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Abstract 

The temporal synchronization of BOLD signals within white matter (WM) and 

between WM and grey matter (GM) exhibited intrinsic architecture and cognitive 

relevance. However, few studies examined the network property within- and 

between-tissue in Alzheimer’s disease (AD). The hub regions with high weighted 

degree (WD) were prone to the neuropathological damage of AD. To systematically 

investigate the changes of hubs within- and between-tissue functional networks in AD 

patients, we used the resting-state fMRI data of 30 AD patients and 37 normal older 

adults (NC) from the ADNI open database, and obtained four types of voxel-based 

WD metrics and four types of distant-dependent WD metrics (ddWD) based on a 

series of Euclidean distance ranges with a 20mm increment. We found that AD 

patients showed decreased within-tissue ddWD in the thalamic nucleus and increased 

between-tissue ddWD in the occipito-temporal cortex, posterior thalamic radiation, 

and sagittal stratum, compared to NC. We also found that AD patients showed the 

increased between-tissue FCs between the posterior thalamic radiation and 

occipito-temporal cortex, and between the sagittal stratum and the salience and 

executive networks. The dichotomy of decreased and increased ddWD metrics and 

their locations were consistent with previous studies on the neurodegnerative and 

compensatory mechanisms of AD, indicating that despite the disruptions, the brain 

still strived to compensate for the neural inefficiency by reorganizing functional 

circuits. Our findings also suggested the short-to-medium ranged ddWD metrics 

between WM and GM as useful biomarker to detect the compensatory changes of 

functional networks in AD. 

 

Keywords: Alzheimer disease; White matter; Grey matter; Compensatory 

reconfiguration; Distance dependent; Weighted degree 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458154


3 

 

1. Introduction 

Neural activity proceeds with the participation of neurons and fiber. In this process, 

the information transfers among different neurons via the dendrites and axons. 

However, the neural activities in the white matter (WM) were often ignored, possibly 

due to its relatively weak signal than grey matter (GM) and lack of understanding of 

its function (Gawryluk, Mazerolle, & D'Arcy, 2014). It was suggested that the blood 

oxygen level-dependent (BOLD) signal in the WM were originated from neurons, 

which could bring a series of biochemical changes, e.g. the exchanges of potassium 

and calcium ions and the production of nitric oxide. These changes might lead to 

vascular changes in the WM and increased BOLD signal (Gawryluk et al., 2014; 

Marcar & Loenneker, 2004; Smith et al., 2002). Previous studies also showed that the 

BOLD fluctuations detected in the WM were responsive to the task stimuli (Ding et 

al., 2018; Huang et al., 2018; Huang et al., 2020).  

 

The temporal synchronization of WM BOLD signals in the task-related WM regions 

was enhanced during performing various cognitive tasks (Huang et al., 2020; 

Marussich, Lu, Wen, & Liu, 2017). At rest, the functional network within the WM 

demonstrated an intrinsic architecture, consistent with the structural organization of 

WM tracts (Huang et al., 2018; Peer, Nitzan, Bick, Levin, & Arzyt, 2017). Recently, 

the functional network of WM has received much attention for its applications in 

schizophrenia, attention-deficit/hyperactivity disorder, and mild cognitive impairment 

(Bu et al., 2020; X. Chen et al., 2017; Jiang et al., 2019).  

 

A few studies examined the temporal synchronization of BOLD signals between WM 

bundles and GM regions in human and non-human primates, and found that the 

spatial distribution pattern of functional connectivity (FC) between them was not 

random, but in a similar arrangement as the anatomical construction that they partook 

in (Ding et al., 2018; Huang et al., 2020; Marussich et al., 2017; Peer et al., 2017; Wu 
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et al., 2019). The FC strength between the two tissues was increased with the 

cognitive load in different tasks (Ding et al., 2018; Huang et al., 2020; Marussich et 

al., 2017).  

 

As the temporal synchronization of WM has become a promising neuroimaging 

biomarker, two recent studies used the FCs between 48 WM tracts and 82 regional 

GM volumes to classify Alzheimer’s disease (AD) from normal older adults (Gao et 

al., 2020; Zhao, Ding, Du, Wang, & Men, 2019). However, the topological changes in 

the functional network of WM in AD remained unclear. Previous studies showed that 

the hubs of functional network in the GM were specifically susceptible to the 

neurodegenerative damage of AD (Buckner et al., 2009; de Haan, Mott, van Straaten, 

Scheltens, & Stam, 2012). Possibly, the hubs of the WM functional networks also 

changed in AD patients. 

 

From abundant functional network metrics, we chose weighted degree (WD) as the 

hub regions with high WD were especially prone to AD damage. WD, similar to the 

metrics of functional connectivity strength or density used in previous studies (Z. J. 

