NBI-921352, a First-in-Class, Na_V1.6 Selective, Sodium Channel Inhibitor That Prevents Seizures in *Scn8a* Gain-of-Function Mice, and Wild-Type Mice and Rats

6

7 JP Johnson Jr², Thilo Focken⁴, Kuldip Khakh², Parisa Karimi Tari¹, Celine Dube¹, Aaron Williams²,

8 Jean-Christophe Andrez⁴, Girish Bankar¹, David Bogucki⁴, Kristen Burford⁴, Elaine Chang², Sultan

9 Chowdhury⁴, Richard Dean², Gina de Boer⁵, Shannon Decker⁴, Christoph Dehnhardt⁴, Mandy

10 Feng², Wei Gong⁴, Samuel J Goodchild², Michael Grimwood⁴, Abid Hasan⁴, Angela Hussainkhel²,

11 Qi Jia⁴, Stephanie Lee⁵, Jenny Li², Sophia Lin², Andrea Lindgren⁵, Verner Lofstrand⁴, Janette

12 Mezeyova², Rostam Namdari⁶, Karen Nelkenbrecher¹, Noah Gregory Shuart², Luis Sojo⁵, Shaoyi

13 Sun⁴, Matthew Taron⁴, Matthew Waldbrook¹, Diana Weeratunge², Steven Wesolowski⁴,

14 Michael Wilson⁴, Zhiwei Xie², Rhena Yoo², Clint Young², Alla Zenova⁴, Wei Zhang⁴, Alison J

15 Cutts³, Robin P Sherrington⁷, Simon N Pimstone⁷, Raymond Winquist⁷, Charles J Cohen⁷, James

16 R Empfield⁷

17

- 18 Xenon Pharmaceuticals Inc.
- 19 In Vivo Biology¹, In Vitro Biology², Scientific Affairs³, Chemistry⁴, Compound Properties⁵,
- 20 Translational Drug Development^{6,} Executive Team⁷
- 21

22 Abstract

23	NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically
24	target Nav1.6 channels. Such a molecule provides a precision-medicine approach to target
25	SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead
26	to excess Na _v 1.6 sodium current, or other indications where Na _v 1.6 mediated hyper-excitability
27	contributes to disease (Gardella and Moller, 2019; Johannesen et al., 2019; Veeramah et al.,
28	2012). NBI-921352 is a potent inhibitor of Nav1.6 (IC50 0.051 μ M), with exquisite selectivity over
29	other sodium channel isoforms (selectivity ratios of 756X for Nav1.1, 134X for Nav1.2, 276X for
30	Nav1.7, and >583X for Nav1.3, Nav1.4, and Nav1.5). NBI-921352 is a state-dependent inhibitor,
31	preferentially inhibiting activated (inactivated or open) channels. The state dependence leads
32	to potent stabilization of inactivation, inhibiting Na $_{ m V}$ 1.6 currents, including resurgent and
33	persistent Na $_{ m V}$ 1.6 currents, while sparing the closed/rested channels. The isoform-selective
34	profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic
35	excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where Na $_{ m V}$ 1.1
36	predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a
37	Scn8a GoF mouse, as well as in wild-type mouse and rat seizure models. NBI-921352 was
38	effective in preventing seizures at lower brain and plasma concentrations than commonly
39	prescribed sodium channel inhibitor antiseizure medicines (ASMs) carbamazepine, phenytoin,
40	and lacosamide. NBI-921352 was well tolerated at higher multiples of the effective plasma and
41	brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials
42	for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult
43	focal-onset seizures.

44

45 Introduction

46	Na $_{ m V}$ 1.6 voltage-gated sodium channels are widely expressed in the brain and are important
47	contributors to neural excitability (Meisler, 2019; Royeck et al., 2008). Mutations in the SCN8A
48	gene result in malfunction of Na $_{ m V}$ 1.6 sodium channels and cause a spectrum of SCN8A-related
49	syndromes in humans, and disruptions of mouse Na $_{ m V}$ 1.6 likewise disrupt normal physiology
50	(Burgess et al., 1995; Gardella and Moller, 2019; Johannesen et al., 2019; Meisler, 2019;
51	Veeramah et al., 2012; Wagnon et al., 2015). Variants of Na $_{ m V}$ 1.6 channels can result in either
52	gain or loss of function. Loss-of-function (LoF) variants in humans are generally associated with
53	autism spectrum disorders with cognitive and developmental delay without epilepsy (Inglis et
54	al., 2020; Liu et al., 2019), but, in some cases, can lead to late-onset seizures. In mice, LoF
55	variants of Na _v 1.6 lead to motor impairment but increase seizure resistance (Hawkins et al.,
56	2011; Martin et al., 2007). Gain-of-function (GoF) variants in human SCN8A generally result in
57	early-onset SCN8A-related epilepsy syndromes (SCN8A-RES). The most severe of these epilepsy
58	syndromes is SCN8A developmental and epileptic encephalopathy (SCN8A-DEE) (Gardella and
59	Moller, 2019; Hammer et al., 2016; Johannesen et al., 2019). Most SCN8A-RES patients carry de
60	novo heterozygous missense variants that lead to a gain of function of the Na $_{ m V}$ 1.6 channel,
61	though inherited and bi-allelic variants have been reported (Gardella and Moller, 2019;
62	Wengert et al., 2019). SCN8A-DEE patients present early in life with seizure onset usually
63	occurring in the first year of life. After seizure onset, patients begin to miss developmental
64	milestones and display additional symptoms, including cognitive and motor delay, hypotonia

65 and cortical blindness. SCN8A-DEE individuals are predisposed to early death, including sudden 66 unexplained death in epilepsy (SUDEP). While SCN8A-RES patients often have treatment-67 resistant seizures, many can achieve seizure reduction or seizure freedom upon treatment with anti-seizure medicines (ASMs) that non-selectively inhibit voltage-gated sodium channels, like 68 69 phenytoin (Boerma et al., 2016; Braakman et al., 2017). SCN8A-RES patients may require doses that are higher than those prescribed for most epilepsy patients and, as a result, can be more 70 prone to drug-related adverse events (Boerma et al., 2016; Gardella and Moller, 2019). Even 71 72 with high doses and multiple ASMs, many patients continue to have uncontrolled seizures as well as extensive comorbidities. The aggressive pharmacotherapy required to protect SCN8A 73 74 patients from life-threatening seizures often comes with attendant side effects that would not 75 be tolerated in less severely impacted populations. Existing sodium channel inhibitor ASMs are nonselective, blocking all voltage-gated sodium 76 77 channel isoforms at similar plasma or brain concentrations. This lack of selectivity likely limits 78 the benefits of sodium channel inhibitors since LoF variants of Nav1.1 are known to impair 79 inhibitory interneuron function and cause generalized epilepsy with seizures plus (GEFS+) and SCN1A-DEE (Dravet Syndrome) (Catterall et al., 2010; Claes et al., 2001; Escayg et al., 2000; 80 Gennaro et al., 2003). Thus, inhibiting Na_V1.1 may counter the benefit of inhibiting the sodium 81 82 channels of excitatory neurons. Inhibiting Na_V1.4 and Na_V1.5 currents is also undesirable since 83 those channels are critical for facilitating contraction of skeletal and cardiac muscles, 84 respectively (Chen et al., 1998; Ptacek et al., 1991; Rojas et al., 1991). We hypothesized that a selective inhibitor of Nav1.6 could provide a safer and more effective 85 treatment for patients with SCN8A-RES and might also be more broadly efficacious in more 86

87	common forms of epilepsy. An extensive medicinal-chemistry effort produced NBI-921352, the
88	first potent and selective inhibitor of Nav1.6 channels (Neurocrine, 2019). We explored the
89	profile of NBI-921352 in vitro, ex vivo and in three preclinical in vivo rodent seizure models,
90	including electrically induced seizure assays in genetically engineered mice bearing
91	heterozygous <i>Scn8a</i> GoF Na _V 1.6 channels (N1768D), as well as in wild-type mice and rats.
92	

93 Results

94 In vitro Nav potency and selectivity

95 Human Nav channel isoforms hNav1.1, hNav1.2, hNav1.3, hNav1.4, hNav1.5, hNav1.6, and hNav1.7 were

96 heterologously expressed in HEK-293 cells, and the potency and isoform selectivity of NBI-921352

97 (Figure 1, Table 1) was determined by automated patch-clamp techniques. NBI-921352 potently

98 inhibited hNa_V1.6 channel currents with an inhibitory concentration 50% (IC₅₀) of 0.051 μ M (95% CI:

99 0.030 to 0.073 μM; N=3) calculated from 3 biological replicates. Inhibition of other human Na_V1.X

isoforms required higher concentrations of NBI-921352 with IC₅₀'s of 39 μ M (95% CI: 31 to 47 μ M; N=3)

101 for hNa_v1.1, 6.9 μ M (95% CI: 1.6 to 12 μ M; N=3) for hNa_v1.2, >30 μ M for hNa_v1.3, >30 μ M for hNa_v1.4,

102 >30 μ M for hNa_v1.5, and 14 μ M (95% CI: 6.4 to 22 μ M; N=3) for hNa_v1.7. These potencies provide

selectivity ratios for hNav1.6 versus the other hNav isoforms (IC₅₀ hNav1.X / IC₅₀ hNav1.6) of 756

104 $(Na_v1.1)$, 134 $(Na_v1.2)$, 276 $(Na_v1.7)$ and >583 $(Na_v1.3, Na_v1.4, Na_v1.5)$.

