
 1 

Alternate patterns of temperature variation bring about very different disease outcomes at 1 
different mean temperatures 2 
 3 

Charlotte Kunze1,2*, Pepijn Luijckx2*#, Andrew L. Jackson2, Ian Donohue2 4 

  5 

1
Institute for Chemistry and Biology of the Marine Environment [ICBM], Carl-von-Ossietzky 6 

University Oldenburg 7 

2Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland 8 

 *equal contribution 9 

# communicating author 10 

 11 

Keywords: Climate change, temperature variation, heatwave, host, parasite, disease, Daphnia, 12 

Ordospora colligata. 13 

 14 

  15 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458468doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458468
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract 16 

The dynamics of host-parasite interactions are highly temperature-dependent and may be modified by 17 

increasing frequency and intensity of climate-driven heat events. Here, we show that altered patterns 18 

of temperature variance lead to an almost order-of-magnitude shift in thermal performance of host and 19 

pathogen life history traits over and above the effects of mean temperature and, moreover, that 20 

different temperature regimes affect these traits differently. We found that diurnal fluctuations of ±3°C 21 

lowered infection rates and reduced spore burden compared to constant temperatures in our focal host 22 

Daphnia magna exposed to the microsporidium parasite Ordospora colligata. In contrast, a three-day 23 

heatwave (+6°C) did not affect infection rates, but increased spore burden (relative to constant 24 

temperatures with the same mean) at 16°C, while reducing burden at higher temperatures. We 25 

conclude that changing patterns of climate variation, superimposed on shifts in mean temperatures due 26 

to global warming, may have profound and unanticipated effects on disease dynamics. 27 
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Introduction 28 

One of the major challenges of the 21st century is understanding how infectious diseases, 29 

which have profound ecological and epidemiological impacts on human (Hotez et al., 2014), 30 

agricultural (Chakraborty et al., 2011) and wildlife (Harvell et al., 2019) populations, will be affected 31 

by climate change. It is now well-established that the interaction between hosts and their pathogens is 32 

sensitive to temperature (Kirk et al., 2020; Rohr et al., 2013). For example, disease transmission (Ben-33 

Horin et al., 2013), host immunity (Dittmar et al., 2014; Rohr et al., 2010) and pathogen growth 34 

(Gehman et al., 2018; Kirk et al., 2018) can increase with temperature, while other host-pathogen life 35 

history traits such as lifespan and fecundity can decrease (Altizer et al., 2013). The interaction 36 

between temperature and multiple host and pathogen life history traits highlights the inherent 37 

complexity of temperature effects on infectious diseases. Indeed, each host or pathogen trait may have 38 

a unique dependency on temperature and it is their combined effect (that is, R0, disease outbreak, 39 

virulence) that is often of interest. However, while a growing body of theoretical (Kirk et al., 2020; 40 

Rohr et al., 2013) and empirical (Ben-Horin et al., 2013; Dallas et al., 2016; Gehman et al., 2018; Kirk 41 

et al., 2020; Zhang et al., 2019) studies have quantified the effect of rising mean temperatures on host 42 

and pathogen traits (such as, for example, within-host growth (Kirk et al., 2018), pathogen 43 

transmission (Kirk et al., 2019) and epidemiology (Gehman et al., 2018; Shocket et al., 2018)), the 44 

influence of variable temperature regimes such as heat waves and temperature fluctuations remains 45 

unresolved (Claar et al., 2020; Rohr et al., 2013). 46 

Climate change is predicted to increase not only mean temperatures, but also temperature 47 

fluctuations and the frequency and intensity of extreme weather events (Schär et al., 2004; Vasseur et 48 

al., 2014). Such changes in temperature variance have the potential to modify host-pathogen dynamics 49 

(Franke et al., 2019; Rohr et al., 2013). For instance, diurnal temperature fluctuations have been 50 

shown to increase malaria transmission at the lower end of the thermal range (Paaijmans et al., 2010), 51 

while short-term temperature fluctuations led to reduced transmission success due to lower filtration 52 

rates in a Daphnia-pathogen system (Dallas et al., 2016). The effect of extreme heat events on host 53 

and pathogen traits is also highly variable and may depend on the magnitude, duration and intensity of 54 

the applied heatwave (Landis et al., 2012; Schreven et al., 2017; Zhang et al., 2019). In a parasitoid-55 
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insect interaction, a heatwave of 5 °C resulted in greater parasitoid development while a 10 °C 56 

increase reduced parasitoid growth (Schreven et al., 2017). These apparent contrasting results in 57 

response to variation in temperature (here used to refer both to fluctuating temperature regimes and 58 

extreme heat events), imply that alternate temperature regimes or exposure to temperature shifts of 59 

different magnitudes will have distinct impacts on host-pathogen interactions. Indeed, whether all 60 

temperature variation acts in the same way or leads to different disease outcomes has been identified 61 

as a key open question in the field (Rohr et al., 2013). 62 

Here, we examine the effect of different types of temperature variation on host-pathogen 63 

interactions across a broad range of mean temperatures. Specifically, we used the Daphnia magna—64 

Odospora colligata host-pathogen system to test experimentally how temperature variation alters the 65 

thermal performance of both the host and the pathogen across their natural temperature range. 66 

