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Abstract

Performing a cognitive task requires going through a sequence of functionally diverse 

stages. Although it is typically assumed that these stages are characterized by distinct 

states of cortical synchrony that are triggered by sub-cortical events, little reported 

evidence supports this hypothesis. To test this hypothesis, we first identified cognitive 

stages in single-trial MEG data of an associative recognition task, showing with a novel 

method that each stage begins with local modulations of synchrony followed by a state of 

directed functional connectivity. Second, we developed the first whole-brain model that can

simulate cortical synchrony throughout a task. The model suggests that the observed 

synchrony is caused by thalamocortical bursts at the onset of each stage, targeted at 

cortical synapses and interacting with the structural anatomical connectivity. These 

findings confirm that cognitive stages are defined by distinct states of cortical synchrony 

and explains the network-level mechanisms necessary for reaching stage-dependent 

synchrony states.

Author summary

A novel machine-learning method was applied to unveil the dynamics of local and cortex-wide 

neural coordination underlying the fundamental cognitive processes involved in a memory task. To 

explain how neural activity – and ultimately behavior – was coordinated throughout the task, we 

developed a whole-brain model that incorporates cognitive mechanisms, anatomy, and neural 

biophysics. Similar models are used with resting state data, however, simulating a cognitive task 

remained elusive. The model showed that sub-cortical pulses at the onset of cognitive processes – as

hypothesized by cognitive and neurophysiological theories – were sufficient to switch between the 

states of neural coordination observed. These findings have implications to understand goal-directed

cognitive processing and the mechanisms to reach states of neural coordination.

2

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.458489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458489
http://creativecommons.org/licenses/by/4.0/


Key words

cognitive stages, cognitive processes, associative memory, MEG, functional connectivity, 

synchronization, hidden Markov model, brain network, biophysical model, whole-brain model, 

Kuramoto model

Introduction

Already in the 19th century, Donders hypothesized that information processing in the brain proceeds

through a sequence of fundamental cognitive stages with different functions such as visual 

encoding, memory retrieval, and decision making [1]. Initially, cognitive stages were investigated 

with behavioral metrics like reaction time (e.g., [2]). Over the past decade, neuroimaging analyses 

have begun to uncover the neural correlates of these cognitive stages (e.g., [3]).

The dominant view is that cognitive stages require specific patterns of neural coordination across 

the cortex [3–5]. The transition from one cognitive stage to the next is thought to be driven by the 

basal-ganglia-thalamus (BGT) system which sets new states of cortical coordination [6–8]. The 

striatum monitors the current state of the cortex, and based on a comparison to predefined states, 

selects and triggers the next cognitive stage. The role of the BGT system modulating cortical 

coordination is supported by animal studies, intracranial recordings, and neural models [9–14]. 

However, the network-level mechanisms required to reach a new state of cortical coordination from 

subcortical inputs are poorly understood.

To give a detailed account of these mechanisms, one first needs to characterize the different states 

of neural coordination within the sequence of cognitive stages. We measured neural activity with 

3

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.458489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458489
http://creativecommons.org/licenses/by/4.0/


cortically projected magnetoencephalographic (MEG) recordings as these have a sufficiently fine 

temporal resolution to measure cognitive stages, as well as adequate spatial resolution. However, 

cognitive stages have high temporal variability – that is, stages typically have a different duration 

on each trial of an experimental task – which makes it difficult to measure neural coordination. To 

overcome this problem, we used a machine learning method that identifies the onsets of cognitive 

stages on a trial-by-trial basis [15]. Afterwards, the identified stage onsets were used to time-lock 

the measures of neural coordination within regions (local synchrony) and between regions 

(functional connectivity, FC), as there are concurrent changes at both spatial scales [16,17]. 

The machine learning method used to identify cognitive stages combines multivariate pattern 

analysis with a Hidden semi-Markov Model (HSMM-MVPA). The HSMM-MVPA method searches

in each trial for a sequence of short-lived modulations of MEG amplitude (hereafter called bumps, 

following the original paper [15]) that have a consistent topology across trials. These bumps signify 

the onset of cognitive stages, and are thought to be triggered by the BGT system. Previously this 

method has been used successfully to, for example, identify the cognitive stages that are affected by

task manipulations such as difficulty, stage insertion, and evidence accumulation for decisions 

[4,5,15,18]. 

To understand how events from the BGT system can cause switches between states of neural 

coordination – and thus between cognitive stages – we build upon generative whole-brain 

biophysical models of large-scale activity (GWBM) that have been used to explain the dynamics of 

neural coordination at rest [19]. GWBMs reduce the whole-brain network of neurons and synapses 

to a smaller network that still incorporates the most relevant principles of neural dynamics. The 

nodes of such a network describe the macroscopic activity within a region, while the links reflect 

the neural fibers that connect these regions (i.e. structural connectivity).
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GWBMs of resting state indicate that time-resolved patterns of neural coordination are related to the

anatomical structure of the brain and that these patterns evolve without requiring any input (a 

phenomenon referred to as metastable coordination; [17,19]. Such coordination dynamics are 

thought to provide an optimal mechanism for simultaneously integrating and segregating 

information that allows the system to adapt quickly or alternatively, to persist in a given state [20]. 

While this is sufficient to explain resting-state data, cognitive tasks require specific, controlled 

sequences of coordination states.

Here, we explored a GWBM in which inputs from the BGT system modulated local connectivity 

strength briefly at the onset of cognitive stages, as suggested by cognitive theories and 

electrophysiology measurements [6–14]. In other complex networks with similar dynamics as the 

brain, such local perturbations can, in turn, produce controlled switches between global states [21]. 