Dai et al., 2015; Tomasi & Volkow, 2010), was an indicator of the total strength of the 

FCs of a node with other nodes (Rubinov & Sporns, 2010; Zuo et al., 2012). 

Voxel-wise parcellation allows the neural signals more homogeneous extracted from 

the fine-grained units, the network more prone to the small-world property, and the 

results in more precise locations (de Reus & van den Heuvel, 2013; Hayasaka & 

Laurienti, 2010). According to the locations of two nodes for a FC, there would be 

four types of voxel-based WDs: WD-G as the weighted sum of FCs of a given GM 

voxel with other GM voxels, WD-W of a given WM voxel with other WM voxels, 

WD-GW of a given GM voxel with WM voxels, and vice versa for WD-WG. 

Moreover, previous studies showed that the FC was anatomical distance-dependent, 

with the short-ranged and long-ranged FCs differing on the metabolic costs and the 
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susceptibility to neurodegenerative diseases (Z. J. Dai et al., 2015; Liang, Zou, He, & 

Yang, 2013). Hence, we also obtained the distant-dependent WD metrics (ddWD-W, 

ddWD-G, ddWD-GW, and ddWD-WG) according to the Euclidean distance between 

two voxels. Through a series of group comparison analysis on the four types of 

voxel-based WD and ddWD metrics between AD and normal controls (NC), we 

aimed to investigate the changes of WM functional networks in AD patients and 

hypothesized that the changes might be consistent with the neuropathological 

mechanism of AD.  

 

2. Materials and Methods 

2.1 ADNI database 

The present study used the open database, the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) to acquire data. ADNI was launched in 2004 to investigate AD and 

its prodromal stages (http://www.adniinfo. org). ADNI included four databases 

(ADNI-1, ADNI-2, ADNI-3, ADNI-GO). An initial five-year study termed ADNI-1, 

was followed by two renewal studies termed ADNI-2 and -3 (Weiner et al., 2017). As 

the ADNI-1 phase did not collect resting-state fMRI data, we acquired data from the 

ADNI-2. According to the standardized protocol, the ADNI data was collected from 

various acquisition sites across Canada, and the United States, approved by the 

Institutional Review Board at each acquisition site, and written informed consent was 

obtained from each participant.  

 

2.2 Participants  

The participants with the following criteria were included in this study: (1) a 

clinician-confirmed diagnosis of AD or ‘‘normal’’ at the screening visit; and (2) the 

complete resting-state fMRI data available for participants at their first scan time in 

the ADNI 2 database. In total, 30 AD patients and 37 NC were included in this study. 

No significant differences were found between the two groups on age and gender 
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(Table 1). 

 

Characteristic NC (n=37) AD (n=30) Test statistic P-value 

Age (year) 75.84±7.09 73.14±6.51 T= -1.59 0.117a 

Sex (male/female) 13/16 14/23 χ2=0.329 0.566b 

MMSE (NC/AD n=31/24) 29.06±1.57 21.13±3.47 T=-11.36 <0.001a 

CDR (NC/AD n=31/24) 0.05±0.15 0.92±0.32 / / 

Table 1. Demographic characteristics and neuropsychological test results 

Note: Data are presented as the mean ± SD.  

NC, normal control; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; CDR, Clinical 

Dementia Rating Scale. 
aThe P-value was obtained by the two-sample two-tailed t-test. 
bThe P-value was obtained by the two-tailed Pearson χ2 test. 

 

2.3 Image acquisition and preprocessing 

All participants were scanned with a 3.0 T Philips scanner (Jack et al., 2008). The 

resting-state fMRI data were obtained using an echo-planar imaging (EPI) sequence 

with the following parameters: repetition time (TR) = 3000 ms, echo time (TE) = 30 

ms, flip angle = 80°, number of slices = 48, slice thickness = 3.313 mm, voxel size = 3 

mm × 3 mm × 3 mm, voxel matrix = 64 × 64, and total volume = 140.   

 

Rs-fMRI images were preprocessed using the Data Processing and Analysis of Brain 

Imaging software package (DPABI, http://rfmri.org/dpabi) and the SPM12. The 

preprocessing procedure consisted of eight steps: 1) discarding the first ten volumes, 2) 

slice-timing, 3) head motion correction (the maximum motion threshold ≤2mm or 2°), 

4) normalization to the MNI template and resampled to 3 × 3 × 3 mm3, 5) detrend, 6) 

nuisance covariates regression (Friston 24 for head motion, global signal, and 

cerebrospinal fluid signal regression), 7) temporal scrubbing (the scan volume with 

the frame-wise displacement (FD) >1 was removed), and 8) band-pass filter (0.01 Hz–

0.15 Hz) to reduce low-frequency drift and high-frequency physiological noise (Jiang 
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et al., 2019; Peer et al., 2017). One AD participant was removed from this study due 

to the maximum head motion beyond the threshold. 