105 Since we intended to evaluate in vivo effects of NBI-921352 in mouse seizure models, we also

assessed the potency of NBI-921352 in the mouse Nav isoforms that are most highly expressed

in the brain, Nav1.6, Nav1.1, and Nav1.2. The potency and selectivity in mouse Nav channels

closely paralleled that seen in the human orthologues with IC_{50} 's of 0.058 μ M (95% CI: 0.046 to 108 109 0.070 μ M; N=3) for mNa_V1.6, 41 μ M (95% CI: 30 to 52 μ M; N=3) for mNa_V1.1, and 11 μ M (95% CI: 8.2 to 14 μ M; N=3) for mNa_V1.2. Selectivity ratios (IC₅₀ mNa_V1.X / IC₅₀ mNa_V1.6) were 709 110 $(Na_v1.1)$, and 191 $(Na_v1.2)$. These data indicate that NBI-921352 potently inhibits both human 111 112 and mouse Na_V1.6 channels, and that it does so at concentrations \geq 134-fold lower than for any of the other channel isoforms tested. 113 NBI-921352 inhibited patient-identified variants of Nav1.6 channels 114 Patients with SCN8A-RES carry missense variants in the Nav1.6 channel. A great number of 115 116 variants have been identified, with a range of biophysical defects. Since most variants are de 117 novo, many have been identified in only one or a few patients. For this reason, we determined the effectiveness of NBI-921352 to inhibit 9 patient identified variants spread across the 118 119 channel (Figure 2, Table 2) (Gardella and Moller, 2019; Wagnon and Meisler, 2015). The 9 variants studied have all been identified in SCN8A-RES patients and are in Domains II, III, and IV. 120 Inhibition of the mutant channel constructs was evaluated by automated patch-clamp 121 122 electrophysiological techniques after transient transfection of the human Nav1.6 variant construct of interest into Expi293F[™] cells. All the variants were sensitive to inhibition by NBI-123 921352. Observed IC₅₀s for inhibition were 0.051 μ M (WT mean from Figure 1), 0.031 μ M (95% 124 CI: 0.027 to 0.037 μM) (T767I), 0.021 μM (95% CI: 0.017 to 0.026 μM) (R850Q), 0.032 μM (95% 125 CI: 0.029 to 0.036 μM) (N984K), 0.035 μM (95% CI: 0.029 to 0.043 μM) (I1327V), 0.039 μM (95% 126 CI: 0.031 to 0.050 μM) (N1466K), 0.34 μM (95% CI: 0.26 to 0.44 μM) (R1617Q), 0.055 μM (95% 127 128 CI: 0.046 to 0.064 μM) (N1768D), 0.068 μM (95% CI: 0.054 to 0.085 μM) (R1872W), and 0.035 129 μ M (95% CI: 0.029 to 0.041 μ M) (N1877S). We found that 8 of the 9 variants were inhibited Page 6 | 49

with a potency similar to that of the wild-type channel, with most being slightly more potently inhibited. Only one variant, N1617Q, required markedly higher concentrations of NBI-921352 for inhibition, with an IC₅₀ for inhibition 6.6-fold higher than that of the wild-type Na_V1.6 channel. The reduced potency for N1617Q is consistent with the variant residing in the predicted binding site of NBI-921352 in the domain IV voltage sensor, see discussion.

135 NBI-921352 is a state-dependent inhibitor

136 Many small molecule inhibitors of Nay channels bind preferentially to open and or inactivated states (Bean et al., 1983; Courtney et al., 1978; Strichartz, 1976). To guery the state 137 138 dependence of NBI-921352, we measured the apparent potency with two different voltage protocols that favor either the closed (rested) state or activated (open and inactivated) states 139 140 (Figure 3). Holding the membrane potential at -120 mV induces most channels to reside in the 141 resting state. Brief depolarizations to measure Nav1.6 current enabled the determination of an IC_{50} of 36 μ M (95% CI: 29 to 47 μ M) for rested-state channels. Holding the membrane potential 142 at -45 mV encourages channels to transition into open and inactivated states. Brief 143 hyperpolarizations allow rapid recovery from inactivation for channels that are not bound to 144 drug followed by a short 20 ms test pulse to -20 mV to measure currents from unbound 145 channels (see methods for details). Measuring the ability of NBI-921352 to inhibit reopening of 146 activated channels leads to an apparent IC₅₀ of 0.051 µM (Figures 1 and 3). Thus, NBI-921352 147 strongly prefers activated (open or inactivated) channels, inhibiting them at concentrations 148 more than 750-fold less than those needed to inhibit rested or "peak" sodium currents. 149

150 NBI-921352 inhibited persistent and resurgent currents from mutant Nav1.6 channels

151	The state-dependent nature of inhibition is also revealed in other types of voltage-clamp
152	protocols, including those designed to measure persistent or resurgent sodium currents. Some
153	drugs or candidate drugs, like PRAX-330 and Riluzole, have been touted based on their
154	preference for persistent currents, but, in fact, this is a feature of all the compounds in Na_V
155	inhibitor class. Apparent differences in persistent current selectivity are driven by differential
156	kinetics and concentration dependences in combination with the electrophysiological protocols
157	chosen for the measurements.
158	Elevated persistent and or resurgent currents are believed to underlie or contribute to the
159	pathology of many sodium channel related pathologies (Mason et al., 2019; Pan and Cummins,
160	2020; Potet et al., 2020; Tidball et al., 2020; Zaman et al., 2019). In most conditions, normal
161	Na $_{ m V}$ 1.6 channels inactivate rapidly and nearly completely after opening. Persistent currents
162	result from channels that are not stably inactivated – a common phenotype for epilepsy-
163	inducing variants in Nav1.6, including N1768D (Tidball et al., 2020; Wagnon et al., 2015). We
164	found that NBI-921352 inhibited N1768D Na $_{ m V}$ 1.6 persistent currents (measured as the non-
165	inactivating current 10 ms after initiation of the depolarizing test pulse) with a similar potency
166	as for open and inactivated wild-type Nav1.6 channels with an IC_{50} of 0.059 μM (95% CI: 0.044
167	to 0.082 μM) (<u>Figure 3</u>).
168	Resurgent currents occur after repolarizing following a strong depolarization as channels
169	redistribute between closed, open, and inactivated states (Raman and Bean, 1997). These

170 resurgent currents are enhanced in many SCN8A-RES variants (Pan and Cummins, 2020; Raman

et al., 1997). NBI-921352 also effectively inhibited resurgent currents from N1768D channels

172 with apparent IC₅₀ of 0.037 μ M (95% CI: 0.025 to 0.060 μ M).

173 NBI-921352 preferentially inhibited excitatory pyramidal neurons and spared inhibitory

interneurons.

175 A primary goal of creating $Na_V 1.6$ selective inhibitors was to spare $Na_V 1.1$, the voltage-gated 176 sodium channel that is most prevalent in inhibitory interneurons. This should allow the 177 selective targeting of excitatory neurons, where Na_V1.6 and Na_V1.2 are believed to be dominant, over inhibitory interneurons. To test this hypothesis, we performed current-clamp 178 179 experiments in glutamatergic pyramidal neurons from mouse layer 5 neocortex and from fast 180 spiking interneurons in the same region. Application of 0.250 μ M NBI-921352 decreased the maximum firing rate in all pyramidal neurons tested (Figure 4A). This reduction was significantly 181 182 different from control values at current injection intensities between 120 pA and 320 pA (n = 3, 183 p<0.05, paired 2-tailed student's t-test), except for 310 pA (p = 0.051). In contrast, NBI-921352 subtly increased the number of action potentials (APs) in fast-spiking inhibitory interneurons 184 (Figure 4B) in a statistically significant manner at multiple current injection levels (see Figure 4B). 185 186 In contrast, carbamazepine inhibited action-potential firing in both pyramidal neurons and in 187 fast-spiking interneurons to a similar degree. The Figure 4 insets show the paired effects of compound on AP number from a stimulus injection of approximately 3X the control Rheobase 188 for that neuron (Pyramidal NBI-921352: 200 pA, Pyramidal carbamazepine: 160 pA, Interneuron 189 190 NBI-921352: 220 pA, Interneuron carbamazepine: 300 pA).

191 NBI-921352 inhibited electrically induced seizures in *Scn8a*^{N1768D/+} mice

A selective inhibitor of Nav1.6 should lend itself to the treatment of disease states caused by 192 pathologic gain of function of Nav1.6 channels. Hence, we examined the ability of NBI-921352 193 194 to inhibit electrically induced seizures in mice with a patient-identified GoF variant in the Scn8a 195 gene encoding Nav1.6. N1768D is a variant of Nav1.6 identified in the first reported SCN8A-DEE 196 patient (Veeramah et al., 2012). N1768D Nav1.6 channels have impaired voltage-dependent inactivation gating that results in persistent sodium currents and enhanced resurgent currents. 197 198 Because Nav1.6 channels are highly expressed in the neurons of the brain, increased sodium flux in excitatory neurons leads to seizures. Genetically modified mice bearing the same variant 199 (Scn8a^{N1768D/+}) were created and found to be seizure prone, producing a mouse model with a 200 201 similar phenotype as that observed in SCN8A-DEE patients (Wagnon et al., 2015). Some Scn8a^{N1768D/+} mice develop spontaneous seizures at age p60 to p100, but seizure onset and 202 203 frequency is quite variable, making spontaneous seizure studies challenging. In addition, mice 204 rapidly clear NBI-921352, making it extremely difficult to maintain drug plasma and brain levels 205 in an efficacious range for chronic or subchronic dosing experiments. As an alternative means of 206 assessing NBI-921352's ability to engage Nav1.6 channels in vivo, we designed a modified version of the 6Hz psychomotor seizure assay in Scn8a^{N1768D/+} mice (Barton et al., 2001; Focken 207 et al., 2019). A mild current stimulation (12 mA) evoked robust generalized tonic-clonic seizures 208 (GTC) with hindlimb extension in *Scn8a*^{N1768D/+} mice, but not in wild-type littermates. 209 Oral administration of NBI-921352 two hours prior to electrical stimulation prevented induction 210 of GTC with hindlimb extension in *Scn8a^{N1768D/+}* mice in a dose-dependent manner with a 50% 211 212 effective dose (ED₅₀) of 15 mg/kg (95% CI 9.6 to 23 mg/kg, see Figure 5A).

After seizure assessment, all animals were euthanized, and the concentration of NBI-921352 was determined in the plasma and brain tissue from each mouse. The average concentrations for each dose group were used to generate plasma concentration and brain concentration versus efficacy relationships (Figures 5B and 5C, respectively). The plasma 50% effective concentration (EC₅₀) was 0.037 μ M (95% CI 0.018 to 0.090 μ M, see Figure 5B). The brain EC₅₀ was 0.064 μ M (95% CI 0.045 to 0.091 μ M, see Figure 5C).

