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Abstract

Ecological memory refers to the influence of past events on the response of an ecosystem to exogenous

or endogenous changes. Memory has been widely recognized as a key contributor to the dynamics of

ecosystems and other complex systems, yet quantitative community models often ignore memory and its

implications.

Recent studies have shown how interactions between community members can lead to the emergence

of resilience and multistability under environmental perturbations. We demonstrate how memory can

complement such models. We use the framework of fractional calculus to study how the outcomes of a

well-characterized interaction model are affected by gradual increases in ecological memory under varying

initial conditions, perturbations, and stochasticity.

Our results highlight the implications of memory on several key aspects of community dynamics. In

general, memory slows down the overall dynamics and recovery times after perturbation, thus reducing the

system’s resilience. However, it simultaneously mitigates hysteresis and enhances the system’s capacity

to resist state shifts. Memory promotes long transient dynamics, such as long-standing oscillations

and delayed regime shifts, and contributes to the emergence and persistence of alternative stable states.
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Collectively, these results highlight the fundamental role of memory on ecological communities and provide

new quantitative tools to analyse its impact under varying conditions.

Author summary

An ecosystem is said to exhibit ecological memory when its future states do not only depend on its

current state but also on its initial state and trajectory. Memory may arise through various mechanisms

as organisms learn from experience, modify their living environment, collect resources, and develop

innovative strategies for competition and cooperation. Despite its commonness in nature, ecological

memory and its potential influence on ecosystem dynamics have been so far overlooked in many applied

contexts. Here, we combine theory and simulations to investigate how memory can influence community

dynamics, stability, and composition. We incorporate in particular memory effects in a multi-species

model recently introduced to investigate alternative stable states in microbial communities, and assess

the impact of memory on key aspects of model behavior. The approach we propose for modeling memory

has the potential to be more broadly applied in microbiome research, thus improving our understanding

of microbial community dynamics and ultimately our ability to predict, manipulate and experimentally

design microbial ecosystems.

Introduction 1

The temporal variations observed in ecosystems arise from the interplay of complex deterministic and 2

stochastic processes, the identification and characterization of which requires quantitative models. The 3

empirical study of microbial communities provides an ideal source of data to inform the development of 4

dynamical community models, since this active research area generates rich ecological time series under 5

highly controlled experimental conditions and perturbations [1]. Nevertheless, despite the recent advances 6

in metagenomic sequencing and other high-throughput profiling technologies that are now transforming 7

the analysis of microbial communities [2], there has only been limited success in accurately modeling and 8

predicting the complex dynamics in microbial communities. This highlights the need for re-evaluating and 9

extending the available models to better account for the various mechanisms that underlie community 10

dynamics [1,3–7]. One central shortcoming of the currently popular dynamical models is that they ignore 11

the role of memory, that is, they are based on the assumption that the community’s future behavior 12

solely depends on its current state, perturbations, and stochasticity. 13

Ecological memory is present when the community’s past states and trajectories influence its dynamics 14

over extended periods. It is a fundamental aspect of natural communities, and its influence on community 15

dynamics has been widely recognized across ecological systems [8–11]. Memory can emerge through a 16
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number of mechanisms, including the accumulation of abiotic and biotic material characterizing past 17

legacies of the system [12, 13]. Thus, developing and investigating new means to incorporate memory 18

in dynamical models of ecological communities has the potential to yield more accurate mechanistic 19

understanding and predictions. 20

Diverse approaches have been proposed to explore ecological memory, including time delays [10,14,15], 21

historical effects [16], exogenous memory [11], and buffering of disturbances [17]. A stochastic framework 22

was used to evaluate the length, patterns, and strength of memory in ecological case studies [10]. However, 23

the impact of memory has not been systematically addressed, and specific methods have been missing for 24

incorporating memory into standard deterministic models of microbial community dynamics. 25

Potential community assembly mechanisms have been recently investigated based on extensions of the 26

generalized Lotka-Volterra framework, which provides a standard model for species interactions [18–20]. 27

The standard model has been extended by incorporating external perturbations [21], sequencing noise [22] 28

and variance components [23], and to satisfy specific modeling constraints [24] such as compositionality [25]. 29

Generalized Lotka-Volterra models have also been combined with Bayesian Networks for improved 30

longitudinal predictions [26]. One goal of these modeling efforts is to understand how the alternative 31

community types reported in the human microbiome may arise, possibly in combination with external 32

factors [27–31]. Despite the recent popularity of generalized Lotka-Volterra models in microbial ecology, 33

the impact of memory in these models has been largely ignored. 34

We address the above shortcomings by explicitly incorporating a class of memory effects into community 35

interaction models using fractional calculus, which provides well-established tools for modeling memory 36

