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1. INTRODUCTION

In this supplementary information, we describe the experimental protocols and supplementary
results, and then the details of the theory and results from implementing the theory into models
and simulations.

2. METHODS AND MATERIALS

A. Experimental methods
The surgical procedures comply with Danish legislation and were approved by the controlling
body under the Ministry of Justice. The experimental data used in this study has been used
in a previous publication for a different purpose [1]. Methods have previously been published
in details in [2, 3]. Briefly described and adapted from previous publications [2, 4], 80 adult
red-eared turtles (Trachemys scripta elegans) of both sexes were used in this study. The animal
was placed on crushed ice for 2h. to ensure hypothermic anesthesia [3], then killed by decapitation
and blood substituted by perfusion with a Ringer solution containing (in mM): 120 NaCl; 5 KCl;
15 NaHCO3; 2MgCl2; 3CaCl2; and 20 glucose, saturated with 98% O2 and 2% CO2 to obtain
pH 7.6. The carapace containing the D4-S2 spinal cord segments (corresponding to the cervical
to lumbar regions) was isolated by transverse cuts and the cord was perfused with Ringer’s
solution through the vertebral foramen, via a steel tube and silicone gasket pressing against the
D4 vertebra. The motor nerves was cut to measure their activity and increase mechanical by
preventing movements of the limbs. The preparation was placed and glued on the back in a
chamber with constant flow of oxygenated Ringer’s solution to keep the cord submerged and
the skin tissue moist [3]. The vertebrae (D8-D10) corresponding to the lumbar segments L2-L5 in
mammals [5]. was carefully opened on the ventral side to allow access to spinal cord for insertion
of the multi-electrode arrays.

B. Electrophysiology
For monitoring the rhythmic activity and motor program state, electroneurogram recordings
(ENG) were performed with suction electrodes of the hip flexor, knee extensor nerves and the dD8-
nerve [6], i.e. a total of six motor nerves (3 from each side) at the level of D9-D10 vertebra. The
ENGs were recorded with a differential amplifier Iso-DAM8. The bandwidth was 300Hz–1kHz.
Custom–designed Silicon probes (Berg64-probe with 15µm thickness, from Neuronexus inc.)
was inserted into the lumbar spinal cord (D8, D9 and D10) in the anterior-posterior direction to
minimize damage to the white matter fiber tracks. These segments correspond to the lumbar
spinal cord in mammals [5]. A 256-channel recordings system (KJE-1001, Amplipex ltd, Szeged,
Hungary) was used to acquire the extracellular potentials of a large number of neurons, for
post-hoc polytrode spike sorting.

C. Motor network activation by cutaneous sensory input
Each scratch episode lasted approximately 20 s. A new trial was initiated after a 5 min rest. To
reproducibly activate the scratching motor pattern, a linear actuator was applied to provide
mechanical touch on the skin around the legs meeting the carapace. The somatic touch was
controlled by a function generator (TT2000, Thurlby Thandar instrument, UK) and consisted of
a ten-second long sinusoidal movement (1-2 Hz). The touch was applied on the border of the
carapace marginal shields M9-M10 and the soft tissue surrounding the hind limb, which is the
receptive field for inducing pocket scratching motor pattern. Pocket scratching was elicited on



either right or left side on the soft tissue surrounding the hind limb representing two distinct
behaviors. Further, rostral scratching behavior was elicited by similar touching of the carapace
in the more rostral location on the shields. For reviews on the various motor patterns and the
cutaneous activation see [7, 8].

D. Data analysis
All data analysis was performed in custom designed procedures either in Matlab (Mathworks,
R2020b) or Python (www.python.org). Spike sorting was performed using KlustaKwik [9]. Spike
rates were estimated by convolving the the neuronal spike times with a Gaussian kernel,
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1√
2πσ

exp
(
− t2

2σ2

)
(S1)

where σ = 250 ms, to capture the slow firing rate modulation. The firing rates were further
high–pass filtered with a 3-pole Butterworth filter using a zero–phase filter (‘filtfilt.m’) function in
Matlab, with a cut–off frequency of 0.3 Hz. To better compare phase of neuronal activity, the firing
rate amplitude was normalized to unity and the mean subtracted. To remove slow components,
the firing rates and nerve traces was digitally filtered using a 3–pole Butterworth filter in both
directions to cancel phase distortion. The fast activity was high pass filtered with cut off 5 Hz
after removing any potential action potentials. The slow activity was band–pass filtered from
0.2–5Hz.

