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21 Abstract

22 To better understand the potential impact of the gene expression network structure on the 

23 dynamics of immune-senescence and defects of cell functions during aging, we investigated 

24 network structures in both young and old individuals. We analyzed the gene co-expression 

25 networks (GCNs) derived from an aging signature of 130 immune-related genes obtained from 

26 CD3+ T-cell splenocytes extracted from FVB/N, C57BL/6N, and BALB/c mice at ages 2 and 22-

27 24 months. The network structure for the two different mouse age-groups was derived and 

28 subsequently analyzed. Analysis of network hubs using clustering coefficients, degree, 

29 betweenness, eigenvector, and closeness centralities, as well as local, indirect, and total influence 

30 measures, demonstrated changes in gene behavior and network control between the two age 

31 groups. Our quantification shows that the young, 2-month old mouse network is more organized 

32 than the 22-24-month, old mouse network, while the network structure of the older mouse GCN 

33 appears to be far more complicated but far more dispersed. Changes in network structure between 

34 the old and young mice suggest deterioration in transcription regulation with age in peripheral T-

35 cells, particularly within the TCR signaling pathway, and potential compensatory mechanisms in 

36 older T-cells to overcome loss to regular function resulting from transcriptional irregularity. These 

37 results demonstrate the need for more research into gene co-expression in peripheral T-cells in 

38 order to better understand both network irregularities and the phenotypic dysfunction observed in 

39 older individuals. 

40  
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41 Author Summary

42 In order to better understand the potential mechanisms of transcriptional irregularities in the 

43 immune system with aging, we analyzed the structure of gene co-expression networks of T-cells 

44 extracted from the spleens of 2 and 22-24-month old mice. Gene co-expression describes the 

45 correlation relationship between two expressed genes; as the expression of one gene goes up, the 

46 expression of another gene might also increase (or, conversely, decrease). Strong gene co-

47 expression relationships can signal the existence of a number of important biological phenomena, 

48 such as two genes belonging to a transcription pathway or protein structure. Network diagrams 

49 visualizing these co-expression relationships in both younger and older mice demonstrated the 

50 existence of differences in network structure and properties that may be attributed to the aging of 

51 the immune system. Network mathematical methods were used to examine the complexity of each 

52 network. We found that the younger mouse network was more organized than the older mouse 

53 network. The older mouse group exhibited a 255% increase in co-expression relationships but a 

54 decrease of 92% of the connections from the young mouse network. This suggests the older mouse 

55 T-cells suffer dysfunction at a transcriptional level. This results in the loss of regular immune and 

56 cellular functions. These results demonstrate the importance of future research into gene co-

57 expression to decipher senescence or diseases that perturb gene expression through time.

58

59 Introduction

60 Aging is a natural process that progressively alters biological cell functions at the 

61 microscopic level with cell senescence, and extends up to the organ level and overall function of 

62 the organism, leading to complex disorganization at various scales in living systems [1]. The 

63 network connectivity between the nodes composing the multi-level hierarchical network of 
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64 “aging” could thus be altered at various biological levels. This could lead to rupture of stability 

65 and robustness of dynamic interweaved networks with age. 

66 At the mesoscopic level, the population of individuals aged 65 and over is increasing [2]. 

67 The economic and biomedical influence of the elderly population will have a significant impact 

68 upon the global economy [3-5]. Chronic inflammation and susceptibility to infection are traits of 

69 immuno-senescence, the term used to describe the overall age-related changes of the immune 

70 system [6-10]. Immune dysfunction in the elderly contributes to increased susceptibility to 

71 infection and inflammation [11-13]. Immuno-senescence can have a negative impact on health 

72 outcomes including morbidity and mortality in older adults [6, 10-18]. This was recently 

73 underlined with the Covid-19 pandemic, where older individual were more susceptible to severe 

74 disease and mortality [19].  

75 Aging is often characterized by perturbations and/or remodeling of the T-lymphocyte 

76 system [20-23]. Aging contributes to the decrease of naïve T-cell production [24], first by thymic 

77 involution starting at puberty. These perturbations of production are then compensated by 

78 increasing the selection and the proliferation of effector/memory T lymphocytes populations, 

79 which were previously exposed to an antigen. As the organism ages, the accumulated 

80 effector/memory cells often become senescent non–functional T-cells. These fill the 

81 “immunological space,” replacing the decreasing population diversity of naïve cells, which are 

82 able to recognize and combat sources of new antigens. 

83 Immuno-senescence also affects mice; mice are thus a good model to study the dynamics 

84 of T lymphocyte aging through micro (cells) and macro (tissues/organs) levels. Mice have 

85 previously been used to demonstrate other changes in T lymphocyte biology in the context of 

86 aging. For example, partial clonal deletion is known to occur in the spleen in old mice. Previously, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458500
http://creativecommons.org/licenses/by/4.0/


4

87 Thomas-Vaslin et al. quantified the heterogeneity of T-cell population proportions based on their 

88 proliferation rates, according to various mice genetic origins [25]. This revealed decreased 

89 proliferative and renewal capacities of T-cells with aging. These selection processes also result in 

90 a diminished T-cell receptor (TCR) repertoire biodiversity, required for the recognition of new 

91 antigens [23]. Thomas-Vaslin et al. have additionally demonstrated that T-cell homeostasis is 

92 maintained in young mice after a transient perturbation [26], with a biodiversified repertoire. 

93 However, at mid-life the immuno-senescence decreases the turnover and proliferation of naive T-

94 cells with new TCRs, while memory T-cells and oligoclonal expansion accumulates. The 

95 consequences of the natural immunodepression during aging could be exacerbated by the effects 

96 of transient perturbations such as immunosuppressive treatments which kill dividing cells, like 

97 chemotherapy [25]. Most immunopathologies in humans also drive oligoclonal expansions of T-

98 cells [27]. 

99 These observations suggest that the T-cell dynamic network interactions and regulation 

100 processes could be influenced by age. Our hypothesis is that responses to molecular perturbations, 

101 from the level of gene transcription, is optimized in the T-cells of young mice, and that this robust 

102 response is diminished in old mice. 

103 Understanding the complexity of gene expression and cell pathways can be approached 

104 through the analysis of network gene co-expression relationships [28]. Gene co-expression 

105 networks have been used to study the biology of organisms such as plants, mice, and humans [29-

106 31]. Gene co-expression describes simple correlation relationships between the expression levels 

107 of two genes. For example, as the expression of one gene increases, a given gene might have a 

108 strong positive or negative correlation with the expression of a second gene. Strong gene co-

109 expression relationships correlate with a number of intracellular biological processes, including 
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110 transcription pathways, protein complex formation and cell signaling. Changes in co-expression 

111 relationships and subsequent network topology can therefore provide insight into altered biological 

112 pathways, for instance, in the contexts of disease or aging [28, 32-33]. Gene co-expression analysis 

113 through network structures can begin to provide a more holistic view of biological processes 

114 related to gene expression, allowing for the detection of changes not otherwise evident in simple 

115 gene expression data.  

116 In order to understand these more complicated interactions, mathematical, bioinformatics 

117 and computational methods may be brought to bear. Among the system-level tools in these fields 

118 are those of network analysis. There are already a number of historical research papers that have 

119 applied network analysis techniques to studying various aging processes and variation of 

120 connectivity during aging of various species [34-45], up to the theory of aging networks. Network 

121 comparison techniques allow for the detection of potential differences in gene co-expression across 

122 a variety of biological conditions, including possible age-related changes in gene co-expression. 

