
1

Real-Time Brain-Machine Interface Achieves High-Velocity Prosthetic Finger Movements

using a Biologically-Inspired Neural Network Decoder

Matthew S. Willsey1,2, Samuel R. Nason2, Scott R. Ensel2,3, Hisham Temmar2, Matthew J.

Mender2, Joseph T. Costello6, Parag G. Patil1,2,4,5, and Cynthia A. Chestek*,2,4,6,7,8

1Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
2Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
3Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
4Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
5Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
6Department of Electrical Engineering and Computer Science, University of Michigan, Ann

Arbor, MI, USA
7Robotics Graduate Program, University of Michigan, Ann Arbor, MI, USA
8Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA

Previous Publication: None.

Funding Requiring Open Access: None.

Other External Funding: None.

Disclosures: The authors have no personal, financial, or institutional interest in any of the drugs,

materials, or devices described in this article.

*Correspondence to:
Dr. Cynthia A. Chestek
Biomedical Engineering
B10-A171 NCRC
Ann Arbor MI 48109-2800
Phone: 734-763-1759
Email: cchestek@umich.edu

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

2

Real-Time Brain-Machine Interface Achieves High-Velocity Prosthetic Finger Movements

using a Biologically-Inspired Neural Network Decoder

Abstract

Despite the rapid progress and interest in brain-machine interfaces that restore motor function,

the performance of prosthetic fingers and limbs has yet to mimic native function. The algorithm

that converts brain signals to a control signal for the prosthetic device is one of the limitations in

achieving rapid and realistic finger movements. To achieve more realistic finger movements, we

developed a shallow feed-forward neural network, loosely inspired by the biological neural

pathway, to decode real-time two-degree-of-freedom finger movements. Using a two-step

training method, a recalibrated feedback intention–trained (ReFIT) neural network achieved a

higher throughput with higher finger velocities and more natural appearing finger movements

than the ReFIT Kalman filter, which represents the current standard. The neural network

decoders introduced herein are the first to demonstrate real-time decoding of continuous

movements at a level superior to the current state-of-the-art and could provide a starting point to

using neural networks for the development of more naturalistic brain-controlled prostheses.

Introduction

Brain-machine interfaces (BMIs) offer hope to the very high numbers of Americans (~1.7%)

with sensorimotor impairments1. To this end, cortical BMIs have allowed human patients using

brain-controlled robot arms to perform a variety of motor tasks such as bringing a drink to the

mouth2 or stacking cups3. Motor decoding algorithms are required to convert brain signals into a

control signal, usually with position and velocity updates, for the prosthetic device. Despite the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

3

potentially non-linear relationship between neural activity and motor movements4,5, linear

algorithms – including ridge regression, Kalman filtering, and Poisson processes – represent

state-of-the-art performance in motor decoding2,6-8. Even with the rapid progress, many

recognize that further developments are necessary to restore quick and naturalistic movements2.

Some gains in performance have already been achieved by adding non-linearities to

classic linear decoders to leverage the likely non-linear relationship between neural activity and

motor movements. For example, since neural activity is markedly different when moving

compared to stationary postures, decoders have been introduced to move a prosthesis only when

the desire to move is detected4,7,9. To leverage the non-linear relationship between kinematics

and motor cortex neural activity, the classic Kalman filter has been adapted by expanding its

state space10 or with Gaussian mixture models11 so that the algorithm can adopt different linear

relationships in different movement contexts. In a particularly novel implementation, Sachs et

al.12 implemented a weighted combination of two Wiener filters trained for either fast

movements or near-zero velocities so that continuously decoded velocities largely draw upon the

fast Wiener filter at the beginning of the trial and the slow-movement filter as the cursor

approaches the target. However, for many of these approaches, performance is improved only for

very specific tasks, and a general-purpose nonlinear approach is lacking.

Artificial neural network decoders, with their capability to model complex non-linear

relationships, have long been thought to hold tremendous promise for brain-machine interfaces.

They may ultimately also represent the most biomimetic motor decoder to transform motor

cortex activity to realistic motor movements. However, early neural network decoders, prior to

recent advancements in hardware, toolboxes, and training methods, were not found to improve

performance over standard linear methods when decoding continuous motor movements13,14.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

4

Many advanced techniques employing recurrent neural networks and variational inference

techniques show great promise for predicting prosthetic kinematics from brain signals (in offline

testing). However, these techniques are often employed to perform classification15, as opposed to

continuous motor decoding, and not used in real-time control of prosthetic devices (in online

testing), likely because of the computational complexity16,17. Sussillo et al.18, however, did

demonstrate real-time control of a computer cursor with a recurrent neural network in a non-

human primate implanted with motor cortex arrays. However, this did not outperform a ReFIT

Kalman filter in the same animals6,18. George et al.19 demonstrated control of hand and finger

movements in human amputees with peripheral nerve interfaces using a convolutional neural

network but again did not outperform a linear Kalman filter.

 In this work, for the first time, we demonstrate a ReFIT neural network for decoding

brain activity to control random and continuous two-degrees-of-freedom movements in real time

using Utah arrays in rhesus macaques. The ReFIT neural network is compared with the ReFIT

Kalman filter, which we use to represent the current state-of-the-art in linear decoders. The

ReFIT Kalman Filter, introduced by Gilja et al.6, is a two-step training process that first

computes the weights of a classic Kalman filter and then modifies the weights when the

prosthesis direction is not toward the actual target. In this study, we find that the ReFIT neural

network decoder substantially outperforms our previous implementation of the ReFIT Kalman

filter20-22 with >60% increase in throughput by utilizing high-velocity movements without

compromising the ability to stop. This enables the use of shallow artificial networks, which may

resemble biological motor pathways, for motor decoding applications and may be the bridge

toward high-velocity, naturalistic robotic prostheses.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

5

Results

Two adult male rhesus macaques were implanted with Utah arrays (Blackrock Microsystems,

Salt Lake City, Utah) in the hand area of the primary motor cortex (M1), as shown in Fig. 1a.

The macaques were trained to sit in a chair and perform a finger target task in which a hand

manipulandum was used to control virtual fingers on a computer screen in front of the animal.

During online BMI experiments, spike-band power (SBP) was used as the neural feature. SBP is

the time-averaged power in the 300-1000-Hz frequency band that provides a high signal-to-noise

ratio correlate of the dominant single-unit spiking rate, and usually outperforms threshold

crossings as a feature23. A two-degree-of-freedom finger task was previously developed by

Nason et al.21, where the monkeys used two individual finger groups to acquire simultaneous

targets along an arc. Monkey N used his index (D2) finger individually and his middle-ring-

small (D3-5) fingers as a group, and Monkey W used D2 and D3 as one group and D4 and D5 as

the second group. However, unlike the previous task using center-out targets, targets herein were

acquired randomly to increase task difficulty. After a 400-trial calibration task, a decoder was

trained to predict velocity of both finger groups, as shown in Fig. 1b. We have recently

demonstrated online real-time decoding of these 2 degrees of freedom using a ReFIT Kalman

filter21, and primarily compare our novel algorithm to that approach.

