task difficulty. After a 400-trial calibration task, a decoder was 

trained to predict velocity of both finger groups, as shown in Fig. 1b. We have recently 

demonstrated online real-time decoding of these 2 degrees of freedom using a ReFIT Kalman 

filter21, and primarily compare our novel algorithm to that approach. 

 

Offline analysis of the neural network architecture. Limited computational complexity was a 

design goal for the neural network to allow same-day training and testing. As most online 

decoders incorporate recent time history2,3, the neural network was designed so that an initial 

time-feature layer constructed 16 time features per electrode from the preceding 150 ms of SBP 

(time feature layer in Fig. 1c). These time features were then input into 4 fully connected layers, 
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where the first three output to a rectified linear unit (ReLU) activating function and the final 

layer outputs a velocity for each finger group. The number of fully connected layers and output 

time features were chosen to achieve near maximal correlation coefficient in offline performance 

using 400 trials of training data. As can be seen in Fig. 2a, increasing the number of neurons in 

hidden layers beyond 256 and the number of fully connected layers beyond 4 did not 

substantially improve the offline correlation. Furthermore, increasing the number of time 

features beyond 16 (Fig. 2b) also did not substantially improve offline correlation. For notational 

simplicity, the neural network in Fig. 1c is abbreviated as NN. 

The impact on performance of the individual network components was assessed through 

an offline analysis based on 3 consecutive days of recorded spike-band power for each monkey 

during manipulandum-controlled finger task. Illustrative examples of predicted versus actual 

finger velocities for Monkey N using the manipulandum are given for neural networks of 

increasing complexity: 2 layers, 2 layers with time history, 4 layers, and 4 layers with time 

history (Fig. 2c). The correlation of each neural network decoder relative to the Kalman filter 

correlation is given in Fig. 2d by combining both fingers over all days for each monkey. The 

offline Kalman filter correlation averaged 0.59 ± 0.01 for Monkey N and 0.50 ± 0.02 for Monkey 

W. In both monkeys, the correlation is highest for the 4-layer network with time history (NN in 

Fig. 1c), followed by the 2-layer network with time history, followed by the 4-layer network 

without time history, followed by the 2-layer network without time history. In both monkeys, the 

4-layer network with time history, NN, achieves a higher offline correlation than the Kalman 

filter (P = 3.6 x 10-4 for Monkey N and P = 0.016 for Monkey W), and the total performance 

comparisons are summarized in Table 1. 
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Neural network decoder outperforms ReFIT Kalman filter decoder in real-time tests. In 

two non-human primates (NHP), Monkeys N and W, neural network decoders outperformed a 

ReFIT Kalman filter (RK) during real-time (online) testing, and the performance results are 

summarized in Table 2. In Monkey N, a neural network decoder outperformed the RK 13 mos 

after implantation in 2 days of testing over 1080 total trials, regardless of which algorithm was 

used first. The NN decoder improved the throughput over the RK by 26% with 2.15 ± 0.05 bits 

per second (bps) for the NN and 1.70 ± 0.03 bps for RK (P < 10-5). The acquisition time was 

1240 ± 40 ms for the NN and 1550 ± 40 ms for the RK. NN had 3/543 unsuccessful trials while 

RK had 1/537 unsuccessful trial. In Monkey W, NN and RK decoders were compared 2 mos 

after implantation on one day testing over 412 trials. As graphically depicted in Fig. 3a, the NN 

decoder improved the throughput over the RK by 46%, with 1.23 ± 0.09 bps for the NN and 0.84 

± 0.04 bps for RK (P < 10-5). The acquisition time was 2680 ± 160 ms for NN and 3310 ± 130 

ms for RK. NN had 26/133 unsuccessful trials while RK had 113/279 unsuccessful trials. Fig. 3a 

illustrates the throughput of each trial and the mean value for each run.  

 

ReFIT neural network decoder outperforms both the original NN and RK decoders. The 

ReFIT innovation was applied to the neural network in a similar manner as it was used with the 

Kalman filter. Essentially, after completing trials using the NN decoder, the NN learned weights 

were further updated whenever the predicted finger direction was oriented away from the true 

targets, as described in the Methods. The ReFIT neural network (RN) decoder improved 

performance across all metrics when compared with the original NN in both monkeys (illustrated 

in Fig. 3b and Table 2). These tests for Monkey N were conducted at 19 mos post-implantation, 

and the decoding performance of all decoders had declined from earlier tests at 13 mos. 
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In Monkey N, who was capable of running a large number of consistent trials in 1 day, 

RN was compared directly with RK 19 mos after implantation in 2 days of testing with 1351 

total trials (Fig. 3c and Table 2). RN improved the throughput over the RK by 62%, with 2.29 ± 

0.05 bps for the RN and 1.41 ± 0.03 bps for RK (P < 10-5). Average performance of each 

decoder for the random finger task is illustrated in Videos 1 and 2. The acquisition time was 

1270 ± 30 ms for the RN and 1940 ± 50 ms for the RK. There were no unsuccessful trials 

(0/737) using the RN and 55/614 unsuccessful trials with the RK. RN outperformed RK 

regardless of which algorithm was used first (P < 10-5), as illustrated in Fig. 3c in terms of 

throughput. Representative raw finger tracings are depicted in Fig. 3d for the RK and in Fig. 3e 

for the RN and depict a time segment with a throughput equivalent to the average throughput 

over both days. The tracings illustrate the higher target acquisition rate for the RN (30 targets in 

50 sec) compared to the RK (21 targets in 50 sec).  

