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2 

ABSTRACT 32 

Protecting areas for climate adaptation will be essential to ensuring greater opportunity for 33 

species conservation well into the future. However, many proposals for protected areas 34 

expansion focus on our understanding of current spatial patterns, which may be ineffective 35 

surrogates for future needs. A science-driven call to address the biodiversity and climate crises 36 

by conserving at least 30% of lands and waters by 2030, 30x30, presents new opportunities to 37 

inform the siting of new protections globally and in the U.S. Here we identify climate refugia 38 

and corridors based on a weighted combination of currently available models; compare them to 39 

current biodiversity hotspots and carbon-rich areas to understand how 30x30 protections siting 40 

may be biased by data omission; and compare identified refugia and corridors to the Protected 41 

Areas Database to assess current levels of protection. Available data indicate that 20.5% and 42 

27.5% of identified climate adaptation areas (refugia and/or corridor) coincides with current 43 

imperiled species hotspots and carbon-rich areas, respectively. With only 12.5% of climate 44 

refugia and corridors protected, a continued focus on current spatial patterns in species and 45 

carbon richness will not inherently conserve places critical for climate adaptation. However, 46 

there is ample opportunity for establishing future-minded protections: 52% of the contiguous 47 

U.S. falls into the top quartile of values for at least one class of climate refugia. Nearly 27% is 48 

already part of the protected areas network, but managed for multiple uses that may limit their 49 

ability to contribute to the goals of 30x30. Additionally, nearly two-thirds of nationally identified 50 

refugia coincide with ecoregion-specific refugia suggesting representation of nearly all 51 

ecoregions in national efforts focused on conserving climate refugia. Based on these results, we 52 

recommend that land planners and managers make more explicit policy priorities and strategic 53 

decisions for future-minded protections and climate adaptation.  54 
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INTRODUCTION 62 

The spatial heterogeneity of shifting climatic conditions presents challenges and 63 

opportunities for large-scale biodiversity conservation, as impacts to habitat and species can vary 64 

significantly across the landscape (Baldwin et al. 2018). In North America, nearly half of species 65 

are already undergoing local extinctions (Wiens 2016), which are, in part, due to increasing 66 

temperatures and decreasing precipitation (Roman-Palacios and Wiens 2020). In the contiguous 67 

U.S. (CONUS), the average annual temperature has risen 1.2-1.8 °C since the beginning of the 68 

20th century, with the largest net increases occurring in western regions (Vose et al. 2017). 69 

Precipitation patterns are also shifting, with increases in central and northern United States and 70 

large reductions in the Southeast and West (Fei et al. 2017, Wuebbles et al. 2017). As the effects 71 

of climate change accelerate, local biodiversity will either need to adapt or make effective use of 72 

the changing landscape; species may find locations that serve as refugia from extreme or rapid 73 

climatic changes or shift their ranges to better-suited habitat (Neilson et al. 2005, Keppel and 74 

Wardell-Johnson 2012, Franks and Hoffman 2012, Román-Palacios and Wiens 2020). 75 

Identifying and conserving important refugia habitats and dispersal routes will be one critical 76 

step in jointly addressing the biodiversity and climate crises for the longer term (Pörtner et al. 77 

2021). Therefore, it is important to understand what conservation planning opportunities exist in 78 

those areas where climate shifts are less extreme or more stabilized. While expansion of the U.S. 79 

protected areas network has been identified as an important solution to lowering extinction risk 80 

and overall ecosystem degradation (Stolton et al. 2015, Gray et al. 2016, Dinerstein et al 2017, 81 

2019), efforts generally focus on present species distributions and may not effectively reflect 82 

future needs (Elsen et al. 2020, Maxwell et al. 2020). 83 

Calls to address the joint biodiversity and climate crises by protecting at least 30% of 84 

Earth by 2030, known as “30x30” (Dinerstein et al. 2019), have been endorsed by government 85 

and conservation leaders at global (United Nations 2020), national (Biden 2021, U.S. DOI et al. 86 

2021), and state levels (e.g., Newsom 2020). While the specifics of carrying out such a plan have 87 

yet to be established (Büscher et al. 2016, Rights and Resources Initiative 2020, Simmons et al. 88 

2021), efforts would hypothetically conserve areas needed to sustain essential ecological services 89 

and reverse extinction trends (Locke 2013, Dinerstein et al. 2017). Translating these 90 

commitments into national policy may prove challenging since the protected areas network is 91 

incongruous with locations that could effectively maximize biodiversity conservation (Scott et al. 92 
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2001, Jenkins et al. 2015, Venter et al. 2018) or climate mitigation (Buotte et al. 2019, Melillo et 93 

al. 2015). However, it is unclear how well the current network and 30x30 goals can ensure the 94 

conservation of climate-resilient habitat in the coming decades as climate change continues to 95 

accelerate. 96 

Climate-resilient habitat can largely be delineated into refugia and corridors. Generally, 97 

refugia protect native species and ecosystems from negative effects of climate change in the 98 

short term by remaining relatively buffered from climatic changes over time (Morelli et al., 99 