Similarly, even though the inputs from the BGT system only triggered direct changes in local 

connectivity strength, we observed transient modulations of local synchrony and switches to the 

targeted states of directed functional connectivity that lasted until the next input. When there were 

no further inputs from the BGT system, neural coordination returned to resting-state patterns after 

tens of seconds. These results matched the observed neural coordination throughout the cognitive 

stages in the empirical data. Finally, we used the GWBM to determine the importance of each brain 

region in facilitating the switches between states of coordination.

Results

Five cognitive stages in an associative memory task.

We re-analyzed MEG data from an associative memory recognition task with 18 participants [3]. 

We chose this task because associative recognition memory involves a rich variety in cognitive 

5

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.458489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458489
http://creativecommons.org/licenses/by/4.0/


stages that have also been widely studied [3,5,15,22,23]. The task consisted of a self-directed 

learning phase during which participants memorized 32 word pairs and a test phase. In the test 

phase – which we analyzed here – participants were again presented with word pairs. These could 

be target pairs from the learning phase or re-paired foil pairs, which consisted of the same words 

paired differently (e.g., if the participants learned apple-tree and month-house, a foil pair could be 

apple-house). Participants were asked to indicate as quickly and accurately as possible with a key 

press if it was a learned pair or a re-paired foil. Only correct responses were included in our 

analysis. We were interested in the evolution of neural coordination along with the cognitive stages 

involved in performing the task, and in particular in how the brain switches between these 

consecutive states of functional neural coordination.

As the goal is to develop a cortical model, the MEG signals were projected onto 5,124 cortical 

sources using the structural MRI of each participant with minimum-norm estimation [3]. The 

resulting cortical activity was parcellated and averaged into time-series for 68 cortical regions 

following the Desikan-Killiany atlas [24]. Next, HSMM-MVPA was used to estimate the timing of 

bumps that indicate the onset of cognitive stages in each trial. All trials were assumed to go through 

the same sequence of stages as in previous studies [3,4,15]. Thus, bumps were assumed to have the 

same spatial topology across trials, but trial-to-trial variable temporal location. Nevertheless, the 

HSMM-MVPA can cope relatively well with extra bumps in some trials [15]. The intervals between

stimulus-onset-to-bump, bump-to-bump, and bump-to-response constitute the cognitive stages. A 

leave-one-subject-out cross validation method showed that the MEG data were best explained by a 

HSMM-MVPA model with four bumps, which corresponds to five cognitive stages (Figure 1A).

Following previous work on associative recognition [3,5,15], we interpreted the five cognitive 

stages as follows: pre-encoding, encoding of visual information, memory retrieval, decision 

making, and motor response. We did not analyze the pre-encoding stage as it is mostly driven by the
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task stimulus and not by events from the BGT system that produce the transitions between cognitive

stages. The retrieval and motor stages were longer and had larger across-trial variability than the 

encoding and decision stages (Figure 1A and E). 

Figure 1. Theta-band MEG local synchrony and directed functional connectivity by cognitive

stages. (A) Cognitive stages derived with the HSMM-MVPA along with their median durations. 

(B) Significant directed functional connectivity throughout the stage (within-stage dpFC). Links 

go from phase-ahead to phase-behind regions. The nodes represent the nodal degree (size) and the 

difference between phase-ahead and phase-behind links (color). (C) Directed functional 

connectivity time-locked at the onset of the stages (across-trials dpFC). Colored (dark gray) line: 

average across links with (without) significant across-trial dpFC at the current stage; Shading: 

standard error of the mean across subjects. Black horizontal lines are the onset of the stages. The 
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white background spans the median stage duration. Retrieval and response insets: Directed 

functional connectivity time-locked to the onsets of the decision stage and to the end-of-trial 

response, respectively (D) Across-trials averaged local synchrony (z-scored envelope of 

amplitudes) time-locked at the onset of the stages. Y-axis represents cortical regions – blue: 

temporal, orange: occipital, red: parietal, and green: frontal. Magenta lines: time windows to 

measure the relative change in local coordination at the onset of the stages. (E) Histogram of stage 

durations derived with the HSMM-MVPA.

Different local synchrony and directed functional connectivity states between 

stages.

Next, we measured neural coordination in the discovered stages. We focused on coordination of 

theta band oscillations (4-8 Hz), for several reasons: we previously found synchrony patterns inthis 

frequency band to vary across task stages [4]; theta oscillations have been related to cognitive 

processes such as attention, memory, control, and decision making [25–28]; the phase of theta 

oscillations is known to modulate the activity in higher frequency bands [26,29]; local modulations 

of theta-band activity are hypothesized to mediate changes in long-range functional connectivity 

[30]; and thalamic activity modulates cortical theta band activity [31]. 

Directed FC in the theta band was operationalized by means of the directed phase-lag index [32] 

(dpFC). A significant dpFC indicates that the phase in one region is consistently ahead or behind 

another region. The significance of dpFC was obtained using 200 surrogate data sets with random 

circular shifts of the original phases. We measured first within-stage dpFC to capture directed FC 

states that are constant from the start to the end of a cognitive stage. Figure 1B shows the links with 

significant within-stage dpFC, as well as the local difference between phase-ahead and phase-

behind links (node color) and the total number of links regardless of their direction (node size). 
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Next, we measured across-trial dpFC of the significant links in a stage to reveal the temporal 

evolution of directed FC during the stage (Figure 1C). Across-trial dpFC was calculated sample-by-

sample with the trials time-locked to the onset of each stage. 

Across-trial dpFC revealed that functional states of directed FC switch at the transition between 

cognitive stages. These switches are visible because across-trial dpFC takes into account the trial-

to-trial temporal variability of the cognitive stages as revealed by the HSMM-MVPA analysis. For 

example, for the memory retrieval stage, across-trial dpFC seems to fade halfway through. 