[32, 33]. We incorporate memory into a multi-species model that was recently used to illustrate the 37

emergence of alternative states in microbial communities [18], and we then use this extended model to 38

demonstrate how memory can influence critical aspects of community dynamics. This contributes to 39

the growing body of quantitative techniques for studying community resistance, resilience, prolonged 40

instability, transient dynamics, and abrupt regime shifts [34–38]. 41

Model 42

The generalized Lotka-Volterra and its extensions are ordinary differential equation (ODE) systems. This 43

class of models has been commonly used to model community dynamics, but their standard formulations 44

ignore memory effects. Here, we show how ecological memory can be included in these models based on 45

fractional calculus. This mathematical tool provides a principled framework for incorporating memory 46

effects into ODE systems (see e.g. [32, 33, 39, 40]), thus allowing a systematic analysis and quantification 47

of memory effects in commonly used dynamical models of ecological communities. 48
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Fig 1. Schematic illustration of a three-species community in the presence of memory and
perturbations. (a) The mutual interaction model describes the dynamics of species abundances Xi,
which depends on the growth rates bi, death rates ki, and inhibition functions fi, where Kij and n denote
interaction constants and Hill coefficients, respectively [18]. (b) Standard perturbations include pulse,
periodic, and stochastic variation in species immigration, death, or growth rates. Such perturbations may
trigger shifts between alternative states. (c) Memory (bolded circles) can be incorporated into dynamical
models by substituting the integer-order derivatives with fractional derivatives Dµi of order µi (see [32]
and Appendix S1). As decreasing µi values correspond to increasing memory, memory is measured as
1− µi. When all community members have the same memory (µi = µ for all i), the system is said to have
commensurate memory, otherwise incommensurate. Increasing memory changes community dynamics, in
particular by slowing it down and modifying the stability landscape around stable states. (d) Ecological
memory can change the system’s dynamics under perturbation.

Let us first consider a simple community with three species that tend to inhibit each other’s growth 49

(Fig 1a). We will later extend this model community to a larger number of species. To model this 50

system, we employ a non-linear extension of the generalized Lotka-Volterra model that was recently used 51

to demonstrate possible mechanisms underlying the emergence of alternative states in a multi-species 52

community [18]. This non-linear model describes the dynamics of a species i as a function of its growth 53

rate, death rate, and an interaction term determined by the interaction matrix between all species pairs, 54

as described in Fig 1a. Under certain conditions, this model gives rise to a tristable community, where 55

each stable state corresponds to the dominance of a different species. The community can shift from one 56

stable state to another following an external or internal perturbation (Fig 1b). 57

To introduce memory, we extend this model by incorporating fractional derivatives. In this extended 58

formulation, the classical derivative operator d/dt is replaced by the fractional derivative operator Dµi , 59

where µi ∈]0, 1] is the non-integer derivative order for species i (Fig 1c). The fractional derivative is 60

defined by a convolution integral with a power-law memory kernel (see Appendix S1). The µi can then 61

be used as a tuning parameter for memory, with lower values of µi indicating higher levels of memory for 62
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species i [32]. The strength of memory for species i is measured as 1− µi. The three special cases of this 63

model include (i) no memory (µi = µ = 1 for all species i), which corresponds to the original community 64

model in [18]; (ii) commensurate memory, where all species have equal memory (µi = µ ≤ 1); and (iii) 65

incommensurate memory, where µi may be unique for each i, and hence the degree of memory may differ 66

between species. We numerically solve the fractional-order model with varying values of the parameter 67

µi, thus inducing varying levels of memory, and use it to analyse the effect of memory on various aspects 68

of community dynamics, in particular its response to perturbations (Fig 1d). 69
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Fig 2. Impact of commensurate memory on community resistance and resilience. (a) A pulse
perturbation is applied to the community (left panel): the growth rate of the blue species is lowered while
that of the green species is simultaneously raised. The perturbation temporarily moves the community
away from its initial stable state, characterized by blue species dominance (middle panel). Introducing
commensurate memory (right panel) increases resistance to perturbation since the community is not
displaced as far from its initial state compared to the memoryless case (shown in superimposition). The
effect on resilience depends on the time scale considered: while memory initially hastens the recovery after
the perturbation, it slows down the later stages of the recovery (starting around the time step 150). (b) A
slightly stronger pulse perturbation is applied (left panel), triggering a shift toward an alternative stable
state dominated by the green species (middle panel). Memory can prevent the state shift (right panel).
Thus, here, not only does memory increase community resistance to perturbation, but also resilience as
manifested by the prevented state shift.

Results 70

We have shown above how ecological memory can be incorporated in dynamical community models based 71

on the framework of fractional calculus. Next, we use numerical simulations and analyses of this model 72

to highlight the impact of memory on key dynamical properties of multi-species communities. 73
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In general, memory adds a certain inertia in community dynamics as the influence of past states 74

gradually fades out. Commensurate memory thus slows down the overall dynamics, which may lead 75

to qualitative changes in the dynamics as well as community composition under certain conditions. In 76

particular, memory-induced inertia tends to damp down fluctuations and can therefore mitigate or prevent 77

more extreme and sudden changes in the system. Overall, our results show that ecological memory affects 78

the community dynamics in two important ways: by enforcing more moderate levels of fluctuations, and 79

by inducing quantitative and qualitative changes in how the system responds to perturbations or varying 80

initial conditions. In the first section below, we report the consequences of these changes on community 81

resistance and resilience. 82

The emergence of alternative community states has been debated in the microbiome research literature. 83