 

2.4 Network construction and distance-dependent weighted degree 

(ddWD) 

2.4.1 Functional network in GM (ddWD-G) 

The calculation pipeline of four ddWD metrics were demonstrated in Fig 1. The GM 

mask was generated from the GM probability map (provided by SPM12) for the 

voxels with a GM probability value >0.2 (Du et al., 2015). The cut-off value on 

Euclidean distance between two voxels was often set arbitrarily as 75mm (Deng et al., 

2016; Sheng et al., 2018) or incrementally with 10mm (Z. J. Dai et al., 2015). In this 

study, the incremental unit of 20mm was used to divide the distance of voxels in the 

GM mask. Hence, there were nine ranges of Euclidean distance between any two GM 

voxels, starting from 0 to 180mm with a 20mm increase for each range. According to 

the procedure of calculating WD in previous studies (Liang et al., 2013; H. B. Zhang 

et al., 2018), the ddWD-G at a certain range was calculated as the sum of Fisher 

z-transformed Pearson’s correlation coefficients (Rs, the threshold for effective 

correlation>0.2) of any given voxel in the GM mask with all other GM voxels whose 

Euclidean distance to this voxel was within that range (Buckner et al., 2009; Z. J. Dai 

et al., 2015; H. B. Zhang et al., 2018). The voxel-based ddWD-G metrics at the nine 

ranges were smoothed (4mm) and then z-standardized.  
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Fig 1. The calculation pipeline of ddWD. (1) The Euclidean distance between any voxel (e.g. Voxel i) 

and all other voxels in a relevant mask were calculated based on three-dimensional coordinates of these 

voxels. Then, the incremental unit of 20mm was used to divide the distance between voxels. (2) For the 

ddWD at a certain range, the Pearson’s correlation coefficients (Rs) of Voxel i with all other voxels 

whose Euclidean distance to this voxel was within that range were calculated, and then Fisher 

z-transformed (Rs in the diagonal elements and Rs ≤0.2 were set to 0). (3) The transformed Rs in a 

column for Voxel i were summed and referred as the ddWD for that voxel. (4) Steps (1) to (3) were 

repeated for all voxels in the relevant mask to obtain voxel-based ddWD. The voxel-based ddWD map 

at each Euclidean distance range was smoothed (4mm) and then z-standardized. 

 

2.4.2 Functional network in WM (ddWD-W) 

The WM mask was generated from the WM probability map (provided by SPM12) 

for the voxels with a WM probability value >0.6 (Jiang et al., 2019; Peer et al., 2017). 

We excluded the voxels (n=4405) from the calculation of ddWD-G and ddWD-W, as 

these voxels were overlapped on the GM and WM masks, with a GM probability >0.2 

and WM probability >0.6. These voxels were located in the boundary between GM 

and WM, as shown in Supplementary Fig s1. We used eight ranges to define 

Euclidean distance between any two voxels in the WM mask, starting from 0 to 

180mm with a 20mm increase for each range. The ddWD- W at a certain range was 

the sum of Fisher z-transformed Rs of any given voxel in the WM mask with all other 

WM voxels whose Euclidean distance to this voxel was within that range. The 

ddWD-W metrics at eight ranges were smoothed (4mm) and then z-standardized.  
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2.4.3 Functional networks between WM and GM (ddWD-GW and ddWD-WG) 

We used nine ranges to define Euclidean distance between a voxel in the GM mask 

and a voxel in the WM mask, starting from 0 to 180mm with a 20mm increase for 

each range. The ddWD-GW at a certain range was the sum of the Fisher 

z-transformed Rs of any given voxel in the GM mask with all the voxels in the WM 

mask whose Euclidean distance to that GM voxel was within that range. The 

ddWD-GW metrics at nine ranges were smoothed (4mm) and then z-standardized.  

 

The ddWD-WG at a certain range was the sum of the Fisher z-transformed Rs of any 

given voxel in the WM mask with all the voxels in the GM mask whose Euclidean 

distance to that WM voxel was within that range. The ddWD-WG metrics at nine 

ranges were smoothed (4mm) and then z-standardized.  

 

2.4.4 Weighted degree (WD) and mean maps  

Before calculating ddWD metrics according to different ranges of Euclidean distance, 

we generated four types of WD metrics (WD-G, WD-W, WD-GW, and WD-WG) 

without dividing the distance between two voxels. In brief, the Rs of any given voxel 

with other voxels in relevant masks were calculated, Fisher r-to-z transformed, and 

then summed. The four voxel-based WD metrics for each individual were then 

smoothed (4mm) and z-standardized. To demonstrate the spatial distribution of the 

voxels with relatively high WD values (i.e. z-standardized value > 0.01), we 

calculated the mean voxel-based WD for the AD group and the NC group, 

respectively, and superimposed the mean maps of each group on 3D brain template 

(Fig 2). Similarly, the mean voxel-based ddWD metrics at each range for each group 

were calculated, and superimposed on 3D brain template (Fig 3).  