Daphnia are a well-established ecological model system (Miner et al., 2012) used frequently in 67 

climate change studies (Dallas et al., 2016; Hector et al., 2019; Kirk et al., 2020), while Ordospora 68 

transmission is representative of a classical environmentally-transmitted pathogen (that is, it mimics 69 

diseases such as SARS-CoV-2 and Vibrio cholerae) and meets the assumptions of conventional 70 

epidemiological models (e.g. infection following mass action (Kirk et al., 2019), continuous shedding 71 

of infectious particles (Ebert, 2005) and little or no spatial structure within host populations). Our 72 

microcosm experiment comprised three distinct temperature regimes: constant temperatures and two 73 

variable temperature regimes with diurnal fluctuations of ±3 °C and three-day heatwaves of six 74 

degrees above ambient, all replicated over the natural temperature range of the model system (that is, 75 

10-28 °C, Fig. 1). These variable temperature regimes were selected to mimic naturally-occurring 76 

temperature events in habitats our study organisms encounter naturally (that is, small ponds and rock 77 

pools) (Jacobs et al., 2008; Kuha et al., 2016).  78 

During the experiment we measured host longevity, fecundity, infection status and the number 79 

of O. colligate spores within the host gut (see Methods for details). All measurements were conducted 80 

on individually-kept Daphnia with up to 18 replicates per measurement. To compare the three 81 

different temperature regimes (that is, constant, diurnal fluctuations, heatwave; Fig. 1) we fitted a Beta 82 

function (a function that can be used to capture thermal performance curves (Dowd et al., 2015)) using 83 
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a Bayesian framework. The advantage of using the Beta function is that each of its parameters has a 84 

clear a biological meaning, where Fm is the fitness at optimal performance for the fitted host or 85 

parasite trait, Topt is temperature at optimal performance, and Tmin and Tmax are, respectively, the critical 86 

minimum and maximum temperatures over which fitness of the trait becomes unviable. 87 

  88 

 89 

Fig. 1. The three temperature regimes used in the experiment. Our experimental design comprised 90 

seven constant temperature regimes with temperatures ranging from 10 °C to 28 °C, five variable 91 

temperature regimes mimicking diurnal temperature fluctuations of ±3 °C around the mean, and four 92 

heatwave regimes where temperatures were identical to the equivalent constant treatment except 93 

during a three-day period between days 20 and 23 when temperatures were raised by 6 °C. Constant 94 

temperature regimes were replicated 12 times (7 ×12 = 84 individuals), while in the variable 95 

temperature regimes the number of replicates was increased to 18 as we expected increased mortality 96 

in these treatments (5 ×18 =90 and 4 ×18 = 72, respectively for the fluctuating and heatwave 97 

regime). Non-exposed controls, which received a placebo infection, were included for all treatments. 98 

All animals were terminated after day 27 and fitness estimates were collected within three days.  99 

 100 
Results 101 

  Diurnal temperature fluctuations narrowed the thermal performance curve for infectivity 102 

compared with constant temperatures (Fig. 2A). The maximum temperature at which spores were able 103 

to cause infections was 5 °C lower under fluctuating temperatures than under constant temperatures 104 

(Fig. 2A; Tmax = 25 °C for fluctuating vs. 30 °C for constant, confidence intervals for Tmax do not 105 
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overlap). The thermal performance curve for infectivity under the heatwave, where temperatures were 106 

raised by 6 °C for three days and then returned to constant temperature (Fig. 1), was almost identical 107 

to that under constant temperature (all confidence intervals overlap, Fig 2A & Table S2). However, 108 

unlike the constant temperature regime, the heatwave did not differ from the fluctuating regime, as 109 

estimates for the maximum temperature had broad confidence intervals, likely caused by the lack of 110 

data at the higher temperatures. Remaining parameter estimates of the Beta Equation were similar for 111 

the three temperature regimes, with the highest rate of infection at 19 °C, a maximum infection rate of 112 

~95% infection and no infections under 10 °C (Fig. 2A & Table S2; confidence intervals overlap for 113 

Topt, Fm and Tmin). Thus, while diurnal fluctuations led to less infection at higher temperatures, a 114 

heatwave did not alter infection rates. 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

 124 

Fig. 2. Thermal performance curves of host and parasite life history traits across our three 125 

temperature regimes. (a) Infection rates of Ordospora in its Daphnia host. (b) Mean number of spore 126 

clusters in infected Daphnia at the end of the experiment. (c) Reproductive output of the host when 127 

exposed to Ordospora (for a comparison of unexposed and exposed individuals see Fig. 3). For all 128 

panels the constant temperature regime is in blue, the diurnally fluctuating regime in yellow and the 129 

heatwave in red. Points present the observed mean values for the measured traits and dashed lines 130 

provide the fit for the Beta Equation. 95% confidence intervals of minimum, optimal and maximum 131 

temperature estimates (respectively, Tmin/Topt/Tmax) are shown above the x-axis. The estimate for the 132 

optimal value of the life history trait (Fm) and its 95% confidence interval is displayed to the right of 133 

A                                                 B                                                C          
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each panel. Significant differences (non-overlapping 95% confidence intervals) in parameter 134 

estimates are highlighted with an asterisk. Error bars on data points indicate standard error. Beta 135 