Offline analysis of the neural network architecture. Limited computational complexity was a

design goal for the neural network to allow same-day training and testing. As most online

decoders incorporate recent time history2,3, the neural network was designed so that an initial

time-feature layer constructed 16 time features per electrode from the preceding 150 ms of SBP

(time feature layer in Fig. 1c). These time features were then input into 4 fully connected layers,

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

6

where the first three output to a rectified linear unit (ReLU) activating function and the final

layer outputs a velocity for each finger group. The number of fully connected layers and output

time features were chosen to achieve near maximal correlation coefficient in offline performance

using 400 trials of training data. As can be seen in Fig. 2a, increasing the number of neurons in

hidden layers beyond 256 and the number of fully connected layers beyond 4 did not

substantially improve the offline correlation. Furthermore, increasing the number of time

features beyond 16 (Fig. 2b) also did not substantially improve offline correlation. For notational

simplicity, the neural network in Fig. 1c is abbreviated as NN.

The impact on performance of the individual network components was assessed through

an offline analysis based on 3 consecutive days of recorded spike-band power for each monkey

during manipulandum-controlled finger task. Illustrative examples of predicted versus actual

finger velocities for Monkey N using the manipulandum are given for neural networks of

increasing complexity: 2 layers, 2 layers with time history, 4 layers, and 4 layers with time

history (Fig. 2c). The correlation of each neural network decoder relative to the Kalman filter

correlation is given in Fig. 2d by combining both fingers over all days for each monkey. The

offline Kalman filter correlation averaged 0.59 ± 0.01 for Monkey N and 0.50 ± 0.02 for Monkey

W. In both monkeys, the correlation is highest for the 4-layer network with time history (NN in

Fig. 1c), followed by the 2-layer network with time history, followed by the 4-layer network

without time history, followed by the 2-layer network without time history. In both monkeys, the

4-layer network with time history, NN, achieves a higher offline correlation than the Kalman

filter (P = 3.6 x 10-4 for Monkey N and P = 0.016 for Monkey W), and the total performance

comparisons are summarized in Table 1.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

7

Neural network decoder outperforms ReFIT Kalman filter decoder in real-time tests. In

two non-human primates (NHP), Monkeys N and W, neural network decoders outperformed a

ReFIT Kalman filter (RK) during real-time (online) testing, and the performance results are

summarized in Table 2. In Monkey N, a neural network decoder outperformed the RK 13 mos

after implantation in 2 days of testing over 1080 total trials, regardless of which algorithm was

used first. The NN decoder improved the throughput over the RK by 26% with 2.15 ± 0.05 bits

per second (bps) for the NN and 1.70 ± 0.03 bps for RK (P < 10-5). The acquisition time was

1240 ± 40 ms for the NN and 1550 ± 40 ms for the RK. NN had 3/543 unsuccessful trials while

RK had 1/537 unsuccessful trial. In Monkey W, NN and RK decoders were compared 2 mos

after implantation on one day testing over 412 trials. As graphically depicted in Fig. 3a, the NN

decoder improved the throughput over the RK by 46%, with 1.23 ± 0.09 bps for the NN and 0.84

± 0.04 bps for RK (P < 10-5). The acquisition time was 2680 ± 160 ms for NN and 3310 ± 130

ms for RK. NN had 26/133 unsuccessful trials while RK had 113/279 unsuccessful trials. Fig. 3a

illustrates the throughput of each trial and the mean value for each run.

ReFIT neural network decoder outperforms both the original NN and RK decoders. The

ReFIT innovation was applied to the neural network in a similar manner as it was used with the

Kalman filter. Essentially, after completing trials using the NN decoder, the NN learned weights

were further updated whenever the predicted finger direction was oriented away from the true

targets, as described in the Methods. The ReFIT neural network (RN) decoder improved

performance across all metrics when compared with the original NN in both monkeys (illustrated

in Fig. 3b and Table 2). These tests for Monkey N were conducted at 19 mos post-implantation,

and the decoding performance of all decoders had declined from earlier tests at 13 mos.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

8

In Monkey N, who was capable of running a large number of consistent trials in 1 day,

RN was compared directly with RK 19 mos after implantation in 2 days of testing with 1351

total trials (Fig. 3c and Table 2). RN improved the throughput over the RK by 62%, with 2.29 ±

0.05 bps for the RN and 1.41 ± 0.03 bps for RK (P < 10-5). Average performance of each

decoder for the random finger task is illustrated in Videos 1 and 2. The acquisition time was

1270 ± 30 ms for the RN and 1940 ± 50 ms for the RK. There were no unsuccessful trials

(0/737) using the RN and 55/614 unsuccessful trials with the RK. RN outperformed RK

regardless of which algorithm was used first (P < 10-5), as illustrated in Fig. 3c in terms of

throughput. Representative raw finger tracings are depicted in Fig. 3d for the RK and in Fig. 3e

for the RN and depict a time segment with a throughput equivalent to the average throughput

over both days. The tracings illustrate the higher target acquisition rate for the RN (30 targets in

50 sec) compared to the RK (21 targets in 50 sec).

ReFIT neural network decoder outperforms optimized RK decoder. Our implementation of

the ReFIT Kalman filter for finger control utilizes a physiological lag and does not include

hyper-parameter tuning (i.e., gain and smoothing parameters)20-22. However, other work suggests

RK performance can be improved without lag (providing the RK updates to the virtual fingers

without delay)24 and by optimizing the online gain and smoothing parameters for RK25. In 2 days

of testing at 29 mos post implantation with Monkey N, the zero-lag, optimized ReFIT KF, RKopt,

was compared with RN in over 1164 trials using the same protocol as used above to compare RK

and RN. In these tests, the throughput of RN of 2.41 ± 0.05 bps remained greater than that of

RKopt at 2.12 ± 0.05 bps (P = 1.2 � 10-5).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

9

The performance of RK, prior to optimization, had also improved at 29 mos (around 1.91

bps on a separate day of testing). Thus, most (>50%) of the improvement of RKopt over the 1.41

bps using RK at 19 months, as described in the section above, may be from improved NHP

behavior with 10 additional months of practice with RK. For detailed evaluation of the

performance improvement with RKopt over RK, see “Optimizing the lag, gain, and scaling

factors for real-time tests” in Materials and Methods.

Neural network decoders allow higher velocity decodes than the Kalman filter. To better

understand why the RN outperformed the RK decoder, the mean velocity over all the successful

trials was computed for each decoder for both monkeys. As seen in Figs. 4a,b, virtual fingers

controlled by the RN and NN decoders achieved higher peak velocities and were more

responsive for both monkeys than when the virtual fingers were controlled by the RK decoder.

For Monkey N (Fig. 4e), the time to the velocity peak averaged 300 ms for RN, 350 ms for NN,

and 450 ms for RK. The peak of the averaged velocity was 1.35 ± 0.03 u/sec for RN, 1.00 ± 0.03

u/sec for NN, and 0.55 ± 0.02 u/sec for RK, where u denotes arbitrary units such that 1 was full

flexion and 0 was full extension. For Monkey W (Fig. 4a), the time to peak was 350 ms for RN,

400 ms for NN, and 800 ms for RK. The peak average velocity was 0.94 ± 0.04 u/sec for RN,

0.76 ± 0.04 u/sec for NN, and 0.39 ± 0.04 for RK u/sec. Thus, in both monkeys, the average time

to peak velocity and the peak velocity itself were improved with RN and NN than for the

standard RK decoder. The high velocities achieved using RN is illustrated for a center-out task in

Video 3.