123 In this paper, we present an analysis of aging-related, dynamical transcription modification 

124 using gene co-expression data derived from peripheral T-cells from both young (2 months old) 

125 and old mice (22/24-months old). These gene co-expression networks were derived from a shared 

126 signature of 130 immune-related genes obtained from CD3+ splenocytes extracted from mice 

127 strains that display genetic variability (FVB/N, C57BL/6N, and BALB/c) [46]. We applied a 

128 number of network analysis methods to determine the existence of optimal network capacities and 

129 connectivity in young mice.  We then investigated the age-related changes in network properties 

130 and structures by analyzing the loss of gene co-expression and the newly gained gene co-

131 expression relationships in the older mouse network. We discuss how these changes may be 
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132 associated with mouse species immuno-senescence, and how these changes might give insights 

133 into the aging of the human immune system. 

134

135 Results

136 General terminology of structure of gene co-expression networks 

137 We investigate here the topology and evolution of gene co-expression networks (GCN), 

138 across young and old mice, tracking the lost and gained gene co-expressions and the resulting 

139 remodeling of the structure of the networks that could influence the possible 

140 robustness/efficacy/resilience of the adaptive immune cells. For the purposes of our upcoming 

141 discussion, a node/vertex/hub means a gene that is expressed as an mRNA and an edge means that 

142 there is a single link, undirected, between two expressed genes in the network (i.e., there exists a 

143 strong correlation between the expression of the two linked genes). A reference for important 

144 network terminology can be found in Table 1, and important concepts are illustrated in Fig 1. 
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145 Table 1. Table of network terminology.

Term Definition for gene co-expression network (GCN)

Node/Vertex/Hub Gene that is expressed as an mRNA represented in the network

Edge A link, undirected, between two expressed genes in the network, 
indicating a co-expression relationship between the mRNA

Degree centrality Centrality measure denoted by the number of edges directly 
attached to a node

Eigenvector centrality Measure of influence of a given node in a network. A higher 
eigenvector centrality score means a node is connected to many 
other nodes with eigenvector centrality scores

Closeness centrality Measure of how close an individual node is to other nodes in the 
network

Betweenness centrality Measure of control a node has over a network based on how a node 
connects and stands between other nodes

Eccentricity The maximum distance between a node and all other nodes

Stress The number of shortest paths passing through a given node, 
indicates the importance of a node holding together a network

Weiner index Sum of all the shortest paths in the network

Local influence The influence a node has over its directly connected, one-hop 
neighbors

Indirect influence The influence a node has on its two-hop neighbors

Total influence Weighted sum of direct and indirect influence

Clustering coefficient Measure of degree to which nodes cluster around a given node in 
the network
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146

147 Figure 1. Diagram illustrative of key network terminology. Terminology used in this paper is 

148 important for the discussion of Gene Co-expression Networks (GCNs). 

149

150 Aging signature and hierarchical clustering of mice according to gene expression in splenic 

151 T-cells.

152 To decipher gene expression modifications across aging, we performed a transcriptomic 

153 profiling of CD3+ purified splenocytes from 12 young mice age 2 months and from 11 old mice 

154 ages 22-24 months. The ICA/GSEA method was used to identify a signature of 130 genes able to 

155 distinguish young from old mice. Interestingly, the age-related gene signature allows us to 
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156 segregate the 3 mice strains, considering only the young mice. However, this signature cannot 

157 separate the mice according to the genetic origin of old individuals due to the high variation of 

158 gene expression (S1 Figure). This suggests a precise synchronization and organization of gene 

159 expression in development that could vary according to genetic origins, allowing for the optimal 

160 functionality of T-cells in young mice. However, a disorganization of gene expression appears in 

161 old mice that could no longer maintain their individual genetic signature. This suggests an 

162 introduction of stochastic events in gene expression. To verify this hypothesis, we then proposed 

163 topological analysis of the gene-co-expression network.

164 General Network Structure of T-cell expression in the spleen of young and old mice

165 To further understand the aging alterations that could impact T-cell functionality based on 

166 our gene signature, we generated two gene co-expression networks (GCN) based on the young and 

167 old aged mice. The network of young mice represent the optimal activity and functionality of the 

168 pool of all splenic T-cells, based on a consensus of expression data. The network of old mice 

169 represent the resilient T-cells that continue to live in the old mice, while the natural 

170 immunodepression has already removed more than 80% of naïve T-cells while favoring the 

171 proliferation and accumulation of effector/memory T-cells in the spleen [24-25]. Based on these 

172 two networks, we performed topological analyses to compare their structures and functionalities. 

173 We used various centrality network measurements applied to each GCN. 

174 We first analyzed the structure of the gene co-expression network in young mice and 

175 compared it to the network structure of GCN belonging to old mice. Genes expression was detected 

176 with probes that cover messenger RNA from different genetic regions, including multiple probes 

177 that detect particular TCR proteins encoded from stochastic gene rearrangements of VDJ genes. 

178 The mRNA represented by each node is expected to give rise to the functional protein interactions 
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179 related to known intracellular pathways expressed in the sampled T-cells. S1 Table lists all of the 

180 gene transcripts found in both of the networks, along with known human orthologs and known 

181 gene functions. Network files featuring the genes that appear in each network, as well as their 

182 corresponding co-expression relationships, can be found in S2 Table (young mouse GCN) and S3 

183 Table (old mouse GCN). 

184 Pathway Analysis: KEGG /REACTOME

185 Genes appearing in the young and old mouse network were enriched in several 

186 immune system-related pathways; of the network genes contained in MSigDB, 33% in the young 

187 mouse network and 21% in the old mouse network were enriched for the REACTOME Immune 

188 System pathway. Despite having fewer nodes total, a higher percentage of genes in the young 

189 mouse network were enriched in KEGG and REACTOME immune system-related pathways 

190 compared to the older mouse network. Pathways unique to the young mouse GCN were genes 

191 involved in the translocation of ZAP-70 and the phosphorylization of CD3 and TCR zeta chains, 

192 which was significant at the 0.05 level. The old mouse GCN, on the other hand, had genes enriched 

193 for aldosterone-regulated sodium reabsorption and primary immunodeficiency, while the young 

194 mouse network did not. A complete summary of pathway enrichment results can be found in Fig 

195 2. 
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196

197 Fig 2. KEGG and REACTOME Pathway Enrichment. Percentage of genes enriched in each 

198 pathway in the young (red) and old (blue) mouse GCNs. Only the difference between the 

199 proportion of genes in the old and young networks enriched for involvement in the translocation 

200 of ZAP-70 and the phosphorylation of CD3 and TCR zeta chains was significant at the 0.05 level.

201

202 Structure of the network in young and old mice as number of nodes and edges

203 The range of edges per node for the younger mouse GCN was 1-10 edges, with a mean 

204 edge count of 2.656. For the older mouse GCN, the range of edges per node was 1-15 edges per 

205 node with a mean degree count of 5.922 edges per node. For the 2-month old mouse GCN, the 

206 average node degree count falls within the range typical of a biological network [47]. This is not 

207 true for the 22/24-month old mouse network. A summary of some of these network differences 
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208 can be found in Table 2. A t-test demonstrated a statistically significant difference between the 

209 mean edge counts of the two age-groups (p < 0.001).