Equation parameter estimates displayed in this figure can be found in tables S2-S4. 136 

 137 

  Spore burden of the two variable temperature regimes deviated from both the constant 138 

temperature regime and from each other (Fig. 2B). Consistent with infection rates, daily temperature 139 

fluctuation led to a lower maximum temperature (by ~3 °C) for parasite growth within the host, 140 

resulting in a narrowed thermal performance curve for burden compared with the other temperature 141 

regimes (Fig 2B & Table S3, non-overlapping confidence intervals for Tmax). This is supported further 142 

by the consistently lower spore burden for the fluctuating regime when compared with the constant 143 

temperature regime except near the optimum temperature of 19 °C, where spore burdens of both 144 

temperature regimes were similar (confidence intervals for Topt and Fm overlap). While infection rates 145 

and burden showed a similar thermal performance for diurnal fluctuations (both narrowing), the 146 

response to the heatwave differed between infection and burden (Fig. 2). Compared to the constant 147 

temperature regime spore burden in the heatwave showed a shift in the optimum temperature (from 148 

19.4°C to 15.7°C), and an increase in the number of spore clusters (Fig. 2B, confidence intervals for 149 

Topt, and Fm do not overlap). However, while spore burden was different at ~16 °C, at ~19°C spore 150 

burden was nearly identical for all three temperature regimes. Moreover, due to the opposite effects at 151 

16 °C for both variable temperature regimes (that is, a narrowing of performance under fluctuating 152 

temperatures, exacerbation under heatwave) spore burden at this temperature differed by almost an 153 

order of magnitude (that is, 86 vs. 737 spore clusters).  154 

Host fitness was generally reduced when exposed to Ordospora spores or when experiencing variable 155 

temperature regimes. Daphnia exposed to the parasite had lower reproductive success near the 156 

optimum temperature (~20 °C) compared to unexposed controls (non-overlapping confidence intervals 157 

for Fm) and lost between 8% (constant) and 24% (diurnal fluctuation) of reproductive output (Fig. 3). 158 

Comparing host performance among the different temperature regimes shows that exposed animals in 159 

variable temperatures had lower reproductive success (Fig. 2C & Table S4, non-overlapping 95% 160 

intervals for Fm), with a small shift (1.1 °C) in their thermal optimum under the heatwave regime (Fig. 161 
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2C, non-overlapping 95% intervals for Topt). Unexposed animals also had lower fitness when 162 

experiencing the heatwave (Fig. 3, non-overlapping 95% intervals for Fm) and, while the reproduction 163 

at the optimal temperature of the unexposed animals experiencing diurnal fluctuations was lower, 164 

confidence intervals overlapped with the constant temperature regime (Fig 3). The host response to the 165 

variable temperature regimes differed from that of the pathogen (compare thermal performance curves 166 

for the heatwave and diurnal fluctuating regimes between figures 2A, B & C). While host performance 167 

was reduced (lower Fm) under both variable temperature regimes, parasite traits showed either a 168 

narrowing of the performance curve (for diurnal fluctuations) or no effect and greatly increased 169 

performance (for infection and burden under the heatwave).  170 

 171 

 172 

Fig. 3. Reproductive success in exposed and unexposed Daphnia. Exposed Daphnia (dotted lines) 173 

produce less offspring than unexposed individuals (solid lines). Lines are the fitted Beta Functions for 174 

the different temperature regimes (constant temperature regime in blue, the diurnally fluctuating 175 

regime in yellow and the heatwave in red). 95% confidence intervals of reproductive output (Fm) are 176 

shown to the right, and the temperature where it is at its optimum (Topt), are shown above the x-axis. 177 

Significant differences in parameter estimates of the Beta Function are highlighted with an asterisk. 178 

Estimates for minimum and maximum temperatures are not displayed as we used restrictive priors. 179 

Error bars on data points indicate standard error. Beta Equation parameter estimates displayed in 180 

this figure can be found in table S4. 181 
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 182 
Discussion 183 

We show that not only does temperature variation alter the thermal performance of host and 184 

pathogen life history traits in a unique way, driving a shift in performance up to order-of-magnitude 185 

over and above the effect of mean temperature, but that the type of variation and the mean temperature 186 

at which it occurs are also critical. Indeed, each of the life history traits we measured was affected 187 

differently by thermal variation. While variable temperature regimes affected host and pathogen 188 

performance, the direction and strength of this depended both on the type of variation and the mean 189 

temperature to which it was applied. With global warming altering the mean and variance of 190 

temperature around the world, how this affects diseases and their dynamics is a critical outstanding 191 

question (Claar et al., 2020; Rohr et al., 2013). Our results demonstrate that the combined effect of 192 

changing temperature mean and variance can be highly complex, and may alter the vulnerability of 193 

host populations (Harvell et al., 2019), affect the evolution of host and parasites (Buckley et al., 2016) 194 

and, therefore, impede our ability to accurately predict future disease outbreaks. 195 