2020). For example, steep canyons and north-facing slopes are sheltered from solar radiation and 100 

heat accumulation (Stralberg et al., 2020a) and wet areas like wetlands and riparian zones can 101 

remain moist during droughts (Morelli et al., 2016; Stralberg et al., 2020a). Refugia can be 102 

identified by various approaches which rely on at least one of three main concepts: topodiversity, 103 

climate exposure, and climate tracking (Michalak et al. 2020). Topodiversity models are based 104 

on physical habitat data and highlight regions with varied land cover, climate, soil, and 105 

topographic conditions, which may produce microrefugia (Ackerly et al. 2010, Groves et al. 106 

2012, Carroll et al. 2018). Climatic exposure models are based on projected climatic changes and 107 

represent the degree of climate change likely to be experienced by a species or locale (Saxon 108 

2011, Groves et al. 2012). Lastly, climate tracking models are based on one or more 109 

representative climate models and measure the proximity and accessibility of future suitable 110 

climatic conditions (Hamann et al. 2015, Michalak et al. 2018).  111 

However, to survive in the face of ongoing and worsening climate change impacts, 112 

species may need to disperse longer distances to adapt and find more suitable habitat (Roman-113 

Palacios and Wiens 2020). Climate corridors are relatively climate-stable areas that can facilitate 114 

long-distance dispersal (Stralberg et al., 2020b) by connecting current and future habitat. 115 

Network theory principles can be used to model climate corridors by delineating single paths or 116 

diffuse flow between climate analogs. Depending on model inputs, corridors may emphasize 117 

movement toward cooler latitudes and topographies, along rivers and streams, and/or through 118 

areas providing better habitat and less stress from disturbances (McGuire et al. 2016, Stralberg 119 

2020b, Carroll et al. 2018, Littlefield et al. 2017). 120 

Given the urgency of the biodiversity and climate crises, there is a pressing need to 121 

include potential climate refugia and corridors in the conservation planning process. However, 122 
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some challenges exist. First, a growing body of available spatial data for identifying areas 123 

important for climate adaptation means that planners must reconcile a diversity of data (Carroll 124 

and Ray 2021). Previous research indicates that identified priority areas can be highly dependent 125 

on the datasets used as each represents different mechanisms and highlights different landscapes 126 

(Michalak et al. 2020, Carroll and Ray 2021). Second, the majority of prioritization frameworks 127 

for protected areas expansion focus on current spatial patterns in biodiversity, landscape 128 

connectivity and other key factors (Cushman et al. 2009, Lookingbill et al. 2010, Dickson et al. 129 

2013, Belote et al. 2016, McClure et al. 2016). Focusing on the current state of the environment 130 

may result in critical omissions in protected areas siting for longer-term persistence of some 131 

target species (Monzón et al. 2011, Elsen et al. 2020). If this is the case, consideration of future 132 

conditions may complement efforts to preserve current biodiversity and ecosystem service 133 

hotspots, thereby reducing the threat of mass extinctions and accompanying biosphere 134 

degradation. Last, other omissions may occur if identification and prioritization of areas for 135 

climate resilience happen at a national scale: national-level analyses do not necessarily provide 136 

adequate representation of all natural ecoregions, communities, and species (e.g. Kraus and 137 

Hebb). Taking additional steps to identify refugia at multiple scales may help increase ecosystem 138 

representation and protections for the unique species assemblages and services they harbor.  139 

Proper identification, protection, and management of climate-informed refugia and 140 

corridors are essential to ensuring greater opportunity for species conservation via migration and 141 

adaptation. While previous research and policy discussion surrounding the protected areas 142 

network has identified areas important to conserving the current state of biodiversity and natural 143 

carbon storage (Scott et al. 2001, Myers et al. 2000, Gray et al. 2016, Buotte et al. 2020), to our 144 

knowledge, there are no analyses of coincidence of these with areas important to species climate 145 

adaptation. To help close this knowledge gap, we:  146 

1. identify areas in the contiguous U.S. critical to climate adaptation based on 147 

coincidence and complementarity among refugia (national and ecoregion-specific) 148 

and corridors models; 149 

2. compare the spatial distribution of identified climate refugia and corridors with 150 