For instance, [18] demonstrated how pulse perturbations can bring the 3-species system to a boundary of 84

the tristability region, which then triggers a transition to an alternative stable state. In that model, such 85

a transition can be for instance controlled by changes in the species’ growth rates. In the second section 86

below, we report how memory can exert additional influence on the resulting dynamics and alter the 87

community’s stability landscape. 88

Resistance and resilience 89

Resistance refers to a system’s capacity to withstand a perturbation without changing its state, while 90

resilience refers to its capacity to recover to its original state after a perturbation [41]. To examine the 91

impact of ecological memory on community resistance and resilience in response to perturbations, we 92

perturbed the system by changing the species growth rates over time. Specifically, we investigated the 93

three-species community under pulse (Figs 2), periodic (Fig 3), and stochastic (Figs 4) perturbations, 94

and analysed the impact of these three types of perturbations on community dynamics in the presence of 95

memory, which is commensurate in this subsection. 96

Our results show that memory tends to increase resistance to perturbations by allowing the competing 97

species’ coexistence for a longer time. In the presence of memory, switches between alternative community 98

states take place more slowly following a pulse perturbation (Fig 2a), or in some cases may be prevented 99

entirely (Fig 2b). Fig S1 provides a further example of the increased resistance provided by memory in a 100

larger, unstructured community, where memory helps preserve the stable state after a pulse perturbation 101

compared to the corresponding memoryless system. 102

After the perturbation has ceased, memory initially hastens the return to the original state, but then 103

slows it down in the later stages of the recovery (Fig 2a). Thus, the impact of memory on resilience 104

is multi-faceted: depending on the time scale considered, memory may either slow down or hasten the 105

recovery from perturbations, thus reducing or increasing resilience. Furthermore, in multistable systems, 106
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Fig 3. Multi-pulse and periodic perturbations: memory impact on hysteresis and transient
oscillations. (a) Two opposite pulse perturbations are applied successively: the blue species growth rate
is first briefly lowered, and then raised for a longer time. (b) The top panel shows the hysteresis in the
system: the state shift towards the dominance of the green species occurs faster after the first perturbation
than the shift back to the initial stable state after the second perturbation. Introducing commensurate
memory (middle and bottom panels) delays the first state shift, thus increasing resistance, and hastens the
second state shift, thus mitigating the hysteresis effect and increasing long-term resilience. (c) Rapidly
alternating opposite perturbations are applied to the blue species growth rate with a regular frequency.
(d) Without memory (top), the hysteresis effect leads to a permanent shift towards the green-dominated
alternative stable state after a few oscillations. Adding commensurate memory mitigates the hysteresis,
thus extending the transitory period (middle), which may generate longstanding oscillations in community
composition before the community converges to a stable state (bottom).
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memory may enhance resilience by promoting the persistence of the original stable state (Fig 2b). 107

Considering two successive pulse perturbations in opposite directions highlights another way memory 108

can affect resilience in multistable systems (Fig 3a). After a state shift triggered by a first perturbation, 109

memory may hasten recovery to the initial state following a second, opposite perturbation, hence increasing 110

long-term resilience. Memory can thus mitigate the hysteresis that is typical of many ecological systems. 111

In the presence of regularly alternating opposite pulse perturbations, akin to those experienced by 112

marine plankton or the gut microbiome, the community may not be able to recover its initial state if the 113

perturbations follow each other too rapidly. In such circumstances, memoryless communities reach a new 114

stable state faster than the communities with memory, as the latter resist the perturbations for a longer 115

time due to the reduced hysteresis (Fig 3b). This may lead to community dynamics being trapped in 116

long-lasting transient oscillations. 117

Finally, we analyse the role of stochastic perturbations, which are an essential component of variation 118

in real systems. Under stochastic perturbation (Fig 4a), ecological memory can dampen the fluctuations 119

and significantly delay the shift towards an alternative stable state (Fig 4b). This demonstrates in a more 120

realistic perturbation setting how memory can promote community resistance. 121

Memory can nevertheless have unexpected effects on community dynamics when its strength is tuned 122

to bring the system in the vicinity of the tristable region, where the outcome of the dynamics is highly 123

sensitive to initial conditions (Fig 4c). Under such conditions, minute changes in memory can push the 124

system over a tipping point towards another attractor, radically changing the outcome. This illustrates 125

that, beyond slowing down the dynamics and damping perturbations, memory can have non-trivial effects 126

on the system’s stability landscape, which we investigate in the next section. 127

Impact on stability landscape 128

Let us now consider a more complex community of 15 species structured into three groups through their 129

interaction matrix. Each of these groups represents a set of weakly competing species—e.g., due to 130

cross-feeding interactions that mitigate competition, while species belonging to different groups compete 131

more strongly with each other (Fig 5a). We show that adding incommensurate memory in such a system 132

can change the final stable state of the community even in the absence of perturbation. In particular, 133

increasing the strength of memory in the group that is dominant in the stable state of the memoryless 134

system can lead to its exclusion from the new stable state (Fig 5b-c). Around the threshold value, long 135

transients can be observed (Fig 5d): even without changing any of the model parameters or imposing 136

noise, an abrupt regime shift is triggered by the accumulated effect of memory after a long period of 137

subtle, gradual changes. 138

Remarkably, adding memory in a given species may lead to either a reduction or an increase in its 139
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Fig 4. Stochastic perturbations with commensurate memory effects. (a) Stochastic perturbation
in a three-species system: species growth rates bi vary stochastically through time according to an
Ornstein-Uhlenbeck process (see Appendix S2). (b) Dynamical behavior of the system in response to the
stochastic perturbation for equal initial species abundances and varying memory level: in addition to slowing
down community dynamics, increasing memory limits the overall variation in species abundances, thus
enhancing the overall resistance of the system. (c) For some memory strengths, the final state of the system
can be sensitive to slight variations in memory, with drastic consequences on community composition.

abundance depending on the conditions. While Fig 5b-c illustrates the exclusion of a group of species 140

with higher memory from the stable state in the absence of perturbation, memory may conversely increase 141

the persistence or abundance of a species in the presence of stochastic perturbation (Fig S2b). In fact, in 142

the presence of perturbation, the dominance of any of the species may be achieved by tuning memory in a 143

single species. This result holds both in the case of pulse (Fig S2a) and stochastic (Fig S2b) perturbation. 144