However, when across-trial dpFC is time-locked to the onset of the next stage – the decision stage –

dpFC for memory retrieval materializes until shortly before the decision stage (see the insets in 

Figure 1). This illustrates why the HSMM-MVPA analysis is crucial: otherwise dpFC would appear 

to fade quickly after stimulus onset, while that is not the case when first isolating cognitive stages.

Local synchrony was operationalized as the envelope of the theta band analytic signals in each 

region, which indicates the degree of synchronous neural activity within a region. The envelopes 

were z-scored over time and then averaged across trials and participants. Across-trial averages were 

time-locked to the onset of cognitive stages which gave a time course of local synchrony for each 

stage (Figure 1D). This showed that the local modulations of synchrony occurred only briefly at the 

start of each stage, and involved different regions depending on the cognitive operations involved in

that stage.

As expected, each stage had a different neural coordination pattern. In the visual encoding stage, 

occipital and left-temporal regions showed local synchrony and dpFC which might facilitate the 

transfer of visual information to the medial temporal lobe and the hippocampus to start a retrieval 

process [23]. The encoding of information is controlled by a large fronto-posterior, fronto-lateral 

network [25,26]. During the memory retrieval stage, local synchrony at occipital and temporal 
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regions is reduced. dpFC now happens mostly between left-medial-temporal and frontal regions, 

whose coordination is required for memory tasks [23,33]. At the onset of decision making the 

frontal regions begin to synchronize locally. The decision process is mediated by fronto-parietal 

dpFC [27], and dpFC between temporal and parietal regions dpFC to reinsert the memory retrieved 

into the left-parietal cortex [23]. Finally, at the motor stage a large dpFC network appears between 

motor, temporal, left-parietal, and pre-frontal regions. This complex network has previously been 

associated with motor preparation, action reevaluation, decision, and cognitive control [27,28,34], 

in line with the idea that the action is reevaluated during the motor response [35]. 

Together, these analyses unveiled that right at the onset of a cognitive stage there is a reorganization

of neural coordination in the cortex. Whereas the change in local synchrony was only brief, dpFC 

lasted throughout the cognitive stage, indicating that short modulations of local synchrony can have 

persistent global effects. Next, we used a GWBM to investigate the mechanism underlying this.

Generative large-scale whole-brain model (GWBM)

In order to integrate cognitive stages and neural coordination into one framework along with neural 

anatomy and neural dynamics, we used a parsimonious GWBM that describes within- and between-

region modulations of synchrony. Previously, we have used this model to demonstrate that 

modulations of local synchrony are related to time-resolved FC during resting state [17].

This GWBM is a low-dimensional reduction of a network-of-networks of Kuramoto oscillators 

[36]. Kuramoto oscillators describe the dynamics of synchrony in biological systems including 

neural networks [19,37,38]. Each sub-network represents a cortical region. All units in a region are 

assumed to be fully and instantly connected, while connections between regions are weighted and 

delayed by the density and length of the neural fibers in MRI-derived structural connectivity 
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networks. The regions in the GWBM were defined with the same parcellation atlas as the MEG data

that we sought to model.

First, we set default values for local connectivity strength (L in Eq. 2, identical for all regions), and 

global scaling (G in Eq. 2 and Eq. 3) of the structural connectivity such that the model simulated 

resting-state coordination dynamics in the theta-band [19,39]. Resting-state dynamics are 

characterized by fluctuations over time of the local and global synchrony as well as time-resolved 

FC patterns (i.e. local and global metastability) [17,19,39]. These dynamical properties of resting 

state neural coordination were identified with GWBMs simulated over a grid of L and G values. The

identified L and G values displayed the most similar dynamics to local and global metastability in 

the grid search.(see Supplementary Figure 1A).  

Next, we simulated the switching between cognitive states by adding short inputs (30 milliseconds) 

from the BGT system at the onset of cognitive stages. The rationale for using this mechanism 

derives from theories of cognition and data derived from electrophysiology. Specifically, cognitive 

theories state that the BGT system modulates cortical synchrony at the onset of cognitive stages via 

thalamocortical signals [6,22]. Electrophysiology has shown that thalamocortical neurons can 

indeed drive cortical activity [10,13] and establish FC [40,41]. These thalamocortical neurons tend 

to produce short burst of activity [42], which target pools of either excitatory or inhibitory cortical 

neurons specifically [12,43]. Therefore, our model simulated thalamocortical inputs as short pulses 

of increased or decreased local connectivity strength (L in Eq. 2) that represent transient 

modulations of excitatory or inhibitory synaptic activity [38]. 

To simulate the sequence of neural coordination states found in the MEG data, we estimated the 

required activity pulses simultaneously in all regions, stage-by-stage. The optimization scheme 
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maximized concurrently the fitness of local synchrony and within-stage dpFC, while minimizing 

the total magnitude of the pulses. The optimization was accomplished with the generalized island 

model for distributed evolutionary optimization which in relatively short time explores and exploits 

different areas of the parameter space simultaneously [44].