 

ReFIT neural network decoder outperforms optimized RK decoder. Our implementation of 

the ReFIT Kalman filter for finger control utilizes a physiological lag and does not include 

hyper-parameter tuning (i.e., gain and smoothing parameters)20-22. However, other work suggests 

RK performance can be improved without lag (providing the RK updates to the virtual fingers 

without delay)24 and by optimizing the online gain and smoothing parameters for RK25. In 2 days 

of testing at 29 mos post implantation with Monkey N, the zero-lag, optimized ReFIT KF, RKopt, 

was compared with RN in over 1164 trials using the same protocol as used above to compare RK 

and RN. In these tests, the throughput of RN of 2.41 ± 0.05 bps remained greater than that of 

RKopt at 2.12 ± 0.05 bps (P = 1.2 � 10-5).  
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The performance of RK, prior to optimization, had also improved at 29 mos (around 1.91 

bps on a separate day of testing). Thus, most (>50%) of the improvement of RKopt over the 1.41 

bps using RK at 19 months, as described in the section above, may be from improved NHP 

behavior with 10 additional months of practice with RK. For detailed evaluation of the 

performance improvement with RKopt over RK, see “Optimizing the lag, gain, and scaling 

factors for real-time tests” in Materials and Methods.  

 

Neural network decoders allow higher velocity decodes than the Kalman filter. To better 

understand why the RN outperformed the RK decoder, the mean velocity over all the successful 

trials was computed for each decoder for both monkeys. As seen in Figs. 4a,b, virtual fingers 

controlled by the RN and NN decoders achieved higher peak velocities and were more 

responsive for both monkeys than when the virtual fingers were controlled by the RK decoder. 

For Monkey N (Fig. 4e), the time to the velocity peak averaged 300 ms for RN, 350 ms for NN, 

and 450 ms for RK. The peak of the averaged velocity was 1.35 ± 0.03 u/sec for RN, 1.00 ± 0.03 

u/sec for NN, and 0.55 ± 0.02 u/sec for RK, where u denotes arbitrary units such that 1 was full 

flexion and 0 was full extension. For Monkey W (Fig. 4a), the time to peak was 350 ms for RN, 

400 ms for NN, and 800 ms for RK. The peak average velocity was 0.94 ± 0.04 u/sec for RN, 

0.76 ± 0.04 u/sec for NN, and 0.39 ± 0.04 for RK u/sec. Thus, in both monkeys, the average time 

to peak velocity and the peak velocity itself were improved with RN and NN than for the 

standard RK decoder. The high velocities achieved using RN is illustrated for a center-out task in 

Video 3. 

To ensure the NN does not achieve high-velocity decodes at the expense of low-velocity 

decoding accuracy, which is important for stopping the prosthesis, the predicted velocity as a 
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function of the true velocity was compared for the NN and Kalman filter (KF) in an offline 

analysis (graphically shown in Fig. 4b). The predicted velocity on the vertical axis is scaled so 

that when the true velocity is at zero, the standard deviation of the predicted velocity equals 1/2. 

In the high-velocity range (>1 u/s), the decoded NN velocity averages 157 ± 3% of the KF 

velocity for Monkey N and 122 ± 2% for Monkey W. Thus, after accounting for decoder 

performance at low velocities, the range of velocities that can be achieved is higher for the NN 

than the KF. As shown in the online analysis, higher velocities improved the performance of NN 

decoders.  

 

Neural network merges decoders optimized for positive and negative velocities. Due to the 

network architecture itself, each node of the final hidden layer contributes either a positive or a 

negative velocity to the final prosthetic finger velocity. We explored whether this itself provides 

an example of how the fit is improved for different movement contexts, i.e. positive and negative 

velocities. Specifically, for finger 1, the sum of the product of Nk and W4
(1,k), over all k, 

determine ���, where Nk is the k-th node of the final hidden layer and W4
(1,k) represents the 

learned weights (shown in Fig. 5a). Since each Nk is the output of the ReLU function, Nk is 

necessarily greater than or equal to zero. Thus, the nodal contribution of the kth node, Nk W4
(1,k,) 

can be either positive (if W4
(1,k) > 0) or negative (W4

(1,k) < 0) – but not both positive and negative. 

The nodal contributions of positive and negative nodes during day 1 for Monkey N are 

illustrated in Fig. 5b for positive velocities (v1 > σ), negative velocities (v1 < σ), and near-zero 

velocities (-σ/4 < v1 < σ/4). During positive velocities, the final estimate, ���, of v1 is dominated 

by positive nodes, which is illustrated with the dark blue line that depicts much higher nodal 

contributions for positive than negative nodes. The same is true of negative nodes during 
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negative velocities. This trend is confirmed at a population level for both monkeys in Fig. 5c, 

where positive nodes dominate negative nodes at positive velocities and vice versa for negative 

velocities. Thus, the NN decoder is capable of optimizing for positive velocities by learning 

weights of positive nodes and optimizing for negative velocities through the weights of negative 

nodes. 

To understand whether the network is improving on the Kalman filter via separating 

movement contexts, we trained two separate Kalman filters: one for positive velocities (KF+) 

and one for negative velocities (KF-), as illustrated in Fig. 5d. The decoder in Fig. 5d assumes a 

perfect classifier that correctly chooses either KF+ or KF- depending on whether the true 

velocities are positive or negative. As can be seen for both monkeys in Figs. 5e,f, KF+ and KF- 

achieve higher velocity magnitudes closer to the NN decoder, and unlike the original Kalman 

filter, covers a wider range of velocities. This suggests that the NN allows for optimal fits within 

both of these contexts without overt switching. 