Principal component analysis (PCA) of the multidimensional population firing rates was per-
formed on the firing rate space (neural space). The principal components Un were determined as
eigenvectors of the empirical covariance matrix C of the n firing rate traces, with the eigenvalues
λn representing the proportion of variance in the data in that each component can account for.
The eigenvectors and eigenvalues were found via:

CU = UΣ (S2)

where U = [U1U2...Un] contains the principal components (eigenvectors) Un and
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λ1 0 . . .
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. . .

0 λn

 (S3)

The PCA was performed in matlab using the function ’PCA.m’. Similar PC analysis was per-
formed on the nerve activity, although this was only 6-dimensional data (Fig. 1).

Sorting of units according motor phase The firing rate of units was sorted according motor phase
by two steps. First, the frequency of rhythmic activity was identified by estimating the peak in
the power spectrum of a representative nerve. For this purpose, the nerve activity was rectified
and smoothed and sub-sampled to have same sampling rate as the estimated firing rates. Second,
the magnitude and phase of the coherence Cohi between this nerve activity and the firing rate of
the ith neuron was estimated via [10]:

Cohi( f ) =
∑k

j=1 Rij( f )Nj( f )

k
√

SxxiSnerve
(S4)

where k is the number of multi-taper spectral estimates (k = 4). Rij and Nj are the individual
taper spectral estimates using discrete Fourier transform of the firing rate of the ith neuron, ri(t),
and the rectified and low-pass filtered nerve trace n(t):

Rij( f ) =
T

∑
t=0

ej2π f tri(t)wj(t)

Nj( f ) =
T

∑
t=0

ej2π f tn(t)wj(t)

and wj(t) is the jth taper function, the discrete prolate spheroidal (Slepian) sequences [11]. These
taper functions and the Fourier transforms were calculated using the matlab function ’dpss.m’
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and ’fft.m’. The power spectra of the firing rate ofr the ith neuron and the nerve were calculated
as Sxxi =

1
k ∑

j=k
j=1 RijR∗ij and Snerve =

1
k ∑

j=k
j=1 Nj N∗j , where the ∗ indicate complex conjugate. The

phase of the ith neuron was chosen from Cohi( f ) at the frequency where the strongest peak in
Snerve was found, which was the rhythm of the motor pattern. Based on the phase, the neurons
was sorted and plotted (e.g. Fig. 1D-E).

Significance level could be assessed in coherence if the magnitude of coherence exceeded the
following:

Coh >
√

1− p1/(nk−1) (S5)

where p indicates the level of confidence. We used 95%-confidence, i.e. p = 0.05. The degrees of
freedom is k, and since we used k = 4 tapers for spectral estimation, the confidence limit was at
0.79. The standard deviation was calculated using circular statistics as originally defined in [12]
(section 2.3.3):

σcircular =
√
−2log(R̄) (S6)

i.e. involving the natural logarithm of R̄ is the mean resultant length of all observations in polar
coordinates, hence R̄ is between 0 and 1. If the observations angles are close to each other the
resultant length is close to 1 and the σcircular is close to 0.

Nerve activity measures In some of the analysis the motor output was measured as electroneu-
rograms (ENGs) quantified using root mean square (RMS) of the traces after smoothing using
the Savitzky-Golay finite impulse response filter. The RMS is the square root of the mean of the
squared ENGs:

ENGRMS =

√
1
n
(x2

1 + x2
1 + · · ·+ x2

n) (S7)

where x1, x2, . . . , xn are the ENG measurements and n is the number of samples. The RMS values
were calculated in matlab using the procedure ‘rms.m’. The mean values reported (Fig. 2) are
the average of all 6 nerves. The error bars are the standard error of the means, i.e. the standard
deviation divided by

√
6. A pairwise statistical comparison was performed between trials each

having 6 measurements (the nerves) using the non-parametric Wilcoxon signed rank test via the
procedure ‘singrank.m’ in matlab.