current biodiverse and carbon-rich areas; and 151 

3. quantify the extent to which climate refugia and corridors are considered protected. 152 
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Step #2 guides our understanding of how protections siting under the 30x30 framework may be 153 

biased by data omission, and step #3 helps to assess the current level of protection for identified 154 

climate refugia and distinguish where stronger management might be needed. Our research 155 

contributes to a growing literature demonstrating the importance of incorporating climate-156 

informed data in place-based land protection policy and practices and helping to identify specific 157 

areas for conservation. While these analyses are not meant to serve as a map of priority lands for 158 

conservation, they help frame a discussion on operationalizing 30x30 for strategic, future-159 

minded conservation decisions.   160 

METHODS 161 

For this analysis, we focus on spatial datasets based on climate models or topography to 162 

identify areas that could serve as important refugia or migration routes for the contiguous U.S. 163 

(CONUS; Table 1). All datasets using climate models are informed by an ensemble of three to 164 

seven General Circulation Models (GCMs) for emission scenario Representative Concentration 165 

Pathway (RCP) 4.5 and projected for the time period 2071-2100. RCP 4.5 requires that carbon 166 

dioxide (CO2) emissions start declining by approximately 2045 to reach roughly half of the 167 

levels of 2050 by 2100 (IPCC 2014). Recent studies suggest that near-term CO2 emissions - an 168 

indicator of likely outcomes under current policies - agree more closely with RCP 4.5 than more 169 

extreme scenarios (e.g., RCP 8.5, International Energy Agency 2019, Hausfather and Peters 170 

2020). All datasets have been resampled and aligned at 1km resolution. We combined datasets 171 

for refugia (n = 8) and corridors (n = 2) separately, accounting for differences in underlying 172 

mechanisms in modeling method and landscape conservation principles.  173 

Climate refugia 174 

We initially analyzed relationships between datasets through a principal components 175 

analysis where each component helps define a refugia class. As with principal components, 176 

datasets were assigned to a class based on the sign and size of the eigenvector. However, to 177 

avoid a tradeoff in refugia identification within a single class, all datasets within the class were 178 

required to load together and in the same direction on a principal component. In addition to 179 

presenting three separate classes, we weighted datasets based on their principal component 180 

loadings and combined them in a single dataset so that no one refugia class has a greater weight 181 
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in identifying climate refugia locations. All datasets were normalized to a scale of 0 to 1 prior to 182 

being combined. Based on the relationships between refugia datasets, the weighted combination 183 

was calculated as:  184 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑅𝑒𝑓𝑢𝑔𝑖𝑎185 

= 𝑍𝐵𝑖𝑟𝑑 𝑀𝑎𝑐𝑟𝑜𝑟𝑒𝑓𝑢𝑔𝑖𝑎 +  𝑍𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 +  𝑍𝐸𝑐𝑜𝑡𝑦𝑝𝑖𝑐 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦186 

+  𝑍𝐿𝑎𝑛𝑑 𝐹𝑎𝑐𝑒𝑡 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 +  𝑍𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + (𝑍𝐶𝑙𝑖𝑚𝑎𝑡𝑖𝑐 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑟𝑦 ∗ 2.5)187 

+ (𝑍𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 2.5) + (𝑍𝑇𝑟𝑒𝑒 𝑀𝑎𝑐𝑟𝑜𝑟𝑒𝑓𝑢𝑔𝑖𝑎 ∗ 5) 188 

We analyzed locations in the 80th percentile (i.e., the top 20% of values) of the distribution of 189 

values for the combined data and for each refugia class separately. Additionally, we quantified 190 

the degree of overlap in refugia classes. 191 

In addition to CONUS-level analyses, we extracted refugia values for each ecoregion 192 

separately (EPA level II; EPA 2006), classifying the locations that fell into the top 20% of the 193 

distribution as areas of interest. The result was a map of ecoregion-specific refugia, ensuring 194 

equal representation of all ecoregions relative to size. Results from the national- and ecosystem-195 

scale analyses were compared and contrasted using spatial overlays. 196 

Climate corridors 197 

We extracted raw data values on connectivity and climate flow (The Nature Conservancy 198 

2020) for areas that were identified as ‘climate-informed’ corridors based on the categorical 199 

connectivity and climate flow dataset (The Nature Conservancy 2020). The remaining values 200 

were rescaled to fall between 0 and 1. A second climate corridor dataset (Carroll et al. 2018) was 201 

similarly rescaled. We then combined these two datasets and analyzed locations in the 80th 202 

percentile of the distribution of combined values. 203 

Analyses 204 

We used spatial overlay analysis to describe the extent to which the current protected 205 

areas network covers identified climate refugia (based on national- and ecoregion-scales) and 206 

corridors in CONUS. We quantified the extent to which identified refugia would be protected by 207 

the 30x30 framework if it were to solely focus on current areas of high imperiled species 208 
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biodiversity and ecosystem carbon. Data on protected areas are from the PADUS 2.1 database 209 