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458154doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458154


10 

 

 
Fig 2. Mean maps of voxel-based weighted degree in AD and normal controls 

The spatial distribution of hubs that were the voxels with high WD value, i.e. Z-score ranging 

0.01~maximum (note: the maximum value varied for each WD metric) were demonstrated. We 

calculated the mean voxel-based WD for the AD group and the NC group, respectively, and 

superimposed the mean maps on 3D brain template. In each group, four mean maps for four WD 

metrics were generated, including WD-G, WD-W, WD-GW, and WD-WG. The color bar represents 

the mean value, with higher values in warmer colors.  

 

 
Fig 3. Mean maps of voxel-based distance-dependent weighted degree in AD and normal controls 

The spatial distribution of hubs that were the voxels with high ddWD value, i.e. Z-score ranging 

0.01~maximum (note: the maximum value varied for each ddWD metric) were demonstrated. We 

calculated the mean voxel-based ddWD for the AD group and the NC group, respectively, and 

superimposed the mean maps on 3D brain template. A) the mean maps of ddWD-G metrics; B) the 

mean maps of ddWD-W; C) the mean maps of ddWD-GW metrics; and D) the mean maps of 

ddWD-WG metrics. The color bar represents the mean value, with higher values in warmer colors.  
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2.5 Seed-based functional connectivity  

Compared various ddWD metrics of AD patients with NC would generate the 

supra-threshold clusters, where the ddWDs of a cluster of voxels were significantly 

smaller (or larger) in AD than NC. Using the supra-threshold cluster as the seed, we 

attempted to pinpoint the specific voxels whose FCs with the seed were also 

significantly smaller (or larger) in AD than NC.  

 

Using the pre-processed rs-fMRI images, we firstly extracted voxel-wise time series 

from each seed and then calculated the average time series with the DPABI software 

(Data Processing & Analysis for Brain Imaging, http://rfmri.org/dpabi ) (Chao-Gan & 

Yu-Feng, 2010). Secondly, the average time series of the seed was correlated with the 

time series of other voxels within either the GM or WM mask, dependent on the 

metrics of the seeds, i.e., GM mask for ddWD-G, WM mask for ddWD-W, WM mask 

for ddWD-GW, GM mask for ddWD-WG. Thirdly, as the seed was obtained from a 

ddWD metric at a certain Euclidean distance range, we only retained the FCs of the 

voxels whose Euclidean distance to any voxel of the seed was within that range. The 

resultant seed-based FCs then underwent the Fisher r-to-z transformation and 

smoothed (4mm).  

 

2.6 Statistical analysis  

We compared the differences between AD and NC on four types of WD (WD-G, 

WD-W, WD-GW, and WD-WG) and ddWD metrics (ddWD-G, ddWD-W, 

ddWD-GW, and ddWD-WG), implemented in SPM12. Using the resultant 

supra-threshold clusters as the seeds, we obtained the seed-based FCs and compared 

them between AD and NC. The controlled covariates for these comparison analyses 

were age, gender, and mean FD of head motion. The significance threshold was set at 

a voxel-level threshold of p<0.005 (uncorrected) combined with a cluster-level 
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threshold of p<0.05 (FWE-corrected), based on the Gaussian Random Fields theory to 

correct for multiple comparisons.   

3. Results  

We did not find any significant difference between AD and NC on voxel-based WD 

metrics. However, the analysis with voxel-based ddWD showed significant results. 

Additionally, to check if the GM atrophy of AD patients was located in the classic 

hippocampal region, we compared the voxel-based GM volumes between the two 

groups using the T1-weighted images, and showed the method and results in the 

supplementary materials (Table s1, Fig s2).  

 

3.1 Voxel-based ddWD-G   

Compared to NC, AD patients showed smaller ddWD-G at 0~20mm in the bilateral 

thalamus. Using this cluster as the seed, we did not find any significant difference 

between the two groups on the seed-based FCs (Table 2, Fig 4). 

 

Comparison  Metrics  Cluster  Peak Voxel 

  ddWD 

 

Range 

(mm) 

 Size PFWE  MNI Coordinates 

X   Y     Z 

T- 

value 

Brain region 

AD<NC  ddWD-G 0~20  190 0.002  -3 -15 12 -5.09 L thalamus 

        6 -18 15 -4.38 R thalamus 

Table 2. Difference between AD patients and NC on voxel-based ddWD-G. Voxel-based ddWD-G 

at nine ranges of Euclidean distance were compared between AD patients and NC, adjusted for age, 

gender, mean frame-wise displacement for head motion. The significance threshold was set at 

voxel-level p<0.005 (uncorrected) with a cluster-level p<0.05 (FWE-corrected). 