Infection rates were reduced at higher temperatures when animals experienced diurnal 196 

fluctuations but not after experiencing a heatwave. In Daphnia, filtration rates determine the contact 197 

rate between host and pathogen, and a reduction in filtration can thus lead to reduced levels of 198 

infection (Hall et al., 2010). As filtration rates of Daphnia magna decline at higher temperatures (Kirk 199 

et al., 2019), average infection rates under diurnal temperature fluctuations would thus be expected to 200 

be lower due to the non-linear nature of the thermal performance curve (that is, Jensen’s inequality 201 

(Dowd et al., 2015)). In addition, infection probability in our study system decreases sharply when 202 

temperatures surpass 22 °C (Kirk et al., 2019), reducing infection rates under fluctuating temperatures 203 

that exceed this temperature (again, due to Jensen’s inequality). In systems where immune function 204 

depends on temperature (e.g. insects, mosquitos and ectotherms in general (Paaijmans et al., 2013), 205 

heatwaves may interact with the immune system in complex ways (Murdock et al., 2012), particularly 206 

when the heatwave occurs early in the infection process. However, given that our heatwave occurred 207 

twenty days post-infection and that Daphnia are not known to recover from infection (Ebert, 2005), 208 

the effect of the heatwave on established infections may have been limited. Absence of an effect of a 209 

heatwave on infection rates has also been found for a pipefish-trematode host-parasite system (Landis 210 
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et al., 2012). However, though the heatwave did not affect infection rates in our experiment, it did 211 

affect parasite burden.  212 

Our results show that different types of temperature variation can alter parasite burden and 213 

thus affect pathogen growth within the host. While diurnal temperature fluctuations and heatwaves 214 

brought about an almost order of magnitude difference in spore burden at a mean temperature of 16 215 

°C, no differences were observed at ~19 °C. Generally, similar to infection rates, the thermal 216 

performance curve for spore burden narrowed under fluctuating temperatures, as predicted by 217 

averaging over the non-linear thermal performance curve (Denny, 2017; Dowd et al., 2015). The 218 

impact of diurnal temperature fluctuations on parasite fitness has been studied previously, with 219 

multiple studies suggesting a shift in the thermal performance of parasite fitness under fluctuating 220 

temperatures (Dallas et al., 2016; Duncan et al., 2011; S. E. Greenspan et al., 2017; Paaijmans et al., 221 

2010). Indeed, our findings that Ordospora has a narrower thermal performance for spore burden and 222 

infectivity under fluctuating temperatures adds to a growing body of evidence (Dallas et al., 2016; S. 223 

E. Greenspan et al., 2017; Hector et al., 2019; Roth et al., 2010) suggesting that estimates and 224 

predictions that ignore temperature variation may over- or underestimate disease burden and 225 

prevalence (Sasha E. Greenspan et al., 2017; Raffel et al., 2013; Rohr et al., 2013). Moreover, with 226 

almost an order-of-magnitude difference between both our two variable temperature regimes at some 227 

— though not all — temperatures, our results highlight that both the context and type of temperature 228 

variance needs to be considered when trying to understand how pathogen performance may be 229 

affected by climate change. 230 

Spore burden increased following heatwaves, but the effect depended on the mean 231 

temperature to which the heatwave was applied. Indeed, the heatwave had either higher, similar or 232 

lower spore burden compared to the equivalent constant temperature regime. It was shown recently in 233 

a fish-tapeworm host-parasite system that parasite growth, egg production and the number of first-234 

stage larvae increased after a one-week exposure to higher temperatures (increase up to 7.5 °C) 235 

(Franke et al., 2019). Our findings corroborate that heatwaves associated with climate change may, 236 

under some conditions, increase disease burden. Indeed, we found a considerable increase in spore 237 

burden and a shift in the optimum temperature following a three-day increase in temperature of 6 °C at 238 
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16 °C. Although some studies have reported increased disease susceptibility following heatwaves 239 

(Dittmar et al., 2014; Roth et al., 2010), others found no effect on immune function (Stahlschmidt et 240 

al., 2017) or reduced disease performance after exposure to high temperatures (Fayer et al., 1998). Our 241 

results may explain these conflicting findings — we found that the effects of a heatwave on spore 242 

burden are contingent on the mean temperature to which the heatwave is applied. That is, our results 243 

show that the heatwave has either lower or higher burden than equivalent constant temperatures. This 244 

context-dependency of heatwaves is supported further by studies in both plant-endoparasite (Schreven 245 

et al., 2017) and herbivore-parasitoid (Zhang et al., 2019) systems, which showed that the effect of a 246 

heatwave on parasite traits depended on the amplitude of the extreme event. As highlighted by a recent 247 

review (Claar et al., 2020), effects of warming events on disease traits remain difficult to generalise, 248 

and more studies and insight into underlying principles and mechanisms is needed to forecast the 249 

effect of extreme heat events on disease dynamics. Indeed, while it is clear from our experiment that a 250 

short, three-day increase in temperature can drastically alter the thermal performance curve for 251 

parasite burden, the exact mechanism(s) underlying this change remains unidentified. 252 