Changes in local connectivity cause switches between global states of cognitive 

coordination

To assess how well the model simulated local synchrony, we measured the relative change in theta 

envelope before and after stage onset (magenta lines in Figure 1D). All model results were 

computed from 1000 models randomly selected from the top one percentile of models after the 

optimization. Relative changes in simulated and MEG envelopes were correlated significantly 

across different cortical regions (Spearman’s ρ – encoding:  0.552 ± 0.00158 SEM; retrieval: 0.702 

± 0.000434 SEM; decision: 0.743 ± 0.000683 SEM; motor 0.477 ± 0.00151 SEM; all p-values < 

0.05). 
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Figure 2. Simulated directed functional connectivity. (A) Blue histograms show the fitness 

between 20,000 randomly generated within-stage dpFCs and the MEG within-stage dpFC. The red

line indicates the within-stage dpFCs fitness of the model with the lowest fitness index within the 

top 1 percentile of the optimized models. (B) Fitness of simulated-to-MEG within-stage dpFC is 

shown in cyan-purple grading over MEG links with significant within-stage dpFC (same as Figure

1B). The nodes indicate the relevance of a region for reaching a state of within-stage dpFC (size), 

and the pulse of local connectivity strength at the onset of the stage due to sub-cortical inputs 

(colors). These results show the averages of 1000 random picks from top ~1% of the 

optimizations. (C) Temporal evolution of simulated-to-MEG fitness of within-stage dpFC for the 

current stages (solid lines) compared to other stages (dashed). The white background spans the 

median stage duration. The color of the lines represent the different stages and follows Figure 1C.

Figure 2A compares the within-stage dpFC fitness of the worst model in the top one percentile to a 

distribution of the same fitness metric obtained with 20,000 random within-stage dpFCs, and shows

that the model performs much better than chance. Figure 2B shows the fitness of within-stage dpFC

at individual links. The fitness was quantified as the proportion of links with the same phase-lag 

direction as in the MEG data (encoding: 0.697 ± 0.00014 SEM; retrieval: 0.837 ± 0.0016 SEM; 

decision: 0.749 ± 0.00092 SEM; motor: 0.758 ± 0.001 SEM). Figure 2C compares the across-trial 

dpFC of the model to the MEG data over time. Each state of dpFC begins after the pulse that 

modulates local connectivity strength at the onset of the stage, and vanishes with the next onset 

(Figure 2C). The last state of dpFC – the motor response – vanishes slowly (in ~10 seconds), and 

the GWBM returns to resting-state coordination dynamics (Supplementary Figure 2). 

Taken together, the GWBM showed that a short pulse of local connectivity strength at the onset of a

cognitive stage can first cause a modulation of local synchrony and then a new state of dpFC that 
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lasts until the onset of the next stage (Figure 2C). If there is no subsequent cognitive stage, the 

GWBM returns to the coordination dynamics that are characteristic of the resting state.

Relevance of regions to switch between functional states of coordination

Not all regions in the GWBM are equally important for switching between states of dpFC. The 

relevance of a region increases with the size of the pulses and the strength of structural connectivity 

with other regions. The size of the nodes in Figure 2B indicates the relevance of a region for 

switching between states of dpFC. The absolute size of the pulses from the BGT predicts 22.52 % 

(± 0.096 SEM) of the variance in the relevance of the nodes, while the interaction between the 

absolute size of these BGT pulses and the log-scaled strength of structural connectivity predicts 

25.98 % (±  0.12 SEM) of the same variance.

This analysis shows that there are regions such as the left superior frontal region in the last stage 

that do not show dpFC, but that are still highly relevant for entering a state of high dpFC between 

other regions. This supports the mechanistic role of the superior frontal regions in exerting 

cognitive control [25,27] and highlights the complexity of interactions required for implementing 

changes in FC patterns. 

Discussion

In this paper, we first analyzed the evolution of macroscopic neural coordination states across the 

cortex during an associative recognition memory task. Our analysis of MEG data showed that at the

onset of fundamental cognitive stages there are transient modulations of local synchrony, which are 

directly followed by a new state of dpFC that persists until the next cognitive stage. Next, we used a

generative model of whole brain activity (GWBM) with inputs from the basal-ganglia-thalamus 

system to explain these findings. The GWBM showed that short pulses that strengthen or weaken 
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local connectivity strength at the onset of cognitive stages were sufficient to cause the switch 

between states of neural coordination consistent with empirical data. In addition, the GWBM 

indicated which individual regions were most relevant for causing these switches.

GWBM and the Basal Ganglia-Thalamus Circuit

The GWBM that we developed in this paper has shown that inputs from the basal-ganglia-thalamus 

system at the onset of cognitive stages are sufficient to cause switches between cognitive stages. 

This role of the BGT system had been hypothesized by cognitive theories [6,22]. Direct evidence 

for thalamic modulations of cortical activity is limited to some cortical regions due to 

methodological constraints, such as the fact that it is challenging to record simultaneously from 

many sub-cortical and cortical areas with high temporal resolution [10,12,13,40]. Nevertheless, a 

recent meta-analysis has shown that the thalamus plays a critical role as a central hub that connects 

neighboring and distant regions to allow for cognitive functions [9], which is in line with the 

hypothesis that local thalamocortical inputs can mediate FC [14]. In addition, there is evidence for 

neural fibers connecting the thalamus with most cortical regions [45]. Our model provides 

additional support for both hypotheses: the BGT systems can trigger a switch between fundamental 

stages of cognition [6,22] and thalamic input modulates coordination of cortical activity according 

to cognitive demands [14].

Given our limited understanding of how the thalamus modulates cortical activity, we opted for a 

very simple representation of thalamocortical input. These inputs were short [40–42], targeted 

excitatory or inhibitory local connections [12,43], and came at the onset of cognitive stages [6,22]. 

Such inputs drove the GWBM throughout the sequence of empirical local synchrony and dpFC 

states. Afterwards, the GWBM returned to resting state dynamics. In other words, a short 
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modulation of local excitation/inhibition modified the local synchrony and the phase of the local 

mean-field oscillation. This change in local mean-field phase set a new phase-lag relationship with 

other regions that vanished over time due to structural cortical interactions. This response to local 

perturbations suggests that cortical dynamics are metastable as many states of coordination can be 

reached, and the brain does not remain into a particular state in the absence of perturbations. 