(USGS 2020). We use U.S. Geological Survey’s Gap Analysis Program (GAP) codes, which are 210 

specific to the management intent to conserve biodiversity. GAP 1 and 2 areas are managed in 211 

ways typically consistent with conservation. Areas assigned a GAP 3 code are governed under 212 

multiple-use mandates that may include biodiversity priorities but may also include incompatible 213 

activities such as forestry and mining, and GAP 4 areas lack any conservation mandates or such 214 

information is unknown as of 2020. As such, GAP codes are a natural system for identifying 215 

possible policy paths to achieving 30x30 and advancing wildlife conservation in the United 216 

States. Imperiled species richness was assessed from publicly available range data (USGS GAP, 217 

International Union of Conservation of Nature - IUCN, and U.S. Fish and Wildlife Service) for 218 

species defined as ‘imperiled’ (1,923 species). These include species that are listed or under 219 

consideration for listing under the ESA, have a NatureServe G1-3 status and/or are in critically 220 

endangered, endangered or vulnerable IUCN categories. Modeled total ecosystem carbon is 221 

based on a high-resolution map of global above- and below-ground carbon stored in biomass and 222 

soil (Soto-Navarro et al. 2020). We used ArcPro v2.5 (ESRI, USA) to produce maps and run 223 

analyses, with maps using the Albers Equal Area Conic projection. All area statistics are based 224 

on GIS estimates using this projection. 225 

 226 

RESULTS 227 

Identifying refugia and corridors  228 

Climate refugia datasets generally correlated well with others of similar methodology or 229 

concept; three resulting classes generally represent topodiversity, climatic stability, and tree 230 

macrorefugia (Tables 1 & S1). The main exception was for climate-based datasets with species 231 

information, where bird macrorefugia correlated with datasets based on topodiversity, but tree 232 

macrorefugia was the sole dataset in its class (Table S2). The three refugia classes exhibited very 233 

little overlap with one another at the national scale: while 52% of CONUS falls into at least one 234 

of the refugia classes, 7.5% falls into refugia identified by 2 or more classes (approx. 568,000 235 

km2, Fig. S1). Additionally, two classes (tree macrorefugia and climatic stability) were strongly 236 

and negatively correlated with one another. Locations in the combined refugia layer that were 237 

within the top 20% of the distribution of values represent these overlaps and are used for 238 

reporting the remainder of statistics here.  239 
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34% of CONUS is identified as a climate refugia or corridor under one or more datasets 240 

(approx. 2,652,000 km2, Fig. 1). Climate refugia generally follow the Appalachian, Rocky, and 241 

Cascade Mountain Ranges with additional refugia in the Ozarks, Ouachitas, southern Sierra 242 

Nevadas and along the California coast. Climate corridors are somewhat complementary to 243 

national-scale refugia, with 28.9% of their area (444,501 km2) overlapping identified refugia 244 

locations. Overlaps occur in the central Appalachians, Pacific Northwest, and portions of the 245 

Rockies, Sierra Nevadas and Ozarks. Corridors that do not overlap with refugia are key in 246 

connecting parts of the Great Plains and Mexico borderlands to refugia and in connecting refugia 247 

to northern locales, particularly in New England, Midwest, Crown of the Continent and between 248 

northern California and the Cascades. 249 

Using a stratified ecoregion approach resulted in refugia that were highly coincident with 250 

lands identified in the national scale analysis, with 63% of all national refugia overlapping with 251 

ecoregion refugia (Fig. 2). Overlaps between the two cover 12% of CONUS total land area 252 

(approx. 949,000 km2). All refugia combined (both from national and ecoregion-specific 253 

analyses) equal 26% of the total CONUS land area (approx. 2.1 million km2). Locations that 254 

were emphasized in the ecoregion-specific approach include temperate and semi-arid prairies 255 

and places along the eastern coast. 256 

Comparison to 30x30 objectives: biodiversity and carbon 257 

Refugia and corridors are generally complementary on the landscape to areas of current 258 

high biodiversity and carbon storage values (Fig. 3a&b). There is some overlap between current 259 

biodiversity hotspots (i.e., top quartile of imperiled species richness values) and identified 260 

national-scale refugia (36.8%) and corridors (9.3%; Table 2). Overlaps are generally 261 

concentrated in western California and Appalachia/Ozarks regions. Overlap between carbon-rich 262 

areas is greater in extent overall (refugia overlap = 32.5% and corridor overlap = 27.2%) and 263 