Differences in acclimatisation speeds between hosts and pathogens may explain the observed 253 

increase in burden of Ordospora at 16 °C following a heatwave. According to the temperature 254 

variability hypothesis (Raffel et al., 2013; Rohr et al., 2013), parasites, which have faster metabolic 255 

rates due to their smaller size, should acclimatise more rapidly to changing temperatures than their 256 

larger hosts. In unpredictable variable environments, such as our heatwave regime, parasites thus 257 

should have an advantage over their hosts. Moreover, host resistance may also decrease as a result of a 258 

trade-off between the energy demand for acclimatisation and immunity (Nelson et al., 1996). That 259 

varying temperature can lead to higher infection prevalence has been established in Cuban tree frogs, 260 

red-spotted newts and abalone (Ben-Horin et al., 2013; Raffel et al., 2013). While this hypothesis may 261 

explain our observation of high burden for the heatwave near 16 °C, it does not, however, explain why 262 

the response depends on the mean (that is, lower performance at higher temperatures). Though 263 

Ordospora should have an overall advantage under the temperature variability hypothesis, the realised 264 

advantage may be smaller as its thermal range is more restricted than its host (Kirk et al., 2018). The 265 

heatwave may thus cause proportionally more stress in the parasite than the host at high temperatures, 266 
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consistent with the thermal stress hypothesis, which suggests that a shift in temperature may reduce 267 

performance of either host or parasite (Paull et al., 2015). Indeed, that thermal stress can affect host 268 

and pathogen performance has been well supported (Gehman et al., 2018; Kirk et al., 2019; Schreven 269 

et al., 2017; Zhang et al., 2019). Alternatively, the observed increase in parasite burden due to 270 

heatwaves may be system-specific and not explained by differences in acclimatisation speed. 271 

Estimates show that growth rates of Ordospora increase by a factor of five between 20 °C and 24 °C 272 

before declining again (Kirk et al., 2018). While the optimal performance of Ordospora occurs around 273 

19 °C, due to the balance of thermal performance curves of other host and pathogen traits (e.g. 274 

mortality, infectivity, etc), a temporary increase to 22 °C, as occurred under our heatwave at 16 °C, 275 

may thus have exacerbated pathogen growth, particularly if different traits react differently to a 276 

temperature disturbance, which may have disrupted the balance between host and parasite. 277 

Changes in host fecundity in response to temperature variation differed to the response of both 278 

parasite traits (that is, infectivity and spore burden) we measured. While infectivity and burden had 279 

either a narrower thermal performance curve or showed a heightened and shifted peak, temperature 280 

variation lowered reproductive output of the host near the thermal optimum. A reduction in 281 

reproductive output of the host under variable temperatures is consistent with previous work both on 282 

Daphnia (Schwartz et al., 2016) and in other systems (Craig et al., 1983; Uvarov et al., 2011). 283 

Similarly, a reduction in host fecundity due to parasitism is well established (Ebert, 2005). Infection 284 

may also reduce the thermal tolerance of the host (Hector et al., 2019), which would explain the small 285 

shift of the thermal optimum for host reproduction under the heatwave regime. While host responses 286 

are thus consistent with expectations, the distinct responses to the different temperature regimes of the 287 

different life history traits we measured (that is, host fecundity, parasite infectively and parasite 288 

burden) highlight that the effects of temperature variation on host-pathogen systems are complex. 289 

When trying to model disease dynamics and outbreaks, we often include a multitude of host and 290 

pathogen traits, each with their own thermal dependencies. Recent studies have made advances in 291 

predicting disease growth and spread under rising mean temperatures, integrating approaches and 292 

identifying mechanisms that can capture and predict the thermal performance of host and pathogen 293 

traits within epidemiological models (e.g., metabolic theory) (Kirk et al., 2020). It remains to be seen, 294 
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however, whether such modelling frameworks can be extended to incorporate temperature variation, 295 

especially considering the distinct responses for the life history traits we measured to each of our 296 

variable temperature regimes. 297 

 Our study shows that temperature variation alters the outcome of host-pathogen interactions in 298 

complex ways. Not only does temperature variation affect different host and pathogen life history 299 

traits in a distinct way, but the type of variation and the mean temperature to which it is applied also 300 

matters, with up to an order of magnitude change between diurnal fluctuations in temperature and 301 

extreme heat events. With global warming altering both the mean and variance of temperature around 302 

the world, we can thus expect to see unanticipated changes in disease dynamics of host-pathogen 303 

systems. Indeed, extreme temperature events like El Niño have been linked to disease-driven collapses 304 

of keystone predators (Harvell et al., 2019), increases in diseases such as dengue and cholera 305 

(Anyamba et al., 2019), and shifts in the geographic distribution of pathogens (Claar et al., 2020). 306 

While temperature variation can thus affect disease dynamics in human, wildlife and livestock 307 

populations — with potentially devastating economic and health consequences (Altizer et al., 2013) — 308 

the complexity of the effects of temperature and its variation currently limits our ability to move 309 

beyond system-specific predictions, in particular for extreme temperature events (Claar et al., 2020). 310 