219 NBI-921352 inhibited electrically induced seizures in wild-type mice

220 Na_v1.6 is an important mediator of neuronal excitability even in animals without GoF

221 mutations. For this reason, we wondered whether NBI-921352 might have broader application

in epilepsy beyond *SCN8A*-RES and in other syndromes of neural hyperexcitability. To gain

insight into this possibility, we assessed NBI-921352 in a MES assay induced by direct-current

electrical stimulus (DC-MES, see methods) in wild-type mice. Figures 5D, E & F show that NBI-

921352 prevented GTC with hindlimb extension induction in the DC-MES assay in a dose- and

concentration-dependent manner. The ED₅₀ for NBI-921352 was 23 mg/kg (95% CI 16 to 34

227 mg/kg, see Figure 5D). The efficacy of NBI-921352 was also concentration dependent with a

228 plasma EC₅₀ of 0.52 μM (95% CI 0.25 to 1.2 μM, see Figure 5E) and a brain EC₅₀ of 0.20 μM (95%

229 CI 0.12 to 0.38 μM, see Figure 5F).

230 NBI-921352 inhibited electrically induced seizures in wild-type rats

To further explore the preclinical efficacy of NBI-921352, we assessed NBI-921352 in a MES

assay induced by direct-current electrical stimulus in wild-type Sprague Dawley rats (see

233 methods). Figures 5G, H & I show that NBI-921352 prevented GTC with hindlimb-extension

234	induction in the rat DC-MES assay in a dose- and concentration-dependent manner. The ED_{50}
235	for NBI-921352 was 3.7 mg/kg (95% CI 2.3 to 7.6 mg/kg, see <u>Figure 5G</u>). The efficacy of NBI-
236	921352 was also concentration dependent with a plasma EC_{50} of 0.15 μM (95% Cl 0.09 to 0.31
237	μ M, see Figure 5H) and a brain EC ₅₀ of 0.037 μ M (95% CI 0.028 to 0.054 μ M, see Figure 5I).
238	Repeated-dosing efficacy in mice and rats
239	We found that repeated dosing tended to increase efficacy at lower doses and exposures of
240	NBI-921352 than after a single dose (Figure 5, red symbols). Animals were dosed every 12 hours,
241	morning, and evening for 13 doses. Two hours after the 13 th dose, on the seventh day, efficacy
242	was tested as in acute-dosing studies. A trend toward improved efficacy was noted in all three
243	assays (see red symbols in Figure 5), but the improvement was not statistically significant when
244	comparing single-dose groups to repeated-dose groups at the same dose level in the same
245	experiment. NBI-921352 did not appreciably accumulate in the plasma or tissue and therefore
246	any trends in improved efficacy were not explained by higher drug concentrations.
247	NBI-921352 is effective at lower brain concentrations than three Na $_{\rm V}$ inhibitor ASMs
248	Both the efficacy and adverse events of Na_V inhibitors is driven by the drugs action in the
249	central nervous system (CNS). We found that NBI-921352 was effective in the three preclinical
250	seizure models evaluated at markedly lower brain concentrations than carbamazepine,
251	phenytoin, and lacosamide (Figure 6). The brain EC_{50} s for carbamazepine were 9.4 μ M, 44 μ M,
252	and 36 μ M for the <i>Scn8a</i> ^{N1768D/+} 6Hz model, WT mouse DC-MES, and WT rat DC-MES models,
253	respectively. The brain EC_50s for phenytoin were 18 $\mu M,$ 13 $\mu M,$ and 2.6 μM for the
254	Scn8a ^{N1768D/+} 6Hz model, WT mouse DC-MES, and WT rat DC-MES models, respectively. The

255	brain EC ₅₀ s for lacosamide were 3.3 μ M, 7.1 μ M, and 4.3 μ M for the <i>Scn8a</i> ^{N1768D/+} 6Hz model,
256	WT mouse DC-MES, and WT rat DC-MES models, respectively. The lower brain concentrations
257	required for efficacy with NBI-921352 are consistent with the potent inhibition of Na $_{ m V}$ 1.6
258	produced by NBI-921352 (<u>Figure 1</u>).
259	NBI-921352 provided improved separation between efficacy in rats and behavioral signs
260	The intent of creating a highly selective $Na_V 1.6$ antagonist was to reproduce or improve on the
261	efficacy of classic, nonselective, sodium channel inhibitor drugs while reducing or preventing
262	the adverse events caused by polypharmacy with other sodium channel and non-sodium
263	channel targets. If sparing Na $_{\rm V}$ 1.1 and other off-target interactions does, in fact, reduce adverse
264	events, then even higher receptor occupancy of Na $_{ m V}$ 1.6 might be achievable, thereby further
265	improving efficacy.
266	To evaluate our hypothesis, we compared the window between the plasma concentrations
267	required for efficacy (plasma EC_{50}) relative to the minimal plasma concentration at which
268	treated rats showed behavioral signs of adverse effects as reported by the blinded
269	experimenter (Figure 7). We made this comparison both for NBI-921352 and for several widely
270	used Nav inhibitor ASMs: carbamazepine, phenytoin, and lacosamide.
271	NBI-921352 was well tolerated in these studies up to a plasma concentration of 71 $\mu M.$
272	Dividing this concentration by the plasma EC_{50} of 0.15 μM in the rat DC-MES study results in a
273	behavioral signs concentration (BSC) / plasma EC_{50} ratio of 473-fold. The same calculation was
274	repeated for the established ASMs. The minimal plasma concentrations provoking behavioral
275	signs for carbamazepine, phenytoin, and lacosamide were 110 μ M, 11 μ M, and 123 μ M,

respectively. Their plasma EC₅₀s were 30 μ M, 4.5 μ M, and 24.4 μ M, respectively. Figure 7E shows BSC / Plasma EC₅₀ ratios for carbamazepine (3.7-fold), phenytoin (2.4-fold), and lacosamide (5.0-fold). This data indicates that increasing Na_V1.6 selectivity can improve the tolerability of Na_V inhibitors in rodent-seizure models.

280

281 Discussion

282 Sodium channel inhibitors have long been, and remain, a mainstay of pharmacotherapy for epilepsy, as well as for pain and other neurologic, cardiac, and skeletal muscle disorders. The 283 diverse range of indications and systems affected by these drugs is a testament to their critical 284 biological role in cellular excitability. A fundamental challenge for these currently marketed 285 286 sodium channel drugs is that none of them are selective amongst the nine sodium channel isoforms. As a result, drugs targeting the sodium channels of the brain for epilepsy can inhibit 287 288 both excitatory and inhibitory neurons, limiting their ability to restore balanced neuronal firing. Reducing $Na_V 1.1$ current is proconvulsant due to the predominance of $Na_V 1.1$ in inhibitory 289 290 interneurons (Catterall et al., 2010; Claes et al., 2001; Escayg et al., 2000; Mistry et al., 2014; Yu 291 et al., 2006), while the opposite is true for Na $_{v}$ 1.2 and Na $_{v}$ 1.6 currents (Ben-Shalom et al., 2017; 292 Hawkins et al., 2011; Martin et al., 2007). Nav1.2 and Nav1.6 are more highly expressed in 293 excitatory neurons (Catterall et al., 2010; Du et al., 2020; Encinas et al., 2020). 294 Additionally, these nonselective agents can block the channels associated with skeletal muscle (Nav1.4), cardiac tissue (Nav1.5), and peripheral neurons (Nav1.7, Nav1.8, Nav1.9). Inhibiting 295

296 these off-target channels can compromise muscular, cardiovascular, and sensory function. 297 These risks are highlighted by the FDA's recent drug-safety communication for the nonselective 298 Nay inhibitor ASM lamotrigine. Lamotrigine has been linked to cardiac liabilities as a 299 consequence of Nav1.5 inhibition (FDA, 2021). Likewise, Nav inhibitors intended as local 300 anesthetics for trigeminal neuralgia or other pain syndromes and class I cardiac antiarrhythmic 301 drugs are often dose limited by CNS adverse events like dizziness, sedation, and cognitive or motor impairment caused by inhibition of central nervous system Nav channels (Caron & 302 303 Libersa, 1997).

304 An obvious solution to this isoform selectivity challenge is to pursue a precision-medicine 305 approach and create selective pharmacologic agents that preferentially target the sodium 306 channels specific to the desired target tissue or cell type. This selective approach has been pursued for multiple channel isoforms - particularly for the peripheral Na_vs associated with pain 307 308 $(Na_V 1.3, Na_V 1.7, and Na_V 1.8)$. This approach has proven challenging because the nine isoforms 309 of sodium channels, Nav1.1-Nav1.9, share a high degree of primary and tertiary structural 310 homology. Achieving selectivity with compounds that have tractable pharmaceutical properties 311 has been particularly difficult.

Previous attempts to optimize Na_V inhibitors for epilepsy have focused on either drug
properties or channel-state dependence. To our knowledge, this is the first description of a
centrally penetrant, isoform-selective Na_V inhibitor for use in CNS indications, including
epilepsy. NBI-921352 represents the first selective inhibitor of Na_V1.6 that is suitable for
systemic oral administration.

317	The Na $_{ m V}$ 1.6 selective profile of NBI-921352 was designed to inhibit activity in excitatory neurons
318	while sparing firing in the inhibitory interneurons where Na $_{ m V}$ 1.1 is preferentially expressed. We
319	found that NBI-921352 did, in fact, reduce firing in cortical excitatory pyramidal cells. In
320	contrast, inhibitory interneuron firing was not impaired and was seen to increase slightly. The
321	reason for an increase in interneuron action-potential firing is unclear. We propose that this
322	may be a consequence of network effects that arise from interactions with other neurons
323	synapsed onto the target neurons in the experiment. These data confirm that selective Na $_{ m V}$ 1.6
324	inhibitors can distinguish neuronal subtypes in a way that nonselective inhibitors, like
325	carbamazepine, cannot.
326	SCN8A-RES patients most often carry de novo genetic variants. While some variants are known
327	to be recurrent, many variants are represented by a single patient (Meisler, 2019). We
328	therefore wanted to assure that NBI-921352 inhibition was not limited to wild-type Na $_{ m V}$ 1.6
329	channels. We tested 9 distinct, patient-identified variants and found that 8 of them were
330	inhibited by NBI-921352 at very similar concentrations as wild-type channels (Figure 2). One
331	variant, R1617Q, was found to be 6.8-fold less sensitive to inhibition than the wild-type
332	channel. R1617Q has been identified in multiple SCN8A-DEE patients and is in the domain IV
333	voltage-sensor domain (VSD4). NBI-921352 is an aryl sulfonamide with structural similarity to
334	the Na $_{ m V}$ 1.7 targeted aryl sulfonamides where the binding site has been identified as the Na $_{ m V}$ 1.7
335	VSD4 (Ahuja et al., 2015; McCormack et al., 2013). It is likely that the R1617Q directly or
336	allosterically impairs the tight association of NBI-921252 with Na $_{ m V}$ 1.6 due to its proximity to the
337	binding site. Despite this, NBI-921352 remains markedly more potent than existing Na $_{ m V}$ inhibitor
338	drugs on the N1617Q variant Na $_{ m V}$ 1.6 channel. This would suggest that while NBI-921352 may be
	Page 16 49

339	an effective treatment for SCN8A-DEE patients carrying R1617Q variants, higher plasma levels
340	of the compound could be required for efficacy in those patients.

Many SCN8A-RES associated variants produce their GoF effects by disrupting or destabilizing

341

342 the inactivation-gating machinery of Nav1.6 channels. This can lead to pathological persistent or 343 resurgent currents that contribute to neuronal hyperexcitability (Pan and Cummins, 2020). Most known small molecule inhibitors of Nay channels, except some marine toxins like 344 tetrodotoxin, bind preferentially to inactivated or open gating states of the channels and 345 stabilize the channels in inactivated, non-conductive conformations. This state dependence is 346 347 manifested as a protocol dependence of the apparent drug potency. State dependence 348 inhibition has been described in many ways. Use-dependent, frequency-dependent, resurgent current -selective, and persistent current-selective inhibition are all consequences of a 349 preference for binding to inactivated and/or open channels. Stabilizing inactivated states of the 350 351 channel reduces persistent and resurgent currents, and this feature has been suggested to contribute to the efficacy of many Nav targeted ASMs including phenytoin, carbamazepine, 352 oxcarbazepine, lacosamide, cannabidiol, and lamotrigine (Wengert and Patel, 2021). NBI-353 354 921352 is also highly state dependent, with a >750-fold preference for open and inactivated channels vs. rested, closed-state channels (sometimes referred to as *peak current*). Forcing all 355 356 Na_{V} 1.6 channels into the closed state by applying voltages more hyperpolarized than physiological (-140 mV) results in very weak inhibition of the channels (Figure 3). Biasing the 357 358 channels toward activated states (open or inactivated states) by holding the membrane

potential more positive in a protocol designed to monitor inactivated state, resurgent current,

360 or persistent current protocol yields potent inhibition. In physiologic conditions, channels are P a g e $17 \mid 49$ 361 distributed among closed, open, and inactivated states, thus allowing equilibration of potent362 inhibition of the channel by NBI-921352.