Bifurcation diagrams further show that, in addition to modifying the boundary between stable states 145

in the space of initial conditions, memory can also broaden the region of the model’s parameter space 146

that exhibits multistability (Fig S3). We illustrate for instance in Figure 6 that incommensurate memory 147

can induce multistability in a 3-species community that would otherwise converge to a single stable 148

state in the absence of memory. Ecological memory thus provides an alternative and largely overlooked 149

mechanism for the emergence of multistability. 150

Finally, we show that simply setting similar levels of ecological memory within groups of species in an 151

otherwise unstructured community may lead to the formation of coherent species assemblages with shared 152

dynamics (Fig S4). This provides an additional mechanism for the emergence of distinct community 153

types, each associated with the dominance of one such assemblage. Hence, our results show that memory 154

can by itself lead to the emergence of alternative community types, between which the community may 155

switch following a change in either initial conditions (Fig 6) or memory strength (Fig S4). 156
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Fig 5. Impact of incommensurate memory on the community stability landscape: regime
shifts without perturbation. (a) A simulated mutual interaction model with 15 species in three groups,
blue, red, and green (see [18]). The interactions between species from different groups and within each
group are illustrated. The within-group interactions are stronger than between-group interactions. (b)
Starting from random initial conditions, the blue group of species dominates the community at the stable
state when no memory is present (top). Imposing memory on the blue species leads to a temporary rise in
abundance, but ultimately another (red) group of species dominates instead (bottom). (c) The stable state
distributions of 50 simulations are represented by ternary plots. Each dot shows, for one simulation, the
identity of the dominant group (color) and the average relative abundances of the three groups (position in
the triangle) at convergence time (see Appendix S2 for details). In the memoryless system (top), the three
groups roughly have the same chance of dominating the stable state, whereas imposing memory effects on
the blue set of species (bottom) favors stable states where those species are not dominant. (d) Exceeding a
particular threshold on incommensurate memory on the blue species (here, 0.14816) leads to an abrupt
regime shift after a long period of subtle, gradual inclines, without changing any model parameters or
adding noise.

Discussion 157

Our understanding of ecological community dynamics heavily relies on mathematical modeling. Dynamical 158

community modeling is a particularly active research area in microbial ecology, where recent studies have 159

proposed numerous mechanistic models of microbial community dynamics exploring the role of interactions, 160

stochasticity, and external factors [1,18,42–44]. These studies have, however, largely neglected the role of 161

ecological memory despite its potentially remarkable impact on community variation. 162

We have shown how ecological memory can be incorporated into models of microbial community 163

August 17, 2021 10/28

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458486
http://creativecommons.org/licenses/by/4.0/


Fig 6. Incommensurate memory can induce multistability. Three-species community model that
converges: (a) in the absence of memory, to a single stable state irrespective of initial abundances (see
Fig S3), and (b) in the presence of incommensurate memory, to different stable states depending on species
initial abundances. In each row, the three panels show the relative abundances of the blue, red and green
species along time for the same set of initial conditions. In (b), the dashed and doted lines indicate the
initial abundance thresholds that separate the three alternative attractor states, each corresponding to
the dominance of a different species. No change in stable state is observed for the same values in the
corresponding memoryless system (a).

dynamics, and used this modeling tool to demonstrate the role of memory as a potential key determinant 164

of community dynamics. This has allowed us to expand our understanding of the impact of memory on 165

community response to perturbation, long transient dynamics, delayed regime shifts, and the emergence 166

of alternative community states. 167

Ecological communities are constantly subject to perturbations arising from external factors, as well 168

as from internal processes and interactions between community members. Environmental fluctuations 169

through time have a fundamental influence on ecological communities: they may promote species 170

coexistence, increase community diversity [45,46], contribute to the properties of stable states [37,47], and 171

in some cases, facilitate abrupt regime shifts [47]. Our analysis of memory in perturbed communities is 172

closely linked to recent studies analysing the response of experimental microbial communities to antibiotic 173

pulse perturbation [48, 49], or the impact of periodic perturbations on the evolution of antimicrobial 174
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resistance [34]. 175

Our approach is based on fractional calculus [32], a well-known mathematical framework with a 176

broad range of applications [50,51]. In this framework, ecological memory is represented by fractional 177

derivatives and their associated kernel, which determines how quickly the influence of past states fades out 178

(see Appendix S1). Commensurate fractional derivatives have previously been shown to cause intrinsic 179

damping in a system [52–54], which may delay transitions or shift critical thresholds [33]. Incommensurate 180

models, on the other hand, yield complicated ODE systems that are mathematically more challenging 181

to analyse and therefore remain less well understood. We have shown here that the type of memory 182

introduced by fractional derivatives can influence resistance and resilience in ecological communities. 183

Quantifying this influence using recently proposed resilience measures, such as exit time [55], would 184

provide a promising line of research for future work. While this framework allows introducing only a 185

specific type of memory, our qualitative results on the influence of memory on community dynamics are 186

likely to hold more generally. 187

In addition to damping, memory can also induce other dynamical properties, such as long periods of 188

instability [36], or long transients [38], which have been reported in ecological systems [56] and chemostat 189

experiments [57]. Long transients have previously been shown to be favored by stochasticity, multiple 190

time scales, and high dimensionality [38], and our results indicate that memory should be added to this 191

list; [38] also argue that regime shifts may occur during such long transient dynamics, without requiring 192

parameter changes. Our results support this view, since we have shown that changes in incommensurate 193

memory can trigger abrupt regime shifts even in the absence of perturbations. 194