We conclude that improving our mechanistic understanding of the role of temperature variation on 311 

disease dynamics, and exploring the generality of its effects and how it affects thermal performance 312 

curves of both hosts and parasites (Claar et al., 2020), are critical to predicting disease dynamics in a 313 

warming world.  314 

 315 

Materials and Methods 316 

Study system 317 

The crustacean Daphnia magna plays a key role in ecosystem functioning. Daphnia are filter 318 

feeders that consume planktonic algae and other microorganisms, thus promoting water transparency 319 

and helping to prevent algal blooms (Miner et al., 2012). They are a key food source for planktivorous 320 

fish and thus constitute a major part in the food web (Ebert, 2005) and play a key role in nutrient 321 

cycling (Elser et al., 2000). Over its entire range, Daphnia is affected by a broad variety of pathogens. 322 
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Here, we use Odospora colligata, a widely distributed microsporidium parasite that is only known to 323 

infect Daphnia magna. This gut parasite has been recently used as a model to understand how changes 324 

in mean temperatures under global warming may affect host-parasite systems (Kirk et al., 2020). 325 

However, effects of temperature variance remain unstudied. Daphnia become infected when they 326 

accidently ingest water borne spores of Ordospora while filter feeding. After successful establishment, 327 

spores divide intracellularly in the gut epithelium of D. magna (Larsson et al., 1997) until they form a 328 

cluster of 32 to 64 spores. Spores are then released either to the environment or go on to infecting 329 

neighbouring cells after O. colligata lyses the cell.  330 

 331 
Experimental set-up 332 

In the laboratory, we established water baths with temperatures ranging from 10 – 28 °C. Each 333 

bath was regulated with a temperature controller (Inkbird ITC-308) that interfaced with cooling 334 

(Hailea HC300A) and heating (EHEIM JÄGER 300W) units. Pumps (Micro-Jet Oxy) were used to 335 

create constant flow, which ensured equal temperature distribution within the water baths. Each bath 336 

held up to 99 microcosms and was kept under natural lighting conditions (16:8 light:dark). 337 

Temperature and light intensity were recorded using HOBO loggers which were housed in the spare 338 

microcosms. Each microcosm was filled with up to 80 ml of Artificial Daphnia Medium (ADaM, 339 

modified to use only 5% of the recommended seleniumdioxide concentration (Klüttgen et al., 1994)). 340 

To test for the effect of changing both mean temperature and patterns of temperature variation 341 

in our host-parasite system, we created three different temperature regimes: one constant and two 342 

variable temperature regimes, the latter comprising diurnal temperature fluctuations and a heatwave 343 

(Fig. 1). In the constant temperature regime, individual Daphnia were kept at one of seven 344 

temperatures for the whole experimental period (that is, 10, 13, 16, 19, 22, 25 and 28 °C). The diurnal 345 

fluctuation regime comprised five temperature levels, which experienced the same mean temperature 346 

as the constant regimes but with a fluctuation of ±3 °C every 12 hours (that is, 10 – 16 °C, 13 – 19 °C, 347 

16 – 22 °C, 19 – 25 °C, 22 – 28 °C), mimicking diurnal fluctuations in small rock pools (Jacobs et al., 348 

2008). The heatwave was performed at four different temperature levels (13, 16, 19, 22 °C), with 349 

conditions identical to the constant regime except for an increase of 6°C for 72 hours, 20 days after 350 

animals were exposed to the parasite, mimicking a short heatwave (Kuha et al., 2016). We chose these 351 
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temperature levels because of their relevance for our host and pathogen system, as no infection occurs 352 

below 12 °C and hosts have high mortality above 30 °C (Kirk et al., 2018, 2019). Animals were kept 353 

individually in microcosms, organised into trays and repositioned daily to avoid positioning effects. In 354 

each temperature regime half of the microcosms were exposed to the parasite while the other half 355 

served as controls. For each of the constant temperature levels, we used 12 replicates for both exposed 356 

and control animals. However, as we expected increased mortality in the variable temperature regimes 357 

(Régnière et al., 2012), we increased the number of replicates of these regimes to 18. We based this 358 

number of replicates on experience with previous temperature experiments with the Daphnia-359 

Ordospora system (Kirk et al., 2019). 360 

The Daphnia genotype (clone FI-OER-3-3) we used was previously isolated from a rock pool 361 

at Tvärminne archipelago, Finland and propagated clonally in the laboratory. To generate sufficient 362 

animals for the experiment, we grew Daphnia asexually under standardized conditions for three 363 

weeks. Animals were raised in small populations (twenty 400 ml microcosms, 12 animals per 364 

microcosm) under continuous light at 20 °C. The medium (ADaM) was replaced at least twice a week 365 

and Daphnia were fed ad libitum with Scenedesmus algae (Scenedesmus sp.), which was grown in 366 

batch cultures at 20 °C in WC Medium (Kilham et al., 1998) under nutrient- and light-saturated 367 

conditions. The experiment was initiated by collecting a cohort of female juveniles (~600 females up 368 

to 72 hours old) from the small population microcosms. Individual juveniles were then randomly 369 

transferred into 100 ml glass microcosms filled with 40 ml ADaM. These glass microcosms were 370 

placed into their assigned water baths and, after an acclimation period of 24 hours, the animals were 371 

exposed to the parasite by adding 1 ml medium containing ~10000 spores of O. colligata. This spore 372 

solution was prepared by crushing 3560 infected D. magna individuals with known average burden 373 