210 Table 2: Summary of basic network statistics for the 2 and 22-24 month-old networks. 

Gene centrality measure 2-month 

GCN

22-24-month 

GCN

Difference

Mean Edge Count 2.66 5.92 Significantly different

p < 0.001

Mean Shortest Path 2.05 3.39 Significantly different

p < 0.001

Mean Clustering Coefficient 0.25 0.34 Significantly different

p < 0.05

Weiner Index 2206 76617 N/A

Network Diameter 7 12 N/A

Core Network Radius 4 6 N/A

211

212 Network attributes were highly altered across the two age-related networks. The 2-month 

213 GCN had a total of 64 nodes with 78 unique edges, while the 22/24-month old GCN had 102 

214 nodes with 295 unique edges. A total of 53 nodes were found to be identical in both the 2-month 

215 and 22/24-month old networks. What is interesting is that despite this conservation of 53 nodes, 

216 only 7 edges are conserved across both networks. Table 3 lists the genes at the ends of each of 

217 the 7 edges. We highlighted these conserved edges in Fig 3. As we will later describe, the 7 

218 highlighted conserved pairs in Fig 3 are ranked first or second in nearly all of the network 
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219 centrality measures. Notably, most of the genes co-expressed and conserved between T-cells from 

220 young and old mice concern the TCR, which is required to receive signals from antigens and 

221 transduce signaling pathways to trigger various T-cell functions. However, the co-stimulation of 

222 the TCR involving CD28 and its downstream signaling [48] is disconnected from the core 

223 network gene expression in old mice, suggesting default of co-stimulation as in hallmark of 

224 senescent CD8 T-cells [49]. The overall network structure for both age-groups is summarized in 

225 an adjacency matrix in Fig 4.

226 Table 3: List of the edges conserved between the young and old networks along with the 

227 genes (nodes) that the edges connect. 

Edge number Edges Conserved Across Networks

1 Sema4f – LOC630408

2 LOC386545 – Leprotl1

3 Pik3r1 – Dgka

4 LOC100043969 – Cd28

5 Tcrb-V8.2 – LOC100041103

6 Tes – Lat

7 Xlr4c – LOC100046087

228
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229
230 Fig 3. Network diagrams of gene co-expression with conserved edges between young and old 

231 splenic T-cells. The Spearman rank correlation reveals the gene co-expression network according 

232 to age. Darker colored nodes correspond with a higher number of edges per node (up to 10 edges 

233 in the younger mouse network and 15 edges in the older mouse network). A) The GCN constructed 

234 based upon gene co-expression in CD3+ splenocytes from 2-month old mice (64 nodes and 85 

235 edges). B) The GCN constructed based on the old mouse data (102 nodes and 302 edges). The 

236 seven conserved edges between young (A) and old (B) mice are illustrated with the red lines. Node 

237 pairs at the ends of these edges are labeled and highlighted. 
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238

239 Fig 4. Adjacency matrices of gene co-expression for the two age related groups. The young 

240 adjacency matrix (red squares), the old adjacency matrix (blue squares) and elements that are 

241 conserved for both age-groups (green squares). Note that if you count the number of green squares 

242 above the diagonal, this is exactly seven which is how many conserved gene pairs are given in 

243 Table 3.
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244 Consequentially, because only seven edges were conserved across the aging networks, 

245 most network edges were lost or gained with age. While the older mouse GCN saw an increase 

246 in total edges, 92% of the edges from the 2-month old GCN were not present in the 22/24-month 

247 old GCN, indicating 92% of the co-expression relationships established in young mice are absent 

248 in older mice. We identified 47 nodes present in the young network but whose co-expression 

249 relationships were lost with age in the senescent T-cells (Fig 5). Nodes in the older mouse GCN 

250 that gained new co-expression relationships not present in the younger mouse GCN can be viewed 

251 in Fig 6. Most of these genes with altered co-expression relationships encode for proteins involved 

252 in TCR/CD3 complex signaling and downstream signal transduction, such as the membrane 

253 receptor TCR alpha/beta chains, the CD3 complex (gamma, delta, epsilon CD3 chains), 

254 costimulation protein CD28, intracellular LCK, and Lat. 
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255

256 Figure 5. Genes with co-expression relationships lost with age. The young mouse GCN, 

257 containing only edges that are not in the 22/24-month old mouse network. TCR probes were 

258 merged into a single node to improve visibility. 

259
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260

261 Figure 6. Genes with co-expression relationships gained with age. The older mouse GCN, 

262 containing only edges that are not also present in the 2-month old mouse network. TCR probes 

263 were merged into a single node to improve visibility. 

264

265 Network Centrality, Control and Node Power 

266 In order to better quantify the evolution of topology of the network of T-cell gene expression 

267 during aging, we investigated the network centrality in the old and young mice network. The idea 
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268 of network centrality has a long history [50]. In general, network centrality speaks to the impact 

269 of a given node within a given network. A number of network centrality variables have been 

270 subsequently formulated and discussed in the literature. More recently, these methods were applied 

271 to the study of longevity-gene networks [35-38] as well as in a variety of other areas such as 

272 neurological mapping and social network analysis [51-57]. We begin with the concept of “degree 

273 centrality”.

274

275 Degree centrality. Degree centrality counts how many neighbors a node has. A node has a 

276 neighbor if there is an edge directly connecting the node of interest to any other network nodes 

277 [35-38]. This definition argues that a network node is important if there are many nodes that are 

278 directly connected to it. From this definition, it follows that the given network node can affect 

279 the network to a greater extent, given that it has a high degree centrality. Degree centrality is the 

280 simplest of the centrality measures.

281 Table 4 illustrates the top ten gene-transcripts with the highest degree centrality in both 

282 networks. Of immediate note is the fact that the two young and old T-cell gene co-expression 

283 networks have totally different degree centrality nodes in the top 10 gene list, with the exception 

284 of TCR subunit gene LOC630408. Most genes with the highest centrality, including LOC630408, 

285 are identified as T-cell receptor components, which are highly diverse in the original spleen sample 

286 (S1 Table). In 2-month mice the degree centrality of TCR related genes is 6-10, while for the 

287 22/24-month it doubles to 14 to 15, meaning that the TCR from senescent T-cells establish more 

288 links with other molecules. This suggests that the molecular relation is less specific (degeneracy), 

289 increasing the entropy of the system and decreasing the ordered organization established during 

290 development. Because degree centralities provide an overall view of the network connectivity, it 
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291 is reasonable to hypothesize the fact that the 22/24-month old network is three times larger than 

292 the 2-month old network. We do note that network size differences may contribute to some of the 

293 overall differences in degree centrality differences. 

294 Table 4: Top 10 highest degree centralities for the young and old mouse T-cell gene co-

295 expression networks.

2 month

Genes

Degree 

Centrality

22-24 month

Genes

Degree 

Centrality

LOC386545 10 A130082M07Rik 15

Leprotl1 9 Lcp2 14

Rnf125 8 C030002B11Rik 14

LOC630408 7 Spint2 14

LOC100048845 6 Tcrb-V8.2 14

Sema4f 6 Gtf2i 14

LOC436541 6 LOC630408 14

Xlr4c 6 Selplg 13

Lat 5 A130090K04Rik 12

LOC100043969 5 Cd3d 12

Fyb 12
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296

297

298

299 Eigenvector centrality. Eigenvector centrality is another measure of the influence of a given 

300 node in a network. A high eigenvector centrality means that the given node is connected to many 

301 other nodes who themselves have high eigenvector centrality scores. You can think of this as 

302 follows: if a node is a big shot, then its high eigenvalue centrality provides a measure of how 

303 many other big shots is it connected to. 

304 Table 5 lists the top 10 network nodes with respect to their eigenvalue centrality value. 

305 These genes represent the top 10 genes that are thought to exert general control over the whole 

306 network. It is straightforward to observe that the two GCNs showed clear differences in hub control 

307 dynamics as defined by eigenvector centrality values. We note that the values of the 2-month 

308 eigenvalue centralities are all greater than those in the 22/24-month network, meaning a more 

309 connected and organized network. Additionally, we note that the genes that control the 2-month 

310 network according to eigenvector centrality are entirely different from the older mouse network, 

311 save for TCR gene LOC630408, which also has a high degree centrality in both networks as 

312 reported in Table 4. Most of the transcripts with high eigenvector values in young mice are 

313 involved in the TCR and the CD28 co-receptor. Meanwhile, the highest ranked gene in the old 

314 mouse network is Lcp2, which encodes the adaptor protein SLP-76 that is a central figure in the 

315 TCR signaling pathway. Information regarding the other genes with high eigenvector centralities 

316 can be found in S1 Table.