To ensure the NN does not achieve high-velocity decodes at the expense of low-velocity

decoding accuracy, which is important for stopping the prosthesis, the predicted velocity as a

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

10

function of the true velocity was compared for the NN and Kalman filter (KF) in an offline

analysis (graphically shown in Fig. 4b). The predicted velocity on the vertical axis is scaled so

that when the true velocity is at zero, the standard deviation of the predicted velocity equals 1/2.

In the high-velocity range (>1 u/s), the decoded NN velocity averages 157 ± 3% of the KF

velocity for Monkey N and 122 ± 2% for Monkey W. Thus, after accounting for decoder

performance at low velocities, the range of velocities that can be achieved is higher for the NN

than the KF. As shown in the online analysis, higher velocities improved the performance of NN

decoders.

Neural network merges decoders optimized for positive and negative velocities. Due to the

network architecture itself, each node of the final hidden layer contributes either a positive or a

negative velocity to the final prosthetic finger velocity. We explored whether this itself provides

an example of how the fit is improved for different movement contexts, i.e. positive and negative

velocities. Specifically, for finger 1, the sum of the product of Nk and W4
(1,k), over all k,

determine ���, where Nk is the k-th node of the final hidden layer and W4
(1,k) represents the

learned weights (shown in Fig. 5a). Since each Nk is the output of the ReLU function, Nk is

necessarily greater than or equal to zero. Thus, the nodal contribution of the kth node, Nk W4
(1,k,)

can be either positive (if W4
(1,k) > 0) or negative (W4

(1,k) < 0) – but not both positive and negative.

The nodal contributions of positive and negative nodes during day 1 for Monkey N are

illustrated in Fig. 5b for positive velocities (v1 > σ), negative velocities (v1 < σ), and near-zero

velocities (-σ/4 < v1 < σ/4). During positive velocities, the final estimate, ���, of v1 is dominated

by positive nodes, which is illustrated with the dark blue line that depicts much higher nodal

contributions for positive than negative nodes. The same is true of negative nodes during

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

11

negative velocities. This trend is confirmed at a population level for both monkeys in Fig. 5c,

where positive nodes dominate negative nodes at positive velocities and vice versa for negative

velocities. Thus, the NN decoder is capable of optimizing for positive velocities by learning

weights of positive nodes and optimizing for negative velocities through the weights of negative

nodes.

To understand whether the network is improving on the Kalman filter via separating

movement contexts, we trained two separate Kalman filters: one for positive velocities (KF+)

and one for negative velocities (KF-), as illustrated in Fig. 5d. The decoder in Fig. 5d assumes a

perfect classifier that correctly chooses either KF+ or KF- depending on whether the true

velocities are positive or negative. As can be seen for both monkeys in Figs. 5e,f, KF+ and KF-

achieve higher velocity magnitudes closer to the NN decoder, and unlike the original Kalman

filter, covers a wider range of velocities. This suggests that the NN allows for optimal fits within

both of these contexts without overt switching.

Discussion

During two-degree-of-freedom finger decoding, the ReFIT NN (RN) improved performance by

more than 60% over our implementation of the ReFIT Kalman filter (RK) for finger control20-22.

Even with RK parameter optimization and months of practice on using RK to control finger

movements, RN continued to demonstrate a substantial performance advantage. This

improvement was driven by more accurately decoding higher velocities. Accurate high-velocity

decodes may arise by separately training weights for either positive or negative velocities, and

this may lead to more robust performance in various real-life tasks.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

12

Performance improvement with neural network decoders. Neural network algorithms are

loosely inspired by biological neural networks, and many have explored their use in brain-

machine-interface decoding applications13,14. Although many sophisticated network architectures

show tremendous promise in simulation16,17, neural network decoders have not improved real-

time performance over standard linear techniques13,14,18,19. Our approach differs from previous

approaches mainly by using a shallow network architecture and by leveraging the multi-step

training procedure to improve training data originally developed for the ReFIT Kalman filter26.

Additionally, we utilize recently developed regularization techniques to prevent overfitting (i.e.,

batch normalization and dropout)27-29 and also incorporate 150-ms time history of spiking band

power (SBP) as input to the decoder instead of only one point in time.

 The shallow network architecture of 1 time-feature layer and 4 fully connected layers

allows for the roughly 5 x 105 learned parameters to be trained with only 400 trials of same-day

training data in about 1 minute. In contrast, recurrent neural network architectures have

combined training data across multiple days15,16, and when implemented as continuous motor

decoders may be too complex to run in real time. An additional benefit of shallow feed-forward

networks is that computing the velocity in real-time mode introduces only a 1-2 ms lag. Thus,

through use of a shallow network, limitations typical of more computationally expensive

architectures are avoided.

 Incorporating a two-step, intention-based, re-training step is the fundamental innovation

improving the ReFIT over the classic velocity Kalman filter6 and appears to have a similar

positive effect on the NN. The intention-based retraining step was already known to improve

finger decoding for a Kalman filter during center-out tasks22. Similar to the substantial

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

13

improvement seen in the ReFIT Kalman filter6, retraining the ReFIT neural network resulted in a

substantial 50% improvement in performance over the original neural network decoder.

Neural network decoder learns positive and negative velocity features for finger movement.

By training the neural network, the learned weights for either positive or negative nodes appear

to be optimized for either the positive or negative velocity range. Similar to our results, Sachs et

al.12 showed that splitting the full velocity range into intervals subserved by separate Wiener

filter decoders fine-tuned for either high or low velocities improved brain-machine interfaces for

cursor control. Additionally, Kao et al.7 improved performance by 4.2-13.9% over the ReFIT

Kalman filter using a hidden Markov model to enable movement only when the decoder is in a

“movement state,” as neural activity is known to be different in movement and postural states4.

The neural network architecture may be better able to discover these contexts without explicit

classifiers or supervised training.

 The variation of decoded velocities of the neural network appears to more closely mimic

the range of velocities seen in native finger movements. In a tantalizing hypothesis, the decoder’s

naturalistic movements may be related to its shallow architecture, which may resemble true

biological pathways. Specifically, there are only a few synapses between the neurons in motor

cortex and the α-motor neurons in the anterior horn of the spinal cord30. Although speculative,

neural network architectures may perform well partly because motor cortex activity naturally

controls flexion and extension of antagonist muscle pairs. The neural network architecture may

readily decode this flexion and extension into positive and negative velocities. Whether the

similarity of neural network decoders to biologic network leads to more naturalistic motor

control of many more contexts and simultaneous degrees of freedom awaits further study.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

14

Limitations. As opposed to using our typical center-out task finger task21, we increased the

difficulty to better challenge the decoders and elucidate differences between two well-

performing decoders. Although these results could apply to a variety of real-word finger tasks,

other tasks and prostheses (i.e., robotic arms) were not explicitly tested. While improvements in

the Kalman filter or its implementation may increase its performance, the neural network

performance can also be further optimized, such as by including position information into the

decoder, optimally tuning its parameters, or by implementing it in a form similar to the steady-

state Kalman filter by merging historical velocity and current updates (Eq. 2). Regardless, in

online tests, the RN was found across all metrics to outperform RK, and offline tests confirmed a

superior dimensionality reduction (as measured by correlation coefficient) and a higher dynamic

range of predicted velocities. A piecewise implementation of the Kalman filter could

conceivably be used to achieve a similar range of predicted velocities but would require a

sophisticated and generalizable switching algorithm to choose the appropriate Kalman filter.