 

 

 

Fig 4. Difference between AD patients and NC on ddWD-G 
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Voxel-based ddWD-G at nine ranges of Euclidean distance were compared between AD patients and 

NC, adjusted for age, gender, mean frame-wise displacement for head motion. The significance 

threshold for ddWD-G set at voxel-level p<0.005 (uncorrected) with a cluster-level p<0.05 

(FWE-corrected). Decreased ddWD-G (0~20 mm) of AD patients were superimposed upon a series of 

axial slices of standard brain template. The color bar represents the T-value.  

 

3.2 Voxel-based ddWD-W 

Compared to NC, AD patients showed decreased ddWD-W at 20~40mm in the left 

thalamus and subthalamic nucleus. Using this cluster as the seed, we did not find any 

significant difference between the two groups on the seed-based FCs (Table 3, Fig 5). 
 

Comparison  Metrics  Cluster  Peak Voxel 

  ddWD 

 

Range 

(mm) 

 Size PFWE  MNI Coordinates 

X   Y     Z 

T- 

value 

Brain region 

AD<NC  ddWD-W 20~40  64 0.029  -17 -15 0 -2.83 L thalamus 

        -11 -15 -6 -3.59 L subthalamic nucleus 

Table 3. Difference between AD patients and NC on the ddWD-W. Voxel-based ddWD-Ws at eight 

ranges of Euclidean distance were compared between AD patients and NC, adjusted for age, gender, 

mean frame-wise displacement for head motion. The significance threshold was set at voxel-level 

p<0.005 (uncorrected) with a cluster-level p<0.05 (FWE-corrected). 

 

 
Fig 5. Difference between AD patients and NC on ddWD-W 

Voxel-based ddWD-Ws at eight ranges of Euclidean distance were compared between AD patients and 

NC, adjusted for age, gender, mean frame-wise displacement for head motion. The significance 

threshold was set at voxel-level p<0.005 (uncorrected) with a cluster-level p<0.05 (FWE-corrected). 

Decreased ddWD-W (20~40 mm) of AD patients were superimposed upon a series of axial slices of 

standard brain template. The color bar represents the T-value.  

 

 

3.3 Voxel-based ddWD-GW and seed-based FC 

Compared to NC, AD patients showed increased ddWD-GW at 20~40mm in the left 

middle temporal gyrus and middle occipital gyrus. Using this cluster as the seed, we 
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found that the seed-based FCs with the left posterior thalamic radiation were 

significantly increased in AD patients than NC (Table 4, Fig 6).  

 

Comparison Metrics  Cluster  Peak Voxel 

 ddWD/FC Range 

(mm) 

 Siz

e 

PFWE  MNI Coordinates 

X    Y Z 

T- 

value 

Brain region 

AD>NC ddWD-GW 20~40  120 0.01  -56 -65 24 4.01 L middle temporal gyrus (21) 

       -39 -69 15 3.73 L middle occipital gyrus (19) 

 Seed-based 

FC 

20~40  115 <0.001  -33 -75 -3 3.81 L posterior thalamic radiation 

Table 4. Differences between AD patients and NC on ddWD-GW and the seed-based FC. 

Voxel-based ddWD-GWs at nine ranges of Euclidean distance were compared between AD patients and 

NC. Using the resultant supra-threshold cluster as the seed, the seed-based FCs were compared 

between AD patients and NC. The adjusted covariates included age, gender, mean frame-wise 

displacement for head motion. The significance threshold was set at voxel-level p<0.005 (uncorrected) 

with a cluster-level p<0.05 (FWE-corrected).  

 

 

Fig 6. Difference between AD patients and NC on ddWD-GW and the seed-based FC 

Voxel-based ddWD-GWs at nine ranges of Euclidean distance were compared between AD patients and 

NC. Using the resultant supra-threshold cluster as the seed, the seed-based functional connectivity (FC) 

was compared between AD patients and NC. The adjusted covariates included age, gender, mean 

frame-wise displacement for head motion. The significance threshold was set at voxel-level p<0.005 

(uncorrected) with a cluster-level p<0.05 (FWE-corrected). Increased ddWD-GW at 20~40 mm A) and 

increased seed-based FCs B) of AD patients were superimposed upon a series of axial slices of standard 

brain template. The color bar represents the T-value. The spatial distribution of the seed (in red) and 

seed-based FCs (in green) was shown in C), with a sphere representing a cluster, centering on the 
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cluster’s peak voxel. The line between the seed and the cluster indicated their FC, and the thickness of 

the line represented the T-value of group comparison on FC. Abbreviation: MTG middle temporal 

gyrus, PTR posterior thalamic radiation. 

 

3.4 Voxel-based ddWD-WG and seed-based FC 

Compared to NC, AD patients showed decreased ddWD-WGs at two ranges 

(40~60mm and 60~80mm) in the left superior corona radiation, and increased 

ddWD-WGs at four ranges (20~40mm, 40~60mm, 60~80mm, and 80~100mm) in the 

left posterior thalamic radiation and right sagittal stratum (Table 5, Fig 6).   