 

Discussion 

During two-degree-of-freedom finger decoding, the ReFIT NN (RN) improved performance by 

more than 60% over our implementation of the ReFIT Kalman filter (RK) for finger control20-22. 

Even with RK parameter optimization and months of practice on using RK to control finger 

movements, RN continued to demonstrate a substantial performance advantage. This 

improvement was driven by more accurately decoding higher velocities. Accurate high-velocity 

decodes may arise by separately training weights for either positive or negative velocities, and 

this may lead to more robust performance in various real-life tasks. 
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Performance improvement with neural network decoders. Neural network algorithms are 

loosely inspired by biological neural networks, and many have explored their use in brain-

machine-interface decoding applications13,14. Although many sophisticated network architectures 

show tremendous promise in simulation16,17, neural network decoders have not improved real-

time performance over standard linear techniques13,14,18,19. Our approach differs from previous 

approaches mainly by using a shallow network architecture and by leveraging the multi-step 

training procedure to improve training data originally developed for the ReFIT Kalman filter26. 

Additionally, we utilize recently developed regularization techniques to prevent overfitting (i.e., 

batch normalization and dropout)27-29 and also incorporate 150-ms time history of spiking band 

power (SBP) as input to the decoder instead of only one point in time. 

 The shallow network architecture of 1 time-feature layer and 4 fully connected layers 

allows for the roughly 5 x 105 learned parameters to be trained with only 400 trials of same-day 

training data in about 1 minute. In contrast, recurrent neural network architectures have 

combined training data across multiple days15,16, and when implemented as continuous motor 

decoders may be too complex to run in real time. An additional benefit of shallow feed-forward 

networks is that computing the velocity in real-time mode introduces only a 1-2 ms lag. Thus, 

through use of a shallow network, limitations typical of more computationally expensive 

architectures are avoided. 

 Incorporating a two-step, intention-based, re-training step is the fundamental innovation 

improving the ReFIT over the classic velocity Kalman filter6 and appears to have a similar 

positive effect on the NN. The intention-based retraining step was already known to improve 

finger decoding for a Kalman filter during center-out tasks22. Similar to the substantial 
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improvement seen in the ReFIT Kalman filter6, retraining the ReFIT neural network resulted in a 

substantial 50% improvement in performance over the original neural network decoder. 

 

Neural network decoder learns positive and negative velocity features for finger movement. 

By training the neural network, the learned weights for either positive or negative nodes appear 

to be optimized for either the positive or negative velocity range. Similar to our results, Sachs et 

al.12 showed that splitting the full velocity range into intervals subserved by separate Wiener 

filter decoders fine-tuned for either high or low velocities improved brain-machine interfaces for 

cursor control. Additionally, Kao et al.7 improved performance by 4.2-13.9% over the ReFIT 

Kalman filter using a hidden Markov model to enable movement only when the decoder is in a 

“movement state,” as neural activity is known to be different in movement and postural states4. 

The neural network architecture may be better able to discover these contexts without explicit 

classifiers or supervised training. 

 The variation of decoded velocities of the neural network appears to more closely mimic 

the range of velocities seen in native finger movements. In a tantalizing hypothesis, the decoder’s 

naturalistic movements may be related to its shallow architecture, which may resemble true 

biological pathways. Specifically, there are only a few synapses between the neurons in motor 

cortex and the α-motor neurons in the anterior horn of the spinal cord30. Although speculative, 

neural network architectures may perform well partly because motor cortex activity naturally 

controls flexion and extension of antagonist muscle pairs. The neural network architecture may 

readily decode this flexion and extension into positive and negative velocities. Whether the 

similarity of neural network decoders to biologic network leads to more naturalistic motor 

control of many more contexts and simultaneous degrees of freedom awaits further study. 
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Limitations. As opposed to using our typical center-out task finger task21, we increased the 

difficulty to better challenge the decoders and elucidate differences between two well-

performing decoders. Although these results could apply to a variety of real-word finger tasks, 

other tasks and prostheses (i.e., robotic arms) were not explicitly tested. While improvements in 

the Kalman filter or its implementation may increase its performance, the neural network 

performance can also be further optimized, such as by including position information into the 

decoder, optimally tuning its parameters, or by implementing it in a form similar to the steady-

state Kalman filter by merging historical velocity and current updates (Eq. 2). Regardless, in 

online tests, the RN was found across all metrics to outperform RK, and offline tests confirmed a 

superior dimensionality reduction (as measured by correlation coefficient) and a higher dynamic 

range of predicted velocities. A piecewise implementation of the Kalman filter could 

conceivably be used to achieve a similar range of predicted velocities but would require a 

sophisticated and generalizable switching algorithm to choose the appropriate Kalman filter. 

Furthermore, the neural network algorithms could similarly be constructed for distinct velocity 

ranges. Lastly, while the neural network does require increased computational complexity, it was 

optimized for performance and not to optimally trade off performance with computational 

complexity, which could certainly be accomplished.  

Conclusion. This novel neural network decoder outperforms a current state-of-the-art motor 

decoder and achieves movements similar to naturalistic finger control. The architecture in large 

part resembles biological motor pathways and may be amenable to further performance 

improvements. 
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Materials and Methods 

Implantation procedure. The protocols herein were approved by the Institutional Animal Care 

and Use Committee at the University of Michigan. Two adult male rhesus macaques were 

implanted with Utah arrays (Blackrock Microsystems, Salt Lake City, Utah) in the primary 

motor cortex (M1). Under general anesthesia and sterile conditions, a craniotomy was made and 

M1 was exposed using standard neurosurgical techniques. The arcuate sulcus of M1 was visually 

identified, and the array was placed where this sulcus touches motor cortex (Fig. 1a), which we 

have previously used as a landmark of hand area in rhesus macaques. The incision was closed, 

and routine post-anesthesia care was administered. 