317

Tes 12
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318 Table 5. Top 10 highest eigenvector centralities for the young and old mouse networks. 

2 month

Genes

Degree 

Count

Eigenvector 

Centrality

22-24 month

Genes

Degree 

Count

Eigenvector 

Centrality

LOC386545 10 0.40 Lcp2 14 0.27

Leprotl1 9 0.34 Spint2 14 0.26

LOC436541 6 0.30 Selplg 13 0.26

LOC100048845 6 0.30 C030002B11Rik 14 0.25

Rnf125 8 0.29 A130090K04Rik 12 0.24

LOC630408 7 0.28 LOC630408 14 0.23

Sema4f 6 0.26 Spn 11 0.21

LOC386513 4 0.23 A130082M07Rik 15 0.21

Xlr4c 6 0.22 Fyb 12 0.20

LOC100043969 5 0.21 Igf2r 10 0.18
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319

320 Closeness centrality. Closeness centrality is a measure of the degree to which an individual 

321 node is near to all of the other nodes in a network. In Table 6 we provide the closeness 

322 centralities for the top 10 genes in both networks. First, we note that there are no common genes 

323 across the two networks. However, the functionalities of certain high ranking genes are 

324 conserved across the networks. For example, the first rank gene in the 2-month network is gene 

325 LOC386545 which is similar to T-cell receptor beta chain VNDNJC precursor (S1 Table). 

326 Meanwhile first rank gene in the 22/24-month old network is A130082M07Rik, a gene that 

327 functions as the T-cell receptor alpha chain variable 9D-3 region (S1 Table). This change in the 

328 top-ranked closeness centrality hubs suggests differences in T-cell clonal expansions in the two 

329 age-related groups, as has been previously described [24]. The functions of other high-ranking 

330 genes can be found in S1 Table. 

331 Table 6. Top 10 highest closeness centralities for core the young and old mouse networks. 

2 month Genes Degree 

Count

Closeness 

Centrality 

22-24 month

Genes

Degree 

Count

Closeness 

Centrality

LOC386545 10 0.55 A130082M07Rik 15 0.38

Leprotl1 9 0.51 Trat1 11 0.38

LOC436541 6 0.48 Tcrb-V8.2 14 0.37

LOC100048845 6 0.47 Dgka 11 0.37

Sema4f 6 0.46 Lat 11 0.36

Rnf125 8 0.46 Tes 12 0.36

LOC630408 7 0.45 LOC100041103 10 0.35

2900016B01Rik 4 0.45 Cd3d 12 0.35
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332

333 Betweenness centrality. Betweenness centrality represents the degree to which nodes stand in-

334 between each other. One can say that betweenness centrality represents the control a specified 

335 node has over the network in that it finds nodes that act as bridges between nodes and – in a 

336 sense – these nodes may control the flow in the network. Such genes are often called bottleneck 

337 genes [58]. The higher the value of a node’s betweenness centrality, the greater the degree of 

338 control the specified node exerts over the network. 

339 Table 7 lists the top ten gene betweenness centrality values for both networks. Betweenness 

340 centrality values for the 22/24-month network are significantly greater that those of the 2-month 

341 network. In fact, they are 5-10 times those of the 2-month network. The gene Rnf12 is common 

342 across both networks; although it does not have the same betweenness rank. Rnf125 is believed to 

343 function as a positive regulator in the TCR signaling pathway. In the 2-month network, the highest 

344 ranked gene is once more the TCR gene LOC386545, while diacylglycoprotein kinase α (Dgka) 

345 has the highest ranking in the older mouse network. Other high-ranking gene information can be 

346 located in S1 Table. 

347 Table 7. Top 10 highest betweenness centralities for the 2 and the 22-24 month old 

348 networks. 

LOC386513 4 0.44 Fyb 12 0.35

Cd28 5 0.43 Arl4c 9 0.35

2 month

Genes

Degree 

Count

Betweenness 

Centrality

22-24 month

Genes

Degree 

Count

Betweenness 

Centrality
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349

LOC386545 10 209.43 Dgka 11 1259.80

Leprotl1 9 135.15 Pik3r1 4 981.56

Rnf125 8 97.96 LOC385791 3 972

LOC436541 6 69.78 A130082M07Rik 15 889.60

Sema4f 6 67.67 Trat1 11 836.06

Arhgap9 4 66.15 Rnf125 2 820

LOC630408 7 56.64 Tes 12 762.45

Xlr4c 6 54.44 Arl4c 9 697.60

Cd28 5 53.85 Dpysl2 3 670

2900016B01Rik 4 51.29 Fyb 12 558.61
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350 Network Stress and Eccentricity. The maximum distance between a node and all other nodes is 

351 called the eccentricity of that node; biologically, this can be said to represent the easiness for all 

352 other genes in a network to reach another particular gene. Consequently, the higher the 

353 eccentricity value, the easier it is for a given gene to be influenced by the rest of the network – 

354 or, conversely, the easier it is for that node to influence the rest of the network [59]. The higher 

355 eccentricity in old mice may influence the time of processes and increase the delay in 

356 intracellular interaction pathways affecting efficiency of the cells. Table 8 lists the genes with the 

357 highest eccentricity values in both networks. We note that the eccentricity values in the 22/24-

358 month network were higher when compared to the 2-month network. Whsc1l1 is the only gene 

359 with a highly ranked eccentricity value shared by both the young mouse and old mouse networks 

360 (Table 8). Whsc1l1 is defined as nuclear receptor binding SET domain protein 3 that methylates 

361 Histone 3 (S1 Table). The gene with the highest eccentricity in the 2-month network is Whsc1l1, 

362 and the highest ranked gene in the 22/24-month network is LOC674072 which is similar to Ig 

363 heavy chain V region 441 precursor.

364 Table 8. Top 10 highest eccentricity values for the young and old mouse networks. 

2 month Genes Degree 

Count

Eccentricity 22-24 month 

Genes

Degree 

Count

Eccentricity

Whsc1l1 1 7 LOC674072 1 12

Txk 1 7 LOC385081 1 12

LOC100046087 2 6 Tube1 1 12

Trib2 1 6 Hrb 1 11
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365

366 Stress of a node in a biological network is defined as the number of shortest paths passing through 

367 a given node. It can be used to indicate the prominence of a gene in holding together connecting 

368 regulatory genes in a network pathway. The higher the value, the more importance the node has in 

369 holding together communicating nodes [59]. We find that stress in the top ten highest stress nodes 

370 in the 22/24-month old group appears much higher than the highest stress nodes in the 2-month 

371 old group (Table 9). 

372 Table 9. Top 10 highest stress values for the young and old mouse networks. 

Xlr4c 6 6 Atp1b1 1 11

Tes 2 6 Cd8b1 2 11

Lat 5 6 LOC236170 3 11

Il18r1 1 6 Rgs10 1 10

Fam105a 3 6 Cd3g 1 10

Faah 1 6 Ccdc88b 1 10

Whsc1l1 1 10

Ms4a6b 2 10

Cd27 2 10

Hsd11b1 3 10

Dpysl2 3 10
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373

2-month

Genes

Degree 

Count

Stress Stress/ 

Weiner 

Index

22-24-month

Genes

Degree 

Count

Stress Stress/

Weiner 

Index

LOC386545 10 554 0.25 Dgka 11 6060 0.08

Leprotl1 9 316 0.14 Trat1 11 5906 0.08

Rnf125 8 252 0.11 Tes 12 5496 0.07

Sema4f 6 214 0.10 A130082M07Rik 15 4750 0.06

Arhgap9 4 212 0.10 Arl4c 9 4066 0.05

LOC436541 6 208 0.09 Itk 7 3936 0.05

LOC100048845 6 186 0.08 Pik3r1 4 3886 0.05

Cd28 5 158 0.07 LOC385791 3 3804 0.05

Xlr4c 6 158 0.07 Fyb 12 3586 0.05

Fam105a 3 142 0.06 Rnf125 2 3180 0.04
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374 Weiner index. The Weiner index provides valuable context for these stress measures (Table 2). 