Using the supra-threshold clusters as the seeds, we found that the FCs of two clusters 

were significantly increased in AD patients than NC. The two clusters were both 

located in the right sagittal stratum but differed on the distance ranges. The 

seed-based FCs of the cluster at 60~80mm were located in the bilateral supplementary 

motor area, left middle cingulate gyrus, right superior frontal gyrus, and right caudate. 

The seed-based FCs of the cluster at 80~100mm were located in the bilateral 

supplementary motor area, left insula, left anterior cingulate cortex, right medial 

superior frontal gyrus, right superior frontal gyrus (Table 5, Fig 7).  
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 Metrics   Cluster  Peak Voxel 

Comparison ddWD/FC Range 

(mm) 

 Size PFWE  MNI Coordinates 

X Y Z 

T-value Brain region (BA) 

AD<NC ddWD-WG 40~60  55 0.034  -33 -12 21 -4.13 L superior corona radiation 

 ddWD-WG 60~80  59 0.022  -30 -3 30 -3.68 L superior corona radiation 

AD>NC ddWD-WG 20~40  64 0.022  -39 -57 -3 3.73 L posterior thalamic radiation 

 ddWD-WG 40~60  75 0.008  -39 -57 -3 3.66 L posterior thalamic radiation 

 ddWD-WG 60~80  49 0.047  -36 -63 9 3.94 L posterior thalamic radiation 

    45 (Seed1)  0.065  36 -39 0 3.83 R sagittal stratum 

 ddWD-WG 80~100   55 (Seed2)  0.029  36 -39 3 3.87 R sagittal stratum 

AD>NC Seed1-based FC 60~80   79 0.014  15 21 -6 3.91 R caudate 

    211 <0.001  -6 -6 60 4.46 L supplementary motor area (6) 

       -6 6 36 4.08 L middle cingulate cortex (24) 

    67 0.03  21 3 57 3.93 R superior frontal gyrus (8) 

       12 -15 69 3.49 R supplementary motor area (6) 

 Seed2-based FC 80~100   64 0.038  -39 -3 9 3.61 L insula  

    569 <0.001  21 42 36 4.60 R superior frontal gyrus (9) 

       12 30 57 4.37 R superior medial frontal gyrus (8) 

       -1 39 24 4.34 L anterior cingulate cortex (32) 

    76 0.018  -6 -6 60 4.45 L supplementary motor area (6) 

       12 -15 69 3.51 R supplementary motor area (6) 

    64 0.038  27 12 57 3.83 R superior frontal gyrus (8) 
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Table 5. Difference between AD patients and NC on ddWD-WG and the seed-based FC. 

Voxel-based ddWD-WGs at nine ranges of Euclidean distance were compared between AD patients and 

NC. Using the resultant supra-threshold clusters as the seed, the seed-based functional connectivity (FC) 

was compared between AD patients and NC. The adjusted covariates included age, gender, mean 

frame-wise displacement for head motion. The significance threshold was set at voxel-level p<0.005 

(uncorrected) with a cluster-level p<0.05 (FWE-corrected). 

 

 
Fig 7. Difference between AD patients and NC on ddWD-WG and seed-based FC 

Voxel-based ddWD-WGs at nine ranges of Euclidean distance were compared between AD patients and 

NC. Using the resultant suprathreshold cluster as the seeds, the seed-based functional connectivity (FC) 

was compared between AD patients and NC. The adjusted covariates included age, gender, mean 

frame-wise displacement for head motion. The significance threshold was set at voxel-level p<0.005 

(uncorrected) with a cluster-level p<0.05 (FWE-corrected). Increased ddWD-WG metrics (in red) of 

AD patients were found at A) 20~40 mm, B) 40~60mm, C) 60~80mm, and D) 80~100mm, while 
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decreased ddWD-WD metrics (in blue) of AD patients were found at B) 40~60mm and C) 60~80mm. 

Using the two clusters in C) and D) as the seeds, we found significantly larger seed-based FCs in AD 

than NC, with the seed1-based FCs shown in E) and seed2-based FCs shown in G. The color bar 

represents the T-value (positive T-value in red, negative T-value in blue). The spatial distribution maps 

of two seeds (in red) and seed-based FCs (in green) were shown in F) and H), respectively, with each 

sphere representing a cluster, centering on the cluster’s peak voxel. The line between the seeds and the 

clusters indicated their FC, and the thickness of the line represented the T-value of group comparison 

on FC. Abbreviation: CA caudate nucleus, SMA supplementary motor area, MCC middle cingulate 

gyrus, SFG superior frontal gyrus, SS sagittal stratum, ACC anterior cingulate gyrus, SmFG superior 

medial frontal gyrus. 