(determined by using phase contrast microscopy on a sub-sample), using mortar and pestle and 374 

diluting down the resulting spore slurry. The unexposed controls received a placebo exposure 375 

consisting of crushed uninfected animals diluted in medium. Animals were exposed either to the 376 

parasite or placebo for six days and were transferred subsequently to clean microcosms with fresh 377 

medium (80 ml of ADaM) twice a week until the end of the experiment. Animals were fed four times 378 

a week with increasing amount of algae to accommodate the increased food demand of the growing 379 

Daphnia magna unexposed and  

exposed to Odospora colligata 

12-18 replicates 
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animals (from 4 million algae ml-1 at the start of the experiment to 10 million algae ml-1 by day ten 380 

which was maintained until the end of the experiment). Between transfers, evaporation of the medium 381 

was offset by refilling microcosms daily with 50-50 ADaM-distilled water. 382 

 383 
Measurements of host and parasite life history traits 384 

To obtain fitness estimates for the host, we counted the offspring produced and checked 385 

mortality of all animals daily. Infection status and spore burden (that is, the number of spores inside 386 

the host) were assessed upon death by dissecting individuals and counting the number of spore clusters 387 

(each cluster holds up to 64 parasite spores) in the gut with phase contrast microscopy (400x 388 

magnification). Any animals that remained alive until the end of the experiment (day 27) were 389 

terminated within three days, dissected and their infection status and burden were determined without 390 

the observer being aware of the identity of the sample. Because infections cannot be diagnosed 391 

accurately in early infection stages, animals that died before day 11 were not considered in analyses. 392 

Any male Daphnia that were misidentified as female at the start of the experiment were also excluded. 393 

In addition, to prevent potentially confounding effects of animals that died early (where the parasite 394 

had less time to grow) as having lower spore burden, we included only animals from the last day of 395 

the experiment in the analysis for spore burden. Note that, to facilitate good estimates for spore 396 

burden, we terminated most hosts before natural death occurred, which limits our ability to assess the 397 

effects of virulence (host mortality, reduced fecundity).  398 

Data analysis 399 

Analyses were performed using R version 3.6.1(R Core Team, 2018) interfacing with JAGS 400 

(Lunn et al., 2009; Plummer et al., 2006), and used datafiles and code are available at  401 

https://github.com/charlyknz/HostParasite.git. A Beta Function was fitted to each of our different 402 

fitness estimates (that is, host fecundity, parasite infectivity and burden) for each of the three 403 

temperature regimes, as: 404 

𝑓 = 𝐹𝑚 (
𝑇𝑚𝑎𝑥 − 𝑇

𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡
)(

𝑇 − 𝑇𝑚𝑖𝑛

𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛
)

(
𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)
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where f is fitness at temperature T, Fm is estimated fitness at optimal performance for the fitted host or 405 

parasite trait, Topt is temperature at optimal performance, and Tmin and Tmax are, respectively, the critical 406 

minimum and maximum temperatures over which fitness of the trait becomes unviable. This non-407 

linear function has been shown to capture thermal performance accurately (Niehaus et al., 2012) and 408 

has the advantage that all four parameters in the equation have clear biological meaning. 409 

To determine the effect of both mean and variation in temperature on host and pathogen traits, 410 

we used a Poisson distribution for reproductive output (number of offspring per individual) and spore 411 

burden (number of spore clusters produced by the parasite). For pathogen infectivity we used a 412 

binomial distribution. Models were fitted using the MCMC fitting algorithm called from R. All 413 

models were fitted in a Bayesian framework with JAGS (Lunn et al., 2009; Plummer et al., 2006), 414 

while allowing for separate parameter values for each of the different temperature regimes. Priors for 415 

temperature effects were specified in order to satisfy the necessary condition Tmin ≤ Topt ≤ Tmax and 416 

informed by previous work (See Table S1 for the priors) (Kirk et al., 2018, 2019, 2020). The posterior 417 

distribution of all parameters was estimated using 3 chains, 10000 posterior draws which were then 418 

thinned by five to yield 6000 samples (3∗10000/5). Model convergence was checked using the 419 

Gelman-Rubin diagnostic. 420 

 421 
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Table S1: Priors for each of the parameters in the Beta Function for each of the different (j) 599 

temperature regimes (constant, fluctuating, heatwave) and life history traits (infection rate, spore 600 

burden, reproductive output) which were all drawn from the uniform distribution with specified limits. 601 

Priors for the minimum, optimal and maximum temperature satisfy the necessary condition 602 

Tmin≤Topt≤Tmax and were informed by previous work (Kirk et al., 2018, 2019). Priors for the scaling 603 

parameter Fm were restricted to be positive and less than ten on the log10 scale for both spore burden 604 

and host reproductive output and between 0 and 1 for infection rates. A Poisson likelihood was used 605 

for the observed reproductive output of the host and spore burden and the rate parameter 𝜆 was 606 

modelled as a function of temperature with a log link function, with different parameter values for 607 

each of the three temperature regimes. For infection rates we used a similar approach but using a 608 

binomial likelihood where the probability p was estimated from the beta function constrained so that 0 609 

≤ p ≤ 1 and N was the number of Daphnia in each temperature regime. 610 

parameter Infection rate  

(min, max) 

Spore burden 

(min, max) 

Host reproductive output 

(min, max) 