The relationship between radius of PC rotation (RMS of first two components) and nerve output
(RMS) was verified using an F-statistic vs. constant model. Test statistic for the F-test on the
regression model (Fig. S5G-H), is a tests of whether the linear fit is significantly better than only a
constant term.

E. Network model: balanced sequence generator
The model consists of a network of interneurons and two or more nerve-readouts that represents
the motor commands resulting from the network activity.

Interneuron network

The interneuron network consists of N = 200 neurons out of which half are excitatory and half
are inhibitory. We model the activity of an example neuron i as a firing rate φ[gi(t), xi(t)] that
depends on an activity variable xi(t), analogous to a membrane potential, and gain variable gi(t).
We use a similar function to the one used in ([13]):

φ(gi, xi) =

 x∗(1− tanh[g(x− x∗)/x∗]), for x ≤ x∗

x∗ + xmaxtanh[g(x− x∗)/xmax], for x > x∗
(S8)

where x∗ represents the input level at which the slope of the firing rate function has its maximum
(resulting in an output firing rate of φ = x∗ Hz) and xmax is the maximum deviation (in terms of
firing rates) from x∗. Here, we set x∗=20 and xmax=50, resulting in a maximum firing rates of 70
Hz. The dynamics of the network is then determined by the equation

τẋi(t) = −xi(t) + ∑
j

Wijφ[gj(t), xj(t)] + Ie(t) (S9)

where τ=50 ms is a time constant representing the combined membrane and synaptic timescale,
W is a matrix that describes the network connectivity (see below), and Ie(t) is a time-varying
external drive that consists of a constant input and a noise term Ie(t) = I(t) + ε, where the noise
term ε is Gaussian noise with zero mean and standard deviation σ = 4.
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Network connectivity

The connectivity of the network connectivity is assumed to be sparse (as indicated by e.g. [4])
with a pair-wise connection probability C = 0.1. Excitatory (positive) weights Jex are assumed to
be equal in magnitude to inhibitory (negative) ones Jin. To ensure that the incoming connections
are balanced for each neuron we construct the connectivity matrix in the following way: We start
with a matrix in which all elements are zero. For each neuron we then select CN/2 presynaptic
excitatory neurons and assigned them the weight Jex and CN/2 presynaptic excitatory neuron
sand assigned them the weight Jex. In this way we ensure that the network is both globally
and locally balanced, i.e. the incoming synaptic weights are balanced for each neuron. The
synaptic weight is set so that the connectivity matrix W has a spectral radius such that the largest
eigenvalue λmax=1 (on average over realizations), by setting

Jex =
1√

NC(1− C)
(S10)

and Jin = −Jex [14]. This results in a network that is on the edge of instability for a uniform gain
g=1. As a default, we set g =1.2 which results in a linearly unstable network. For this study we
selected connectivity matrices for which the largest eigenvalue λmax had a non-zero imaginary
part since these networks can be expected to generate oscillatory activity (see Mathematical note
below).

Gain modulation for amplitude control

To control the amplitude of oscillations in the network model we adjusted the gain parameter g
uniformly for all neurons in the network.

Gain modulation for frequency control: "Speed-" and "brake" cells

To control the frequency of oscillations in the network we adjusted the gain gi individually for
selected neurons in the network. A simple procedure was set up to estimate the influence of each
neuron on the overall frequency: The gain gi was increased and decreased by a small amount
and the spectrum of the connectivity matrix W was calculated. Depending on whether that
imaginary part of the largest eigenvalue λmax was increased or decreased (corresponding to an
expected increased or decreased oscillation frequency) we assigned the neuron an index dubbed
the frequency "modulation capacity". A positive modulation capacity means that an increase
in gain or drive to that neuron will increase the frequency of the rhythm, and vice versa for a
negative modulation index. Since a detailed gain modulation of all neurons in the network can
be considered less biologically plausible, we selected the 10% of neurons with the largest positive
effect on the imaginary part and labelled them as ’speed’ cells, and the 10% with the largest
negative effect and labelled them ’brake’ cells. To increase the network oscillation frequency
we increased the gain of the ’speed’ cells and decreased the gain of the ’brake’ cells (Fig. 3). To
decrease the network oscillation frequency we did the opposite, i.e. we decreased the gain of the
’speed’ cells and increased the gain of the ’brake’ cells.