Experimental setup and finger task. Both Monkeys N and W were trained to sit in a monkey 

chair (Crist Instrument, http://www.cristinstrument.com), with their head secured in customized 

titanium posts (Crist Instrument), while the Utah array was connected to the Cerebus neural 

signal processor (NSP, Blackrock Microsystems). The arms were secured in acrylic restraints. 

The hand contralateral to the motor cortex implant was placed in a manipulandum, described by 

Vaskov et al.22, that translates finger position to a number between 0 (full extension) and 1 (full 

flexion). A computer monitor was in plain sight for the NHP and depicted a large virtual hand 

(Fig. 1b). The virtual finger could be controlled in either manipulandum-control mode or in 

brain-control mode (i.e., brain signals converted to updates for virtual finger). Brain-control 

mode is commonly denoted as either real-time, closed-loop, or “online” mode. Manipulandum-

control mode is often described as “offline” mode. The two-dimensional finger task is identical 

to the task developed by Nason et al., except performed on random instead of center-out 

targets21. The finger task required placing either the virtual index and/or ring finger on the target 

for 750 ms during training mode and 500 ms during testing mode (testing vs. training modes will 
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be explained in a subsequent section). The target size was 15% of the active range of motion. 

With target acquisition, apple juice was automatically administered through a tube placed in the 

animal’s mouth.  

 

Front-end processing. The Utah array was connected to the Cerebus NSP (Blackrock 

Microsystems) through a cable. Although 96 channels were available, only channels that were 

not artifactual and with morphological neural spikes on the day of experiments or had shown 

morphological spikes in the past were included, leaving 54-64 channels for Monkey N and 50-53 

channels for Monkey W. The Cerebus system sampled data at 30 kHz, filtered it to 300-1000 Hz, 

down-sampled it to 2 kHz, then transmitted it to the xPC Target environment (Mathworks, 

Natick, MA). The xPC Target computer took the absolute value of the incoming data and then 

calculated each channel’s mean in regular 50-ms time intervals. This binned value is referred to 

as spike-band power. We have previously shown that this band is highly correlated with and 

specific to the spiking rate of single units near the recording electrode23. 

 

Software architecture. A separate computer with one 2070 super NVIDIA GPUs (NVIDIA, 

Santa Clara, CA) was connected to the xPC. This computing box was called the eXternal 

Graphic Processing Computer (xGPC). The xGPC executed commands in Python (v3.7, 

https://www.python.org/) using the PyTorch library (v1.4, https://pytorch.org/). Real-time 

performance was guaranteed in the following fashion. The xPC transmitted data to the xGPC 

with a timestamp, the xGPC calculated updates for the virtual fingers from the inputs (for all 

decoders) and transmitted the data back to the xPC along with the original timestamp. When the 

xPC received the data packet, the packet was logged with a new timestamp. Real-time 
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performance was guaranteed given that the timestamp received from xGPC (the original 

timestamp sent by xPC) was within 50 ms of the current xPC timestamp and updates to the 

virtual fingers occurred every 50-ms time bin. 

 

ReFIT Kalman filter. The ReFIT Kalman filter (RK) was implemented for use with fingers as 

described by Vaskov et al. and Nason et al.21,22 In summary, it is a two-step process that involves 

first training a Kalman filter (KF) using spike-band power measurements from any 96 channels 

of the Utah array to predict updates to position and velocity states of the virtual fingers. A 

detailed description on the KF implementation is described by Vaskov et al22.  

The trained KF was then used to perform closed-loop motor decoding. To train the RK, 

the target position for each finger is mapped to a two-dimensional space and the true velocity of 

each finger is scaled to be proportional to each finger’s distance to the target while keeping the 

total velocity magnitude constant. This method of ReFIT was introduced by Nason et al.21 and 

was not found to be statistically different from the ReFIT method in Vaskov et al.22, where the 

finger velocity was modified by multiplying velocities by -1 when the velocity was oriented in 

the opposite direction as the target. The KF was then retrained using these new velocity values 

(for details see Nason et al.21). As also detailed in Vaskov et al.22, Kalman gain was implemented 

with no position uncertainty.  

Optimal lag is commonly implemented in KF motor decoders31 to account for the 

physiologic lag between cortical activity and motor movement32. Thus an optimal time lag, 

calculated to be one 50-ms bin for both Monkeys N and W, was applied when training and 

implementing the KF, as detailed in previous work20,22. Control tests comparing zero and one 50-
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ms bin lag are provided below (see Section “Optimizing the lag, gain, and scaling factors for 

real-time tests”). Additionally, the Kalman filter can be implemented as a steady-state Kalman 

filter with a gain and smoothing factor that can be optimized for online tests. Our implementation 

generally does not tune these parameters as the ReFIT training algorithm may determine near 

optimal values for these parameters33. To validate this simplification, we compare our 

implementation of RK with one with optimal tuning (see Section “Optimizing the lag, gain, and 

scaling factors for real-time tests”). As will be explained below, we did compare RN with RKopt, 

which uses zero lag and optimally determined gain/smoothing parameters, to ensure our results 

hold against a theoretically optimized RK, with the results presented in the section “ReFIT 

neural network decoder outperforms optimized RK decoder” of Results.  

To determine whether the Kalman filter could better predict the high velocities if trained 

and used on restricted velocity ranges, we conducted an offline analysis using “KF+” and “KF-.” 