375 The Weiner index is the sum of the number of shortest paths in a network. We can use the 

376 Weiner index as a normalization factor. Comparing the ratio of the highest stress nodes to the 

377 Weiner index, we can see that the highest stress nodes in the older mouse group actually have a 

378 lower proportion of shortest paths in the total network as compared to the 2-month old group 

379 (Table 9). As a result, the genes with high stress values in the 2-month old group can be seen to 

380 have a greater impact on network connection than genes of high stress in the 22/24-month old 

381 group. Rnf125 is the only gene with high ranking in both networks and, as noted above, it is the 

382 only gene with high betweenness centralities shared by both networks as well. Rnf125 is similar 

383 to T-cell RNG activation protein 1. The function of genes with high-ranking stress values can be 

384 found in S1 Table.

385
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386 Network Influence Measures. There are three influence measures of importance, where 

387 influence can be thought of as a measure of which nodes have power in a given network. These 

388 influence measures are given by: (1) Local influence, (2) Indirect influence and (3) Total 

389 influence [60]. The local influence of a node can be thought of as how much the given node 

390 affects its one-hop neighbors; the nodes directly connected to a given node by an edge. The 

391 indirect influence may be thought of as how much the given node affects its two-hop neighbors, 

392 nodes whose paths are connected by a single node mediating node. Lastly, the total measure of 

393 influence is defined as the weighted sum of the local and indirect influences. The ten highest 

394 local, indirect, and total influence values for the young and old mouse networks can be found in 

395 Tables 10-12. Again, a gene encoding TCR (LOC630408) is the only transcript in the top highest 

396 local, indirect, and total influence values across both networks. The identity of genes in the 

397 highest rank ordered influence values exclusive to each network can be found in S1 Table.

398 Table 10. Top 10 highest local influence values for the young and old mouse networks.
2 month

Genes

Local 
Influence

22-24 month

Genes

Local Influence

LOC386545
0.99 A130082M07Rik 1.16

Leprotl1
0.94 Lcp2 1.15

nf125 0.89 LOC630408 1.15

LOC630408 0.86 Gtf2i 1.15

LOC100048845 0.83 C030002B11Rik 1.14

Sema4f 0.82 Spint2 1.14

LOC436541 0.82 Tcrb-V8.2 1.13

Xlr4c 0.80 Selplg 1.12

LOC100043969 0.76 Cd3d 1.09
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399
400
401
402 Table 11. Top 10 highest indirect influence values for the young and old mouse networks.
403
404
405
406
407
408
409
410
411
412

413

414

415

416

417

418 Table 12. Top 10 highest total influence values for the young and old mouse networks. 

Lat 0.762 A130090K04Rik 1.09

2 month

Genes

Indirect 
Influence

22-24 month

Genes

Indirect 
Influence

Leprotl1 0.83 LOC630408 1.23

LOC386545 0.82 A130082M07Rik 1.23
LOC100048845 0.76 Spint2 1.20
LOC630408 0.75 Lcp2 1.20

Rnf125 0.73 Selplg 1.18

LOC436541 0.73 A130090K04Rik 1.17

Xlr4c 0.72 Tcrb-V8.2 1.16

Sema4f 0.72 Cd3d 1.16

LOC100043969 0.68 Gtf2i 1.14

Lat 0.673789 C030002B11Rik 1.14

2 month

Genes

Total 
Influence

22-24 month

Genes

Total 
Influence

LOC386545 0.92 A130082M07Rik 1.19

Leprotl1 0.89 LOC630408 1.18

Rnf125 0.82 Lcp2 1.17

LOC630408 0.82 Spint2 1.16

LOC100048845 0.80 Gtf2i 1.14

LOC436541 0.78 Selplg 1.14

Sema4f 0.78 Tcrb-V8.2 1.14
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419

420

421

422

423

424 Clustering Coefficient Analysis. The clustering coefficient of a node is a measure of the degree 

425 to which genes in a network tend to cluster together around the particular gene [28]. The mean 

426 clustering coefficient for each network, defined as the sum total of all clustering coefficients 

427 divided by the number of nodes, is found in Table 13. The mean clustering coefficient for the 2-

428 month network is 0.251, while the mean for the 22/24-month is 0.335. The genes with the 

429 highest clustering coefficients in the 2-month and 24-month core networks can be found in Table 

430 13. None of the genes with the highest clustering coefficients in the 2-month network were in the 

431 highest ranked genes for the 22/24-month network.

432 Table 13. Top 10 highest clustering coefficients for core the young and old mouse networks. 

Xlr4c 0.77 C030002B11Rik 1.14

LOC100043969 0.73 A130090K04Rik 1.13

Lat 0.73 Cd3d 1.12

2 month

Genes

Degree 

Count

Clustering 

Coefficient 

22-24 month

Genes

Degree 

Count

Clustering 

Coefficient

Tes 2 1.0 C920016N10Rik 4 1.0

LOC100046087 2 1.0 Hsd11b1 3 1.0

LOC100043969 5 0.7 Faah 2 1.0

Lat 5 0.7 Npc2 7 0.90

LOC386513 4 0.67 Fam105a 7 0.86
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433

434 Fig 7 illustrates the spread of clustering coefficients vs. degree (k). Blue points indicate 

435 older mice, while red points indicate the younger mice. Of immediate note is that the 22/24-month 

436 network has a wider range of clustering coefficients compared to the 2-month network. 

437 Meanwhile, the 2-month network clustering coefficients are more compactly distributed. This 

438 apparent increase in highly interconnected genes in the old mouse GCN is consistent with the 

439 observed large core network that makes up the old mouse GCN (Fig 3).

LOC100048845 6 0.6 LOC100040243 4 0.83

Sema4f 6 0.6 Ldb1 4 0.83

Cd28 5 0.6 Xlr4c 5 0.8

LOC630408 7 0.48 Il7r 3 0.67

LOC436541 6 0.47 D12Ertd551e 4 0.67

Tcf7 4 0.67
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440

441 Fig 7.  Plot of clustering coefficient versus network degree for the network gene co-expression 

442 in the two, mouse age-groups.  Red points correspond with the 2-month age group, while blue 

443 corresponds with the 22/24-month age-group. It is straightforward to observe the large scattering 

444 of co-expression gene pairs in the 22/24-month age-group, while this is not the case for the 2-

445 month old age group.

446

447 The program MCODE was used to find tightly connected subnetworks within a core 

448 network (http://apps.cytoscape.org/apps/mcode). MCODE is used to find clusters in network data 
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449 based upon core clustering coefficients. It can determine pathways of biological significance in 

450 protein and gene networks. MCODE found four tightly linked subnetwork clusters in the 2-month 

451 old network, and six tightly linked clusters in the 22/24-month old network (S3 Fig). The identity 

452 of genes involved in these subnetworks can be found in S1 Table. 

453

454 Centrality Analysis of Conserved Gene Pairs. Finally, we summarize the rankings of the 

455 conserved co-expressed gene pairs (see Table 3) in Table 14. We note that Leprotl1 and the TCR 

456 gene LOC386545 have most of the highest rankings among the genes that are conserved between 

457 the young and the old networks.