Metastable dynamics are thought to allow for integrating and segregating information 

simultaneously, as well as for the flexibility of cognitive functions and behaviors [20]. 

Importantly, dpFC was not driven by thalamocortical inputs exclusively. Instead, the macroscopic 

connectivity structure of the brain also played an important role. The relevance of the structural 

connectivity was highlighted by the presence of regions with very low dpFC that turn out to be very

important for coordinating other pairs of regions. One example of such regions is the left superior 

frontal region during the motor response stage, a region that has been related to cognitive control, 

attention, and decision making [25,27,28]. The role of structural connectivity for generating specific

coordination patterns was first brought to light by GWBMs of resting-state dynamics [19]. In a 

previous study we have shown analytically that the strength of structural connectivity plays an 

important role in selectively coordinating regions by means of modulations of local connectivity 

strength [46]. Additionally, structural symmetries and time-delays might have influenced dpFC in 

our simulations [19,47,48]. 

There are other biological aspects that might be relevant for coordination of cortical activity that 

were not included here, including the delay over thalamocortical neurons [49], the dynamics of the 

synapses targeted by thalamocortical inputs [12], tonic activity in the thalamus [42], noise, or the 

state of cortical oscillations at the time of a thalamic input. Moreover, our measurement of directed 

FC has neglected zero-phase-lag coordination which can emerge from thalamocortical and cortico-
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cortical loops [49]. However, while including these additional aspects might improve the fit of the 

model, the current model could already account for the data surprisingly well. Additionally, we have

assumed that perturbations of cortical dynamics at the onset of cognitive stages come exclusively 

from the thalamus. However, there might be other regions such as the hypothalamus that modulate 

cortical activity in the same or another way that is not included in our model.

Neural coordination across the cortex along a sequence of cognitive stages

Our stage-by-stage analyses of neural coordination corroborates the hypothesis that the local 

modulations of phase synchrony in the theta-band mark a change in long-range functional 

connectivity and enable a new cognitive function [30]. Moreover, our results confirm the hypothesis

that a new state of neural coordination is established at the onset of cognitive stages [6,22]. Our 

previous research has shown that alpha band FC also varies across cognitive stages [4], but cortical 

alpha has been found to lead thalamic activity rather than being caused by it [50], as is the case with

theta [13]. 

To uncover neural coordination stage-by-stage it was crucial to account for the temporal variability 

of cognitive stages across trials using the HsMM-MVPA analysis. Only after correcting for this 

variability, our analyses showed that dpFC lasts throughout a cognitive stage and differs across 

stages. The corresponding states of dpFC had different length, strength, and topology. This diversity

of properties might have biased some traditional metrics of neural coordination. For example, if one

were interested in the FC at the interval between 250 and 600 milliseconds after stimulus onset – 

roughly the period of memory retrieval, this interval would contain elements of the encoding or 

decision stages. The first reason for this is the trial-by-trial variability in stage durations: in one trial

encoding might last till 400 ms, while in another trial memory retrieval might already have finished 
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by 400 ms. Secondly, the retrieval stage has fewer and weaker connections than the encoding and 

decision stages in our study, which mean that these connections might have been missed altogether. 

These effects are worse the further one moves away from fixed time points (trial onset/response), 

which is one of the reasons that M/EEG studies have had severely limited trial lengths traditionally.

Furthermore, our stage-by-stage analysis might contribute to disentangling competing theories. For 

example, our results suggest that the decision is made and evaluated in the last two stages. We 

interpreted the penultimate stage as a decision process in which memories are transferred to parietal

areas by coordinating left-temporal regions with parietal regions, mediated by local frontal and 

fronto-parietal coordination [15,23,25,27]. The last stage has been traditionally related with a pure 

motor response. However, our results indicate that the motor stage has elements associated with 

motor preparation, action reevaluation, decision, and cognitive control [26,28,34]. This functional 

network in the last stage suggests that during the motor stage the decision is reevaluated, and it 

supports the line of thought in which responding is a process that is not independent from decision 

making (e.g., [28,35]).

Conclusion

To the best of our knowledge we have developed the first generative large-scale brain model that 

simulates the dynamics of the states of neural coordination along the fundamental cognitive stages 

in a task. In this model we have integrated structural connectivity, macroscopic neural dynamics, 

sub-cortical inputs, and the cognitive theories of associative recognition memory. The model has 

multiple simplifying assumptions which made it feasible to simulate and optimize the model while 

taking into account the macroscopic properties of neural anatomy and dynamics. This work opens 
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up the way for considering other tasks in similarly integrated and multidimensional manners to 

better understand how the brain implements cognition through cortical coordination.

Methods

Experimental paradigm

We re-analyzed MEG data from an associative memory task [3]. We combined the trials with 

correct responses from all experimental conditions, as we were interested in the transition between 

fundamental cognitive stages and not in the differences between conditions (which did all proceed 

through the same stages; [15]). All 18 participants were right handed (6 males and 12 females with a

mean age of 23.6 years). 

First, participants studied 32 pairs of words until they knew them well [3]. This was followed by a 

test session in which MEG was recorded. In the test session participants were presented with pairs 

of words which were either the same as in the study season (targets) or paired differently (re-paired

foils). The pairs of words remained on the screen until the participant responded, and were followed

by 1-sec feedback and a brief inter-trial interval. A full description of the task and the recording 

procedure can be found in [3].