KF+ was calculated with only positive and near-zero velocities, i.e., velocities greater than -σ/2, 

and KF- was calculated with velocities less than σ/2. These Kalman filters were trained as 

described by Wu et al.31 with position uncertainty and using the optimal physiologic lag 

calculated on that day. 

  

Neural network velocity decoder. The neural network velocity decoder was designed from 

preliminary offline experiments that explored various network architectures. The final network is 

given in Fig. 1c. The first layer was the time feature layer that constructs time features from 150 

ms (three 50-ms bins) from the input electrodes. This layer was implemented in Pytorch, using 

the torch.nn.Conv1d module, i.e., as a one-dimensional convolution with a kernel size of 1 
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(H=W=1) and 3 input channels (neural network channels, not electrode channels). Each channel 

corresponded to one 50-ms time bin. Although possible to construct a spatial convolution across 

electrodes, this was not performed because the spacing between electrodes was hypothesized to 

be distant relative to the size of the neurons being recorded. The output of the time feature layer 

provided 16 features per electrode and, when flattened, provided 1536 inputs to a series of fully 

connected layers. Regularization for fully connected layers 1-3 included 50% dropout27 and 

batch normalization28. Fully connected layer 1 converted the 1536 inputs to 256, and the 

remaining layers had 256 hidden neurons. The sequence of the modules used was 

torch.nn.linear, torch.nn.Dropout, torch.nn.BatchNorm1d, and then finally 

torch.nn.functional.relu. The final layer implemented a matrix multiplication with 

torch.nn.linear to convert the 256 inputs to the two velocity estimates. The output of the network 

was normalized to zero mean and unit variance and roughly twenty times the magnitude of actual 

velocity peaks. This normalization was discovered to converge more quickly when training the 

RN than training without the normalization. The output of the neural network was scaled by an 

unlearned gain factor that equaled the average magnitude peaks of the actual velocity divided by 

the average magnitude peaks of the predicted velocity. No offset was applied to the final 

predicted velocity, leaving it a zero-mean signal. A diagram of the final neural network is given 

in Fig. 1c. 

Prior to training the neural network, a training data set was collected in manipulandum-

control mode for roughly 400 trials with randomly appearing targets. A subsequent 100 trials 

were also performed and served as a validation set to ensure the network had converged. This 

validation set was also used to calculate the gain as described above. If there was a non-zero 

median, this was subtracted as well to approximate a zero-mean signal. The SBP and velocity 
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data were assembled into data structures in Matlab (Mathworks). The data were randomized in 

two ways. First, the time data were randomized into batches of 64 x 3 time points: 64 time points 

with the corresponding value at time delays of 0, 50, and 100 ms. Second, a triangular 

distribution of velocities was imposed on the training data spanning the range of -4σ to 4σ, where 

σ was the standard deviation of the actual velocity. A total of 20,000 training samples were 

randomly chosen to achieve this velocity distribution. In preliminary experiments, this velocity 

redistribution was observed to improve performance on the finger task when the neural network 

was trained on a center-out finger task that led to a “sticky finger” behavior, in which the finger 

would often get close to but not quite all the way to the target. However, when the neural 

network was trained on random targets, the velocity redistribution was not observed to improve 

performance over non-redistributed data, but we describe it here for completeness. This 

redistribution of velocities was also used when training on random finger targets so that the 

decoder could easily be generalized to other training paradigms in the future.  

In addition to the neural network used for online testing, several other neural networks 

were used to understand how individual components of the neural network affected offline 

performance. The networks included a network of only two layers and no regularization (no 

batch normalization, dropout, or output normalization). There were also regularized networks, 

including a 2-layer fully connected network (256 hidden neurons) with a preceding time feature 

layer (3 input channels for each electrode and 16 output channels), and 4-layer fully connected 

network (256 neurons) with a time feature layer. These networks included regularization and 

parameters similar to Fig. 1c. The offline networks were compared with the classic Kalman filter 

(without the intention retraining step) and ridge linear regression without time history and with a 

regularization constant of λ = 10-4. 
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When training the network for online decoding, the neural network was optimized over 

3500 iterations using the Adam optimization algorithm34 with a learning rate of 10-4, weight 

decay of 10-2, and momentum of 0.9. Each iteration consisted of a 64x3 mini batch (64 random 

time steps with 3 samples of 150 ms of time history). We attempted to use a relatively large 

learning rate as larger learning rates provide additional regularization for the network29. On one 

day for Monkey W, 3000 iterations were used. The number of iterations were determined for 

each network from the first of three offline testing days and chosen so that the correlation 

between actual and estimated velocity (on the testing set) did not significantly change with 

additional training iterations (changes in correlation with additional iterations on the order of 

~0.01). When generating weights for offline analysis, a learning weight of 2 x 10-5 allowed better 

comparisons between networks with different numbers of layers. Kaiming initialization was used 

to initialize the weights of each layer35, and the bias terms were initialized to zero. The dropout 

level used was 50%27. On each day, a training set (~400 trials) and testing set (~100 trials) were 

collected, and performance on a testing set was characterized by the correlation of predicted and 

actual velocity.  

When searching for the preferred number of layers, hidden neurons, and output time 

features (Figs. 2a,b), performance was characterized by the average of the maximum of 5 

correlations with the testing set over all training iterations. In this way, the optimal number of 

training iterations did not need to be calculated for different size networks.  

The weights for the ReFIT neural network were calculated by first using the NN decoder 

in brain-control mode. A truth signal was then constructed from the original NN output by 

flipping the velocity direction whenever the estimated finger velocity was directed away from 

the target. Using this truth signal and the original neural network output, 500 further iterations of 
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stochastic gradient descent were applied to further optimize the weights of the neural network. 