Modeling real systems using models that incorporate memory would benefit from the ability to gather 195

empirical evidence for the presence, strength, and quality of memory in the system. Recent literature 196

suggests that it might indeed be possible to empirically detect the presence of memory based on the broad 197

properties of a time series. It has been shown that longitudinal time series of microbial communities may 198

carry detectable signatures of underlying ecological processes [4, 58]; and recently, Bayesian hierarchical 199

models [10, 14], Random Forests [11], neural networks [59], and unsupervised Hebbian learning [60] have 200

been proposed to detect signatures of memory in other contexts. 201

Several extensions of our model could be considered in future studies to enhance its flexibility and 202

model memory more generally, such as varying initial times [33] or applying fractional differential equations 203

with time-varying derivative orders [61]. Alternative approaches have also been considered to model 204

ecological memory. These include the incorporation of autocorrelation or fixed time-lags into the model 205

structure [15]. One could also model ecological memory by distributed delay differential equations 206

(DDE) [62], fractional delay differential equations [63], or an integer memory-dependent derivative [64] 207

with arbitrary kernel functions to shape different patterns of memory weights. 208
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Ecological memory is a systemic property that can arise through various mechanisms. For instance, 209

communities can alter their environment and thus modify environmental parameters in ways that reflect 210

past events, or organisms may exhibit context-specific growth patterns that reflect adaptations [60,65,66]. 211

Delay effects could also arise without memory and through other mechanisms, such as intracellular inertia. 212

Species may indeed have different and often variable lag phases, due to complex intracellular processes 213

that may be effectively memoryless. In such cases, the dampening effects could be simply modeled by 214

introducing a “break” that would slow down or create a lag in community dynamics without inducing 215

actual memory effects. Specifically designed longitudinal experiments could help evaluate the types and 216

relative strengths of memory in real communities, such as in synthethic microbial communities that 217

can be used to collect long and dense time series with highly controlled perturbations and replicated 218

experiments. 219

Improving our understanding of the key mechanisms underlying community dynamics is a necessity 220

to generate more accurate predictions, and ultimately to develop new techniques for the manipulation of 221

complex ecological communities. We have combined theoretical analysis with computational simulations 222

to explore the various facets of the influence of ecological memory and highlighted its often overlooked 223

role as a key determinant of complex community dynamics. 224
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Supporting information 410

Appendix S1 411

In the following, we detail the mathematical aspects of incorporating ecological memory into a non-linear 412

extension of the generalized Lotka-Volterra model. 413

Memoryless model 414

We used as a starting point the following memoryless model, introduced by [18]: 415

dXi

dt
= Xi (bifi({Xk})− kiXi) ,

fi({Xk}) =
N∏
k=1
k 6=i

Kn
ik

Kn
ik +Xn

k

.
(1)

This model describes the dynamics of each microbial species abundance Xi according to its growth rate 416

bi, its death rate ki and an inhibition term fi, which is defined by interaction constants Kij and the Hill 417

coefficient n as parameters. Kij represents the inhibition of species i by species j: the lower it is, the 418

stronger the inhibition. 419

The interaction matrix K = {Kij} was generated based on two alternative approaches. The first 420

approach allocates the predefined species in three groups (see below and Fig 5 as in [18]), thereby setting 421

different values of inter-group versus intra-group interactions. The second approach does not impose a 422

predefined structure for the interaction matrix K (Fig S4). 423

Three-group model 424

In the three-group approach, we define three sets of species indices by B (blue), R (red), and G (green). 425

Each species i belongs to exactly one of these three groups. We define the growth rate of each group by 426

the growth vector b = [bB , bR, bG], where bB = {bi | i ∈ B}, bR = {bi | i ∈ R}, and bG = {bi | i ∈ G}. 427

We also define the interaction matrix K = {Kij | i, j ∈ B or R or G} such that Kij only depends on 428

the group memberships of species i and j, up to a slight noise (see Fig 5a and Appendix S2). We first 429

considered a community of three species (i.e., only one species per group), and then a community of 15 430

species forming three groups with strong inter-group inhibition and weak intra-group inhibition. 431

If the inhibition strength is large enough (small Kij), this model can have three coexisting stable 432

states (tristability). This tristable community is dominated by either one of its three groups depending 433

on initial species abundances, interaction matrix K, and growth vector b. 434
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Incorporating memory by fractional calculus 435

Fractional order derivatives have been successfully used to account for memory effects in many disciplines [32, 436

33,67]. This approach requires defining a temporal kernel in dynamical models [32,33]. The stable regions 437

of fractional differential equations differ from the corresponding classical one [35, 68, 69] and thus induce 438

significant differences in the stability landscape of a community model. Interestingly, chaos has been 439

observed in a fractional population model [70], which exhibits a structure entirely different from typical 440

dynamical attractors such as the Rössler or Lorenz attractors. 441

To introduce memory in ODE models, we replace the ordinary time derivative in system (1) by the 442

fractional derivative Dµi . This leads to the appearance of a time correlation function (a memory kernel) 443

which imposes a dependency between the current system state and its past trajectory. The past states of 444

the system influence the current dynamics, giving rise to memory effects. 445

Let us now rewrite the initial model in (1) by employing fractional derivatives and the simplifying 446

notation Fi = F (t,Xi) := Xi (bifi({Xk})− kiXi), as: 447

DµiXi = Fi, 0 < µi ≤ 1, µi ∈ R. (2)