MEG data preprocessing

MEG data was preprocessed and source-reconstructed following the analysis pipeline of the original

manuscript [3]. After artifact rejection there were 6,708 trials left. The MEG data of each participant

was combined with their own structural MRI to obtain the cortical sources of MEG data. MEG 

sources consisted of 5,024 dipoles estimated with cortically constrained minimum norm estimates 
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[3,51]. Source estimates were then morphed onto the standard MNI brain and parcellated into 68 

cortical regions with the Desikan-Killiany atlas [24,52]. Each parcel contained the average activity 

of all dipoles within the region with a 100 Hz sampling rate.

Identification of cognitive stages

To find the onset of cognitive stages the data were bandpass filtered (1-30 Hz, which are default 

values in Field Trip [53]) and epoched from trial onset to response. Single trials were baseline 

corrected (-0.4 to 0 seconds), and transformed to one covariance matrix per subject. The average 

covariance matrix across subjects was used to reduce the dimensionality of the data to 33 principal 

components (which together accounted for 90 % of variance). These principal components were z-

scored and fed into the HSMM-MVPA. The HSMM-MVPA first applies a half-sine window 

function to increase the signal-to-noise ratio of the bumps, the cortical response to sub-cortical 

input. The bumps are assumed to be 50-millisecond modulations of amplitude at the onset of 

cognitive stages with the same topology across trials. The signals from the end of a bump to the 

next bump are assumed to have zero-mean amplitude, a flat. The duration of a given stage (bump + 

flat) is assumed to come from a gamma distribution with shape parameter equal to two. 

Consequently, a stage is modeled as a bump of a certain amplitude followed by a zero-mean 

amplitude flat and a duration given by a gamma-2 distribution. There is one exception and this is 

the first stage (pre-visual encoding here) which does not start with a bump. With this stage model 

and a predefined number of stages, the Baum-Welch algorithm for HSMMs searches the amplitude 

and location of bumps that explain the z-scored principal components best [54]. The bump 

amplitudes (for the 33 PCA components) are the same for all trials and vary across stages. The 

temporal location of the bumps also varies across trials, but the resulting stage durations are 

constrained to gamma-2 distributions with one scale parameter per stage. 
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We explored models with 3 to 7 cognitive stages as previous studies have shown that this memory 

task consists of 5 to 6 stages [4,5,15]. For each model we ran the HSMM-MVPA 200 times with 

random initial parameters to avoid converging in local maxima. We used a leave-one-subject-out 

cross-validation to assess whether a model with N+1 stages could explain the data significantly 

better (using a sign-test) than a model with N stages [15]. The final model was the simplest one that 

generalized across subjects – a five-stage model. Then, we allowed one stage to have different 

gamma-scale parameters across experimental conditions, and we used leave-one-subject-out cross-

validation to decide on the best model. As in previous studies [4,15], a model with different gamma 

distributions in the retrieval stage explained the MEG data best.  

Measurements of neural coordination

To measure neural coordination – local synchrony and directed functional connectivity – we used 

the analytic signal of theta band oscillations. The parcellated MEG data were band pass filtered 

(cut-off frequencies: 3.8, and 8.5 Hz; forward-backward IIR Butterworth filter of order 4) and 

epoched from -0.4 seconds before stimulus onset to 0.4 seconds after the response. Epochs were 

Hilbert transformed to the analytic signal using a symmetric padding of 0.4 seconds to avoid edge 

artifacts. 

Directed functional connectivity between regions i and j was measured with the directed phase-lag 

index (dpFC) [32] as follows: 

dpFC ij=
1
N
∑
n=1

N 1
T n

∑
t=s+1

s+T n

sgn(Im (Snt
ij )) Eq. 1
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In Eq. 1, Im(Sij) is the imaginary part of the cross-spectral density, and sgn is the sign function. To 

compute within-stage dpFC,  s+1 was the first sample 0.05 seconds after the onset of the stage, Tn 

was the length of the stage in trial n, and N is the number of trials. Across-trials dpFC was 

computed sample-by-sample with Tn = 1 and time-locked to stage onset. Both within-stage and 

across-trial dpFC were later averaged across subjects. A detailed explanation can be found in the SI.

Generative whole-brain model 

The generative whole-brain model  (GWBM) was derived with the Ott-Antonsen ansatz [55] from a

network-of-networks of Kuramoto oscillators [36]. See [17] for a step-by-step derivation. The 

dynamics of synchrony in a region are given by the Kuramoto order parameter (KOP) which 

describes the dynamics of synchrony in in biological systems as well as a pool of neurons [56]. The 

KOP is a complex number (KOP=r eiψ) with the modulus bound by zero (asynchrony) and one 

(full synchrony). Here, the KOP simulated the analytic signal of the MEG data. Beforehand we set 

the natural frequencies of the oscillators to a Lorentzian distribution centered in the theta band 

(center, Ω: 6 Hz, spread, Δ: 1), and the spike-propagation velocity along the structural fibers to 5 

m/s. The equations of the KOP in on region, i, of the GWBM are as follows:

ṙ i =−Δi r i +
Li

2
(1 − r i

2)r i +
G

2 R
(1 − r i

2) ∑
j= 1, j≠i

R

Aij r j (t−τ ij) cos (ψ j (t−τ ij) − ψi )  Eq. 2

ψ̇ i = Ωi +
G
2 R

(r i +
1
r i

) ∑
j= 1, j≠i

R

Aij r j ( t−τij )sin (ψ j (t−τij ) − ψ i)  Eq. 3

The time dependency has been removed in variables without time delays; τ are the time delays 

between regions (fiber length x spike-propagation velocity); A is the coupling strength between 
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regions (density of structural fibers); and R is the number of regions. To simulate resting state 

dynamics we explored parameters G (global scaling of structural connectivity) and L (local 

connectivity strength, same in all regions) with 25 randomly initialized models. The results of this 

exploration are shown in SI Figure 1. With G and L set to correctly reproducing the resting state, the

thalamocortical inputs were simulated as 0.03 second increases/decreases of L at each region and 

stage onset independently. Simulated dpFC was measured with Eq. 1, but here N represented 25 

models with different initial conditions and Tn  was the median duration of the MEG stages. The 

initial conditions for the first stage were the MEG phases and amplitudes at the pre-encoding stage 

plus random noise. More details of the simulations are reported in the SI. 