Furthermore, the neural network algorithms could similarly be constructed for distinct velocity

ranges. Lastly, while the neural network does require increased computational complexity, it was

optimized for performance and not to optimally trade off performance with computational

complexity, which could certainly be accomplished.

Conclusion. This novel neural network decoder outperforms a current state-of-the-art motor

decoder and achieves movements similar to naturalistic finger control. The architecture in large

part resembles biological motor pathways and may be amenable to further performance

improvements.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

15

Materials and Methods

Implantation procedure. The protocols herein were approved by the Institutional Animal Care

and Use Committee at the University of Michigan. Two adult male rhesus macaques were

implanted with Utah arrays (Blackrock Microsystems, Salt Lake City, Utah) in the primary

motor cortex (M1). Under general anesthesia and sterile conditions, a craniotomy was made and

M1 was exposed using standard neurosurgical techniques. The arcuate sulcus of M1 was visually

identified, and the array was placed where this sulcus touches motor cortex (Fig. 1a), which we

have previously used as a landmark of hand area in rhesus macaques. The incision was closed,

and routine post-anesthesia care was administered.

Experimental setup and finger task. Both Monkeys N and W were trained to sit in a monkey

chair (Crist Instrument, http://www.cristinstrument.com), with their head secured in customized

titanium posts (Crist Instrument), while the Utah array was connected to the Cerebus neural

signal processor (NSP, Blackrock Microsystems). The arms were secured in acrylic restraints.

The hand contralateral to the motor cortex implant was placed in a manipulandum, described by

Vaskov et al.22, that translates finger position to a number between 0 (full extension) and 1 (full

flexion). A computer monitor was in plain sight for the NHP and depicted a large virtual hand

(Fig. 1b). The virtual finger could be controlled in either manipulandum-control mode or in

brain-control mode (i.e., brain signals converted to updates for virtual finger). Brain-control

mode is commonly denoted as either real-time, closed-loop, or “online” mode. Manipulandum-

control mode is often described as “offline” mode. The two-dimensional finger task is identical

to the task developed by Nason et al., except performed on random instead of center-out

targets21. The finger task required placing either the virtual index and/or ring finger on the target

for 750 ms during training mode and 500 ms during testing mode (testing vs. training modes will

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

16

be explained in a subsequent section). The target size was 15% of the active range of motion.

With target acquisition, apple juice was automatically administered through a tube placed in the

animal’s mouth.

Front-end processing. The Utah array was connected to the Cerebus NSP (Blackrock

Microsystems) through a cable. Although 96 channels were available, only channels that were

not artifactual and with morphological neural spikes on the day of experiments or had shown

morphological spikes in the past were included, leaving 54-64 channels for Monkey N and 50-53

channels for Monkey W. The Cerebus system sampled data at 30 kHz, filtered it to 300-1000 Hz,

down-sampled it to 2 kHz, then transmitted it to the xPC Target environment (Mathworks,

Natick, MA). The xPC Target computer took the absolute value of the incoming data and then

calculated each channel’s mean in regular 50-ms time intervals. This binned value is referred to

as spike-band power. We have previously shown that this band is highly correlated with and

specific to the spiking rate of single units near the recording electrode23.

Software architecture. A separate computer with one 2070 super NVIDIA GPUs (NVIDIA,

Santa Clara, CA) was connected to the xPC. This computing box was called the eXternal

Graphic Processing Computer (xGPC). The xGPC executed commands in Python (v3.7,

https://www.python.org/) using the PyTorch library (v1.4, https://pytorch.org/). Real-time

performance was guaranteed in the following fashion. The xPC transmitted data to the xGPC

with a timestamp, the xGPC calculated updates for the virtual fingers from the inputs (for all

decoders) and transmitted the data back to the xPC along with the original timestamp. When the

xPC received the data packet, the packet was logged with a new timestamp. Real-time

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

17

performance was guaranteed given that the timestamp received from xGPC (the original

timestamp sent by xPC) was within 50 ms of the current xPC timestamp and updates to the

virtual fingers occurred every 50-ms time bin.

ReFIT Kalman filter. The ReFIT Kalman filter (RK) was implemented for use with fingers as

described by Vaskov et al. and Nason et al.21,22 In summary, it is a two-step process that involves

first training a Kalman filter (KF) using spike-band power measurements from any 96 channels

of the Utah array to predict updates to position and velocity states of the virtual fingers. A

detailed description on the KF implementation is described by Vaskov et al22.

The trained KF was then used to perform closed-loop motor decoding. To train the RK,

the target position for each finger is mapped to a two-dimensional space and the true velocity of

each finger is scaled to be proportional to each finger’s distance to the target while keeping the

total velocity magnitude constant. This method of ReFIT was introduced by Nason et al.21 and

was not found to be statistically different from the ReFIT method in Vaskov et al.22, where the

finger velocity was modified by multiplying velocities by -1 when the velocity was oriented in

the opposite direction as the target. The KF was then retrained using these new velocity values

(for details see Nason et al.21). As also detailed in Vaskov et al.22, Kalman gain was implemented

with no position uncertainty.

Optimal lag is commonly implemented in KF motor decoders31 to account for the

physiologic lag between cortical activity and motor movement32. Thus an optimal time lag,

calculated to be one 50-ms bin for both Monkeys N and W, was applied when training and

implementing the KF, as detailed in previous work20,22. Control tests comparing zero and one 50-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

18

ms bin lag are provided below (see Section “Optimizing the lag, gain, and scaling factors for

real-time tests”). Additionally, the Kalman filter can be implemented as a steady-state Kalman

filter with a gain and smoothing factor that can be optimized for online tests. Our implementation

generally does not tune these parameters as the ReFIT training algorithm may determine near

optimal values for these parameters33. To validate this simplification, we compare our

implementation of RK with one with optimal tuning (see Section “Optimizing the lag, gain, and

scaling factors for real-time tests”). As will be explained below, we did compare RN with RKopt,

which uses zero lag and optimally determined gain/smoothing parameters, to ensure our results

hold against a theoretically optimized RK, with the results presented in the section “ReFIT

neural network decoder outperforms optimized RK decoder” of Results.

To determine whether the Kalman filter could better predict the high velocities if trained

and used on restricted velocity ranges, we conducted an offline analysis using “KF+” and “KF-.”

KF+ was calculated with only positive and near-zero velocities, i.e., velocities greater than -σ/2,

and KF- was calculated with velocities less than σ/2. These Kalman filters were trained as

described by Wu et al.31 with position uncertainty and using the optimal physiologic lag

calculated on that day.