 

4. Discussion 

4.1 Decreased ddWD-G 

Our additional analysis of voxel-based GM volumes demonstrated significantly 

smaller GM volumes in the hippocampus, middle and inferior temporal gyrus in AD 

than NC, consistent with the classical locations of GM atrophy of AD (Basso et al., 

2006; Nho et al., 2012). Our results showed that AD patients had decreased ddWD-G 

at 0~20mm in the bilateral thalamus than NC. The thalamus, along with the 

hippocampus and posterior cingulate cortex, were involved in the memory system 

(Aggleton, Pralus, Nelson, & Hornberger, 2016); the atrophy of bilateral thalamus 

was also observed in AD patients (Agosta et al., 2012). Dai and colleagues showed 

that the FCs between the thalamus and the neighboring regions at a short distance of 

30~40 mm were significantly smaller in AD patients than NC (Z. J. Dai et al., 2015), 

consistent with our finding.   

 

4.2 Decreased ddWD-W 

We found that AD patients had decreased ddWD-W at 20~40mm in the thalamus and 

subthalamic nucleus, compared to NC. A previous study showed decreased fractional 

anisotropy values and smaller volume in the thalamus in AD patients 

(Stepan-Buksakowska et al., 2014; Zarei et al., 2010). Neuropathological changes of 

neurofibrillary tangles and deposition of amyloid have been found in the thalamus and 

subthalamic nucleus of AD patients (Braak & Braak, 1991; Mattila, Togo, & Dickson, 
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2002). As the BOLD signal was dependent on the structural integrity, the decreased 

ddWD-W in the thalamus and subthalamic nucleus observed in our study might 

reflect the neuropathological damage in the two areas.  

 

4.3 Increased ddWD-GW and seed-based FC 

Several theories proposed a compensation mechanism in the aging brain, suggesting 

that the plastic brain could reorganize functional circuits to offset the age‐related 

neural inefficiency (Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Cappell, 2008). 

Converging evidence showed that compared to younger adults, older adults showed 

enhanced neural activity during performing various tasks (Cabeza, Anderson, 

Locantore, & McIntosh, 2002; Reuter-Lorenz et al., 2000), and increased FCs in the 

various cortical areas (Ferreira & Busatto, 2013; Tomasi & Volkow, 2012). Likewise, 

the compensation mechanism possibly existed in AD patients. Previous studies 

showed that the neural activities of AD patients were stronger than NC in the 

dorsolateral prefrontal cortex, insula, supplementary motor areas during various tasks 

(Gould et al., 2006; Z. Q. Wang et al., 2011; Yetkin, Rosenberg, Weiner, Purdy, & 

Cullum, 2006). The increased FCs in the salience and executive networks were also 

found in AD patients, which possibly compensated for cognitive efficiency decline (Y. 

F. Zhang et al., 2016). However, no prior study had used the WM network metrics to 

demonstrate the compensation phenomenon in AD patients. 

 

Our study showed that AD patients had larger ddWD-GW at 20~40mm in the left 

middle temporal and occipital cortices than NC. Using this cluster as the seed, we 

found that the FCs between this seed and the left posterior thalamic radiation were 

larger in AD patients than NC. The middle temporal and occipital cortices were 

involved in visuospatial processing, and the posterior thalamic radiation connected the 

thalamus with the visual cortices (Prvulovic et al., 2002a; Tuch et al., 2005; Vannini 

et al., 2008). Prvulovic and colleagues found that the activation of the left 
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occipito-temporal cortex was significantly higher in AD patients than NC, possibly 

indicating an attempt to offset the neural inefficiency (Prvulovic et al., 2002b). Our 

results of increased ddWD and FCs in these areas might reflect the compensation 

mechanism of AD patients in the visuospatial function. 

 

4.4 Decreased and increased ddWD-WG and seed-based FC 

Decrease ddWD-WG metrics in AD than NC 

The present study showed decreased ddWD-WG at 40~60 mm and 60~80mm in the 

left superior corona radiation in AD patients than NC. Leunissen and colleagues 

performed a tractography study that showed the superior corona radiation connected 

the basal ganglia and thalamus to the frontal areas (Leunissen et al., 2014). The 

structural integrity of superior corona radiation was correlated with processing speed 

and flexibility across age (Leunissen et al., 2014; Moeller, Willmes, & Klein, 2015; 

Radoeva et al., 2020; Sasson, Doniger, Pasternak, Tarrasch, & Assaf, 2012). In AD, 

the structural integrity of superior corona radiation was disrupted, evidenced with 

decreased fractional anisotropy (Birdsill et al., 2014; Ouyang et al., 2015; Yin et al., 

2015). Our results regarding the decreased ddWD-WGs in the left superior corona 

radiation possibly reflected the damage in this fiber bundle and deficits in relevant 

cognitive functions in AD patients. 