363	Increasing the selectivity of a Na $_{ m V}$ inhibitor provides the expectation of an improved safety
364	profile by reducing adverse events caused by off-target activity. An inherent risk of this
365	approach is the potential loss of efficacy that could come from reduced polypharmacy. We have
366	developed a potent, highly selective Na $_{ m V}$ 1.6 inhibitor in NBI-921352. Our studies with NBI-
367	921352 indicate that a Nav1.6 specific compound can retain a robust ability to prevent seizures
368	in rodent models at modest plasma and brain concentrations, consistent with the important
369	role of Nav1.6 in seizure pathways. Our data also suggests that this selectivity profile does
370	improve the tolerability of NBI-921352 relative to commonly employed nonselective sodium
371	channel ASMs in rodents. Whether these results will translate to humans is not yet established,
372	but Phase I clinical trials have shown that NBI-921352 was well tolerated at plasma
373	concentrations higher than were required for efficacy in the preclinical rodent studies described
374	here. NBI-921352 is currently being developed for both SCN8A-DEE epilepsy and adult focal-
375	onset seizures by Neurocrine Biosciences (Neurocrine, 2019). Phase II clinical trials will soon
376	evaluate the efficacy of NBI-921352 in patients (Neurocrine, 2021). These clinical trials will
377	provide the first evidence for whether the robust efficacy and tolerability demonstrated in
378	rodents translates to human epilepsy patients.

379

380 Materials and Methods

381 Electrophysiological determination of potency and selectivity

382 Cell lines

383 Electrophysiology experiments were performed with HEK293 cells either stably transfected or 384 transiently transfected. The stable cell lines were transfected with an expression vector containing the 385 full-length cDNA coding for specific human and mouse sodium channel α -subunit, grown in culture 386 media containing 10% fetal bovine serum, and 0.5 mg/mL Geneticin (G418) at 37°C with 5% CO₂. The 387 Nav1.x stable cell lines and accessory constructs used correspond to the following GenBank accession 388 numbers: Human Nav1.1 (NM 006920); mouse Nav1.1 (NM 018733.2); human Nav1.2 (NM 021007); 389 mouse Na_v1.2 (NP 001092768.1); human Na_v1.5 (NM 198056); human Na_v1.6 (NM 014191); mouse 390 Nav1.6 (NM 001077499); human Nav1.7 (NM 002977); human Nav1.4 (NM 000334); human Nav1.3 391 (NM 0069220). The human Na_V β 1 subunit (NM 199037) was co-expressed in all cell lines. Human and 392 mouse Nav1.6 channels were also coexpressed with human FHF2B (NM 033642) to increase functional 393 expression. Human Nav1.2 channels were also coexpressed with Contactin 1 (NM 001843) to increase 394 functional expression.

For studies of mutant channels, cDNA plasmids in pcDNA[™]4/TO Mammalian Expression Vector were
transiently transfected into Expi293F[™] cells stably expressing human FHF2b and human SCN1B subunit
(polyclonal) background using ExpiFectamine[™] 293 Transfection Kits (Gibco, Thermo Fisher Scientific CAT
#: A14524). Induction was achieved using Tetracycline (Sigma Aldrich). Transfected cells were used in
automated patch-clamp experiments 24 hours postinduction.

400 Nav channel automated planar patch-clamp assay

NBI-921352 requires several seconds to equilibrate with activated channels, and this property of the
 compound must be taken into consideration in the design of state-dependent assay voltage-clamp
 protocols.

404	Data was collected using the Qube 384 (Sophion) automated voltage-clamp platform using single hole
405	plates. To measure inactivated state inhibition, the membrane potential was maintained at a voltage
406	where inactivation is complete. For each Na $_{\rm V}$ channel subtype, the V $_{\rm h}$ used to quantify compound
407	inhibition were as follows: Na _v 1.6 (-45 mV), Na _v 1.1 (-45 mV), Na _v 1.2 (-45 mV), Na _v 1.3 (-45 mV), Na _v 1.5 (-
408	60 mV), Na _v 1.7 (-60 mV), Na _v 1.4 (-45 mV). The mutant channel hNa _v 1.6 ^{N1768D} was found to have
409	accelerated run-down compared with wild-type hNa $_{ m V}$ 1.6, so the holding potential was adjusted to -60
410	mV to provide sufficient signal window. The voltage was briefly repolarized to a negative voltage (-150
411	mV) for 20 milliseconds for (Na _v 1.5, Na _v 1.7, Na _v 1.3, Na _v 1.4) or for 60 milliseconds (for Na _v 1.1, Na _v 1.2,
412	and Na $_{ m v}$ 1.6) to allow recovery from fast inactivation, followed by a test pulse to -20 or 0 mV for 10
413	milliseconds to quantify the compound inhibition. The repolarization step allows compound-free
414	channels to recover from fast inactivation, but compound-bound channels remain inhibited during the
415	subsequent test step. For rested state "Peak" current V_h was set to -120 mV. Appropriate filters for
416	minimum seal resistance were applied (typically >500 M Ω membrane resistance), and series resistance
417	was compensated at 100%. The pulse protocols were run at 1 Hz for hNa $_{ m v}$ 1.7, hNa $_{ m v}$ 1.5, hNa $_{ m v}$ 1.3, and
418	$hNa_V1.4$ or 0.04 Hz for $Na_V1.6$, $Na_V1.1$ and $Na_V1.2$.

To construct concentration response curves, baseline currents were established after 20 minutes in vehicle (0.5% DMSO). Full inhibition response amplitudes were determined by adding tetrodotoxin (TTX, 300 nM) or tetracaine for Na_V1.5 (10 μ M) to each well at the end of the experiment. Compounds were then exposed at a single concentration for 20 minutes. One-sixth of every experimental plate was

Page 20 | 49

- 423 dedicated to vehicle-only wells that enabled correction for nonspecific drift (i.e., rundown) of the signal
- 424 in each experiment. For all channel subtypes, inhibition by the compound reached steady state within
- 425 20 minutes of incubation. The current inhibition values (I_(CPD)) were normalized to both the vehicle
- 426 (I_{control}) and the full response defined by supramaximal TTX (I_{TTX}) or tetracaine (for Nav1.5) addition
- 427 responses according to Equation 1:
- 428 Equation 1
- 429 $I_{norm(CPD)} = (I_{CPD} I_{control})/(I_{TTX} I_{control}).$
- 430 This normalized inhibition was then further normalized to the span of the assay to account for the run-
- down seen in cells exposed to vehicle alone for 20 minutes as follows:
- 432 Equation 2
- 433 $I_{norm, span} = (I_{norm(CPD)} I_{norm(VEH)}) / (1 I_{norm(VEH)}),$
- 434 where:
- 435 $I_{norm, span}$ = the current response normalized to within the span of the assay.
- 436 $I_{norm(CPD)}$ = the normalized response in the presence of compound.
- 437 $I_{norm(VEH)}$) = the normalized response in the absence of compound.
- 438 This normalization ensures that the data ranges were between 0 and 1, and there is no rundown in the
- 439 plots. The normalized data from all cell recordings at a concentration were grouped together and
- 440 plotted with GraphPad Prism 8, and IC₅₀ values were calculated for grouped data using the following
- 441 version of the Hill equation:
- 442 Equation 3
- 443 $Y = RD + (1 RD) \times [CPD] / (IC_{50} + [CPD])),$

444 where:

- 445 Y = the fraction of sodium current blocked in the presence of the compound.
- 446 *[CPD]* = the concentration of compound.
- 447 IC_{50} = the IC₅₀ concentration.
- 448 *RD* = the "rundown" of sodium current in vehicle alone, which is equal to 0 in this case, as the inhibition
- 449 has already been normalized to the span.
- 450 The Hill slope was fixed to 1.
- 451 The 95% CI for the IC₅₀ from the fitted curve to the mean data were reported unless otherwise noted.
- 452 To evaluate inhibition of hNa_v1.6(N1768D) resurgent currents, synthetic Na_v β 4 peptide
- 453 (KKLITFILKKTREKKKECLV) was added to the intracellular recording solution at 200 μM and a dedicated
- 454 protocol to elicit resurgent currents was employed (Barbosa et al., 2015). Cells were voltage clamped at
- 455 (V_h = -80 mV) and subjected to a strong depolarization (+60 mV) for 20 milliseconds. Following the
- 456 strong depolarization, cells were partially repolarized to the voltage where resurgent current was
- 457 maximal (-20 mV) for 50 milliseconds, and resurgent current amplitude was measured. This resurgent
- 458 current-specific waveform was repeated at 5 Hz for 100 s in vehicle, followed by 100 s in test compound,
- 459 then 300 nM TTX. Fractional inhibition was calculated using the same normalization procedure as
- 460 above.
- 461 Experiments were all performed at $27^{\circ}C \pm 2^{\circ}C$.
- 462 Automated patch-clamp recording solutions
- 463 The recording solutions for Nav1.1, Nav1.2, Nav1.3, Nav1.4 and Nav1.6 cell line studies contained:
- 464 Intracellular solution (ICS): 5 mM NaCl, 10 mM CsCl, 120 mM CsF, 0.1 mM CaCl₂, 2 mM MgCl₂, 10 mM

465	HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer), 10 mM EGTA (ethylene glycol
466	tetraacetic acid); adjusted to pH 7.2 with CsOH. Extracellular solution (ECS): 140 mM NaCl, 5 mM KCl,
467	2 mM CaCl ₂ , 1 mM MgCl ₂ , 10 mM HEPES; adjusted to pH 7.4 with NaOH. Solutions with a reversed Na $^{+}$
468	gradient were used for Nav1.5 and Nav1.7 studies since they improved technical success. ICS: 120 mM
469	NaF, 10 mM CsCl, 0.1 mM CaCl ₂ , 2 mM MgCl ₂ , 10 mM HEPES, 10 mM EGTA; adjusted to pH 7.2 with
470	CsOH. ECS: 1 mM NaCl, 139 mM CholineCl, 5 mM KCl, 2 mM CaCl ₂ , 1 mM MgCl ₂ , 10 mM HEPES; adjusted
471	to pH 7.4 with NaOH. Osmolarity in all ICS and ECS solutions was adjusted with glucose to 300 mOsm/kg
472	and 310 mOsm/kg, respectively.