Neural network velocity decoder. The neural network velocity decoder was designed from

preliminary offline experiments that explored various network architectures. The final network is

given in Fig. 1c. The first layer was the time feature layer that constructs time features from 150

ms (three 50-ms bins) from the input electrodes. This layer was implemented in Pytorch, using

the torch.nn.Conv1d module, i.e., as a one-dimensional convolution with a kernel size of 1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

19

(H=W=1) and 3 input channels (neural network channels, not electrode channels). Each channel

corresponded to one 50-ms time bin. Although possible to construct a spatial convolution across

electrodes, this was not performed because the spacing between electrodes was hypothesized to

be distant relative to the size of the neurons being recorded. The output of the time feature layer

provided 16 features per electrode and, when flattened, provided 1536 inputs to a series of fully

connected layers. Regularization for fully connected layers 1-3 included 50% dropout27 and

batch normalization28. Fully connected layer 1 converted the 1536 inputs to 256, and the

remaining layers had 256 hidden neurons. The sequence of the modules used was

torch.nn.linear, torch.nn.Dropout, torch.nn.BatchNorm1d, and then finally

torch.nn.functional.relu. The final layer implemented a matrix multiplication with

torch.nn.linear to convert the 256 inputs to the two velocity estimates. The output of the network

was normalized to zero mean and unit variance and roughly twenty times the magnitude of actual

velocity peaks. This normalization was discovered to converge more quickly when training the

RN than training without the normalization. The output of the neural network was scaled by an

unlearned gain factor that equaled the average magnitude peaks of the actual velocity divided by

the average magnitude peaks of the predicted velocity. No offset was applied to the final

predicted velocity, leaving it a zero-mean signal. A diagram of the final neural network is given

in Fig. 1c.

Prior to training the neural network, a training data set was collected in manipulandum-

control mode for roughly 400 trials with randomly appearing targets. A subsequent 100 trials

were also performed and served as a validation set to ensure the network had converged. This

validation set was also used to calculate the gain as described above. If there was a non-zero

median, this was subtracted as well to approximate a zero-mean signal. The SBP and velocity

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

20

data were assembled into data structures in Matlab (Mathworks). The data were randomized in

two ways. First, the time data were randomized into batches of 64 x 3 time points: 64 time points

with the corresponding value at time delays of 0, 50, and 100 ms. Second, a triangular

distribution of velocities was imposed on the training data spanning the range of -4σ to 4σ, where

σ was the standard deviation of the actual velocity. A total of 20,000 training samples were

randomly chosen to achieve this velocity distribution. In preliminary experiments, this velocity

redistribution was observed to improve performance on the finger task when the neural network

was trained on a center-out finger task that led to a “sticky finger” behavior, in which the finger

would often get close to but not quite all the way to the target. However, when the neural

network was trained on random targets, the velocity redistribution was not observed to improve

performance over non-redistributed data, but we describe it here for completeness. This

redistribution of velocities was also used when training on random finger targets so that the

decoder could easily be generalized to other training paradigms in the future.

In addition to the neural network used for online testing, several other neural networks

were used to understand how individual components of the neural network affected offline

performance. The networks included a network of only two layers and no regularization (no

batch normalization, dropout, or output normalization). There were also regularized networks,

including a 2-layer fully connected network (256 hidden neurons) with a preceding time feature

layer (3 input channels for each electrode and 16 output channels), and 4-layer fully connected

network (256 neurons) with a time feature layer. These networks included regularization and

parameters similar to Fig. 1c. The offline networks were compared with the classic Kalman filter

(without the intention retraining step) and ridge linear regression without time history and with a

regularization constant of λ = 10-4.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

21

When training the network for online decoding, the neural network was optimized over

3500 iterations using the Adam optimization algorithm34 with a learning rate of 10-4, weight

decay of 10-2, and momentum of 0.9. Each iteration consisted of a 64x3 mini batch (64 random

time steps with 3 samples of 150 ms of time history). We attempted to use a relatively large

learning rate as larger learning rates provide additional regularization for the network29. On one

day for Monkey W, 3000 iterations were used. The number of iterations were determined for

each network from the first of three offline testing days and chosen so that the correlation

between actual and estimated velocity (on the testing set) did not significantly change with

additional training iterations (changes in correlation with additional iterations on the order of

~0.01). When generating weights for offline analysis, a learning weight of 2 x 10-5 allowed better

comparisons between networks with different numbers of layers. Kaiming initialization was used

to initialize the weights of each layer35, and the bias terms were initialized to zero. The dropout

level used was 50%27. On each day, a training set (~400 trials) and testing set (~100 trials) were

collected, and performance on a testing set was characterized by the correlation of predicted and

actual velocity.

When searching for the preferred number of layers, hidden neurons, and output time

features (Figs. 2a,b), performance was characterized by the average of the maximum of 5

correlations with the testing set over all training iterations. In this way, the optimal number of

training iterations did not need to be calculated for different size networks.

The weights for the ReFIT neural network were calculated by first using the NN decoder

in brain-control mode. A truth signal was then constructed from the original NN output by

flipping the velocity direction whenever the estimated finger velocity was directed away from

the target. Using this truth signal and the original neural network output, 500 further iterations of

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

22

stochastic gradient descent were applied to further optimize the weights of the neural network.

The gain factor for the neural network was calculated in the same manner as the original neural

network except when comparing the NN to RN over 2 d, where the gain factor used during brain

control with the NN was simply scaled by a factor 0.75 on both days.

Testing protocols. Targets for the fingers were not allowed to be separated by greater than 50%

of the range. During training, the random targets spanned 100% of the finger flexion/extension

range, but during online decoding only 95% of the range was used. The classic Kalman filter was

then used on a ~250 trial run from which the ReFIT KF coefficients were calculated.

For Monkey N, 8 online testing days were conducted. Offline testing was performed

using manipulandum-control trials from 3 consecutive days. Two of these days were the

manipulandum-control training trials from the online testing comparing NN and RK conducted

13 mos post-implantation. An additional day of manipulandum-control data at 13 mos post-

implantation was also included. For Monkey W, 2 online testing days were conducted. The

offline analysis included manipulandum-control trials from 3 days at 2 mos post-implantation

that included the 2 online days and an additional day of manipulandum-control trials. To reduce

confounders when comparing decoders for each monkey, decoders were compared in an

alternating lineup: either A-B-A or A-B-A-B testing. In 1 day for Monkey W, NN was compared

with RN without alternating the decoder. For Monkey N, the first 50 trials with each decoder

were discarded in the analysis. For Monkey W, only the first trial was discarded as there were

fewer total trials since W was less motivated to complete trials. To visually illustrate the peak

performance of the RN on our typical center-out task21, one additional day was included using

the RN on this task.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

23

Performance assessment and statistical analysis. Performance in online mode was

characterized with Fitt’s law throughput given below in Eq. 1, which accounts for both task

difficulty and the time needed for completion. The variable Dk is the distance of the k-th virtual

finger to the center of the k-th target at the start of the task, S is the target radius (equal in both

fingers), and tacq is the time to reach the target.

Throughput 	
∑ log� �1 � ��� � ��

2� ��

����

Equation 1

While the throughput was the primary performance metric, acquisition times were also reported.