similar in spatial pattern with greater overlap in northern areas: northern Appalachians, Crown of 264 

the Continent and Pacific Northwest. When combining the two objectives (biodiversity and/or 265 

carbon), 45.0% (approx. 1,000,000 km2) of the land area representing at least one of these 266 

objectives is also identified as part of a climate refuge or corridor. 267 
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Taking an ecoregion-specific approach to comparing refugia, corridors, biodiversity, and 268 

carbon results in less coincidence in current and future values: 22.0% and 21.7% of stratified 269 

refugia overlap with ecoregion-specific biodiversity hotspots and carbon-rich areas, and 17.5% 270 

and 26.1% of corridors overlap with ecoregion-specific biodiversity hotspots and carbon-rich 271 

areas, respectively (Fig. 3c&d; Table 3).   272 

Current protections for refugia and corridors 273 

Overall, 12.5% of the combined network of refugia and corridors is managed consistently 274 

with biodiversity conservation (i.e., GAP 1 or 2; 4.2% of CONUS or approx. 325,000 km2; Fig. 275 

4). The rest of this network falls on GAP 3 (26.5%) or GAP 4 (69.3%) lands, which represents 276 

29.2% of CONUS (approx. 2,280,000 km2). Proportions are similar when analyzing protection of 277 

national-scale climate refugia and corridors separately (Table 2). Ecoregion-specific refugia fall 278 

more heavily in GAP 4 categories with 12.2% of area on lands managed for biodiversity 279 

conservation and 19.6% on those managed for multiple uses (Fig. 4, Table 3). Finally, the entire 280 

set of CONUS lands representing either biodiversity conservation (GAP 1 or 2) or 30x30 281 

objectives (biodiversity hotspots and/or carbon-rich areas) coincides with 44.5% of the national 282 

climate refugia and corridor network. 283 

 284 

DISCUSSION 285 

Currently, the U.S. protected areas network and emerging conservation policy objectives 286 

largely fail to represent valuable climate refugia and corridors. While there is some overlap with 287 

30x30 objectives, solely using recent imperiled species ranges and carbon stores as conservation 288 

criteria will not inherently protect climate-resilient lands. In the most protective situation - if all 289 

biodiversity hotspots and carbon-rich areas were to be considered for strong conservation 290 

mandates (e.g., GAP 1 or 2 protections) - a majority (55.5%) of identified climate refugia or 291 

corridors would still be left unprotected. The omission of landscapes for climate adaptation from 292 

planning initiatives could inhibit the potential for longer-term conservation successes. As 293 

decision makers evaluate protected areas expansion, it will be important to prioritize lands and 294 

waters that will allow species to adapt and persist in a changing climate. While simply protecting 295 
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currently biodiverse or carbon-rich areas may not ensure the preservation of climate corridors 296 

and refugia, conserving corridors and refugia will benefit imperiled species in biodiversity-rich 297 

hotspots and promote carbon sequestration. This is particularly true in parts of the country (e.g., 298 

Appalachia and western California) where hotspots are not directly covered by climate corridors, 299 

but adjacent to them, providing opportunities for migration to refugia or future climate analogs.  300 

With over half of the contiguous U.S. identified as at least one type of climate refugia 301 

(topodiversity, climatic stability, or tree macrorefugia), many opportunities exist for decision 302 

makers interested in future-minded conservation. Our analysis supports previous work 303 

suggesting potential trade-offs in using one refugia type over other in refugia identification: 304 

approaches based on topodiversity favor environmentally complex regions, whereas climatic 305 

exposure and tree macrorefugia highlight lands beyond mountain ranges and areas of similar 306 

complexity (Michalak et al. 2020). Through our ensemble approach to refugia identification we 307 

both highlight the complementary information provided by these approaches (Belote et al. 2018) 308 

and simplify varied complex datasets for greater interpretability. A weighted combination of the 309 

datasets puts less pressure on the user to choose between mechanisms and on the decision maker 310 

to have a deep understanding of the methodology when interpreting maps. However, clarification 311 

of a specific refugia type may help states or local municipalities working at varying scales to set 312 

different priorities for contributing to national refugia protections based on local environments 313 

and community needs. In addition, taking a combined approach results in high overlap with an 314 

ecoregion-stratified approach, suggesting representation of nearly all ecoregions in national 315 

efforts focused on conserving climate refugia. 316 

Currently unprotected climate refugia and corridors represent 29.2% of CONUS, of 317 

which 38% is federally managed. Given the extent and distribution of land managers, protecting 318 

valuable climate adaptation areas can help contribute to the 30% target numerically and 319 

meaningfully. However, there will need to be a concerted effort by land managers in all 320 