Gain modulation for multi-functional activity: "Switch" cells

To generate different motor behaviour from the network we identified a subset of neurons that
had a large influence on the phase distribution of the dominant eigenmode. Starting with a
default value for the gain of g =1.1 we first calculated the phase for each interneuron from the
eigenvector corresponding to the largest eigenvalue of the connectivity matrix gW. We then
increased the gain gi of each neuron i individually and calculated the effect of the changed gain
on the phase distribution of the resulting effective connectivity. The top 10% of the neurons that
caused the largest change in the overall phase distribution (calculated as the circular standard
deviation of the change in phase) were selected as ’switch’ neurons. To generate two different
distinct behaviours (see below) we set the gain of the ’switch’ neurons to two different vectors
with values between gi = 1.1± 0.3.

Nerve readout

The nerve activity was modeled using a Gaussian noise with zero mean and where the width
(standard deviation) σ(t) of the distribution depends on a threshold-linear readout from the
interneuron network:

σ(t) = [∑
i

Miφi(t)]+ (S11)
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where Mi represents the readout weights and []+ indicates that the width can only be positive.
The readout weights were constrained to respect Dale’s law, i.e. excitatory interneurons could
only have a positive weights and inhibitory interneurons could only have negative weights. We
used two different ways of setting up the linear readout:

Readout based on phase of dominant eigenmode The simplest method used was to set up to
readout-weights Mi based on the phase of each neuron i in the network oscillation. The phase of
all neurons was estimated from the eigenvector corresponding to the largest eigenvalue λmax of
the connectivity matrix W. To set up the readout for a specific nerve, we first assigned the nerve
a phase θnerve. For excitatory neurons that had a phase of θnerve ± π/8 we set Mi = 1 and set
Mi = 0 for all other excitatory neurons. To generate reciprocal inhibition in the nerve input, we
selected inhibitory neuron with a phase of (θnerve + π)± π/8 and set Mi = −1, while Mi = 0 for
all other. To set up a pair of flexor-extensor nerves with alternating activity, we set θ f lexor = pi/2
and θextensor = −pi/2.

Optimized readout for multi-functional output We first selected two distinct gain vectors for pocket
and rostral scratch, respectively (see above) and simulated network activity using these gain
vectors. To find the appropriate read-out weights, we then set up target functions for each
behaviour for the flexor- and extensor nerves that were phase-shifted by π. The pocket and
rostral scratch behaviours had different relative timing between the knee- and hip flexor nerves,
shifted by π as well as different amplitudes (Fig 4). Read-out weights were then found using a
linear least-square algorithm with bounds on the variables such that the weights Mi could only
be positive for excitatory neurons and negative for inhibitory neurons.

Limb movement model To translate the nerve readout to position of knee and foot we set up a
simple model that integrates the nerve drive to calculate the angle Θ of the foot/knee resulting
from the flexor and extensor nerves (Fig4):

τmuscleΘ̇(t) = wΘ[ f lexor(t)− extensor(t)− (Θ−Θ0)] (S12)

where τmuscle=10 ms represent the time scale with which a muscle responds to a nerve drive and
wΘ is a weight that give the force resulting from a specific drive. The last term on the right-hand
side represents a weak decay back to the initial position of the limb.

3. SUPPLEMENTARY RESULTS

Five experimental data sets that fulfilled the requirements of both successful recording from large
numbers of neurons, six motor nerve recordings and activation of distinct motor behaviors was
acquired. Summary of the parameters is shown in table S1. The electrode depths are indicated
with respect to the ventral side, which puts the electrode arrays in Rexed laminae VII-VIII, where
the motor-related inter-neurons are located.