All velocities in the offline analyses were normalized by the standard deviation of the

true velocity with 1 indicating the equivalent of 1 standard deviation of the actual velocity. The

time plots depicting the actual versus predicted velocity were selected from one of the training

days to illustrate the results (Fig. 2a). The correlation for each decoder was averaged over 2

fingers on 3 days (Fig. 2b). The plots of true versus predicted velocity were calculated by

binning the magnitude of the actual velocity into bins of size 1.0 at intervals of 0.5 and averaging

the magnitude of the predicted velocity in each respective bin.

Comparing the performance metrics between groups was made with a paired t-test.

Optimizing the lag, gain, and scaling factors for real-time tests. As explained above, we

utilized physiologic lag similar to previous studies31 in our implementation of RK for finger

control20-22. Unless otherwise mentioned, our comparisons of RK and RN use RK with a 50-ms

bin lag. To evaluate the effect of a 50-ms bin lag, RK with a lag of one 50-ms bin was compared

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

24

to RK with a zero-lag implementation (where the Kalman filter predictions update the virtual

hand as soon as they are available) in one day of testing over 273 trials with Monkey N. The

zero-lag RK improved throughput by 16% and peak average velocity by 13%.

The Kalman filter estimates of position and velocity can be simplified (assuming a

steady-state Kalman gain) as a weighted sum of two components: the previous time step’s

estimate of position/velocity and the current time step’s estimate of position/velocity derived

from intra-cortical array as shown below in Eq. 225.

��� � ������ � 	1 � ��
����

Equation 2

In Eq. 2, ��� denotes a 2�� � 1 column vector of position and velocity estimates for �� fingers, �

is a �� � 2�� matrix for �� electrodes, α is the scaling factor, and β is the gain factor. For the

position-velocity Kalman filter, the smoothing factor and gain were only implemented for the

velocity kinematics. To determine the optimal values for α and β, one day of testing with RK was

dedicated to first tuning the gain, β, by increasing its value. Using the value of β giving the best

performance, the smoothing factor, α, was then adjusted. The optimal values, based on

throughput, were determined to be α = 1.25 and β = 1.2. The performance improvements from

using a zero-lag RK and optimally tuned gain and smoothing factors were tested on a second day

of testing. Using RK with optimally tuned parameters (475 trials) resulted in only a 3.6%

increase in throughput and 16% increase in average peak finger velocity.

 Although most comparisons of RN and RK use RK without tuned hyperparameters, we

did include a test RN and RKopt, which uses zero lag and optimal values of α = 1.25 and β = 1.2,

and validated our findings with a fully optimized RK at 29 mos post implantation (see Results

Section “ReFIT neural network decoder outperforms both the original NN and RK decoders”).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

25

Acknowledgments

We thank Eric Kennedy and Paras Patel for animal and experimental support. We thank Gail

Rising, Amber Yanovich, Lisa Burlingame, Patrick Lester, Veronica Dunivant, Laura Durham,

Taryn Hetrick, Helen Noack, Deanna Renner, Michael Bradley, Goldia Chan, Kelsey Cornelius,

Courtney Hunter, Lauren Krueger, Russell Nichols, Brooke Pallas, Catherine Si, Anna

Skorupski, Jessica Xu, and Jibing Yang for expert surgical assistance and veterinary care. We

thank Tom Cichonski for his editorial review.

This work was primarily supported by NSF grant 1926576. M.S.W., H.T., M.J.M. were

supported by NSF grant 1926576. S.R.N. was supported by NIH grant F31HD098804. J.T.C.

was supported by NSF GRFP. P.G.P. was supported by NSF grant 1926576, the A. Alfred

Taubman Medical Research Institute, and NIH grant R01GM111293. C.A.C. was supported by

NSF grant 1926576, Craig H. Neilsen Foundation project 315108, NIH grant R01GM111293,

and MCubed project 1482. This work was also supported in part by NIH grant R01GM111293.

Author contributions

M.S.W., S.R.E., H.T., M.J.M., and J.T.C. performed the NHP decoding experiments. M.S.W.

conducted the data analysis and wrote the manuscript. M.S.W. and S.R.N. wrote and validated

the analysis software. M.S.W. and S.R.E. wrote and validated the Python code. S.R.E. developed

and tested the xGPC. M.S.W., P.G.P., and C.A.C. conducted the surgeries. P.G.P. and C.A.C.

supervised this work. All authors reviewed and modified the manuscript.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

26

Competing interests

The authors declare no competing interests.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

27

Tables

Decoder
Correlation

Monkey N Monkey W

Kalman filter 0.59 ± 0.01 0.50 ± 0.02

2-layer NN 0.44 ± 0.02 0.40 ± 0.01

2-layer NN with
time history 0.64 ± 0.01 0.52 ± 0.02

4-layer NN 0.61 ± 0.01 0.48 ± 0.02

4-layer NN with
time history 0.67 ± 0.01 0.54 ± 0.02

Table 1: Offline performance comparing Kalman filter and neural network (NN) decoders.

 Monkey N Monkey W
 RK NN RN RK NN RN
NN vs. RK

Throughput (bps) 1.70 ± 0.04 2.15 ± 0.05 0.84 ± 0.04 1.23 ± 0.09
Acquisition time (ms) 1550 ± 40 1240 ± 40 3310 ± 130 2680 ± 160

Time to target (ms) 1110 ± 30 950 ± 20 2410 ± 110 1680 ± 110
Dwell time (ms) 440 ± 30 290 ± 20 790 ± 100 1000 ± 120

Successful (total) trials 540 (543) 536 (537) 113 (279) 107 (133)
RN vs. NN

Throughput (bps) 1.51 ± 0.04 2.15 ± 0.05 1.20 ± 0.06 1.43 ± 0.05
Acquisition time (ms) 1880 ± 50 1320 ± 30 2610 ± 120 2220 ± 70

Time to target (ms) 1230 ± 30 840 ± 20 1740 ± 80 1430 ± 50
Dwell time (ms) 650 ± 30 480 ± 30 860 ± 90 780 ± 60

Successful (total) trials 616 (629) 772 (772) 185 (237) 441 (483)
RN vs. RK

Throughput (bps) 1.41 ± 0.03 2.29 ± 0.05
Acquisition time (ms) 1940 ± 50 1270 ± 30

Time to target (ms) 1330 ± 30 790 ± 10
Dwell time (ms) 610 ± 40 470 ± 30

Successful (total) trials 559 (614) 737 (737)

Table 2: Real-time performance comparison between ReFIT neural network (RN), neural
network (NN), and ReFIT Kalman filter (RK) decoders. bps = bits per second.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