473 Current-clamp recording of cortical pyramidal neurons and inhibitory interneurons

474 Slice preparation

475 Parasagittal cortical brain slices were prepared from >P21 mice using standard procedures (adapted

476 from Tai et al., PNAS 2014). Briefly, the mouse was deeply anaesthetized with isoflurane and

477 decapitated. The brain was removed and placed into chilled artificial cerebrospinal fluid (aCSF) solution

478 containing (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH₂PO₄, 2 CaCl₂, 2 MgCl₂, 10 d-glucose, pH 7.3,

479 osmolarity adjusted to ~306 mOsm using sucrose. All solutions were saturated with 95% O₂ and 5% CO₂

480 constantly perfused with 95% $O_2/5\%$ CO₂. Slices with a thickness of 400 μ m were prepared using a

vibratome (Ted Pella, Inc.). Following sectioning, the slices were placed in a holding chamber and

- 482 incubated in a water bath at 34°C for 15 minutes. The brain slices were removed from the water bath
- and held at room temperature for 60 minutes prior to recording.

484 Brain slice electrophysiology assay

485 All experiments involving rodent subjects were performed in accordance with the guidelines of the

486 Canadian Council on Animal Care (CCAC). Following a 60-minute incubation at room temperature, a

487 brain slice was selected and placed on the stage of an upright microscope (SliceScope Pro 2000,

488	Scientifica). The slice was constantly perfused with room temperature aCSF, containing 0.1% DMSO as a
489	vehicle control, and oxygenated with 95% $O_2/5\%$ CO_2 . The slice was visualized using brightfield
490	microscopy, and a healthy neuron was selected from neocortical layer 5. Whole-cell configuration was
491	achieved with a pipette (bath resistance 4 – 6 M Ω) containing internal solution. Stimulation was applied
492	in current-clamp mode, and consisted of a series of 1000 ms square pulses, beginning at -20 pA and
493	increasing by +20 pA increments (3000 ms between pulses).
494	Once the recordings in vehicle were completed, and while still holding the patch on the same neuron,
495	the bath solution was changed from 0.1% DMSO in aCSF to 0.25 μM NBI-921352 or 100 μM
496	Carbamazepine in aCSF. The slice was incubated in circulating compound for 10 minutes before
497	repeating the series of square pulse stimulations. Working stock solutions were prepared in DMSO at a
498	concentration of 20 mM.
499	All data analysis was done offline using ClampFit 10.7 (Molecular Devices). Data are presented as a mean
500	± SEM. For each sweep, the number of evoked APs was counted, and plotted as a function of current
501	injection (beginning with -20 pA). These generated "input/output" (or "F/I") curves demonstrating the
502	relationship between stimulus and average AP frequency. Statistical significance was assessed using
503	paired, two-way, student's t-test applied at each current injection level with significance considered
504	P<0.05.

505 Formulation and oral dosing of NBI-921352

506 Vehicle preparation

The vehicle for oral dosing solutions was 0.5% methyl cellulose and 0.2% Tween-80 in deionized (DI) water. DI water (0.8 L) was heated up to 70°C to 80°C. Five grams of methyl cellulose was slowly added to heated DI water. The mixture was stirred until it formed a homogeneous milky suspension. The suspension was moved to a cold room and stirred overnight to get a clear solution. Two milliliters of P a g e 24 | 49

511 Tween-80 was added to the clear solution and diluted up to 1 L with DI water. The vehicle solution was

512 stored at 2°C to 8°C.

513 Drug formulation

- 514 NBI-921352 was weighed into vials. An appropriate amount of vehicle was added to the NBI-921352
- 515 powder then mixed on a T18 ULTRA TURRAX homogenizer (IKA, Wilmington, NC) to create a uniform
- 516 suspension at the desired concentration. The vials were then wrapped in aluminum foil to protect them
- 517 from light and placed on a stir plate until the time of dosing. Carbamazepine and lacosamide were
- 518 formulated in the same manner. Phenytoin was formulated in 0.9% physiological saline.
- 519 Dosing
- 520 NBI-921352, carbamazepine, and lacosamide were administered orally using a stainless-steel gavage
- 521 needle at a dose volume of 10 ml/kg. Phenytoin was formulated in physiologic saline and was
- 522 administered intraperitoneally (i.p.) using a 25-gauge needle at a dose volume of 10 mL/kg. All
- 523 compounds were administered 2 hours prior to electrical seizure induction for all seizure models
- 524 employed in this study.

525 Bioanalytical assessment of plasma and brain concentrations

Sample collection: Approximately 0.5 mL of blood was collected from each mouse at the end of the assay via cardiac puncture under deep anesthesia. The blood samples were collected in a syringe and transferred to tubes containing EDTA. Blood was stored at 4°C until centrifuged within 30 minutes of collection. Plasma was harvested and placed on dry ice and stored in a freezer set to maintain a temperature of -70°C to -80°C until analysis. Brains were harvested immediately after blood collection and placed on dry ice prior to storage in a freezer set to maintain a temperature of -70°C to -80°C until analysis.

533	Plasma samples: Extraction of plasma samples was carried out by protein precipitation using
534	acetonitrile. Plasma samples (50 μ L) were mixed with 50 μ L of internal standard (IS) solution in
535	water followed by addition of 10 μL of concentrated ortho-phosphoric acid and 200 μL of
536	acetonitrile. Samples were vortexed for 30 seconds, centrifuged at 13,000 rpm for 20 minutes,
537	decanted in to a 96-well plate, and further centrifuged at 4,000 rpm for 20 minutes. The
538	samples were analyzed by UHPLC-ESI-MS/MS as described below.
539	Brain samples: Prior to extraction, pre-weighed whole brains were homogenized in 1:1
540	acetonitrile/water (v/v) (4 mL per mouse brain) using an IKA T18 ULTRA-TURRAX Homogenizer
541	at the setting of 4 for approximately 2 min. The homogenate was centrifuged at 13,000 rpm for
542	20 min and 50 μL of the supernatant were treated exactly as described above for plasma
543	samples. 50 μ L of the brain homogenate were then treated exactly as the plasma samples
544	described above.
545	Standards and quality control (QC) samples: K_2EDTA Blank mouse plasma purchased from Valley
546	Biomedical, California, USA was used to prepare standards and QC samples for plasma
547	quantitation and as surrogates for brain homogenate quantitation. Calibration samples ranged
548	from 2.34 ng/mL to 4,800 ng/mL. QC samples concentration included 14 ng/mL (QC-L), 255
549	ng/mL (QC-M) and 3,600 ng/mL (QC-H). Standards and QC samples were processed the same
550	way as the sample extracts described above.
551	Analytical methods and statistics for plasma and tissue samples:
552	Samples were analyzed by UHPLC-ESI MS/MS using a TQ-5500 Sciex triple quadrupole mass
553	spectrometer equipped with a Shimadzu Nexera UHPLC pump and auto-sampler system using an ACE

C18 PFP, 2.50 x 50 mm, 1.7 μ particle size column and gradient elution consisting of solvent A (0.1%

Page 26 | 49

555	formic acid in water) and solvent B (0.1% formic acid in acetonitrile) starting at 20% B from 0 min to 0.4
556	min and then increased to 100% B from 0.4 min to 0.6 min. At 2.0 min, the mobile phase composition
557	was switched back to 60% B for 1 min. The flow rate used throughout the experiment was 0.4 min/mL.
558	The analyte, NBI-921352, and the IS were detected by electrospray in the positive ion mode using the
559	following transitions: m/z 460/91 for NBI-921352 and m/z 503/341m/z for the IS. The UHPLC-ESI
560	MS/MS system was controlled by Analyst 1.6.
561	Sample concentrations were determined using a linear calibration function, weighted 1/X, generated by
562	the regression of analyte to IS peak area ratios in the standard samples to their respective
563	concentrations. Acceptance criteria for the analytical run required that the back calculated values of the
564	standards and the QC samples fell within ± 20% of their nominal values, except for the lowest standard
565	or lower limit of quantitation (LLOQ), for which the acceptance criterion was ± 25%. At least 6 out of 12
566	standard points had to show back-calculated values within ± 20% of their nominal concentrations for the
567	calibration to be accepted. At least three QC samples, one at each level, had to show back-calculated
568	values within \pm 20% of their nominal concentrations for the whole sample batch to be valid.

569 Animals

After delivery, animals were allowed sufficient time to acclimate prior to testing (~1 week). All animals were housed in plastic cages in rooms with controlled humidity, ventilation, and lighting (12 hr/12 hr light–dark cycle). All animal procedures were performed using protocols approved by Xenon Animal Care Committee and the Canadian Council on Animal Care.

574 Scn8aN1768D/+ mice:

Xenon Pharmaceuticals Inc. licensed the mouse with the missense mutation p.Asn1768Asp (N1768D) in
the neuronal sodium channel Na_v1.6, characterized and developed by Dr. M Meisler (University Of
Michigan, MI, USA). The *Scn8a^{N1768D}* knock-in allele was generated by TALEN targeting of (C57BL/6JXSJL)

Page 27 | 49

F2 eggs at the University of Michigan Transgenic Animal Model Core. The line was propagated by backcrossing N1768D/+ heterozygotes to C57BL/6J wild-type mice (The Jackson Laboratory, Bar Harbor, ME). Male N1768D/+ heterozygotes on a C57BL/6J background were subsequently backcrossed to C3HeB/FeJ female mice. All the experiments were performed using animals following at least 7 such backcrosses. Experiments were performed using (B6 × C3He) F7 (F7. N1768D/+) offspring aged 35-42 days.

584 WT mice:

- 585 Adult male CF-1 WT albino mice 26-35 g were obtained from Charles River, Senneville, Quebec, Canada.
- 586 All the assays were carried out in mice 9 weeks or older.

587 Sprague-Dawley rats:

- 588 Adult male Sprague-Dawley albino rats weighing 150-200 g were obtained from Envigo, Livermore, CA,
- 589 USA. All the assays were carried out in rats 5 weeks or older.

590 The modified 6 Hz psychomotor seizure assay

591	The modified 6 Hz seizure assay in <i>Scn8a^{N1768D/+}</i> heterozygous mice was adapted from the
592	traditional 6 Hz assay psychomotor seizure assay to provide a measure of in vivo on target
593	(Nav1.6 mediated) efficacy (Barton et al., 2001). The modified assay used a low frequency (6 Hz)
594	but long-duration stimulation (3 seconds) to induce seizures. We identified 12 mA and a 0.3
595	millisecond pulse interval as a suitable current for testing in <i>Scn8a^{N1768D/+}</i> mice, since it
596	differentiated mutant and wild-type (WT) mice. An electroshock (6 Hz, 12 mA) was delivered for
597	3 seconds (at 0.3 millisecond pulse interval) by corneal electrodes (Electro Convulsive Therapy
598	Unit 57800 from Ugo Basile). Immediately prior to the electroshock, the animals' eyes were
599	anesthetized with a drop of Alcaine (0.5% proparacaine hydrochloride). Upon corneal

600 stimulation, WT mice experienced mild seizure behaviors such as facial clonus, forelimb clonus, 601 Straub tail, rearing, and falling, but did not experience a generalized tonic-clonic seizure (GTC) with hindlimb extension. Scn8a^{N1768D/+} animals, however, in addition to mild seizure behaviors, 602 experienced a GTC with hindlimb extension. The modified assay showed a clear differentiation 603 of seizure behavior between WT and Scn8a^{N1768D/+} mice. Scn8a^{N1768D/+} mice exhibited GTC with 604 hindlimb extension but not WT mice. 605 For the single-dose and repeated-dose efficacy experiments, Scn8a^{N1768D/+} animals were dosed 606 607 PO with vehicle or NBI-921352 two hours before the administration of the electric stimulation. 608 An animal was considered protected in the assay upon prevention of GTC with hindlimb extension and was then scored "0". An animal displaying GTC with hindlimb extension was 609

610 considered not protected and is then scored "1". The experimenter scoring the seizure behavior

611 was blinded to the treatment.