There are different definitions of fractional time derivatives for different purposes [71]. We use here the 448

Caputo fractional time derivative [72], Dµi := c
t0D

µi

t , as a control parameter of memory effects because 449

of its intuitive interpretation. This derivative is defined by the following integral equation for a given 450

function g(t): 451

c
t0D

µ
t g(t) = t0I

1−µ
t g′(t) =

1

Γ(1− µ)

∫ t

t0

g′(τ)dτ

(t− τ)
µ , 0 < µ ≤ 1, (3)

in which t0I
1−µ
t is the fractional integral of order 1− µ that is defined by 452

t0I
µ
t g(t) =

1

Γ(µ)

∫ t

t0

g(τ)dτ

(t− τ)
1−µ , (4)

where Γ denotes the gamma function. Throughout this article, we quantify memory as 1− µ. 453

Model interpretation 454

To provide an intuitive interpretation of the new system equation (2), let us apply a fractional Caputo 455

derivative of order 1− µi on both sides of (2): 456

c
t0D

1−µi

t

(
c
t0D

µi

t Xi

)
= c
t0D

1−µi

t (Fi) . (5)
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Because the Caputo fractional derivatives of order µ and −µ are inverse operators [73, 74], this simplifies 457

as: 458

c
t0D

1
tXi =

dXi

dt
= c
t0D

1−µi

t (Fi) . (6)

Equation (6) shows that for µi = 1 we retrieve the standard integer derivative model (1) as a special 459

case of the fractional derivative model (2), since the fractional operator becomes the unity operator for a 460

fractional order of 1. Furthermore, the right-hand side of equation (6) can be expressed as the fractional 461

integral of order (µi − 1) on the interval [t0, t], that is: 462

dXi(t)

dt
=

1

Γ(µi − 1)

∫ t

t0

(t− τ)µi−2F (τ,Xi)dτ. (7)

The system described by equation (7) is a transformation of the original system (1) with an additional 463

memory contributions µi. When 0 < µi < 1, the time-dependent memory kernel 1
Γ(µi−1) (t − τ)µi−2

464

guarantees the existence of temporal scaling behaviors which are common in nature. The memory kernel’s 465

decay rate depends on µi: the lower the value of µi, the slower it will decay. This shows how imposing 466

memory on the system equation (1) slows down community dynamics. 467

The derivative order µi can be used to control the strength of the memory so that when µi goes 468

toward the integer value 1, the influence of memory decreases, and the system tends toward a Markov 469

process. In the context of microbial communities, memory may thus counteract the effects of species 470

interactions. In the memoryless case (µi = 1), the kernel becomes a Dirac delta function, δ(t− τ), which 471

results in the integer-order integrodifferential equation of model (1). 472

In summary, the Caputo fractional derivative provide a means to incorporate ecological memory in a 473

dynamical system based on a convolution integral with a power-law memory kernel. Besides, it could be 474

modified by a time-delay reflecting the duration of memory effects and the kernel function shaping the 475

memory weight [64]. 476

Numerical simulations 477

Adams methods provide commonly used numerical solutions for ODEs, involving implicit (Adams-Moulton) 478

and explicit (Adams-Bashforth) linear multi-step schemes. We exploited in this paper the predictor-corrector 479

method based on Adams formulae (see [75, 76]) and implemented it in MATLAB. The corresponding 480

code is available on Zenodo [77]. 481

Given the system equation (2), let us write X the set of all species abundances, µ the corresponding 482

vector of derivative orders µi, and F the corresponding matrix function of all Xi (bifi({Xk})− kiXi). We 483

can then rewrite the fractional order model (2) in the following matrix form: 484

DµX = F(t,X), where X(t0) = X0. (8)
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The initial value problem (8) is equivalent to the Volterra integral equation [73,75]: 485

X(t) = X0 +
1

Γ(µ)

∫ t

t0

(t− τ)µ−1F(τ,X(τ))dτ. (9)

We solved Eq. (9) using a product integration technique, in which we replaced the function F(τ,X(τ)) 486

with piece-wise interpolating polynomials. For the grid nodes tj (j = 0, ...,m) with constant step size h 487

(tj = t0 + jh), we write Fj = F(tj ,Xj) where Xj is the numerical approximation to X(tj). The product 488

rectangle rule [75] gives an explicit estimation of Eq. (9) as a predictor: 489

Xm = X0 + hµ
∑m−1
j=0 bm−j−1Fj ,

bm−j−1 = (m−j)µ−(m−j−1)µ

Γ(µ+1) ,

(10)

and the product trapezoidal rule [75] provides an implicit estimation of Eq. (9) as a corrector: 490

Xm = X0 + hµcmF0 + hµ
∑m
j=1 dm−jFj ,

cm = (m−1)µ+1−mµ(m−µ−1)
Γ(µ+2) ,

dm−j =


1

Γ(µ+2) , if m− j = 0,

(m−j−1)µ+1−2(m−j)µ+1+(m−j+1)µ+1

Γ(µ+2) , if m− j = 1, 2, ...