28

Figures

Fig. 1 | Neural network velocity decoder. a, Image of Utah array implants for Monkeys N (left)
and W (right). In Monkey N, two split Utah arrays were implanted in primary motor cortex
immediately anterior to the central sulcus and denoted with asterisks (*). The array in primary
somatosensory cortex was not used in this analysis. In Monkey W, two 96-channel arrays were
implanted and the analysis herein uses the lateral array. b, Experimental setup. The NHP is
controlling the virtual finger with the hand manipulandum in manipulandum-control mode or
using spike-band power (SBP) to control the virtual finger in brain-control mode. c, NN
architecture. The network consists of five layers. The input to the network is YIN that is a EN x 3
data matrix that corresponds to the number of input electrodes and the 3 previous 50-ms time
bins. The time feature layer converts the last three 50-ms time bins for all the electrodes into 16
learned time features for each electrode. The equation representing the operation is given above
the graphical description of the layer. The arrow indicates that the elements undergo batch
normalization and pass through a ReLU function and are then flattened to a 1536 x 1 array. The
remaining four layers are fully connected layers with an associated weight matrix, denoted by W.
The first three layers consist of 256 hidden neurons and process the hidden neuron output first
with 50% dropout, then batch normalization, and finally with a ReLU function. The fourth and
final fully connected layer, FC-Layer 4, has two neurons – that are normalized – and represents
final velocity estimates of the two fingers, ��� and ���. Panel b modified from Vaskov et al.22 and
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) / “spikes” replaced
with SBP.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

29

Fig. 2 | Neural network offline analyses. a, Heat map illustrating the offline correlation
between the number of fully connected layers versus the number of hidden neurons for Monkeys
N (left) and W (right). As in Fig 1c, the fully connected layers followed a preceding time feature
layer. The correlation values were calculated as the average of the five-best correlation during
the training of the network. The networks used during online testing had 4 layers and 256
neurons. b, The correlation during offline training for Monkeys N and W as a function of the
number of learned time features in the output from the time-history layer of Fig. 1c. Four fully
connected layers followed the time feature layer. The number of output features selected in
online testing was 16. c, Examples comparing actual velocity (grey) and decoded velocity for
linear decoders (red) and neural network decoders (blue) during 1 day of manipulandum-control
tasks for Monkey N. The Y-axis is normalized by the standard deviation of actual velocities
during the entire run. d, Mean (and S.E.M.) offline correlation difference between one of the
neural network decoders and the Kalman filter, i.e., correlation of neural network decoder minus
correlation of the Kalman filter. The circles denote the mean for Monkey N over both fingers
over 3 d, and the triangles denote the mean for Monkey W over two fingers over 3 d. 2L = 2-
layer neural network; 2L w/ Time = 2-layer neural network with a preceding time feature layer;
4L = 4-layer neural network; 4L w/ Time = 4-layer neural network with a preceding time feature
layer. Asterisks (*) denote statistically significant differences between the correlation of the
neural network decoder and the Kalman filter.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

30

Fig. 3 | RN decoder outperforms RK during real-time tests. a, Throughput population data
comparing the NN decoder (cyan) and the RK decoder (red) for 2 days of testing with Monkey N
and 1 day of testing with Monkey W. The manipulandum-control runs are indicated with “M”
(magenta). For each run, the throughput is indicated with a dot. The few values greater than 5
bps are not shown. The black bars represent the mean and S.E.M. b, Throughput population data
comparing the NN decoder (cyan) and RN decoder (blue) for 2 days of testing with Monkey N
and 1 day of testing with Monkey W. c, Throughput population data comparing the RN decoder
(blue) and the RK decoder (red) for 2 days of testing with Monkey N. d,e, Raw decoded position
using the RK (red; d) and RN (blue; e) for the index finger (top pane) and middle-ring-small
(MRS) fingers in Monkey N, which are locked together (bottom pane). The targets are
represented as the shaded box. The x-axis denotes the elapsed time, 50 sec, and the y-axis
denotes the proportion of finger extension, i.e., 0 is fully extended and 1 is fully flexed. These
time windows are representative of the average decoding performance as measured by
throughput. M = manipulandum-control; NN = neural network; RK = ReFIT Kalman filter; RN =
ReFIT neural network; BPS = bits per second.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

31

Fig. 4 | Higher decoded velocities using neural network decoders. a, Online analysis. Virtual
finger velocity for Monkey N (left pane) and Monkey W (right pane) for RN (blue), NN (cyan),
RK (red), and hand control (magenta). The plots indicate that the neural network decoders
achieve higher peak velocities in real-time tests. In Monkey N, the RN, RK, and hand-control
data are taken from the days comparing RN vs. RK, while NN velocities were derived from the
day comparing NN and RK. In Monkey W, RN data were derived from the day comparing RN
vs. NN. RK was derived from the day comparing NN vs. RK. Hand control and NN were derived
from both days. The solid line indicates the mean value and the shaded region denotes the S.E.M.
The shaded line tightly surrounds the mean, making these difficult to distinguish. If the trial was
completed in less than 2000 ms, a velocity of zero was assigned extending from trial completion
to 2000 ms. The unit, u, denotes arbitrary distance such that 1 was full flexion and 0 full
extension. b, Offline analysis of true and predicted velocities for Monkey N (left) and Monkey
W (right). The NN (blue) decodes higher velocities than the KF (red). The predicted velocity is
normalized at a true velocity of zero so that one positive standard deviation of predicted
velocities for both NN and KF is normalized to 0.5. The solid line indicates the mean value and
the shaded region around denotes the S.E.M. The larger shaded region around the mean denotes
the variance. NN = neural network; RK = ReFIT Kalman filter; RN = ReFIT neural network; KF
= Kalman filter.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

32

Fig. 5 | Neural network decoder functions as a weighted combination of a positive and
negative velocity decoder. a, Final neural network layer that converts 256 nodes into 2 finger
velocities by matrix multiplication by a matrix W4

(i,j) of size 256 x 2, where i denotes the row and
j denotes the column value. The value of the 256 nodes, Nk, of the final layer are all positive
given that they are derived from the output of the preceding ReLU function. For finger 1, the kth
node was considered a “positive node” if it contributes to positive – not negative – velocities and
occurs when W4

(k,1) > 0. “Negative nodes” contribute negative – not positive – velocities when
W4

(k,1) < 0. The nodal contribution from the kth node is defined as Nk W4
(k,1) and is the value of

the output at the dashed line. b, Example illustration of the mean nodal contribution from
positive and negative nodes when the true velocity is positive (dark blue), negative (light blue),
and near zero (grey) during 1 day of testing with Monkey N. As illustrated in the figure, positive
nodes are much higher than negative nodes during positive velocities, while negative nodes have
a higher magnitude than positive nodes during negative velocities. Positive velocity is defined as
v1 > σ, negative velocity is defined as v1 < -σ, and velocities near zero are defined as -σ/4 < v1 <
σ/4, where σ is the standard deviation of true finger velocity. c, The nodal contribution during
positive, negative, and near-zero true velocities illustrates that positive nodes largely determine
the numerical value of positive velocities and negative nodes largely determine the value during
negative velocities. The nodal contribution is averaged across both fingers during the 3 offline
days for both Monkeys N and W. Thus, three operating regimes exist for the neural network
decoder that consist of a decoder during positive velocities based on positive nodes, a decoder
during negative velocities based on negative nodes, and a decoder using positive and negative
nodes during velocities near zero. The dots indicate the mean value and the error bars indicate
the standard deviation. d, Block diagram of a hypothetical decoder that uses two separate filters