The gain factor for the neural network was calculated in the same manner as the original neural 

network except when comparing the NN to RN over 2 d, where the gain factor used during brain 

control with the NN was simply scaled by a factor 0.75 on both days.  

 

Testing protocols. Targets for the fingers were not allowed to be separated by greater than 50% 

of the range. During training, the random targets spanned 100% of the finger flexion/extension 

range, but during online decoding only 95% of the range was used. The classic Kalman filter was 

then used on a ~250 trial run from which the ReFIT KF coefficients were calculated. 

For Monkey N, 8 online testing days were conducted. Offline testing was performed 

using manipulandum-control trials from 3 consecutive days. Two of these days were the 

manipulandum-control training trials from the online testing comparing NN and RK conducted 

13 mos post-implantation. An additional day of manipulandum-control data at 13 mos post-

implantation was also included. For Monkey W, 2 online testing days were conducted. The 

offline analysis included manipulandum-control trials from 3 days at 2 mos post-implantation 

that included the 2 online days and an additional day of manipulandum-control trials. To reduce 

confounders when comparing decoders for each monkey, decoders were compared in an 

alternating lineup: either A-B-A or A-B-A-B testing. In 1 day for Monkey W, NN was compared 

with RN without alternating the decoder. For Monkey N, the first 50 trials with each decoder 

were discarded in the analysis. For Monkey W, only the first trial was discarded as there were 

fewer total trials since W was less motivated to complete trials. To visually illustrate the peak 

performance of the RN on our typical center-out task21, one additional day was included using 

the RN on this task. 
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Performance assessment and statistical analysis. Performance in online mode was 

characterized with Fitt’s law throughput given below in Eq. 1, which accounts for both task 

difficulty and the time needed for completion. The variable Dk is the distance of the k-th virtual 

finger to the center of the k-th target at the start of the task, S is the target radius (equal in both 

fingers), and tacq is the time to reach the target.  

 

Throughput 	
∑ log� �1 � ��� � ��

2� ��

����  

Equation 1 
 

While the throughput was the primary performance metric, acquisition times were also reported.  

All velocities in the offline analyses were normalized by the standard deviation of the 

true velocity with 1 indicating the equivalent of 1 standard deviation of the actual velocity. The 

time plots depicting the actual versus predicted velocity were selected from one of the training 

days to illustrate the results (Fig. 2a). The correlation for each decoder was averaged over 2 

fingers on 3 days (Fig. 2b). The plots of true versus predicted velocity were calculated by 

binning the magnitude of the actual velocity into bins of size 1.0 at intervals of 0.5 and averaging 

the magnitude of the predicted velocity in each respective bin.  

Comparing the performance metrics between groups was made with a paired t-test.  

 

Optimizing the lag, gain, and scaling factors for real-time tests. As explained above, we 

utilized physiologic lag similar to previous studies31 in our implementation of RK for finger 

control20-22. Unless otherwise mentioned, our comparisons of RK and RN use RK with a 50-ms 

bin lag. To evaluate the effect of a 50-ms bin lag, RK with a lag of one 50-ms bin was compared 
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to RK with a zero-lag implementation (where the Kalman filter predictions update the virtual 

hand as soon as they are available) in one day of testing over 273 trials with Monkey N. The 

zero-lag RK improved throughput by 16% and peak average velocity by 13%.  

The Kalman filter estimates of position and velocity can be simplified (assuming a 

steady-state Kalman gain) as a weighted sum of two components: the previous time step’s 

estimate of position/velocity and the current time step’s estimate of position/velocity derived 

from intra-cortical array as shown below in Eq. 225.  

��� � ������ � 	1 � ������ 

Equation 2 

In Eq. 2, ��� denotes a 2�� � 1 column vector of position and velocity estimates for �� fingers, � 

is a �� � 2�� matrix for �� electrodes, α is the scaling factor, and β is the gain factor. For the 

position-velocity Kalman filter, the smoothing factor and gain were only implemented for the 

velocity kinematics. To determine the optimal values for α and β, one day of testing with RK was 

dedicated to first tuning the gain, β, by increasing its value. Using the value of β giving the best 

performance, the smoothing factor, α, was then adjusted. The optimal values, based on 

throughput, were determined to be α = 1.25 and β = 1.2. The performance improvements from 

using a zero-lag RK and optimally tuned gain and smoothing factors were tested on a second day 

of testing. Using RK with optimally tuned parameters (475 trials) resulted in only a 3.6% 

increase in throughput and 16% increase in average peak finger velocity.  

 Although most comparisons of RN and RK use RK without tuned hyperparameters, we 

did include a test RN and RKopt, which uses zero lag and optimal values of α = 1.25 and β = 1.2, 

and validated our findings with a fully optimized RK at 29 mos post implantation (see Results 

Section “ReFIT neural network decoder outperforms both the original NN and RK decoders”).  
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Tables 

 

Decoder 
Correlation 

Monkey N Monkey W 

Kalman filter 0.59 ± 0.01 0.50 ± 0.02 

2-layer NN 0.44 ± 0.02 0.40 ± 0.01 

2-layer NN with 
time history 0.64 ± 0.01 0.52 ± 0.02 

4-layer NN 0.61 ± 0.01 0.48 ± 0.02 

4-layer NN with 
time history 0.67 ± 0.01 0.54 ± 0.02 

 
Table 1: Offline performance comparing Kalman filter and neural network (NN) decoders. 
 