458 Table 14. Centrality rankings of genes with conserved co-expression in both networks. 

459

460 Column headers indicate the age of the mice from which the samples were taken (Y: 2-month, O: 

461 22/24 month). A dash indicates that the given gene was not in the top 10 genes for that centrality 

462 variable. The braces correspond to the nodes (genes) at the end of the edges in Table 3. We note 

463 that the edge with the gene pair LOC386545 (similar to T-cell receptor beta chain VNDNJC 

464 precursor) – Leprotl1 (Leptin receptor overlapping transcript like 1) appears across all centrality 

465 measures, except for clustering and eccentricity, in that it always ranks 1-2 for the young mouse 
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466 cells but not for the old mouse cells. This makes this edge and nodes pair a very powerful 

467 component in the young network.

468

469 Scale Free Analysis

470 Scale-free analysis has significance in biological networks [61-63]. Scale-free networks 

471 are networks whose degree distribution follows a power law with a power parameter that typically 

472 falls in the interval 2-3, however, it may fall outside this interval [64]. Analysis of our two network 

473 architectures showed that the two-month old GCN is of scale free type, while the scale-free 

474 network structure was weaker for the older mouse GCN. Power curve analysis, fitting the function 

475 𝑃(𝑘) = 𝐴𝑘𝛾 to the P(k) for each network, showed that the younger mouse GCN followed a strong 

476 power law behavior (R2 = 0.9192, p-value < 0.001, Fig XA), while the older mouse group 

477 demonstrated a weaker power law behavior (R2 = 0.4944, p-value <0.01, Fig XB). 

478

479 Fig 8. Power curve analysis of the two age-related networks based on degree distribution. 

480 Fitting the curve  𝑃(𝑘) = 𝐴𝑘―𝛾: Probability of degree frequency ``k’’ in (A) the two-month-old 

481 mice group can be moderately predicted by power law analysis (R2 =0.9192, p-value = 1.2x10-5, 
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482 log P(k) = -1.58log(k) - 0.25). The predictive strength of this model was weakened in (B) the 

483 22/24-month old group (R2= 0.4944, p-value=0.003452, log P(k) = -0.7461log(k) - 0.6883). 

484

485 Discussion

486 The gene co-expression network analysis of a 130 gene signature from young and old mice 

487 yielded a variety of interesting insights and conclusions about aging. First, we observe an alteration 

488 of the TCR signaling pathway in old mice, where the TCR complex and CD28 co-stimulatory 

489 molecules upstream the pathways are particularly affected. The RNA encoding the proteins present 

490 on the membrane of T-cells required for full T cell activation were co-expressed in the young 

491 mouse GCN, while this was not true of the old mouse network. The small core network of TCR-

492 related genes in the young mice reveals that gene co-expression for proteins involved in TCR 

493 signaling are stable across the three strains of mice, suggesting the core network is robust across 

494 the genetic variation in mice strains. 

495 Further, while the network of young mice is well organized and reflects controlled 

496 development across each genetic background, those of old mice appears more stochastic. We found 

497 a 255% increase in the number of edges in the 22/24-month old network when compared to the 2-

498 month old network. However, we only found seven edges in the 22/24-month network that were 

499 also found in the 2-month network. This suggests that many of the edges in the 22/24-month old 

500 GCN were the result of novel co-expression relationships likely gained as a result of age. 

501 Power law analysis suggests a deterioration in network organization in the old mouse 

502 network compared to the young mice. Analysis by power law demonstrated the 2-month old 

503 network was a scale-free network type, while the 22/24-month old network was not. Scale-free 
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504 networks are frequently more robust to perturbations than are other network architectures, 

505 indicative of both complexity and organization. The scale-free network structure of the 2-month 

506 GCN is typical of most biological networks [62]. Scale-free network types may provide an 

507 advantage to biological systems that are subject to damage by mutation and/or viral infection. The 

508 scale-free network structure of the young CD3+ T-cells indicates that transcription of genes is 

509 tightly regulated in the splenocytes of 2-month old mice that are fully immunocompetent. Decrease 

510 in scale-free structure in the co-expression patterns of the 22/24-month old mouse splenocytes 

511 suggests that this control is decreased with age.  

512 This change in network architecture has interesting implications for the regulatory behavior 

513 of genes in older T-cells. Because the major signal transduction from the TCR complex and CD28 

514 is disturbed, the expression of the internal cell molecules is consequently perturbed in senescent 

515 T-cells. That the 22/24-month old mouse splenocytes see an increase in correlation at the expense 

516 of more organized network structures suggests T-cell regulation and immune behavior is 

517 diminished. Indeed, in the same series of FVB and B6 mice, we previously quantified by flow 

518 cytometry and mathematical models that the T-cell cycle transition rates and proliferation/death 

519 rates were altered in 18 month-old mice as compared to 2 month-old mice [24]. And while we 

520 have no direct evidence for the implication of these results with respect to human immune T-cell 

521 dynamics, we do know that human T-cell populations are also altered with age, and that there are 

522 a variety of other changes in T-cell behaviors in humans: in particular, changes in signal 

523 transduction in T-cells, and the promotion of long lived T-cells with less efficient function and 

524 inflamm-aging [65], even while the total lymphocyte maintenance is preserved [66]. 

525 Changes in network structure with age also reveal differential co-expression relationships 

526 in several key gene pathways. For example, expression of Transcription Factor 7 (TCF7) is 
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527 important for T-lymphocyte differentiation. This transcription factor is essential for the 

528 proliferation of early DN thymocytes, the survival of DP cells, positive/negative selection, as well 

529 as for the creation of the CD3/TCR complex and the cell cycle control, and, in peripheral tissues, 

530 for the orientation to the TH2 pro-inflammatory pathways and activation of memory CD8 T-cells 

531 [67]. We previously quantified increased time spent in gap phases of the cell cycle leading to 

532 decreased division rates in immature DN and mature CD3hi DP thymocytes in FVB mice: the time 

533 spent in gap phases in G0/G1 and G2/M2 from DN to CD3hi DP increases from 10.2 days in young 

534 B6 mice to 28 days in young FVB mice, and even up to 58 days in 18 months old FVB mice. These 

535 proliferation rates were decreased in thymus and the spleen in FVB mice, as compared to B6 mice, 

536 contributing to acceleration of the thymic involution [24]. We also found increased occurrence of 

537 oligoclonal expansions of CD8 T-cells in FVB old mice [25]. 

538 Additionally, we previously observed an increase in differentiation of Tregs in old FVB 

539 mice but defective proliferation in the spleen. Interestingly, such a defect could be related to a 

540 deficiency of TCF7 in old FVB mice. Such a defect would lower the threshold to differentiate 

541 Tregs. 

542 In the 2-month old network, TCF7 falls in a three-node island with genes Lck and CD28e. 

543 Transcription of TCF7 is previously reported to correlate with the expression of both Lck and 

544 CD28e [68-69], and the 2-month old network indicates these biological relationships. This co-

545 expression linkage is lost in the 22/24-month old GCN, where the TCF7 node loses connections 

546 to Lck and CD28e and gains co-expression relationships with genes Xlr4a, Xlr4c, C430010C01 

547 and TCR probe LOC10004608. This suggests massive alteration in this gene regulatory pathway 

548 with age. Because TCF7 increases Th2 differentiation and inflammation, these changes in co-
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549 expression relationships might contribute to inflammation [67], in addition to changes in T-cell 

550 populations observed with age [24] [25]. 

551 However, it is not fully known if the increase in co-expression relationships across the old 

552 mouse GCN serves any biological function, or whether these changes have a detrimental or 

553 compensatory impact on gene expression behavior in old T-cells. Some results in the original 

554 signature, however, suggested biological relevance with what is currently known about T-cells 

555 during immunosenescence. The old mice had lower expression of these genes related to TCR 

556 activation, such as CD3, VB8.2, co-stimulation molecule CD28, early activation molecule CD69, 

557 adhesion molecule VCAM1, Thy1, receptor to lymphokines IL-7R, and CD27. The TCR/CD3 

558 complex receptor-to-antigen interaction, and the downstream signal transduction involving 

559 LCP2/SLP-76 recruitment, binding GADs and lat, the co-stimulatory signal via CD28 and its 

560 cytoplasmic tail binding, and CTLA-4 are all affected by age [49-50]. We observed that the aging 

561 signature affects several functions related to hematopoietical system as seen in IPA (S2 Fig), 

562 related not only to activation (TCR/CD3/CD69), but also binding and adhesion/interaction 

563 (VCAM1). Pathway enrichments for the genes appearing in both networks also suggest these genes 

564 play a role in changes in the immune system with age (Fig 2). 