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

33

for positive finger velocities, v1 ≥ 0 and v2 ≥ 0, and negative finger velocities, v1 < 0 and v2 < 0.
The Kalman filter for positive velocities, KF(+), was trained on velocities near zero and positive
values (> -0.5σ), whereas the Kalman filter for negative velocities, KF(-), was trained on mainly
negative velocities (< 0.5σ). The ideal classifier is depicted only to illustrate the concept and was
not implemented. e,f, True versus predicted velocity magnitude during 3 days of manipulandum-
control testing (3 days each for Monkeys N and W) for the neural network decoder (blue),
Kalman filter (red), KF(+) (magenta), and KF(-) (magenta). The full-range Kalman filter
predicted both positive and negative velocities, KF(+) predicted only positive velocities, and
KF(-) predicted only negative velocities. The magnitude estimated velocities of KF(+) and KF(-)
are shown to be higher than those of the full-range Kalman filter and illustrate that training and
implementing the Kalman filter over restricted ranges would allow for higher velocities
(assuming an ideal classifier). The solid line indicates the mean value and shaded lines indicated
the S.E.M.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

34

Videos

Video 1 | RK for a random finger task. The video captures the average performance of the RK
as measured by throughput (1.4 bps) over the two days of testing for Monkey N when comparing
RK and RN.

Video 2 | RN for a random finger task. The video captures the average performance of the RN
decoder as measured by throughput (2.3 bps) over the two days of testing for Monkey N when
comparing RK and RN.

Video 3 | RN for a center-out finger task. The video captures the peak performance of the RN
decoder as measured by throughput (3.2 bps) in one day of testing of the RN for Monkey N on a
typical center-out finger task.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

35

References

1 Armour, B. S., Courtney-Long, E. A., Fox, M. H., Fredine, H. & Cahill, A. Prevalence

and causes of paralysis—United States, 2013. Am. J. Public Health 106, 1855-1857

(2016).

2 Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally

controlled robotic arm. Nature 485, 372-375 (2012).

3 Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with

tetraplegia. Lancet 381, 557-564 (2013).

4 Kurtzer, I., Herter, T. M. & Scott, S. H. Random change in cortical load representation

suggests distinct control of posture and movement. Nat. Neurosci. 8, 498-504 (2005).

5 Bensmaia, S. J. & Miller, L. E. Restoring sensorimotor function through intracortical

interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15, 313-325 (2014).

6 Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm

design. Nat. Neurosci. 15, 1752 (2012).

7 Kao, J. C., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V. A high-performance neural

prosthesis incorporating discrete state selection with hidden Markov models. IEEE Trans.

Biomed. Eng. 64, 935-945 (2016).

8 Shanechi, M. M. et al. A real-time brain-machine interface combining motor target and

trajectory intent using an optimal feedback control design. PloS one 8 (2013).

9 Velliste, M. et al. Motor cortical correlates of arm resting in the context of a reaching

task and implications for prosthetic control. J. Neurosci. 34, 6011-6022 (2014).

10 Mulliken, G. H., Musallam, S. & Andersen, R. A. Decoding trajectories from posterior

parietal cortex ensembles. J. Neurosci. 28, 12913-12926 (2008).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

36

11 Yu, B. M. et al. Mixture of trajectory models for neural decoding of goal-directed

movements. J. Neurophysiol. 97, 3763-3780 (2007).

12 Sachs, N. A., Ruiz-Torres, R., Perreault, E. J. & Miller, L. E. Brain-state classification

and a dual-state decoder dramatically improve the control of cursor movement through a

brain-machine interface. J. Neural Eng. 13, 016009 (2015).

13 Carmena, J. M. et al. Learning to control a brain–machine interface for reaching and

grasping by primates. PLoS One 1 (2003).

14 Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of cortical

neurons in primates. Nature 408, 361-365 (2000).

15 Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V.

High-performance brain-to-text communication via handwriting. Nature 593, 249-254

(2021).

16 Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential

auto-encoders. Nat. Methods 15, 805-815 (2018).

17 Hosman, T. et al. BCI decoder performance comparison of an LSTM recurrent neural

network and a Kalman filter in retrospective simulation, in 9th International IEEE/EMBS

Conference on Neural Engineering (NER). 1066-1071 (IEEE, 2019).

18 Sussillo, D. et al. A recurrent neural network for closed-loop intracortical brain–machine

interface decoders. J. Neural Eng. 9, 026027 (2012).

19 George, J. A., Brinton, M. R., Duncan, C. C., Hutchinson, D. T. & Clark, G. A. Improved

training paradigms and motor-decode algorithms: results from intact individuals and a

recent transradial amputee with prior complex regional pain syndrome, in 40th Annual

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

37

International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC). 3782-3787 (IEEE, 2018).

20 Irwin, Z. et al. Neural control of finger movement via intracortical brain–machine

interface. J. Neural Eng. 14, 066004 (2017).

21 Nason, S. R. et al. Real-time linear prediction of simultaneous and independent

movements of two finger groups using an intracortical brain-machine interface. bioRxiv

(2020).

22 Vaskov, A. K. et al. Cortical decoding of individual finger group motions using ReFIT

kalman filter. Front. Neurosci. 12, 751 (2018).

23 Nason, S. R. et al. A low-power band of neuronal spiking activity dominated by local

single units improves the performance of brain-machine interfaces. Nat. Biomed. Eng. 4,

973-983, doi:10.1038/s41551-020-0591-0 (2020).

24 Willett, F. R., Suminski, A. J., Fagg, A. H. & Hatsopoulos, N. G. Improving brain–

machine interface performance by decoding intended future movements. J. Neural Eng.

10, 026011 (2013).

25 Willett, F. R. et al. A comparison of intention estimation methods for decoder calibration

in intracortical brain–computer interfaces. IEEE Trans. Biomed. Eng. 65, 2066-2078

(2017).

26 Fan, J. M. et al. Intention estimation in brain–machine interfaces. J. Neural Eng. 11,

016004 (2014).

27 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a

simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-

1958 (2014).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

38

28 Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by

reducing internal covariate shift, in 2015 International Conference on Machine Learning.

448-456 (PMLR, 2015).

29 Li, Y., Wei, C. & Ma, T. Towards explaining the regularization effect of initial large

learning rate in training neural networks. arXiv preprint arXiv:1907.04595 (2019).

30 Rathelot, J.-A. & Strick, P. L. Subdivisions of primary motor cortex based on cortico-

motoneuronal cells. Proc. Natl. Acad. Sci. U S A. 106, 918-923 (2009).

31 Wu, W. et al. Modeling and decoding motor cortical activity using a switching Kalman

filter. IEEE Trans. Biomed. Eng. 51, 933-942 (2004).

32 Moran, D. W. & Schwartz, A. B. Motor cortical representation of speed and direction

during reaching. J. Neurophysiol. 82, 2676-2692 (1999).

33 Willett, F. R. et al. Principled BCI decoder design and parameter selection using a

feedback control model. Sci. Rep. 9, 1-17 (2019).

34 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014).

35 He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification, in Proc. IEEE Int. Conf. Comput. Vis. 1026-

1034 (2015).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.456981doi: bioRxiv preprint

https://doi.org/10.1101/2021.08.29.456981