(11)

The last term of the sum in the corrector equation (11), F(tm,Xm), is obtained by an approximation of 491

Xm in the predictor equation (10). This method is called FracPECE: Fractional Predict-Evaluate-Correct-Evaluate492

[75]. Because its standard implementation was not sufficient considering the stiffness of the equation, we 493

improved its accuracy via an advanced convolution quadrature [76], and via multiple applications of the 494

corrector step [78] when required. Specifically, we used several corrector iterations when the difference 495

between two consecutive iterations was larger than the desired tolerance of 10−6. We considered a time 496

step size of h = 0.01 or 0.005 for all simulations. 497

Note that since the model with fractional order derivatives (2) includes the standard model (1) as a 498

particular case (namely, for integer derivative order), the numerical approximations (10) and (11) are also 499

solutions to equation (1). The explicit solution (10)–or an assessment of the implicit solution (11)–shows 500

how memory influences the fundamental system dynamics through the dependence on µ. 501
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Appendix S2 502

We provide in the Table below the detailed conditions and parameter values used in each of the numerical 503

experiments presented in the main text. Additional methodological clarifications for figures 5c and S1 are 504

given in the text below the table. 505

Table . Exact model specifications for the 3-species and 15-species systems.

Figure X0 Kij n ki µ b
B R G ∀i 6= j ∀i B=R=G B R G

2a
2b
3a
3b

0.99 0.01 0.01 0.1 2 1

1 & 0.9
1 & 0.9

1 & 0.9 & 0.85
1 & 0.96 & 0.9

Pulse1
Pulse2
Pulse3

Periodic

0.95

Pulse1
Pulse2
1.05
1.05

4b-c 1/3 1/3 1/3 0.1 2 1

1
0.9157959
0.9157954
0.9157952

0.9
0.7
0.6

Stochastic

B R G

S1 Equilibrium points
Random

interactions
4 2

No Specified Groups
µi, ∀i = 1 (or 0.7)

N (1, 0.0025)
with a pulse

S2a 0.99 0.01 0.01 0.1 2 1
1
1
1

1
1
1

1
0.90895
0.90893

Pulse4 0.95 1.05

S2b 1/3 1/3 1/3 0.1 2 1
1
1
1

1
1

0.9

1
0.8
1

Stochastic

5 Uniform(0, 0.1)
Predefined
interactions

2 1

1
0.6

0.851841
0.851840

0.8

1 1 N (1, 0.01)

S3 &
6a
6b

[0.005,0.05] 0.1&0.3 1&0.1 0.1 2 1
1

0.6
1

0.6
1
1

4 0.95 1.05

S4 0.25 0.25 0.25 0.2 2 0.5
1
1

0.5

1
0.4
0.6

1
0.7
1

N (1, 0.01)

Pulse1: bB(t) = 0.5 and bG(t) = 2 if 20 ≤ t < 60, otherwise bB(t) = 1 and bG(t) = 1.05.
Pulse2: bB(t) = 0.5 and bG(t) = 2.2 if 20 ≤ t < 60, otherwise bB(t) = 1 and bG(t) = 1.05.
Pulse3: bB(t) = 0.2 if 60 ≤ t < 100, bB(t) = 4.5 if 200 ≤ t < 330, otherwise bB(t) = 1.
Periodic: bB(t) = 1 if 20(2m− 2) ≤ t < 20(2m− 1), bB(t) = 0.2 if 20(4m− 3) ≤ t < 20(4m− 2),
bB(t) = 4.5 if 20(4m− 1) ≤ t < 20(4m) where m ∈ N.
Stochastic: The growth rates of these panels are generated by mean-reverting the Ornstein-Uhlenbeck
Process described by the stochastic equation dbt = θ(φ− bt)dt+ σdWt.
Random interactions: Kij = 1− e−5z, where z is randomly generated from a uniform distribution between
0 and 1.
Predefined interactions: Kij ∼ 1 +N (0, 0.01) for species i and j in the same group (intra-group
interactions KBB , KRR, KGG), and Kij ∼ 0.5 +N (0, 0.01) for species i and j in different groups
(inter-group interactions).
Pulse4: bB(t) = 0.2 if 60 ≤ t < 100, bB(t) = 4.5 if 400 ≤ t < 530, otherwise bB(t) = 1.
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Fig 5c. Ternary plots allow representing the state of a 3-species or 3-group system by a single dot 506

and therefore are a convenient way to display the outcome of many simulations at a time. In Fig 5c, 507

each ternary plot shows the stable state distribution of the group relative abundances obtained for 50 508

different simulations, each represented by a dot of the color of the dominant group. We detail below how 509

we computed the position of each dot in the triangle. Let us write B, G and R the average stable state

G

B R

0 1/2 1

3

2

Fig . Triangle coordinates.

510

relative abundances of the species in the blue, green and red groups, that is R =

∑5
i=1Ri(end)∑

i(Ri +Bi +Gi)(end)
511

(and similarly for B and G), where Zi(end) denotes the abundance of species i in group Z at the end of 512

the simulation. Let us consider an equilateral triangle in which each vertex corresponds to the complete 513

dominance of one group of species, as shown in the Figure above. Thus, a point (dot) close to the middle 514

of the triangle indicates a state of the system characterized by relatively even species abundances. If 515

B = 1 (100%) is placed at (x, y) = (0, 0) and R = 1 (100%) at (1, 0), then G = 1 (100%) is at (
1

2
,

√
3

2
), 516

and any triplet (B,R,G) will be at [
1

2
(2R+G),

√
3

2
G]. These Cartesian coordinates provide a way to 517

map any triplet of group relative abundances to a unique location on the triangle. 518