Generative whole-brain model: Resting-state

To identify a GWBM that simulated resting-state dynamics we performed a grid-search over the 

global and local coupling parameter space. The local couplings were assumed to be identical for all 

regions. Resting-state dynamics are characterized by temporal fluctuations of global and local 

synchrony, and time-resolved patterns of functional connectivity (i.e. metastable dynamics). 

Metastability was measured as the standard deviation of the modulus of the KOP over time at local 

and global levels [57,58]. At the local level, the metastabilities were averaged across regions. To 

obtain the global KOP over time we averaged the phases of the local KOPs across regions (ψ in 

Equation 3 of the main text). To assess the temporal structure of the global metastability we 

computed the mean of the absolute values of its autocorrelation function. To avoid the influence of 

the initial conditions on the simulations we ran twenty-five GWBMs with random initial conditions 

for each combination of parameters. The simulations were run for 1000 seconds, but the initial 200 

seconds were removed to discard initial transients. All simulations were performed with a time-

delayed first-order Euler method and an integration step of 1 millisecond. We ended up with a 

global coupling of 0.15 and a local coupling of 0.7, which had the best trade-off between high 
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metastability and low autocorrelation of global KOP, and therefore were chosen as the default 

values for the following GWBMs. Supplementary Figure 1 shows the grid search results of resting-

state dynamics. 

Generative whole-brain model: cognitive task

To simulate the sequence of cognitive stages and their associated neural coordination patterns, we 

initialized 25 models informed by the theta-band phases and envelope amplitudes observed at the 

pre-encoding stage. The MEG envelopes were measured 0.1 and 0.05 seconds before the onset of 

the encoding stage. Then, the initial history of the KOP modulus was a straight line that joined the 

mean of these amplitudes across trials plus Gaussian noise (σ=0.01). To choose the initial history of 

phases we measured inter-trial phase consistency, and within-stage dpFC at the pre-encoding stage. 

There were 10 regions (mostly occipital and parietal) that showed significant inter-trial phase 

consistency. The initial history of phases at these regions were set to the average MEG phases 

across trials at 0.05 seconds before the onset of the first stage plus Gaussian noise (σ=0.01). The 

phases of these regions were used as a referent point for the remaining regions. The initial phases of

the remaining regions were set by an optimization algorithm (CMAES [59]) which tried to establish

a phase-lag relationship between regions as in the empirical within-stage dpFC. The dpFC of the 

initial history of phases had an average similarity to empirical within-stage dpFC of 78%. The 25 

GWBMs of the later stages were initialized with the last simulated samples of the previous stage in 

the best individual of the optimization process (see section Optimization of thalamocortical inputs).

The model with the best fitting sequence of parameters was left to run 400 seconds after the last 

stage. Supplementary Figure 2 shows that the model neither remained trapped into the functional 

connectivity state of the last stage, nor did it return to any of the previous states (SI Fig. 2, bottom). 
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Instead, the model returned to resting state patterns of global and local synchrony for which the 

functional connectivity fluctuated over time (i.e. metastable dynamics; SI Fig. 2, top & middle).

Optimization of thalamocortical inputs

To find the optimal thalamocortical inputs for reproducing the observed connectivity patterns, we 

used the generalized island model for evolutionary optimization [44] – algorithm DE1220 as 

implemented in the pagmo toolbox [60]. The generalized island model optimized in parallel ten 

islands connected in a ring. Each island consisted of 50 individuals and had a particular 

parametrization of a differential evolution algorithm (see Supplementary Table 1). The islands 

occasionally exchanged their best-fitted individuals. This configuration allowed for simultaneously 

exploring and exploiting multiple areas of the parameter space. Their fitness function had three 

objectives that were combined into one index of fitness. The dominant objective was to maximize 

the similarity of simulated and empirical within-stage dpFC, f1:

f 1  =  ∑i=1
E x i⋅y i (∑i=1

E |xi|)
−1  Eq. 4

The links, E, in the empirical dpFC, x, were either 0 (not significant), 1 (lag-ahead) or -1 (lag-

behind). Simulated dpFC links, y, were either -1 or 1. The objective f1 gave discrete values which 

interval was used by the other two objectives. The second objective, f2, maximized the topological 

similarity of the relative change in envelope amplitude at the onset of each stage. This similarity 

was measured with the Spearman rank-correlation between MEG and simulated relative amplitudes.

The third objective, f3, minimized the absolute size of the thalamic pulses as
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f 3  = 1
Lmax

∑ j=1
R |L j|(∑i=1

E |xi|)
−1  Eq. 5

where Li are the local connectivities, and Lmax is the largest absolute pulse allowed to the optimizers. 

The combined fitness index was f = f1 – (1-f2)f3. The best individual had the minimal (1-f2)f3 among 

the 5000 individuals with the highest f in order to avoid a GWBM with low f2 and f3. The last 

simulated samples of this individual were used to initialize the simulations of the next stage (see 

section Generative whole-brain model: Cognitive task).

Supplementary Figure 3 shows the parameters of the individuals and their fitness along the 

evolution in one island as example. This figure shows how the cost function could simultaneously 

maximize the fitness of within-stage dpFC and relative local synchrony at the onset (Spearman 

correlation), while the change in local coupling was minimized. The optimization of the four stages 

took approximately 4 days using 10 CPUs, one for each island.