612 DC-Maximal electroshock seizure assay in rodents

The maximal electroshock seizure (MES) assay has been extensively used in the search for 613 614 anticonvulsant substances (Loscher et al., 1991; Piredda et al., 1985; White et al., 1995). The 615 MES assay is sensitive to nonselective NaV inhibitors. It is considered a model for generalized tonic-clonic (GTC) seizures and provides an assessment of seizure spread. Briefly, an 616 617 electroshock of direct current (DC) was delivered by corneal electrodes (Electro Convulsive 618 Therapy Unit 57800 from Ugo Basile). The parameters of stimulation were different between mice and rats. In CF1 mice, a direct current of 50 mA (60 Hz) was delivered for 0.2 seconds 619 (pulse width of 0.5 ms), whereas in Sprague Dawley (SD) rats, a direct current of 150 mA (60 Hz) 620 was delivered for 0.3 seconds (pulse width of 0.5 ms). Immediately prior to the electroshock, 621 Page 29 | 49

622	the animals' eyes were anesthetized with a drop of Alcaine (0.5% proparacaine hydrochloride).
623	Upon corneal stimulation, naïve animals experienced a generalized tonic-clonic seizure (GTC)
624	with hindlimb extension.

- For the efficacy experiments, single dose and repeated dose, animals were dosed PO with
- vehicle or NBI-921352 two hours before the administration of the electric stimulation. An
- animal was considered protected in the assay in the absence of a GTC with hindlimb extension
- and is then scored "0". An animal displaying GTC with hindlimb extension was considered not
- 629 protected and is then scored "1". The experimenter scoring the seizure behavior was blinded to
- 630 the treatment.
- 631 Blinding of in vivo efficacy experiments
- On each testing day, individual treatment groups were assigned a random label (e.g., A, B, C,
- etc.) by the technical staff administering the compound. To ensure blinding, the technical staff
- 634 member performing drug administration differed from the person performing the test.
- 635 Therefore, the experimenter conducting testing was blinded to treatment group (e.g., drug or
- 636 vehicle treatment, dose, and time point).
- 637 Randomization of in vivo efficacy experiments
- 638 Randomization of animals into various treatment groups occurred on a per-animal (e.g., rather
- than a per-cage) basis. Therefore, each animal was randomly assigned to a treatment group,
- and all animals tested in each experiment had an equal chance of assignment to any treatment
- 641 group. Prior to each study, a randomization sequence was obtained
- 642 (www.graphpad.com/quickcalcs).

643

644 Acknowledgements

- 645 We thank Dr. Fiona Scott, PhD of Neurocrine Biosciences for thoughtful discussions and
- 646 commentary on this manuscript. We thank Ian Mortimer of Xenon Pharmaceuticals for
- 647 strategic discussions. We thank Dr. Miriam Meisler, PhD for making Scn8a^{N1768D/+} mice
- 648 available. We thank the SCN8A-RES patients, families and patient advocates for detailed
- 649 discussions regarding the clinical presentation of *SCN8A* mutations and unmet medical needs in
- 650 their community.

651

652 Competing Interests

- All authors are, or were previously, employees of Xenon Pharmaceuticals Inc. They receive or
- received salaries from Xenon Pharmaceuticals Inc. and may hold stock or stock options in
- 655 Xenon Pharmaceuticals Inc.

656

657 References

- 658 Ahuja, S., Mukund, S., Deng, L., Khakh, K., Chang, E., Ho, H., . . . Payandeh, J. (2015). Structural basis of
- 659 Nav1.7 inhibition by an isoform-selective small-molecule antagonist. *Science*, 350(6267),
- 660 aac5464. doi:10.1126/science.aac5464
- 661 Barbosa, C., Tan, Z. Y., Wang, R., Xie, W., Strong, J. A., Patel, R. R., . . . Cummins, T. R. (2015). Navbeta4
- regulates fast resurgent sodium currents and excitability in sensory neurons. *Mol Pain, 11*, 60.
- 663 doi:10.1186/s12990-015-0063-9
- Barton, M. E., Klein, B. D., Wolf, H. H., & White, H. S. (2001). Pharmacological characterization of the 6
- 665 Hz psychomotor seizure model of partial epilepsy. *Epilepsy Res, 47*(3), 217-227.
- 666 doi:10.1016/s0920-1211(01)00302-3
- Bean, B. P., Cohen, C. J., & Tsien, R. W. (1983). Lidocaine block of cardiac sodium channels. *J Gen Physiol*,
 81(5), 613-642. doi:10.1085/jgp.81.5.613
- 669 Ben-Shalom, R., Keeshen, C. M., Berrios, K. N., An, J. Y., Sanders, S. J., & Bender, K. J. (2017). Opposing
- 670 Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in
- 671 Individuals With Autism Spectrum Disorder or Infantile Seizures. *Biol Psychiatry*, *82*(3), 224-232.
- 672 doi:10.1016/j.biopsych.2017.01.009
- Boerma, R. S., Braun, K. P., van de Broek, M. P., van Berkestijn, F. M., Swinkels, M. E., Hagebeuk, E. O., . .
- 674 . Koeleman, B. P. (2016). Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related
- 675 Epilepsy: A Molecular Neuropharmacological Approach. *Neurotherapeutics, 13*(1), 192-197.
- 676 doi:10.1007/s13311-015-0372-8
- Braakman, H. M., Verhoeven, J. S., Erasmus, C. E., Haaxma, C. A., Willemsen, M. H., & Schelhaas, H. J.
- 678 (2017). Phenytoin as a last-resort treatment in SCN8A encephalopathy. *Epilepsia Open, 2*(3),
- 679 343-344. doi:10.1002/epi4.12059

- Burgess, D. L., Kohrman, D. C., Galt, J., Plummer, N. W., Jones, J. M., Spear, B., & Meisler, M. H. (1995).
- 681 Mutation of a new sodium channel gene, Scn8a, in the mouse mutant 'motor endplate disease'.
- 682 *Nat Genet, 10*(4), 461-465. doi:10.1038/ng0895-461
- 683 Caron, J., & Libersa, C. (1997). Adverse effects of class I antiarrhythmic drugs. *Drug Saf, 17*(1), 8-36.
- 684 doi:10.2165/00002018-199717010-00002
- 685 Catterall, W. A., Kalume, F., & Oakley, J. C. (2010). NaV1.1 channels and epilepsy. J Physiol, 588(Pt 11),

686 1849-1859. doi:10.1113/jphysiol.2010.187484

- 687 Chen, Q., Kirsch, G. E., Zhang, D., Brugada, R., Brugada, J., Brugada, P., . . . Wang, Q. (1998). Genetic basis
- 688 and molecular mechanism for idiopathic ventricular fibrillation. *Nature, 392*(6673), 293-296.
- 689 doi:10.1038/32675
- 690 Claes, L., Del-Favero, J., Ceulemans, B., Lagae, L., Van Broeckhoven, C., & De Jonghe, P. (2001). De novo
- 691 mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. *Am J*692 *Hum Genet, 68*(6), 1327-1332. doi:10.1086/320609
- 693 Courtney, K. R., Kendig, J. J., & Cohen, E. N. (1978). The rates of interaction of local anesthetics with
- 694 sodium channels in nerve. J Pharmacol Exp Ther, 207(2), 594-604. Retrieved from
- 695 https://www.ncbi.nlm.nih.gov/pubmed/712641
- Du, J., Simmons, S., Brunklaus, A., Adiconis, X., Hession, C. C., Fu, Z., . . . Lal, D. (2020). Differential
- 697 excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel
- 698 function in neurodevelopmental disorders. *Eur J Paediatr Neurol, 24*, 129-133.
- 699 doi:10.1016/j.ejpn.2019.12.019
- 700 Encinas, A. C., Watkins, J. C., Longoria, I. A., Johnson, J. P., Jr., & Hammer, M. F. (2020). Variable patterns
- 701 of mutation density among NaV1.1, NaV1.2 and NaV1.6 point to channel-specific functional
- 702 differences associated with childhood epilepsy. *PLoS One, 15*(8), e0238121.
- 703 doi:10.1371/journal.pone.0238121

704	Escayg, A., MacDonald, B. T., Meisler, M. H., Baulac, S., Huberfeld, G., An-Gourfinkel, I., Malafosse, A.
705	(2000). Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2.
706	Nat Genet, 24(4), 343-345. doi:10.1038/74159
707	FDA. (2021). Drug Safety Communication: Studies show increased risk of heart rhythm problems with
708	seizure and mental health medicine lamotrigine (Lamictal) in patients with heart disease.
709	Retrieved from https://www.fda.gov/drugs/drug-safety-and-availability/studies-show-
710	increased-risk-heart-rhythm-problems-seizure-and-mental-health-medicine-lamotrigine
711	Focken, T., Burford, K., Grimwood, M. E., Zenova, A., Andrez, J. C., Gong, W., Empfield, J. R. (2019).
712	Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective NaV1.6 Inhibitors with
713	Efficacy in Mouse Models of Epilepsy. J Med Chem, 62(21), 9618-9641.
714	doi:10.1021/acs.jmedchem.9b01032
715	Gardella, E., & Moller, R. S. (2019). Phenotypic and genetic spectrum of SCN8A-related disorders,
716	treatment options, and outcomes. Epilepsia, 60 Suppl 3, S77-S85. doi:10.1111/epi.16319
717	Gennaro, E., Veggiotti, P., Malacarne, M., Madia, F., Cecconi, M., Cardinali, S., Zara, F. (2003). Familial
718	severe myoclonic epilepsy of infancy: truncation of Nav1.1 and genetic heterogeneity. Epileptic
719	Disord, 5(1), 21-25. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12773292
720	Hammer, M. F., Wagnon, J. L., Mefford, H. C., & Meisler, M. H. (2016). SCN8A-Related Epilepsy with
721	Encephalopathy. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K.
722	Stephens, & A. Amemiya (Eds.), GeneReviews((R)). Seattle (WA).
723	Hawkins, N. A., Martin, M. S., Frankel, W. N., Kearney, J. A., & Escayg, A. (2011). Neuronal voltage-gated
724	ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiol
725	<i>Dis, 41</i> (3), 655-660. doi:10.1016/j.nbd.2010.11.016