jurisdictions and leadership across jurisdictional boundaries.  321 

Lands Administered by Government and Tribal Entities 322 

Public lands can make significant contributions to achieving 30x30. The federal lands 323 

estate is particularly expansive (20% of CONUS, 86% of PADUS; CRS 2020, Rosa and Malcom 324 
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2020) and federal land management agencies are required to varying degrees to prioritize 325 

wildlife and habitat conservation. Currently, the majority (86%, representing 18.4% of CONUS) 326 

of GAP 3 lands are managed by federal agencies, suggesting that substantial gains can be made 327 

in focusing on existing statutory authorities to advance climate-smart conservation on these 328 

lands. Refugia with GAP 3 coverage present abundant opportunities to strengthen management 329 

mandates for climate adaptation, also adding to achievability of full linkage protection. Of GAP 330 

3 lands, over half are managed by the Bureau of Land Management (BLM) and another third by 331 

the U.S. Forest Service (Rosa and Malcom 2020). Both agencies are guided by multiple use 332 

management mandates that empower them to designate and manage lands to enhance protection 333 

of areas recognized as having important conservation values (respectively, the Federal Land 334 

Policy and Management Act of 1976, National Forest Management Act of 1976). The agencies 335 

can capitalize on existing land and water designation authorities - like wilderness designation 336 

and BLM “areas of critical environmental concern” - to increase protection for climate refugia 337 

and corridors.  338 

Expansion of GAP 1 and 2 lands to cover more refugia and corridors can also ensure 339 

greater conservation for climate adaptation. The U.S. Fish and Wildlife Service manages the 340 

National Wildlife Refuge System (NWRS) to conserve and restore wildlife, fish, and plants and 341 

their native habitats. Because refuge lands are expressly managed to conserve species and 342 

habitat, they offer a high level of federal land protection. Pursuing the acquisition of lands 343 

fundamental to species’ survival and sustainability, including climate refugia and climate 344 

corridors, to establish new refuges would be consistent with the purview of NWRS, future-345 

minded conservation and 30x30 objectives. However, since federal land acquisition and 346 

management decisions are often politically contentious, this may be a less feasible option for 347 

conserving the additional 440 million acres of land needed to reach the 30% target. 348 

State governments also manage significant acreage (approximately 4% of the U.S.), 349 

including state forests, wildlife management areas, game lands, and natural area preserves. State 350 

parks, or portions thereof, may also contribute to conservation refugia and corridors, but are 351 

often categorized as GAP 4 (i.e., absent or unknown mandates for conservation). States can 352 

contribute to 30x30 by upgrading GAP status and management of undeveloped state lands that 353 

can contribute to climate adaptation. Furthermore, through the State Wildlife Action Planning 354 
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(SWAP) process, each state is required to describe “locations and relative condition of key 355 

habitats and community types essential to conservation of species” (USFWS & AFWA 2017). 356 

Results from this and other studies can help inform this process, and be a resource as states 357 

increasingly update their SWAPs to include climate changes (NFWPCAN 2021).   358 

Tribal nations hold over 56 million acres in trust by the Bureau of Indian Affairs and may 359 

manage their lands in ways that afford more substantive protections for lands and species given 360 

their lower rates of habitat modification (Lee-Ashley et al. 2019). As many indigenous peoples 361 

are deeply connected to local culturally important resources such as plant and animal species, 362 

they are also impacted by climate-driven alterations in ecosystem processes and biodiversity 363 

(Jantarasami et al. 2018). A long history of managing and observing their lands has provided 364 

many indigenous communities with valuable knowledge and experience to inform land 365 

management and planning for climate adaptation and resilience (BIA 2018). Respectful inclusion 366 

of indigenous systems of knowledges and perspectives “can inform our understanding of how the 367 

climate is changing and strategies to adapt to climate change impacts” (NFWPCAN 2021). As 368 

such, government-to-government relationships will be important in addressing climate adaptation 369 

needs for species and peoples and may include cross-landscape management, tribal involvement 370 

in federal and state planning, and more. The Landscape Conservation Cooperative (LCC) 371 

program developed by Interior offers one such mechanism to advance landscape-scale 372 

protections and coordinate climate-related land conservation activities among Tribal Nations, 373 

federal agencies, state, local, and tribal governments, and other stakeholders (NASEM 2016).  374 