Fm    [j] 0,1 0,10 0,10 

Tmin [j] 5, 15 5,14 0,14 

Topt  [j] Tmin [j] + 0, Tmin [j] + 20 Tmin [j] + 0, Tmin [j] + 10 Tmin [j] + 0, Tmin [j] + 25 

Tmax [j] Topt [j] + 0, 35   Topt [j] + 0, 30   Topt [j] + 0, 40   

 611 

 612 
Table S2: Estimates of the parameters of the Beta Function for infection rate over the different 613 
temperature regimes. Provided are the mean thermal minimum (Tmin), maximum (Tmax) and thermal 614 
optimum (Topt), as well as the maximum infection rate (Fm) with 95% confidence interval (lower CI, 615 
2.5% and upper 97.5%). The sample sizes for these estimates were respectively 82, 85 and 63 for 616 
constant, fluctuating and heat wave regimes.  617 
Variable 

 

Temperature 

regime 

Infection 

status 

Mean CI 2.5% CI 97.5% 

Fm constant  exposed 0.96  0.87   1.00 

Fm fluctuating exposed 0.94  0.84   1.00 

Fm heat wave exposed 0.95  0.85  1.00 

Tmax constant  exposed 30.23  27.98  34.04 

Tmax fluctuating exposed 24.98  24.32  26.41 

Tmax heat wave exposed 29.49  24.96 34.56 

Tmin constant  exposed 9.86  6.39   10.70 

Tmin fluctuating exposed 10.75  6.10  12.33 

Tmin heat wave exposed 10.88 5.42    13.79 

Topt constant  exposed 19.72  18.13  21.27 

Topt fluctuating exposed 19.06  17.74  20.15 

Topt heat wave exposed 19.23  17.49  20.95 

 618 
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Table S3: Estimates of the parameters of the Beta Function for parasite burden over the different 621 
temperature regimes. Provided are the mean thermal minimum (Tmin), maximum (Tmax) and thermal 622 
optimum (Topt), as well as the estimated number of spores at the thermal optimum (Fm) with their 95% 623 
confidence interval (lower CI, 2.5% and upper 97.5%). The sample sizes for these estimates were 624 
respectively 51, 46 and 46 for constant, fluctuating and heat wave regimes. 625 
Variable 

 

Temperature 

regime 

Infection 

status 

Mean CI 2.5% CI 97.5% 

Fm constant  exposed 489.78 478.63 501.19 

Fm fluctuating exposed 467.74 446.68 478.63 

Fm heat wave exposed 794.33 758.58 831.76 

Tmax constant  exposed 27.70  27.45 27.95 

Tmax fluctuating exposed 24.80  24.52  25.07 

Tmax heat wave exposed 28.73  28.17   29.37 

Tmin constant  exposed 11.49  10.75  12.11 

Tmin fluctuating exposed 11.48  10.18  12.32 

Tmin heat wave exposed 13.91  13.90  13.91 

Topt constant  exposed 19.44  19.34  19.54 

Topt fluctuating exposed 19.30  19.23  19.39 

Topt heat wave exposed 15.76  15.53  15.97 
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Table S4: Estimates of the parameters of the Beta Function for the reproductive output of the host over 628 
the different temperature regimes. Provided are the mean thermal minimum (Tmin), maximum (Tmax) 629 
and thermal optimum (Topt), as well as the estimate for the highest reproductive output (Fm) with their 630 
and 95% confidence interval (lower CI, 2.5% and upper 97.5%). The sample size for these estimates 631 
were 81 and 81 for constant, 85 and 87 for fluctuating, and 64 and 61 for heat wave regimes for 632 
infected and uninfected individuals respectively. 633 
Variable 

 

Temperature 

regime 

Infection 

status 

Mean CI 2.5% CI 97.5% 

Fm constant  exposed 101.39 97.44   105.20 

Fm constant unexposed 109.65 105.74  113.76 

Fm fluctuating exposed 81.28 78.71   84.14 

Fm fluctuating unexposed 106.41 102.85   110.15 

Fm heat wave exposed 92.90 89.79   96.16 

Fm heat wave unexposed 101.39 97.37   105.68 

Tmax constant  exposed 36.22  35.37   37.16 

Tmax constant unexposed 37.58  36.73   38.51 

Tmax fluctuating exposed 38.90  36.54   39.97 

Tmax fluctuating unexposed 31.06  30.49   31.72 

Tmax heat wave exposed 39.46  38.11   39.99 

Tmax heat wave unexposed 34.68  30.79   39.38 

Tmin constant  exposed 10.50    10.22   10.68 

Tmin constant unexposed 10.59  10.34   10.70 

Tmin fluctuating exposed 6.66  3.57     8.45 

Tmin fluctuating unexposed 0.63        0.02     2.18 

Tmin heat wave exposed 13.09  12.72   13.36 

Tmin heat wave unexposed 7.00        0.95    10.57 

Topt constant  exposed 19.61  19.43   19.80 

Topt constant unexposed 20.22  20.05   20.39 

Topt fluctuating exposed 20.50  20.12   20.89 

Topt fluctuating unexposed 20.26        20.12   20.40 

Topt heat wave exposed 18.52  18.23   18.83 

Topt heat wave unexposed 21.16        20.74  21.69 
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