726	Inglis, G. A. S.	, Wong, J. C., Butler,	. K. M., Thelin.	J. T., Mistretta.	. O. C., Wu, X.,	. Escavg. A. (2	2020).
. = •		,	,, e ,	,			/

- 727 Mutations in the Scn8a DIIS4 voltage sensor reveal new distinctions among hypomorphic and
- 728 null Nav 1.6 sodium channels. *Genes Brain Behav, 19*(4), e12612. doi:10.1111/gbb.12612
- Johannesen, K. M., Gardella, E., Encinas, A. C., Lehesjoki, A. E., Linnankivi, T., Petersen, M. B., . . . Moller,
- R. S. (2019). The spectrum of intermediate SCN8A-related epilepsy. *Epilepsia, 60*(5), 830-844.
- 731 doi:10.1111/epi.14705
- Liu, Y., Schubert, J., Sonnenberg, L., Helbig, K. L., Hoei-Hansen, C. E., Koko, M., . . . Lerche, H. (2019).
- 733 Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. *Brain,*
- 734 *142*(2), 376-390. doi:10.1093/brain/awy326
- Loscher, W., Fassbender, C. P., & Nolting, B. (1991). The role of technical, biological and pharmacological
- factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure
 models. *Epilepsy Res, 8*(2), 79-94. doi:10.1016/0920-1211(91)90075-q
- 738 Martin, M. S., Tang, B., Papale, L. A., Yu, F. H., Catterall, W. A., & Escayg, A. (2007). The voltage-gated
- 739 sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. *Hum Mol*

740 *Genet, 16*(23), 2892-2899. doi:10.1093/hmg/ddm248

741 Mason, E. R., Wu, F., Patel, R. R., Xiao, Y., Cannon, S. C., & Cummins, T. R. (2019). Resurgent and Gating

742 Pore Currents Induced by De Novo SCN2A Epilepsy Mutations. *eNeuro, 6*(5).

- 743 doi:10.1523/ENEURO.0141-19.2019
- 744 McCormack, K., Santos, S., Chapman, M. L., Krafte, D. S., Marron, B. E., West, C. W., . . . Castle, N. A.
- 745 (2013). Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated
- 746 sodium channels. *Proc Natl Acad Sci U S A, 110*(29), E2724-2732. doi:10.1073/pnas.1220844110
- 747 Meisler, M. H. (2019). SCN8A encephalopathy: Mechanisms and models. *Epilepsia, 60 Suppl 3*, S86-S91.
- 748 doi:10.1111/epi.14703

749	Mistry, A. M., Thompson, C. H., Miller, A. R., Vanoye, C. G., George, A. L., Jr., & Kearney, J. A. (2014).
750	Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy
751	severity in Dravet syndrome mice. Neurobiol Dis, 65, 1-11. doi:10.1016/j.nbd.2014.01.006
752	Neurocrine. (2019). Neurocrine Biosciences and Xenon Pharmaceuticals Announce Agreement to
753	Develop First-in-Class Treatments for Epilepsy. Press Release. Retrieved from
754	https://neurocrine.gcs-web.com/news-releases/news-release-details/neurocrine-biosciences-
755	and-xenon-pharmaceuticals-announce
756	Neurocrine. (2021). Study to Evaluate NBI-921352 as Adjunctive Therapy in Subjects With SCN8A
757	Developmental and Epileptic Encephalopathy Syndrome (SCN8A-DEE). ClinicalTrials.gov
758	Retrieved from
759	https://www.clinicaltrials.gov/ct2/show/NCT04873869?term=NCT04873869&draw=2&rank=1
760	Pan, Y., & Cummins, T. R. (2020). Distinct functional alterations in SCN8A epilepsy mutant channels. J
761	<i>Physiol, 598</i> (2), 381-401. doi:10.1113/JP278952
762	Piredda, S. G., Woodhead, J. H., & Swinyard, E. A. (1985). Effect of stimulus intensity on the profile of
763	anticonvulsant activity of phenytoin, ethosuximide and valproate. J Pharmacol Exp Ther, 232(3),
764	741-745. Retrieved from <u>https://www.ncbi.nlm.nih.gov/pubmed/3919174</u>
765	Potet, F., Egecioglu, D. E., Burridge, P. W., & George, A. L., Jr. (2020). GS-967 and Eleclazine Block Sodium
766	Channels in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Mol Pharmacol,
767	<i>98</i> (5), 540-547. doi:10.1124/molpharm.120.000048
768	Ptacek, L. J., George, A. L., Jr., Griggs, R. C., Tawil, R., Kallen, R. G., Barchi, R. L., Leppert, M. F. (1991).
769	Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell, 67(5),
770	1021-1027. doi:10.1016/0092-8674(91)90374-8

- 771 Raman, I. M., & Bean, B. P. (1997). Resurgent sodium current and action potential formation in
- dissociated cerebellar Purkinje neurons. J Neurosci, 17(12), 4517-4526. Retrieved from
- 773 https://www.ncbi.nlm.nih.gov/pubmed/9169512
- Raman, I. M., Sprunger, L. K., Meisler, M. H., & Bean, B. P. (1997). Altered subthreshold sodium currents
- and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. *Neuron, 19*(4), 881-891.
- 776 doi:10.1016/s0896-6273(00)80969-1
- 777 Rojas, C. V., Wang, J. Z., Schwartz, L. S., Hoffman, E. P., Powell, B. R., & Brown, R. H., Jr. (1991). A Met-to-
- 778 Val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic

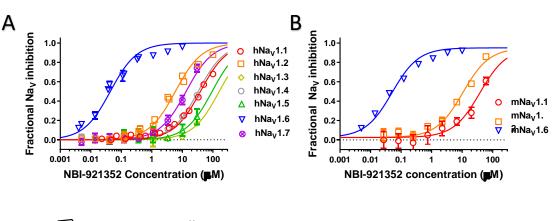
paralysis. *Nature, 354*(6352), 387-389. doi:10.1038/354387a0

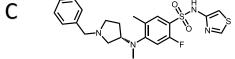
- Royeck, M., Horstmann, M. T., Remy, S., Reitze, M., Yaari, Y., & Beck, H. (2008). Role of axonal NaV1.6
- sodium channels in action potential initiation of CA1 pyramidal neurons. *J Neurophysiol*, 100(4),
 2361-2380. doi:10.1152/jn.90332.2008
- 783 Strichartz, G. (1976). Molecular mechanisms of nerve block by local anesthetics. Anesthesiology, 45(4),

784 421-441. doi:10.1097/00000542-197610000-00012

- 785 Tidball, A. M., Lopez-Santiago, L. F., Yuan, Y., Glenn, T. W., Margolis, J. L., Clayton Walker, J., . . . Parent,
- J. M. (2020). Variant-specific changes in persistent or resurgent sodium current in SCN8A-related
 epilepsy patient-derived neurons. *Brain, 143*(10), 3025-3040. doi:10.1093/brain/awaa247
- Veeramah, K. R., O'Brien, J. E., Meisler, M. H., Cheng, X., Dib-Hajj, S. D., Waxman, S. G., . . . Hammer, M.
- 789 F. (2012). De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a
- family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet,
- *90*(3), 502-510. doi:10.1016/j.ajhg.2012.01.006
- Wagnon, J. L., Korn, M. J., Parent, R., Tarpey, T. A., Jones, J. M., Hammer, M. F., ... Meisler, M. H. (2015).
- 793 Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. *Hum Mol*
- 794 *Genet, 24*(2), 506-515. doi:10.1093/hmg/ddu470

- Wagnon, J. L., & Meisler, M. H. (2015). Recurrent and Non-Recurrent Mutations of SCN8A in Epileptic
 Encephalopathy. *Front Neurol, 6*, 104. doi:10.3389/fneur.2015.00104
- 797 Wengert, E. R., & Patel, M. K. (2021). The Role of the Persistent Sodium Current in Epilepsy. *Epilepsy*
- 798 *Curr, 21*(1), 40-47. doi:10.1177/1535759720973978
- Wengert, E. R., Tronhjem, C. E., Wagnon, J. L., Johannesen, K. M., Petit, H., Krey, I., . . . Moller, R. S.
- 800 (2019). Biallelic inherited SCN8A variants, a rare cause of SCN8A-related developmental and
 801 epileptic encephalopathy. *Epilepsia*, 60(11), 2277-2285. doi:10.1111/epi.16371
- 802 White, H. S., Johnson, M., Wolf, H. H., & Kupferberg, H. J. (1995). The early identification of
- 803 anticonvulsant activity: role of the maximal electroshock and subcutaneous pentylenetetrazol


seizure models. *Ital J Neurol Sci, 16*(1-2), 73-77. doi:10.1007/BF02229077


- Yu, F. H., Mantegazza, M., Westenbroek, R. E., Robbins, C. A., Kalume, F., Burton, K. A., . . . Catterall, W.
- 806 A. (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe
- 807 myoclonic epilepsy in infancy. *Nat Neurosci, 9*(9), 1142-1149. doi:10.1038/nn1754
- Zaman, T., Abou Tayoun, A., & Goldberg, E. M. (2019). A single-center SCN8A-related epilepsy cohort:
- 809 clinical, genetic, and physiologic characterization. *Ann Clin Transl Neurol, 6*(8), 1445-1455.
- 810 doi:10.1002/acn3.50839

811

813 Figure 1 Potency and isoform selectivity of NBI-921352 for human and mouse Nav

814 channels.

816 Concentration-response curves were generated by automated patch-clamp electrophysiology using the 817 Sophion Qube. Concentration-response curves were generated for human (A) or mouse (B) Nav channel 818 isoforms heterologously expressed in HEK293 cells. The analysis included only those cells that met pre-819 specified acceptance criteria for seal quality, current amplitude, and series resistance. Normalized data 820 from all cell recordings at a concentration were grouped together and plotted with GraphPad Prism 8. 821 Details regarding the number of cells analyzed for each Nay channel and concentration can be found in 822 the source data sheet. Error bars indicating the standard error of the mean fraction were plotted for all 823 points, but, in some cases, they were smaller than the data point symbols and, therefore, not visible. The chemical structure of NBI-921352 is shown (C). 824

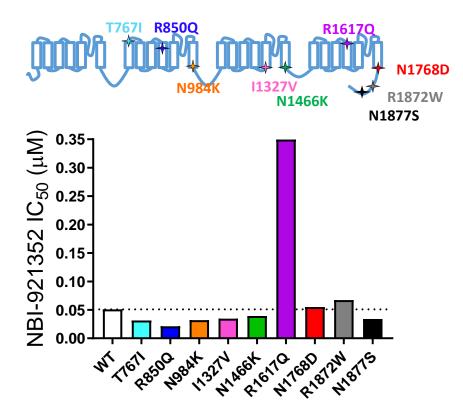
825

826 Table 1 Potency and isoform selectivity of NBI-921352 for human and mouse Nav

827 channels.