Private and Non-Governmental Organization Lands 375 

As most land in the United States is privately owned, conservation efforts on private 376 

lands will be critical to expanding protected areas. 62% of the refugia and 56% of corridors fall 377 

outside of the protected areas network (GAP 4), but this only represents 20% of CONUS. This 378 

suggests that well-targeted, voluntary acquisitions and easements could translate to large gains in 379 

private lands conservation. Land trusts are uniquely positioned to scale up conservation on 380 

private lands to achieve the 30x30 target and, when strategic with land protections, help protect 381 

these areas and fill important gaps in the nation’s 30x30 network.  382 
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In addition to the role of land trusts, private working lands also have an important role to 383 

play in achieving 30x30 (Garibaldi et al. 2020, American Farmland Trust 2021). The Farm Bill 384 

conservation programs administered by the U.S. Department of Agriculture will be particularly 385 

important to achieving these goals (Theoharides 2014). For instance, the Agriculture 386 

Conservation Easement Program (ACEP) could be targeted to lands identified as climate refugia 387 

or connectivity areas and specify sensitive wetland habitats and riparian areas as eligible lands 388 

for wetland easements, as these will be increasingly valuable for supporting wildlife and 389 

ecosystem services as the climate changes (Theoharides 2014, Lewis et al. 2019). Longer-term 390 

(30 year) ACEP contracts that offer a commitment to consider re-enrollment of the same or 391 

similar land at contract expiration should be encouraged to ensure enduring conservation 392 

measures. Additionally, Environmental Quality Incentives Program (EQIP) and the Conservation 393 

Stewardship Program (CSP) can better reflect climate adaptation needs by assigning higher 394 

ranking points practices designed to build resilient natural resources, promote ecosystem 395 

services, and increase the adaptive capacity of the entire agro-ecosystem to climate change 396 

(Theoharides 2014). 397 

Limitations 398 

In order to enhance species’ resilience in the face of growing climate and biodiversity 399 

crises, corridors and refugia must be preserved across both lands and waters. Due to some 400 

limitations of data and our analyses, we recommend against siting protections based on the 401 

coincidence of current biodiversity/carbon hotspots and climate refugia/corridors alone. For one, 402 

complementarity of species assemblages is not accounted for in using species richness. As a 403 

result, there may be biases toward conserving certain taxa. Additionally, while we included 404 

aquatic species in our biodiversity metric, and wetland/riparian areas are part of some 405 

topographic measures of refugia/corridors, we did not explicitly include aquatic refugia. At this 406 

time, there is no complete national dataset to represent aquatic refugia. Because cold-water 407 

aquatic organisms like salmon, trout, hellbenders, spring salamanders, and various 408 

macroinvertebrates are among the most vulnerable taxa to climate change, future analyses should 409 

focus on identifying freshwater refugia and corridors in regions where sufficient data exists (e.g., 410 

brook trout refugia in the northeast U.S. (Letcher et al., 2017), stream temperature scenarios in 411 

the western U.S. (Isaak et al., 2016), and Springs Online (https://springsdata.org), a collaborative 412 
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database of spring locations and spring-dependent species in the Western U.S. and northern 413 

Mexico). Like terrestrial refugia, protection and restoration (where needed) of these areas should 414 

be focused at multiple scales, including protecting recharge areas, forests, and wetlands in the 415 

watershed (Stranko et al., 2008; Doyle and Shields, 2012; Jayakaran et al., 2016; Merriam et al., 416 

2019), and restoring floodplains, riparian buffers and stream geomorphology (Sullivan and 417 

Watzin, 2009; Sweeney and Newbold, 2014; Favata et al., 2018; Merriam et al., 2019). Given the 418 

international scope of 30x30 and the benefits of larger-scale connectivity, future work on climate 419 

adaptation in 30x30 implementation should look beyond terrestrial habitats and political 420 

boundaries to cover all ecosystems of North America.  421 

Our analysis demonstrates the need to make climate adaptation a more explicit objective 422 

in conservation planning for addressing the biodiversity crisis. Without direct consideration for 423 

climate refugia and corridors, a 30x30 implementation focused on current species ranges and 424 

carbon stocks may be ineffective for the longer term persistence of species. The key to 425 

operationalizing 30x30 and subsequent efforts will be growing a protected areas network that 426 

ensures a long-term commitment to biodiversity and climate. By incorporating climate refugia 427 

and corridors, the U.S. can work to protect places that will continue to serve wildlife and human 428 

populations now and in the future. 429 

 430 
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TABLES AND FIGURES 830 

Table 1.  Description of refugia datasets. Classes are based on results from a principal 831 

components analysis where component 1 (topodiversity) explained 33.8%, component 2 (climate 832 

stability) explained 15.9% and component 3 (tree macrorefugia) explained near 13.8% of 833 

variation. See SI for additional details. 834 
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Table 2.  Overlays of national-level datasets representing protected areas, carbon stores, 836 

biodiversity, climate refugia, and climate corridors. Values represent the percent of each top line 837 

item (column) that falls within each row. Values in parentheses are the percent of total CONUS 838 

area represented by the overlay.  839 

% of top line items 
that fall into each 
of the following: 