565 Differences in network hubs within the two age-related networks can be used to infer more 

566 about changes in key gene pathways that may be attributable to age. Hubs are important 

567 determinants of system functions in a biological network; in co-expression networks, deletion of 

568 a hub gene is likely to result in cell death [70]. Across the two age-related GCNs, very few of the 

569 hub genes as defined by degree, eigenvector, betweenness, and closeness centralities, as well as 

570 the influence measures, clustering coefficient, eccentricity, and stress values, were the same 

571 (Tables 4-13). Further, very few hub genes in the older mouse network were highly rated across 
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572 the different node centrality measures, while there was more consistency and less variety of highly-

573 rated genes in the young mouse network. This suggests the hubs in the young mouse network have 

574 overall more control, importance, and power over the network structure compared to the old moue 

575 network hubs. 

576 Two genes with a co-expression relationship conserved across both networks, Sema4f 

577 (sema domain, immunoglobulin domain (Ig), TM domain, and short cytoplasmic domain) and 

578 TCR (gene LOC630408, T-cell receptor alpha chain V region CTL-L17 precursor), appeared in a 

579 high rank across multiple hub measures for both age-related networks, as summarized in Table 14. 

580 Additionally, both Sema4f and TCR/LOC630408 were incorporated into a tightly clustered 

581 MCODE subnetwork for the young mouse group (S3A Fig), but not the old mouse network (S3B 

582 Fig). That the co-expression relationship between these genes is conserved in both networks 

583 implies this expression relationship has important biological function, or a precursor to these genes 

584 serves as an important biological mediator. Further, that these genes serve as important hubs in 

585 both networks suggests a biological importance of both genes in both young and old splenocytes, 

586 although the lower centrality rankings and lack of MCODE clustering for the older mice suggests 

587 these genes have a diminishing role with age.

588 We note that the edge of co-expression with the gene pair TCR (LOC386545 similar to T-

589 cell receptor beta chain VNDNJC precursor) – Leprotl1 (Leptin receptor overlapping transcript 

590 like 1) appears across all centrality measures, except for clustering and eccentricity, in that it 

591 always ranks 1-2 for the young mouse cells but not for the old mouse cells (Table 14). This makes 

592 this edge and nodes pair a very powerful component in the young network. The Leprotl1 gene 

593 encodes a homologue of the leptin membrane receptor. Leptin is an adipokine than regulates 

594 appetite and food intake but also is involved in T-cell differentiation and regulation of adiposis 
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595 and the immune system. Notably, the exponential rise in metabolic and autoimmune diseases with 

596 age might be related to metabolism and leptin. Leptin is secreted by both adipocytes and T-cells, 

597 in particular this autocrine production by Treg cells can down-regulate T-cell proliferation during 

598 immune response and prevent inflammation [71]. Interestingly, leptin inhibits the proliferation of 

599 Treg cells [72] and their control of inflamm-aging. The leptin receptor is further involved in 

600 JACK2 STAT-3 orientation and Thelper cell activation, promoting Th17 differentiation but 

601 inhibiting Treg differentiation. Moreover, leptin promotes the proliferation of naïve T-cells but 

602 inhibits the proliferation of memory T-cells. The Leprotl1 gene is highly expressed in FVB mice, 

603 as is CD69, an early activation marker of T-cells. Notably, by contrast, these proteins are lesser 

604 expressed in B6 and BALB/c mice. The conservation of co-expression of Leprotl1 and the TCR 

605 gene across the age-related networks stresses the biological importance of this co-expression 

606 relationship, but changes in network hub rankings suggests the downstream pathways of the leptin 

607 receptor are altered with age.  

608 In conclusion, we found significant deterioration of network organization when comparing 

609 the 2-month network to the 22/24-month network and observed changes in hub genes suggesting 

610 changes in TCR signaling and co-stimulation through CD28 in the two age-related groups. This 

611 analysis provides evidence of a defective organization of transcription in older peripheral T-cells. 

612 This dis-organization is suspected to increase delays in T-cell regulation pathways and inhibit the 

613 biological activity of CD3+ lymphocytes, while other cells die and cannot be quantified here. In 

614 addition, the identification of hub genes for network expression in the young and old mouse groups 

615 help identify genes important to healthy cell function and deteriorating function with age, 

616 providing opportunities to approach these genes as potential therapeutic targets to help aging 
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617 patients. Human orthologs of the genes used in this analysis (S1 Table) could help to understand 

618 human aging in lymphocytes.

619 Limitations

620 Previous GCN research using AGEMAP data found a decrease in gene co-expression with 

621 age in mice across multiple tissue types [38]. This contrasts with the results of this study, which 

622 found a nearly 255% increase in the number of edges in the old mouse group GCN as compared 

623 to the younger mouse group.  There are several factors that may contribute to this result. One 

624 component may be experiment design: the AGEMAP study utilized tissue from only C57BL/6 

625 mice, both male and female, instead of using exclusively female mice from three separate mouse 

626 lines. Additionally, samples in the AGEMAP study were extracted from mice at ages 16 and 24 

627 months, as opposed to 2 and 22-24 months. The size of both datasets may also contribute in 

628 different, limited results (10 mice per age/sex, as opposed to 11-12 mice per age group).  Finally, 

629 an important factor is that the AGEMAP study did not look at co-expression in peripheral T-cells, 

630 which may behave differently from other cell types across the aging process. Indeed, T-cells are 

631 permanently selected to survive and to divide through the TCR complex and co-stimulation 

632 pathways, or they undergo apoptosis if too many default signals occur (as during the cell cycle). 

633 Results by Vibert & Thomas-Vaslin [24] show that across ages and genetic backgrounds, immature 

634 T-cells in the thymus and mature T-cells in spleen show a decrease in T-cell proliferation with 

635 early T-cell differentiation, compensated by an increase of proliferation of effector/memory T-

636 cells in spleen, that often correlates with oligoclonal T-cell expansions [25]. Because 92% of the 

637 edges in the younger mouse GCN are lost in the older mouse GCN, differences in network 

638 architecture may be attributed to age-related changes in key biological pathways in CD3+ 

639 splenocytes. 
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640 Another limitation of this study is that the dataset contains expression data from an array 

641 of T-cell subtypes not separated based on differentiation markers. Therefore, changes in co-

642 expression behavior attributable to naïve, CD4+, or CD8+ cells cannot be discerned through this 

643 analysis. 

644 In humans CD4, CD8, and CD3 T-cells present some overlap in gene expression during an 

645 immune response [73]. While thymic output of T-cells decreases with age, it is known that in some 

646 cases, older mice still produce naïve T-cells [25, 74]. This suggests the spleen dataset for the older 

647 mouse network may include expression data from both new and senescent T-cells, cell types which 

648 might demonstrate differential gene co-expression and proliferation propensity [30].  However, 

649 the production of naïve T-cells in mice is diminished around 5-10 fold in 18 old months mice, as 

650 it is also the case in human at midlife, at about 50 years [25]. In humans, there is 95% gene 

651 similarity between naïve and memory T-cells [75]. In C57BL/6 mice, both isolated naïve and 

652 memory CD4 T-cells from old mice present different alteration in gene expression, but both 

653 expression profiles are turned to inflammation [76]. Additionally, naïve and memory CD4 T-cells 

654 share fewer genes in common in old than in young mice, suggesting also a deterioration of these 

655 transcriptional pathways with aging. Over time, naïve T-cells may also increase their ability to 

656 persist [77]. Certain transcriptional changes, such as an increase in metabolism during the 

657 transition from naïve to effector T-cells, could not be accessed here [78]. 