Rotational dynamics

To substantiate the observation of rotational population dynamics (Fig. 1), we analysed several
trials (n=8) of the same animal in similar manner (Fig. S1A). The population activity had similar
sequential activity. The sorting and PCs are the same as in Fig. 1 and based on trial 3 (indicated
by "*"). The distribution of phases, which was calculated with respect to the rhythmic activity of a
motor nerve (hip flexor), revealed no clear phase-preference (Fig S1B). The population activity in
PCA space indicates similar rotational dynamics (Fig S1C). Analysing all animals in the same
manner yielded similar results: Sequential activity in the neuronal population with a continuous
cycling through all phases (Fig S2A). Hence, most of the phases were represented and there
was no distinct mode to see in the histograms (Fig S2B). The trajectory in PCA space also had
resemblance to rotation in other animals (Fig S2C). The dynamics was generally low-dimensional,
as manifested by much of the variance is represented by few principal components (Fig S2D).

Activity of excitatory and inhibitory neurons in the BSG-model

The Balanced Sequence Generator (BSG) model introduced in Fig. 2, and described above, exhibits
rotational dynamics, in accord with experimental observations. Here, we can further ask what
the respective roles of the inhibitory and excitatory populations are during this rotation. In the
traditional half-center model, excitatory (E) and inhibitory (I) populations should alternative in
activity due to reciprocal connections. In the BSG-model the behavior of the E/I populations
are different. Activating the BSG-model with a descending drive causes the neurons to oscillate

5



(Fig. S3A-B), as seen in Fig. 2. Segregating the population into the E and I and performing the
same type of sorting according to phase, there was a similar sequential activity within the E-
and I- populations (Fig. S3C-E). Therefore, looking at these populations individually, they also
demonstrate rotational dynamics (not shown). This can be considered an experimental prediction
of the BSG-model, that make it distinguishable from the half-center model. Another way of
showing these properties is by plotting what is called the eigenmode of the network activity
(Fig. S3F). Here, each dot represent the activity of a given neuron, in terms if its phase, as the
angle in the polar plot, and its firing rate as the radius in the polar plot. The activity is scattered
around the origin with many different angles and radii. The different angles indicates that there
is no particular phase preference within the population. Similar way of plotting the population
activity have been applied in previous reports [15, 16]. Segregating the eigenmode into the E-
and I-populations, show similar patterns (Fig. S3G-H). Histograms of the phase of the activity
across the neuronal population did illustrate wide phase distribution (Fig. S3I-K). This should be
compared with the experimental observed phase distributions (Figs. S1B and S2B.)

Control of force by descending input via the radius of rotation

In figure 2J-P the issue of control of muscular force, i.e. amplitude modulation of the rhythmic
nerve output, was considered both in the BSG-model and in experiments. In the BSG-model the
control of amplitude was accomplished by modulating the general drive or neuronal gain. When
an increase in drive or gain was provided to the whole network, the dynamics of the network
becomes slightly more unstable. This was seen as an expansion of the eigenvalue spectrum of the
connectivity matrix, W (Fig. S4A). When some of the eigenvalues crossed the stability line (red
vertical line) the network starts to oscillate. Sorting the neurons according to phase, a sequential
activity was revealed (same sorting throughout, Fig. S4B). As the drive increased, the amplitude
also increased. This was also seen in the PCA where the radius of rotation expanding increasing
(Fig. S4C). Some of the neurons projected to motor neurons resulting in flexor and extensor ENG
activity that also increased in amplitude (Fig. S4D). Note that this control of force did not seem to
affect the period of oscillation. This is an advantage of the BSG-model, since other models have
not been able to secure independent control of period and amplitude. The correlation between
drive, firing rates, nerve output and rotation radius is shown in (Fig. S4E-H). In the experiments,
we observed trials that had different radius of rotation (Fig. S1C) that was correlated with the
ENG amplitude (Fig. 2N-P). This was further analysed by dividing each trial up in smaller pieces
and comparing the PCA rotation and nerve activity (Fig. S5A-F). The nerve output (RMS) had a
significant correlation with the radius of PCA rotation both in the presented animal (Fig. S5G)
and across all 5 animals (Fig. S5H).