Relevance of individual regions for switches

To assess the relevance of a region for switching between states of dpFC, a GWBM was lesioned by

setting the thalamocortical pulse in this region to zero while the remaining regions were left 

untouched. Then, the fitness of the lesioned GWBM (Eq. 4) was compared to the fitness achieved 

by the original GWBM. The relevance of a region was measured as the number of within-stage 

dpFC links in the lesioned model that were not matching MEG data relative to the number of links 

matching MEG data in the full model. This process for measuring relevance was repeated for the 68

regions in the GWBM and the four transitions between stages. To obtain a measure of relevance that

was not dependent on a single GWBM, relevance was evaluated in 1,000 GWBMs randomly picked

from among the models in the top one percentile after optimization. Next, we used linear regions 
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models with one independent variable to explain the relevance of regions. Each linear model 

included as dependent variable the relevance of the 68 regions and four stages in a lesioned 

GWBM. A linear model was fitted for each of the 1,000 lesioned models independently. 

Structural connectivity, MRI acquisition and processing

We used 45 subjects from the test-retest dataset of the Human Connectome Project (HCP) 3T. This 

data set consisted of T1-weighted and multi-shell diffusion MRI data. T1-weighted data were 

acquired with 0.7 mm isotropic voxel size, TE = 2.14 ms, and TR = 2400 ms. Diffusion MRI data 

were acquired with a 1.25-mm isotropic voxel size, TE = 89.5 ms, and TR 5520 ms, with three 

shells with b = 1000, 2000, and 3000 s/mm2, each shell with 90 diffusion weighted volumes and 6 

non-weighted images [61]. The diffusion MRI data was already preprocessed as described in [62]. 

In short, diffusion MRI data were corrected for head motion and geometrical distortions arising 

from eddy currents and susceptibility artifacts [63]. Finally, the diffusion MRI images were aligned 

to the structural T1 image. The T1w image was parcellated using the Desikan–Killany parcellation 

[24], resulting in 68 cortical ROIs. Using the T1w image, the probability maps of the different 

tissues were obtained to create the five tissue-type files [64,65].

Tractography was carried out with constrained spherical deconvolution [66,67]. A multi-tissue re-

sponse function was calculated [68] and the average response functions were calculated. The multi-

tissue fiber orientation distribution was calculated [69] with the average response function (Lmax = 

8). The fiber orientation distribution images had a joint bias field correction and a multi-tissue in-

formed log-domain intensity normalization [70]. Then, tractography was performed with the iFOD2

algorithm [71] using anatomically constrained tractography [72]; generating 10 million streamlines 

(cutoff at 0.05, default); and using backtracking [72] and a dynamic seeding [73]. The length of the 
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fibers was set to a minimum of 20 mm and a maximum of 250 mm [72]. To be able to quantitatively

assess the connectivity, SIFT2 was applied to the resulting tractograms [73].

The connectivity matrix was built with a robust approach. In particular a 2-mm radial search at the 

end of the streamline was performed to allow the tracts to reach the gray matter parcellation  [74]. 

Each connectivity matrix was multiplied by its μ coefficient obtained from the SIFT2 process, as the

sum of the streamline weights needs to be proportional to the units of fiber density for each subject 

[75]. Connectivity matrices were averaged across subjects, and the 10% of links with the highest 

coefficient of variation across subjects were set to zero[76]. Finally, the averaged and thresholded 

structural connectivity matrix was normalized to have an average value of one. 

Supplementary Information

Supplementary Table 1. Parameters of DE1220 algorithm on each island.

Island 

IDs

Mutation variants allowed Adaptation scheme for

parameters F and C

1 best/1/exp; rand-to-best/1/exp; best/1/bin; rand-to-best/1/bin jDE
2 rand-to-current/2/exp; rand-to-current/2/bin jDE
3 rand-to-current/2/exp; rand-to-current/2/bin iDE
4 best/1/exp; rand-to-best/1/exp; best/1/bin; rand-to-best/1/bin iDE
5 rand/1/exp; rand/1/bin jDE
6 rand-to-current/2/exp; rand-to-current/2/bin jDE
7 rand-to-current/2/exp; rand-to-current/2/bin iDE
8 best/1/exp; rand-to-best/1/exp; best/1/bin; rand-to-best/1/bin jDE
9 best/1/exp; rand-to-best/1/exp; best/1/bin; rand-to-best/1/bin iDE
10 rand/1/exp; rand/1/bin jDE
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Supplementary Figures

Figure S1, Resting state neural coordination dynamics. The green dot indicates the 

parametrization of the model. The location of the green dot was based on the idea that resting state 

dynamics should have simultaneously the lightest color in the three panels and  the weakest 

coupling parameters.
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Figure S2. Return to resting-state after cognitive stages. (top) Modulus of the global KOP. 

(middle) Modulus of the local Kuramoto order parameter (KOP) for the cortical 68 ROIs. (bottom)  

Temporal evolution of simulated-to-MEG fitness of within-stage dpFC for the four cognitive stages.

This is similar to Figure 2B but for a much longer period of time. The MEG within-stage dpFC of 

each stage (Figure 1B) were compared (Eq. 4) with the simulated dpFC sample-by-sample (Eq. 1).

Figure S3. Individuals and their fitness along the optimization in one island. (A) fitness index 

f . (B) Spearman correlation, objective f1. (C) Sum of the absolute change in local coupling at the 

onset of the stage. Blue dots are the A, B and C values in the order that they were evaluated along 

the optimization process. Orange dots are the same values but sorted by the Fit Index (A). (D) 

Change in local coupling (thalamic input) at the onset that produces the blue dots in A, B, C. (E) 

Same as (D) but sorted by their Fit Index. 
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