 
 
 Monkey N Monkey W 
 RK NN RN RK NN RN 
NN vs. RK       

Throughput (bps) 1.70 ± 0.04 2.15 ± 0.05  0.84 ± 0.04 1.23 ± 0.09  
Acquisition time (ms) 1550 ± 40 1240 ± 40  3310 ± 130 2680 ± 160  

Time to target (ms) 1110 ± 30 950 ± 20  2410 ± 110 1680 ± 110  
Dwell time (ms) 440 ± 30 290 ± 20  790 ± 100 1000 ± 120  

Successful (total) trials  540 (543) 536 (537)  113 (279) 107 (133)  
RN vs. NN       

Throughput (bps)  1.51 ± 0.04 2.15 ± 0.05  1.20 ± 0.06 1.43 ± 0.05 
Acquisition time (ms)  1880 ± 50 1320 ± 30  2610 ± 120 2220 ± 70 

Time to target (ms)  1230 ± 30 840 ± 20  1740 ± 80 1430 ± 50 
Dwell time (ms)  650 ± 30 480 ± 30  860 ± 90 780 ± 60 

Successful (total) trials   616 (629) 772 (772)  185 (237) 441 (483) 
RN vs. RK       

Throughput (bps) 1.41 ± 0.03  2.29 ± 0.05    
Acquisition time (ms) 1940 ± 50  1270 ± 30    

Time to target (ms) 1330 ± 30   790 ± 10    
Dwell time (ms) 610 ± 40  470 ± 30    

Successful (total) trials  559 (614)  737 (737)    
 
Table 2: Real-time performance comparison between ReFIT neural network (RN), neural 
network (NN), and ReFIT Kalman filter (RK) decoders. bps = bits per second. 
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Figures 

 

 

Fig. 1 | Neural network velocity decoder. a, Image of Utah array implants for Monkeys N (left) 
and W (right). In Monkey N, two split Utah arrays were implanted in primary motor cortex 
immediately anterior to the central sulcus and denoted with asterisks (*). The array in primary 
somatosensory cortex was not used in this analysis. In Monkey W, two 96-channel arrays were 
implanted and the analysis herein uses the lateral array. b, Experimental setup. The NHP is 
controlling the virtual finger with the hand manipulandum in manipulandum-control mode or 
using spike-band power (SBP) to control the virtual finger in brain-control mode. c, NN 
architecture. The network consists of five layers. The input to the network is YIN that is a EN x 3 
data matrix that corresponds to the number of input electrodes and the 3 previous 50-ms time 
bins. The time feature layer converts the last three 50-ms time bins for all the electrodes into 16 
learned time features for each electrode. The equation representing the operation is given above 
the graphical description of the layer. The arrow indicates that the elements undergo batch 
normalization and pass through a ReLU function and are then flattened to a 1536 x 1 array. The 
remaining four layers are fully connected layers with an associated weight matrix, denoted by W. 
The first three layers consist of 256 hidden neurons and process the hidden neuron output first 
with 50% dropout, then batch normalization, and finally with a ReLU function. The fourth and 
final fully connected layer, FC-Layer 4, has two neurons – that are normalized – and represents 
final velocity estimates of the two fingers, ��� and ���. Panel b modified from Vaskov et al.22 and 
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) / “spikes” replaced 
with SBP.  
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Fig. 2 | Neural network offline analyses. a, Heat map illustrating the offline correlation 
between the number of fully connected layers versus the number of hidden neurons for Monkeys 
N (left) and W (right). As in Fig 1c, the fully connected layers followed a preceding time feature 
layer. The correlation values were calculated as the average of the five-best correlation during 
the training of the network. The networks used during online testing had 4 layers and 256 
neurons. b, The correlation during offline training for Monkeys N and W as a function of the 
number of learned time features in the output from the time-history layer of Fig. 1c. Four fully 
connected layers followed the time feature layer. The number of output features selected in 
online testing was 16. c, Examples comparing actual velocity (grey) and decoded velocity for 
linear decoders (red) and neural network decoders (blue) during 1 day of manipulandum-control 
tasks for Monkey N. The Y-axis is normalized by the standard deviation of actual velocities 
during the entire run. d, Mean (and S.E.M.) offline correlation difference between one of the 
neural network decoders and the Kalman filter, i.e., correlation of neural network decoder minus 
correlation of the Kalman filter. The circles denote the mean for Monkey N over both fingers 
over 3 d, and the triangles denote the mean for Monkey W over two fingers over 3 d. 2L = 2-
layer neural network; 2L w/ Time = 2-layer neural network with a preceding time feature layer; 
4L = 4-layer neural network; 4L w/ Time = 4-layer neural network with a preceding time feature 
layer. Asterisks (*) denote statistically significant differences between the correlation of the 
neural network decoder and the Kalman filter.  
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Fig. 3 | RN decoder outperforms RK during real-time tests. a, Throughput population data 
comparing the NN decoder (cyan) and the RK decoder (red) for 2 days of testing with Monkey N 
and 1 day of testing with Monkey W. The manipulandum-control runs are indicated with “M” 
(magenta). For each run, the throughput is indicated with a dot. The few values greater than 5 
bps are not shown. The black bars represent the mean and S.E.M. b, Throughput population data 
comparing the NN decoder (cyan) and RN decoder (blue) for 2 days of testing with Monkey N 
and 1 day of testing with Monkey W. c, Throughput population data comparing the RN decoder 
(blue) and the RK decoder (red) for 2 days of testing with Monkey N. d,e, Raw decoded position 
using the RK (red; d) and RN (blue; e) for the index finger (top pane) and middle-ring-small 
(MRS) fingers in Monkey N, which are locked together (bottom pane). The targets are 
represented as the shaded box. The x-axis denotes the elapsed time, 50 sec, and the y-axis 
denotes the proportion of finger extension, i.e., 0 is fully extended and 1 is fully flexed. These 
time windows are representative of the average decoding performance as measured by 
throughput. M = manipulandum-control; NN = neural network; RK = ReFIT Kalman filter; RN = 
ReFIT neural network; BPS = bits per second. 
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Fig. 4 | Higher decoded velocities using neural network decoders. a, Online analysis. Virtual 
finger velocity for Monkey N (left pane) and Monkey W (right pane) for RN (blue), NN (cyan), 
RK (red), and hand control (magenta). The plots indicate that the neural network decoders 
achieve higher peak velocities in real-time tests. In Monkey N, the RN, RK, and hand-control 
data are taken from the days comparing RN vs. RK, while NN velocities were derived from the 
day comparing NN and RK. In Monkey W, RN data were derived from the day comparing RN 
vs. NN. RK was derived from the day comparing NN vs. RK. Hand control and NN were derived 
from both days. The solid line indicates the mean value and the shaded region denotes the S.E.M. 
The shaded line tightly surrounds the mean, making these difficult to distinguish. If the trial was 
completed in less than 2000 ms, a velocity of zero was assigned extending from trial completion 
to 2000 ms. The unit, u, denotes arbitrary distance such that 1 was full flexion and 0 full 
extension. b, Offline analysis of true and predicted velocities for Monkey N (left) and Monkey 
W (right). The NN (blue) decodes higher velocities than the KF (red). The predicted velocity is 
normalized at a true velocity of zero so that one positive standard deviation of predicted 
velocities for both NN and KF is normalized to 0.5. The solid line indicates the mean value and 
the shaded region around denotes the S.E.M. The larger shaded region around the mean denotes 
the variance. NN = neural network; RK = ReFIT Kalman filter; RN = ReFIT neural network; KF 
= Kalman filter. 
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Fig. 5 | Neural network decoder functions as a weighted combination of a positive and 
negative velocity decoder. a, Final neural network layer that converts 256 nodes into 2 finger 
velocities by matrix multiplication by a matrix W4