Fig S1. Here, we randomly generated an interaction matrix K without predefined structure between 519

N = 15 species. Specifically, we set n = 4 and Kij = 1− e−5z, where z is a randomly generated number 520

from a uniform distribution between 0 and 1. We generated 10 communities, each with a random 521

vector of growth rates generated as bi ∼ N (1, 0.0025), ∀i. We used the same interaction matrix for all 522

10 communities, and death rates ki = 2, ∀i. For each community, we set the initial values for species 523

abundances Xi at one of the equilibrium points of the system (randomly chosen). To compute the 524

dissimilarity of the community between times tr and tp, we used the Bray-Curtis distance, computed as 525

BC(tr, tp) =

∑N
i=r |Xi(tr)−Xi(tp)|∑N
i=1Xi(tr) +Xi(tp)

. 526

August 17, 2021 25/28

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458486
http://creativecommons.org/licenses/by/4.0/


0 0.1 0.2 0.3 0.4 0.5 0.6

Memory

0

0.1

0.2

0.3

0.4

D
is

s
im

ila
ri

ty
 b

e
tw

e
e
n

in
it
ia

l 
&

 fi
n
a
l 
s
ta

te

c

d

50 100 150 200

Time

0

0.1

0.2

0.3

0.4

0.5

D
is

s
im

ila
ri

ty
 t
o
 i
n
it
ia

l 
s
ta

te

Community6

Memory=0

Memory=0.1

Memory=0.2

Memory=0.3

Memory=0.4

Memory=0.5

Memory=0.6

D
is

s
im

ila
ri

ty
 t
o
 i
n
it
ia

l 
s
ta

te

50 100 150 200

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Memory=0

50 100 150 200

Time

Memory=0.3

Community1

Community2

Community3

Community4

Community5

Community6

Community7

Community8

Community9

Community10

50 100 150 200

Time

Memory=0.6

0 50 100 150 200

Time

-3

-2

-1

L
o

g
 a

b
u

n
d

a
n

c
e

3 x b
J J =1 2 3 4 5 6 7

0 0.05 0.1
0

0.05

0.1

F
in

a
l 
s
ta

te

X
1 X

2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

X
13

X
14

X
15

Memory=0

Initial state

0 50 100 150 200

Time

-3

-2

-1

L
o

g
 a

b
u

n
d

a
n

c
e

3 x b
J J = 1 2 3 4 5 6 7

0 0.05 0.1
0

0.05

0.1

F
in

a
l 
s
ta

te

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

X
13

X
14

X
15

Memory=0.7

Initial state

b

a

Fig S1. Memory effects preserve the stable state. We simulated ten communities of 15 species, each
with random interaction matrices. A similar level of commensurate memory is applied to all ten communities.
Every community is initially in a stable state of the system, and a perturbation is imposed by multiplying
the growth rates of half of the species (b1, ..., b7) by 3. The simulation is stopped when the system is close
to its new stable state. Although only the effect of commensurate memory is illustrated here, the same
outcome can be achieved using incommensurate memory. (a) Dissimilarity to the initial stable state through
time for all ten communities, for three different memory strengths. The stronger the memory, the more
constrained the community trajectories are, and the more likely they are to revert to their initial stable state
eventually. (b) Time series for one randomly chosen community, community 6. The pulse perturbations
lead the community to an alternative stable state in the absence of memory (top), while adding memory
effects allows recovering the original state (bottom). (c) Community dissimilarity (Bray-Curtis) between
the start and the end of the simulation for all ten communities and different memory levels. Without
memory, the pulse perturbation changes the abundances of some of the species and leads to an alternative
stable state (i.e., non-zero dissimilarity between start and end). In contrast, all communities recover their
pre-perturbation stable state in the presence of memory (i.e., zero dissimilarity). (d) Dissimilarity to the
initial stable state through time in community 6, for different memory strengths.
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Fig S2. Role of memory in an incommensurate system. (a) The order derivative of XG is a
non-integer value, 0 < µG < 1, and the derivative order of XB and XR are integer, µB = µR = 1.
Around a particular value of the order derivative of the green species (µG = 0.90895), the system behaves
differently after the first perturbation: for µG in the interval ]0.90895, 1], the green species will be
dominant, while in the interval ]0, 0.90894] the red species will be dominant. (b) The growth rates follow
the same Ornstein-Uhlenbeck process as in Fig 4. For the system without memory, the blue species is
dominant. However, when imposing sufficient memory on the green or red species, they become dominant
in the stable state.
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Fig S3. Memory broadens the model’s multistable region. Bifurcation diagrams for the system
shown in Fig 6, showing the relative abundance of the blue, red, and green species (from top to bottom)
as a function of the blue species’ growth rate for three different initial conditions (leading to three distinct
curves per plot), in the absence (left) or presence (right) of memory. The yellow area shows the region of
the parameter space that exhibits multistability, which is extended by the introduction of incommensurate
memory (right).
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Fig S4. Groups of species can emerge from incommensurate memory. We consider here a
15-species community with equal interactions between species and identical initial abundances for all species,
where species growth rates are drawn from N (1, 0.01). As expected, the species do not form groups in the
absence of memory (left panel). When the species are randomly split into three groups (red, green, blue)
with varying degrees of memory, species with a similar degree of memory tend to exhibit similar dynamics
and group together due to their shared memory properties (middle panel). A switch to an alternative stable
state can be triggered by changing the strength of memory effects (right panel).
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