Mean and variance of population activity: BSG- model and experiment

In the above we learned that, when the descending input provide activation of the network, the
neurons starts to oscillate. The descending drive can come from many sources, and in the present
experiments the source is cutaneous sensory input that elicit a scratching response. Besides
starting the rhythmic activity, the variance in activity is also increase, in both the BSG-model and
in the experiment (Fig. S6). The variance tend to be larger than the excursions in mean firing rate
itself.

Multifunctionalism in the BSG-model and experiment

In figure 4, we observed that both the BSG-model as well as the sampled neuronal population in
the experiment, was able to participate and generate two distinct motor behaviors, the pocket- and
rostral scratching). Multifunctional circuitry in the spinal cord is well-established [8, 17, 18], but
the mechanisms of how a network accomplishes this is an open question. The same BSG-network
was able to generate these two patterns by activation of selected subset of neurons that could
shift the phase of one output motor nerve (hip extensor), thus providing two distinct motor
programs, pocket- and rostral scratching. The BSG-nerwork was in fact able to generate many
distinct motor patterns, depending on what subset of neurons that is activated by descending
drive. Here, we should a samples of the diversity in motor output by randomly selecting subsets
of neurons (Fig. S7A). This resulted in similar albeit not identical sequential activities (Fig.
S7B), and rotational population dynamics (Fig. S7C). The resulting motor nerve output of 4
nerves had various and different patterns (Fig. S7D). To compare this with the experimental
observation we first look at two trials of same behavior, and then show a trial of another behavior
below for four representative animals (Fig. S8). The population activity had a more clear and
repeatable sequence, when the animal was repeating the same motor output, compared with a
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different motor behavior. Nevertheless, there was similarity in the sequence of patterns despite
the difference in motor programs.

Other observations: Non-resetting deletions

A deletion is defined as a brief spontaneous failure of appearance of either a flexor or extensor
burst in an otherwise normal robust alternating activity [19, 20]. If the sequence of the rhythm
starts over after the deletion, it is referred to as a ‘resetting deletion’. However, if the rhythm
as a whole continue uninterrupted, the deletion is referred to as a ‘non-resetting deletion’. The
appearance of non-resetting deletions is generally considered evidence for a multi-layered organi-
zation within central pattern generators. Here, we observed the phenomenon of non-resetting
deletions in a subset of trials (n=2) (Fig. S9). The appearance of such phenomenon is in line with
previous observation in this preparation [20], and it suggest to support the notion of multiple
layers. Nevertheless, the neuronal population dynamics did not seem particularly affected by the
deletion, which suggests that if there is multiple layers, the deletion occurs in a rather small layer
or a layer located elsewhere in the spinal cord.

Table S1. Overview of data. Units column represents the number of neurons (units) that was
isolated using polytrode spike sorting. Number of trials within each behavior (ipsilateral or
contralateral pocket scratching or rostral scratching). The vertebral location indicate where the
Berg64-electrode probes were inserted. The VD (ventrodorsal) depth indicated how deep the
probes were inserted from the ventral side (preparation was upside-down).

Data set Units Behaviors Trials (ipsi-,contra-pocket, rostral) Vertebral location VD-Depth (µm)

1 226 3 14 (6/6/2) D8, D9, D10 560, 560, 750

2 249 3 10 (4/3/3) D8, D9, D10 1050, 1235, 1050

3 214 2 19 (10/9/0) D8, D9, D10 702, 694, 725

4 58 3 16 (5/5/6) D8, D9, D10 1050, 1060, 1500

5 200 3 23 (6/6/11) D8, D9 (contralateral), D10 400, 400, 400

4. MATHEMATICAL NOTE ON OSCILLATIONS IN LINEAR DYNAMICAL SYSTEM

In general the activity of a set of variables of a dynamical system can be described by a system of
ordinary differential equations where a parallel strings of data points written in compact notation
as x in a dynamical equation:

d
dt

x(t) = f (x) (S13)

where function f describes both network interactions as well as intrinsic properties of the neurons
in the network.