(i,j) of size 256 x 2, where i denotes the row and 
j denotes the column value. The value of the 256 nodes, Nk, of the final layer are all positive 
given that they are derived from the output of the preceding ReLU function. For finger 1, the kth 
node was considered a “positive node” if it contributes to positive – not negative – velocities and 
occurs when W4

(k,1) > 0. “Negative nodes” contribute negative – not positive – velocities when 
W4

(k,1) < 0. The nodal contribution from the kth node is defined as Nk W4
(k,1) and is the value of 

the output at the dashed line. b, Example illustration of the mean nodal contribution from 
positive and negative nodes when the true velocity is positive (dark blue), negative (light blue), 
and near zero (grey) during 1 day of testing with Monkey N. As illustrated in the figure, positive 
nodes are much higher than negative nodes during positive velocities, while negative nodes have 
a higher magnitude than positive nodes during negative velocities. Positive velocity is defined as 
v1 > σ, negative velocity is defined as v1 < -σ,  and velocities near zero are defined as -σ/4 < v1 < 
σ/4, where σ is the standard deviation of true finger velocity. c, The nodal contribution during 
positive, negative, and near-zero true velocities illustrates that positive nodes largely determine 
the numerical value of positive velocities and negative nodes largely determine the value during 
negative velocities. The nodal contribution is averaged across both fingers during the 3 offline 
days for both Monkeys N and W. Thus, three operating regimes exist for the neural network 
decoder that consist of a decoder during positive velocities based on positive nodes, a decoder 
during negative velocities based on negative nodes, and a decoder using positive and negative 
nodes during velocities near zero. The dots indicate the mean value and the error bars indicate 
the standard deviation. d, Block diagram of a hypothetical decoder that uses two separate filters 
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for positive finger velocities, v1 ≥ 0 and v2 ≥ 0, and negative finger velocities, v1 < 0 and v2 < 0. 
The Kalman filter for positive velocities, KF(+), was trained on velocities near zero and positive 
values (> -0.5σ), whereas the Kalman filter for negative velocities, KF(-), was trained on mainly 
negative velocities (< 0.5σ). The ideal classifier is depicted only to illustrate the concept and was 
not implemented. e,f, True versus predicted velocity magnitude during 3 days of manipulandum-
control testing (3 days each for Monkeys N and W) for the neural network decoder (blue), 
Kalman filter (red), KF(+) (magenta), and KF(-) (magenta). The full-range Kalman filter 
predicted both positive and negative velocities, KF(+) predicted only positive velocities, and 
KF(-) predicted only negative velocities. The magnitude estimated velocities of KF(+) and KF(-) 
are shown to be higher than those of the full-range Kalman filter and illustrate that training and 
implementing the Kalman filter over restricted ranges would allow for higher velocities 
(assuming an ideal classifier). The solid line indicates the mean value and shaded lines indicated 
the S.E.M. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.29.456981


34 

 

Videos 
 
Video 1 | RK for a random finger task. The video captures the average performance of the RK 
as measured by throughput (1.4 bps) over the two days of testing for Monkey N when comparing 
RK and RN.  
 
Video 2 | RN for a random finger task. The video captures the average performance of the RN 
decoder as measured by throughput (2.3 bps) over the two days of testing for Monkey N when 
comparing RK and RN. 
 
Video 3 | RN for a center-out finger task. The video captures the peak performance of the RN 
decoder as measured by throughput (3.2 bps) in one day of testing of the RN for Monkey N on a 
typical center-out finger task.  
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