GAP 1 & 2 GAP 3 
Top 20% 
Carbon 

Top 20% 
Biodiversity 

Top 20% 
Refugia 

Top 20% 
Climate-
Informed 
Corridors 

GAP 1 & 2 100 (7.5)  0.0 (0.0)  12.7 (2.4)  3.7 (0.7)  13.3 (2.6)  13.8 (2.7)  

GAP 3 0.0 (0.0)  100 (16.6)  20.2 (3.9)  5.1 (1.0)  25.0 (4.8)  30.4 (6.0)  

Top 20% Carbon  32.8 (2.4)  23.3 (3.9)  100 (20.0)  28.8 (5.6)  32.5 (6.2)  27.2 (5.4)  

Top 20% 
Biodiversity 

12.3 (0.7)  8.7 (1.0)  32.0 (5.6)  100 (20.0)  30.8 (5.9)  11.2 (1.8)  

Top 20% Refugia 34.2 (2.6)  29.0 (4.8)  32.8 (6.2)  36.8 (5.9)  100 (20.0)  28.7 (5.7)  

Top 20% Climate-
Informed 
Corridors 

36.5 (2.7)  36.3 (6.0)  25.8 (5.4)  9.3 (1.8)  29.6 (5.7)  100 (20.0)  
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Table 3.  Overlays of ecoregion-specific datasets representing protected areas, carbon stores, 855 

biodiversity, climate refugia, and climate corridors. Values represent the percent of each top line 856 

item (column) that falls within each row. Values in parentheses are the percent of total CONUS 857 

area represented by the overlay.  858 

% of top line 
items that fall 

into each of the 
following: 

GAP 1 & 2 GAP 3 
Top 20% 
Carbon 

Top 20% 
Biodiversity 

Top 20% 
Refugia 

Top 20% 
Climate-
Informed 
Corridors 

GAP 1 & 2 100 (7.5)  0.0 (0.0)  1.1 (2.2)   8.6 (1.5)  12.2 (2.4)  13.8 (2.7)  

GAP 3 0.0 (0.0)  100 (16.6)   17.9 (3.5)  17.7 (3.1)  19.6 (3.8)  30.4 (6.0)  

Top 20% Carbon  29.8 (2.2)   21.2 (3.5)   100 (20.0)  28.0 (4.9)   21.7 (4.2)  26.1 (5.2)   

Top 20% 
Biodiversity 

18.4 (1.5)  17.5 (3.1)  26.4 (4.9)   100 (20.0)  22.0 (4.2)  17.5 (3.3)  

Top 20% Refugia 31.4 (2.4)  22.7 (3.8)  21.3 (4.2)  24.2 (4.2)  100 (20.0)  25.9 (5.1)  

Top 20% 
Climate-
Informed 
Corridors 

36.5 (2.7)  36.3 (6.0)   26.3 (5.2)  18.8 (3.3)  26.7 (5.1)  100 (20.0)  
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 869 

Figure 1.  A) National-scale and B) ecoregion-specific refugia (top 20% of all three refugia 870 

classes combined) with climate-informed corridors (ecoregions are outlined in black). The full 871 

raster datasets were used to identify refugia in national analyses. Ecoregion-specific analyses 872 

employ a stratified approach, where refugia are identified for each ecoregion separately before 873 

combining them together. Ecoregions are outlined in black in map B. 874 
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 875 

Figure 2.  Coincidence between national-scale and ecoregion-specific refugia. The full raster 876 

datasets were used to identify refugia in national analyses. Ecoregion-specific analyses employ a 877 

stratified approach, where refugia are identified for each ecoregion separately before combining 878 

them together. Ecoregions are outlined in black. 879 
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 880 

Figure 3.  Overlap between national-scale (A,B) and ecoregion-scale (C,D) refugia and corridors 881 

with carbon stocks (B,D) and biodiversity hotspots (A,C). The full raster datasets were used to 882 

identify refugia in national analyses. Ecoregion-specific analyses employ a stratified approach, 883 

where refugia are identified for each ecoregion separately before combining them together. 884 

Ecoregions outlined in black in maps C and D. 885 
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 886 

Figure 4.  Overlap between national-scale refugia (A), climate corridors (B), and either refugia 887 

or corridors (C) with the protected areas database of the US (PADUS). GAP codes are specific to 888 

the management intent to conserve biodiversity; GAP 1 and 2 areas are managed in ways 889 

typically consistent with conservation and GAP 3 areas are governed under multiple-use 890 

mandates that may include biodiversity priorities but may also include incompatible activities. 891 
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