 

Increased ddWD-WG metrics in AD than NC 

Compared to NC, AD patients showed increased ddWD-WG at 20~40mm, 40~60mm, 

and 60~80mm in the left posterior thalamic radiation. This location was consistent 

with our prior finding of increased seed-based FCs of AD in the left posterior 

thalamic radiation, with the seed located in the left middle temporal-occipital cortices. 

As mentioned above, the posterior thalamic radiation is involved in visuospatial 

processing by connecting the thalamus and the visual cortices (Tuch et al., 2005). The 

increased ddWD-WG in the left posterior thalamic radiation possibly reflected the 
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compensation of visuospatial functional circuits in AD patients.  

 

We also found increased ddWD-WG at 60~80mm and 80~100mm in the right sagittal 

stratum in AD patients than NC. The sagittal stratum contains the middle and inferior 

longitudinal fascicles and the inferior fronto-occipital fascicle, as well as the optic 

radiation (Di Carlo et al., 2019). By connecting with the extensive areas in the frontal, 

temporal, parietal, and occipital areas, the sagittal stratum was involved in attention 

(Altieri et al., 2019), executive control, and affective process (Chan-Seng, 

Moritz-Gasser, & Duffau, 2014; Ebeling & Reulen, 1988; Mandonnet et al., 2017; 

Rayhan et al., 2013).  

 

Using the clusters in the sagittal stratum as the seeds, we found increased seed-based 

FCs in the regions of two networks, i.e., the salience network (insula and anterior 

cingulate cortex), and the executive network (medial frontal and superior frontal gyri) 

for AD patients. Several studies on the GM functional network changes in AD 

patients demonstrated increased FCs in the salience and executive networks (Agosta 

et al., 2012; K. Wang et al., 2007; Zhou et al., 2010). The salience network processed 

and integrated internal and external inputs to facilitate cognitive control, which was 

the undertaking of executive network (Seeley et al., 2007; Sridharan, Levitin, & 

Menon, 2008). The neural activities in both networks were in anti-correlation with 

default mode network whose degeneration was a hallmark of AD pathology (Fox et 

al., 2005; Greicius, Srivastava, Reiss, & Menon, 2004). A compensatory theory was 

proposed to explain such dichotomy, suggesting that accompanied by the inactive 

task-negative system, the task-positive systems became more active to offset the 

inefficient neural processes, albeit possibly inadequate eventually (Agosta et al., 2012; 

Brier et al., 2012; Dennis & Thompson, 2014). Our finding provided new evidence for 

the compensatory mechanism of AD, and identified the sagittal stratum as a key WM 

structure involved in it. 
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4.5 Useful biomarker of ddWD metrics   

In the present study, the analysis with voxel-based WD metrics did not show any 

significant results, while the analysis with voxel-based ddWD-GW and ddWD-WG 

identified the compensatory networks in AD. A recent study suggested an increased 

coupling between functional and structural connectivity networks in AD (Z. Dai et al., 

2019). The FCs between two tissues were more effective than the FCs within GM to 

capture the pathological characteristics of AD (Zhao et al., 2019). Moreover, we noted 

that the changes of ddWD were relying on the metric type, location, and Euclidean 

distance. In our study, the decreased metrics were mainly short ranged (0~40mm) 

ddWD-G/W in the thalamus; meanwhile the increased metrics were short-to-medium 

ranged (20~100mm) ddWD-GW/WG between certain WM tracts and GM areas. Dai 

and colleagues showed smaller short-ranged FC strength (30-40 mm) in the thalamus 

and prominent long-ranged FCs disruption in AD (Z. J. Dai et al., 2015). However, the 

short- and medium-ranged FCs were enhanced in the participants with subjective 

cognitive decline and AD, suggesting a compromise of the compensatory neural 

process on the benefit and cost (H. Chen et al., 2020; Liu et al., 2014).  

 

5. Limitation  

The present study had a few limitations. Firstly, the number of eligible participants of 

our study was limited, as 30 AD patients and 37 NC in the ADNI database met our 

inclusion criteria. Secondly, given that the complete neuropsychological information 

was not available for each participant from the ADNI database, we could not perform 

correlation analyses to examine the cognitive relationships of functional network 

metrics. Finally, the ddWD metrics that we employed were based on static FC. 

However, the temporal synchronization between WM and GM was dynamic, and the 

causal relationship between the two tissues would be of much interest for future 

exploration in AD patients.  
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6. Conclusion 

Compared to NC, AD patients showed both decreased and increased ddWD metrics. 

The distinct change patterns of ddWD might indicate the co-existence of 

neurodegnerative and compensatory mechanisms in AD. The change pattern of ddWD 

was dependent on the metric type, location, and Euclidean distance, as the increased 

were the short-to-medium ranged ddWD metrics between WM tracts and GM areas, 

possibly reflecting a compromise between benefit and cost.                                                                                                                               
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