Let us start with a simple network model where x(t) represents a vector containing the firing
rates (relative to a baseline) of N leaky neurons that are synaptically coupled by a connection
matrix W:

τ
d
dt

x(t) = −x + gWx (S14)

Here τ is the membrane time constant and g is the slope (gain) of the firing rate function that
we assume is linear. This network has an equilibrium point, i.e. a point where d

dt x(t) = 0, at
x(t) = 0, corresponding to state in which all neurons fire at the baseline rate. After rewriting
Eq.S14 slightly to

d
dt

x(t) =
1
τ
[gW− I] · x (S15)

and defining A = 1
τ [gW− I] we see that our network has the general form of a linear dynamical

system
d
dt

x(t) = A · x (S16)

If an input (perturbation) to the network at t = 0 is in the direction of one of the eigenvectors rk
of A (i.e. population vectors for which Ark = λkrk, where λk is the corresponding eigenvalue)
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the dynamics is given by d
dt x(t) = A · rk = λkrk, which has the solution

x(t) = rkeλkt (S17)

Since any perturbation can be expressed as a sum of eigenvectors the stability of the equilibrium
point is therefore determined by the distribution of eigenvalues λk of the matrix A.

If all eigenvalues have a real part smaller than zero the activity x(t) decays back to the equilib-
rium. In contrast, if at least one eigenvalue has a real part greater than zero the activity of the
network is unstable and will grow exponentially due to Eq.S17. The crucial parameter for the
stability of the network is thus the largest real part of all the eigenvalues: Λ = maxkRe(λk).

Let us next assume that the connectivity matrix W of our simple network model is balanced, i.e.
that excitatory and inhibitory inputs are equally strong for every neuron in the network. Then the
eigenvalues spectrum of the static connectivity matrix W is distributed on a disc in the complex
plane centered at zero with a spectral radius determined by the variance of the connectivity [14].

To further analyze our simple network model it is of interest to find the eigenvalues of the
matrix A = 1

τ [gW− I]. Since the subtraction by the identify matrix I only shifts the eigenvalue
spectrum by -1, the stability criterion outlined above for the largest eigenvalue of A is equivalent
when the largest eigenvalue of the effective connectivity Weff = gW has a real part that crosses 1.
Adjusting the gain g of the firing rate function adjusts the spectral radius of Weff so that the gain
can be used as a parameter to adjust the stability of the network.

The eigenvalues of a specific realization of W may result either in a scenario where the imaginary
part of λmax is either zero or non-zero. If the imaginary part is non-zero the solution to Eq.S17 is
oscillatory while is the imaginary part is zero the solution is static.

5. SUPPLEMENTARY VIDEOS

Movie S1: PCA rotation. Movie S2: Multifunctionalism limb movement model.
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Fig. S1. Rotational population dynamics across trials in the lumbar spinal motor network
during rhythmic movement. (A) The firing rates (normalized, color coded) of 214 spinal neu-
rons in laminae VII-VIII as a function of time and sorted according to phase with respect to the
nerve activity (hip flexor). Eight consecutive trials from same experiment with a 5 min pause in
between each. (B) The phase distribution across the neuronal population. (C) The population
activity has rotational dynamics, as demonstrated by the circular motion of the first two princi-
pal components. The PCs were calculated by the data of one trial (trial 3, "*") and the applied to
the rest of the trials. Bottom scale bars represent 1000.
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Fig. S2. Rotational population dynamics in a spinal motor networks across animals. (A) The
rhythmic firing rates in populations of spinal neurons in laminae VII-VIII shown in colors as
a function of time and sorted according to phase with respect to a nerve (hip flexor). A repre-
sentative trial from 5 experiments of approximately 10 seconds demonstrate similar sequen-
tial/rotational population activity. Animal used in Fig. S1 is marked "*". (B) The corresponding
distribution of neurons having preferred phases among the population of rhythmic neurons.
(C) Population activity represented by first two principal components exhibit rotational dynam-
ics. Scale bars: 250. (D) Cumulative explained variance by principal components, indicating
the population dynamics is low-dimensional, i.e. most of the variance is captured by few com-
ponents.
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Fig. S3. Rotational ensemble activity within the excitatory and inhibitory sub-populations
in the BSG-model. (A). Activation of the motor circuit by descending drive. (B) The firing
rates of 10 sample excitatory neurons as a consequence of the descending input. (C) Sorting the
excitatory neurons according to phase of firing rates reveals a sequential activity similar to the
previously observed for all neurons. (D-E) Activity and similar sorting of the inhibitory sub-
populations reveals similar sequential and rotational dynamics within that sub-population. (F)
The network eigenmode for the whole network: Each dot represent both the phase (the polar
angle) and the peak firing rate (the radius) for a given neuron (n=200). (G-H) Similar plot for
the excitatory and inhibitory populations (I-K) the distribution of phases in linear histograms
for all neurons (I), excitatory (J) and inhibitory neurons (K). To be compared with experimental
distributions (Figs. S1B and S2B).
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Fig. S4. BSG-model: Correlation between descending drive and radius of rotation as well as
amplitude of nerve output without affecting the period. (A) For low descending drive and
neuronal gain (top), the eigenvalue spectrum does not have any eigenvalues that cross the
stability line (broken vertical line). As the drive increases (downward direction) the spectrum
expands and eigenvalues cross the stability line. For larger drive the eigenvalues cross the
stability line farther. (B) The associated population dynamics (sorted firing rates) exhibit os-
cillation of increasing magnitude as the drive increase. (C) The rotational dynamics also has
a radius that increases with increasing drive. (D) The resulting motor nerve output is also in-
creasing in amplitude. (E) Descending drive (gain) versus the population firing rate (RMS),
radius of rotation in PC space (F) and amplitude of nerve output (flexor RMS) (G). The radius
of rotation (PC1 RMS) vs. the nerve amplitude (flexor RMS).