				Na _v 1.4	Nav1.5	Nav1.7
051	39	6.9	>30	>30	>30	14
						0.75
1	/56	134	>583	>583	>583	276
058	41	11				
1	709	191				
	051 1 058 1	1 756 058 41	1 756 134 058 41 11	1 756 134 >583 058 41 11	1 756 134 >583 >583 058 41 11	1 756 134 >583 >583 >583 058 41 11

828 IC₅₀s corresponding to the concentration-response curves in Figure 1 were calculated in GraphPad Prism


829 8 using the Hill equation described in the Materials and Methods. Note that IC₅₀s for the neuronal

sodium channels, Nav 1.1, Nav 1.2, and Nav1.6, have been more accurately defined than those for non-

831 neuronal sodium channels.

833 Figure 2 Comparison of NBI-921352 potency on human wild-type Nav1.6 and patient-

834 identified variants of Na_V1.6.

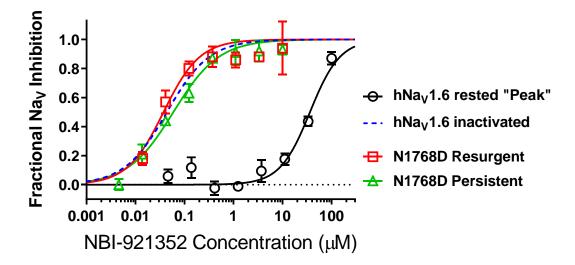
IC₅₀s were calculated in GraphPad Prism 8 using the Hill equation described in the Materials and
Methods. All constructs were transiently transfected into Expi293F[™] cells and evaluated by automated
patch-clamp electrophysiology using the Sophion Qube. The voltage-clamp methods and data analysis
were identical to those used for evaluation of the wild-type channels in Figure 1. Details regarding the
number of cells analyzed for each Na_V channel and concentration can be found in the source data sheet.
The dotted line indicates the IC₅₀ for wild-type Na_V1.6 from <u>Figure 1</u>.

842

843 Table 2 Comparison of NBI-921352 potency on human wild-type Nav1.6 and patient-

844	
-----	--

identified gain-of-function variants of Nav1.6.

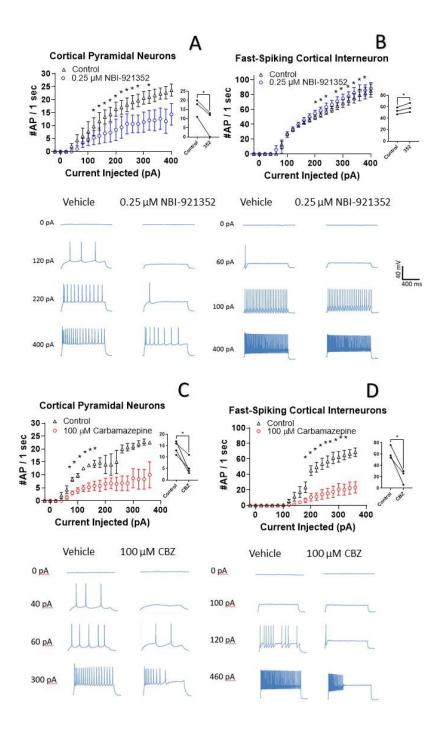

	wт	T767I	R850Q	N984K	I1327V	N1466K	R1617Q	N1768D	R1872W	N1877S
hNa _v 1.6 IC₅₀ (µМ)	0.051	0.031	0.021	0.032	0.035	0.039	0.349	0.054	0.067	0.034
Fold change WT / Variant	-	0.6	0.4	0.6	0.7	0.8	6.8	1.1	1.3	0.7

845 IC₅₀s corresponding to Figure 2 are shown in the table and were calculated as indicated for Table 1.

847 Figure 3 NBI-921352 is a state-dependent inhibitor of Nav1.6 and preferentially inhibited

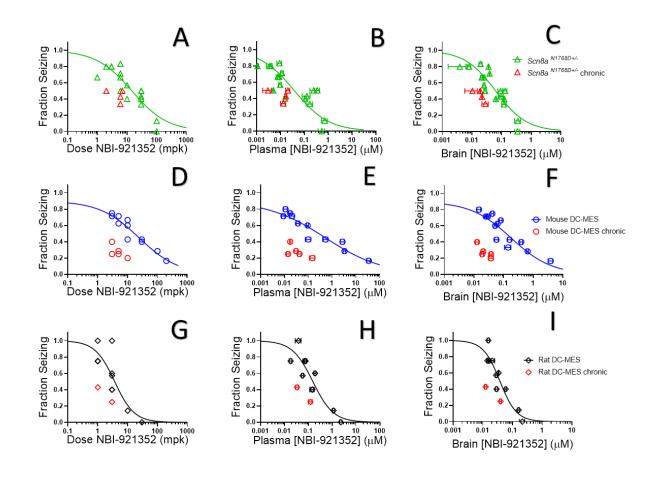
848

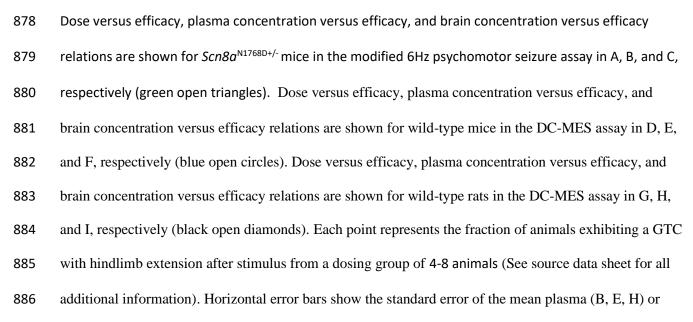
activated (open or inactivated) channels.



850 Concentration-response curves were generated for human WT and N1788D channel isoforms 851 heterologously expressed in HEK293 cells. The analysis included only those cells that met pre-specified 852 acceptance criteria for seal quality, current amplitude, and series resistance. Normalized data from all 853 cell recordings at a concentration were grouped together and plotted with GraphPad Prism 8. Details 854 regarding the number of cells analyzed for each Nav channel isoform and concentration can be found in 855 the source data sheet. Error bars indicating the standard error of the mean fraction were plotted for all 856 points. The blue dotted line indicates the concentration-response curve for wild-type Nav1.6 from 857 Figure 1. When Nav1.6 channels were equilibrated with NBI-921352 at voltages that allow full 858 equilibration with inactivated states (-45 mV), the compound provided potent inhibition, as seen in 859 Figure 1. Measuring persistent or resurgent sodium current after equilibration of cells with NBI-921352 860 resulted in similar potency (see Materials and Methods and text). Forcing channels to the rested, closed 861 state by hyperpolarizing to -120 mV resulted in very weak inhibition. Current evoked from very negative 862 potentials is sometimes referred to as "peak current".

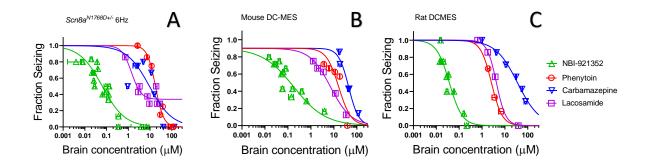
863 Figure 4 NBI-921352 inhibits firing in pyramidal neurons but spares fast-spiking


864 interneurons.

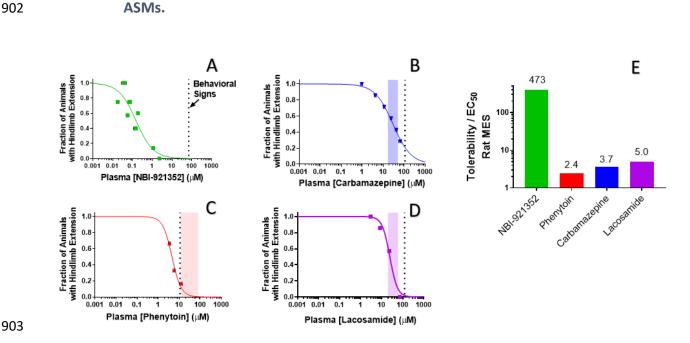


866	Current input versus action-potential output evaluations in wild-type mouse brain slices treated with
867	vehicle or 0.25 μ M NBI-921352 (A & B), or 100 μ M carbamazepine (C & D) was plotted. In cortical
868	pyramidal neurons, both NBI-921352 (A) and carbamazepine (C) reduced AP spiking. In fast-spiking
869	cortical interneurons, NBI-921352 increased firing frequency slightly (B), while carbamazepine markedly
870	reduced firing (D). The main upper panels compare average AP count of 3-4 neurons in each condition
871	+/- the standard error of the mean. The inserts in the upper panels show the results for each tested
872	neuron at approximately 3X the cell rheobase. *Indicates a p<0.05 relative to the control condition
873	using a paired, two-way, student's t-test. The lower panels show recordings for individual representative
874	neurons for each condition. No inhibitors of synaptic inputs were used for these experiments.

875


876 Figure 5 NBI-921352 inhibited electrically induced seizures in rodents.

- brain (C, F, I) concentrations measured from the animals in that dosing group immediately after assay.
- 888 Where error bars are not visible, they are smaller than the symbols. No error bars are shown for the dose
- levels (A, D, G), since those were dictated by the experimenter.


891 Figure 6 NBI-921352 is more potent than 3 commonly prescribed Na_V inhibitor ASMs.

892

Brain concentration versus fraction of animals exhibiting is plotted for NBI-921352 versus that for
phenytoin, carbamazepine, and lacosamide in the *Scn8a^{N1768D+/-}* modified 6Hz model (A), the wild-type
mouse DC-MES model (B), and the wild-type rat DC-MES model (C). Data from animals at a given dose
were grouped together and plotted with GraphPad Prism 8. Details regarding the number of animals
analyzed per model and per dose group can be found in the source data sheet. Error bars indicating the
standard error of the mean concentration were plotted for all points on the concentration-response
curves.

901 Figure 7 Rat efficacy compared to acute tolerability for NBI-921352 relative to Nav inhibitor

904 Plasma concentration versus efficacy data is shown for the rat DC-MES assay for NBI-921352 (A), 905 carbamazepine (B), phenytoin (C), and lacosamide (D). The vertical dotted lines indicate the lowest 906 plasma concentration at which a rat was observed to exhibit atypical behavioral signs indicative of an 907 adverse reaction to drug in the assay format. Animals exhibiting such signs were excluded from efficacy 908 evaluation. The shaded bars in B, C, and D indicate the approximate human plasma concentrations 909 observed in clinical practice. Data from animals at a given dose were grouped together and plotted with 910 GraphPad Prism 8. Details regarding the number of animals analyzed per model and per dose group can 911 be found in the source data sheet. Error bars indicating the standard error of the mean concentration 912 were plotted for all points on the concentration-response curves. Panel E shows the ratio of the (rat 913 plasma EC_{50} / the plasma concentration where behavioral signs were noted for each compound).