15



Fig. S5. Radius of rotation correlates with nerve output in experiment. (A) Sample trial
where the population activity was divided up in pieces with the corresponding nerve out-
put (B). (C) The PC manifolds had rotation with varying radius. (D-F) other pieces with same
organization. (G) The RMS of the nerve activity versus the RMS of the two first principal com-
ponents for various pieces of activity had a significant correlation. (H) The R2 values for all
animal tested (n=5). *: F-statistic of rejection of no trend at p«0.01. (F) Scale bar: 1000.
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Fig. S6. Variance of population firing rate increase during network output: model and exper-
iment. (Aa) The flexor/extensor nerve output from the BSG-network. (b) The sorted neuronal
population firing rate (n=400 neurons) with rotational dynamics. (c) Color map of the popula-
tion firing rate. (d) Mean (red) and variance of the population activity. (B) Same organization as
in (A), but for experimental data. Animal no. 3 trial 8.
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Fig. S7. Multifunctionalism in the BSG-model. (A) Five examples of specific activa-
tion/modulation of selected neurons in the network ("activation profiles"). The top profile
has a an even distribution, whereas all the below profiles has selective modulation of specific
neurons. (B) The ensemble activity as a result of the activation profile show a sequential activ-
ity, with similar but not identical sequence of activity. (C) The first two principal components,
based on the top activation profile, all exhibit rotational dynamics, albeit with different radius
and trajectories. (D) the output motor patterns associated with the different activation profiles
and ensemble activities.
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Fig. S8. Resemblance of sequential network activity across trials and distinct motor behav-
iors. (A) Experiment 1: (Top) First trial of a motor behavior (pocket hindlimb scratching) with
the rhythmic firing rates in populations of spinal neurons shown in colors as a function of time
and sorted according to phase, with the 6 motor nerves below to indicate the motor behavior.
(Middle): Second trial, and same behavior as shown in top traces. (Bottom): A different motor
behavior (rostral hindlimb scratching). (B-D) Same as in A but the different experiments.
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Fig. S9. Two instances of non-resetting deletions. (A) First trial of a motor behavior (pocket
hindlimb scratching) with the rhythmic firing rates in populations of spinal neurons shown
in colors as a function of time and sorted according to phase, with the 6 motor nerves below
to indicate the motor behavior. A deletion is observed in the hip extensor nerve recording
(red arrow) whereas the hip flexor (bottom trace) seems to continue and combine two cycles
although with a small decrease. (B) Another trial of same behavior with a deletion occurring
at similar time point (red arrow). Again, the population dynamics seems unaffected by the
deletion.
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