658 The other limitation is the evolution of Treg cells, which represent only 1% of lymphocytes 

659 (about 5-10% of CD4), but their numbers increase with aging while their functionalities and 

660 regulatory functions decrease with the secretion of IL-2.  In young mice, IL-2 at low doses 

661 stimulates Treg and negatively regulate T-cell proliferation, while at high doses Il-2 upregulates 
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662 the proliferation of T-cells [25]. The role of Tregs in adipose-associated tissues is also correlated 

663 with increasing expression of anti-inflammatory genes such as IL-10.

664 Of course, these different age-related alterations in cell behavior are not specific to T-cell 

665 subtypes. Studies have found biomarkers of aging and senescence in other tissues in mice that 

666 suggest there may be cell-specific changes in gene expression with age [79]. Due to these 

667 variations, further investigations into co-expression in T-cells based on cellular age and T-cell 

668 subtype are necessary.

669 Interestingly, results by Vibert & Thomas-Vaslin show T-cell proliferation/death rates has 

670 higher inter-individual variation in the older mouse group when compared to the younger mouse 

671 group [24]. This may have an impact on the increased co-expression relationships evident in the 

672 old mouse GCN. Genes that are co-expressed in the old mouse group may also vary, resulting in 

673 the increased representation of nodes and edges in the old mouse GCN. This suggests co-

674 expression pathways affected by age in CD3+ splenocytes vary based on genetic background and 

675 individual influences, demonstrating the need for future investigation into co-expression 

676 relationships in T-cells with age. 

677 Methods

678 Mice

679 C57BL/6J (B6), BALB/cByJ and FVB/N (FVB) mice were obtained from Charles River 

680 Laboratories at 4 weeks of age, maintained in SPF conditions in our animal house (Centre 

681 d’Exploration Fonctionnelle Pitié Salpétrière–Paris) and fed with the same diet. Mice were 

682 sacrificed at 2 and 22-24 months of age. Mice were manipulated according to European council 

683 directive 86/609/EEC of 24 November 1986 and with the approval of an ethics committee. 
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684 Sorting of CD3+ cells for mRNA preservation

685 Mice were sacrificed by cervical dislocation and spleens were collected. Cell suspensions 

686 were obtained by mechanical disruption of organs in PBS + 3% newborn calf serum at 4°C, were 

687 then washed, and viable cells were counted by trypan blue exclusion. CD3+ cells were isolated by 

688 positive selection using anti-CD3 biotine followed by streptavidin beads labelling and passage 

689 through LS magnetic Miltenyi column to recover fixed cells. 

690 Transcriptomics profiling

691 Gene expression was measured in CD3+ splenocytes extracted from FVB/N (n=4 young 

692 and n=3 old), C57BL/6N (n=4 young and n=3 old), and BALB/cByJ (n=4 young and n=5 old) 

693 mice. The young mice were age two months old. The old mice were age 22-24 months old.

694 One million purified cells were lysed in Trizol (Invitrogen) and immediately transferred to 

695 -80°C for storage. Samples were then lysed and total RNA was purified using Trizol (Invitrogen) 

696 according to the manufacturer’s instructions. RNA yield was assessed using a NanoDrop 1000 

697 spectrophotometer (NanoDrop Products, Thermo Fisher Scientific). RNA integrity was assessed 

698 using an Agilent Bioanalyzer showing a quality RNA integrity number of 8–10 (Agilent 

699 Technologies). The RNA was processed using the Illumina TotalPrep RNA Amplification Kit 

700 Protocol according to the manufacturer's protocol. Briefly, labeled complementary RNAs (cRNAs) 

701 were hybridized overnight with Illumina MouseWG-6 v2.0 Expression BeadChip arrays. The 

702 arrays were then washed, blocked, stained and scanned on an Illumina BeadStation following the 

703 manufacturer’s protocols. Illumina BeadStudio software (Illumina) was used to generate signal 

704 intensity values from the scans as previously described [85]. 
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705 Filtration and normalization of transcriptomics data

706 Microarray probes were filtered out from the analysis if their expression was below the 

707 detection limit (p-value < 0.05) in at least 2 out of 3 samples in both the microenvironment and 

708 control groups. Next, data were log-transformed and normalized by the quantiles method using the 

709 R package limma v3.28.4. 

710 Identification of specific molecular signatures

711 Specific molecular signatures were generated and statistically tested using the ICA/GSEA 

712 method [86], a strategy that combines the Independent Component Analysis (ICA) and the Gene 

713 Set Enrichment Analysis (GSEA). ICA, an unsupervised method, separates gene expression into 

714 non-Gaussian and statistically independent components. From each component, two potential 

715 molecular signatures were defined as those genes having extreme loading on components. 

716 Signatures were assembled in a database and tested for their enrichment in GSEA using the “pre-

717 ranked list” option. Gene lists were sorted according to the value of the limma’s eBayes statistic. 

718 We used the weighted scoring scheme to compute the enrichment score. GSEA provides a 

719 normalized enrichment score, permutation p-value and FDR q-value indicating the significant 

720 level of each signature. A detailed explanation of GSEA can be found in Subramanian et al. [87]. 

721 Based upon altered gene expression in all aging mice, a total of 130 immune-related genes from 

722 the signature with the highest p-value (a signature named C2-5) was chosen for analysis among 

723 900 signatures [24]. This signature was chosen since it allows to distinguish young from old mice, 

724 independently of their genetic origin. The resulting gene expression data was then grouped by age 

725 (12 young mice and 11 old mice) and gene co-expression.
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726 Gene co-expression networks construction

727 The Spearman rank correlations (rs) measuring co-expression levels were standardized by 

728 squaring rs, and the coefficient of determination R2 was used for network construction. This 

729 transformation ensures that the co-expression dataset included both strong positive and strong 

730 negative expression correlations. Significant co-expressed genes incorporated into network 

731 construction were defined as correlated gene pairs which had an R2 > 0.8 and a p-value < 0.01 

732 [84]. The Python scripts used to filter this dataset based on these parameters are available on 

733 GitHub (http://github.com/mairml/network-analysis). 

734 Gene functional enrichment analysis

735 Human orthologues for the mus musculus genes, in the two networks, were determined 

736 using OrthoDB (http://orthodb.org). Additional functional annotations were retrieved from 

737 GenBank. All orthologues and functional annotations are provided in S1 Table.  

738 MSigDB from GSEA was used to determine genes in each network that share common 

739 biological pathways in KEGG and REACTOME databases  

740 (http://software.broadinstitute.org/gsea/msigdb/annotate.jsp). Gene overlaps were calculated 

741 using an FDR of less than 0.05 in the Novartis human tissue compendium. Ingenuity Pathway 

742 Analysis was additionally utilized to analyze pathway enrichments in the dataset. 

743 Network topological analysis

744 Both the young and old mice networks were visualized using Cytoscape version 3.6.0 

745 (http://cytoscape.org/download.php). The following network properties were calculated: network 

746 diameter, eigenvalue and betweenness centrality, clustering and closeness, network stress, network 

747 radius, network eccentricity, clustering, local influence, indirect and total influence. Built-in 
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748 Cytoscape network analysis tools were used to find the mean shortest path, mean edge count, 

749 network diameter, radius and clustering coefficients for both GCNs. CentiScaPe version 2.2 was 

750 used to calculate centrality measures for each of the two networks 

751 (http://apps.cytoscape.org/apps/centiscape). The Grafman software was used to cross-check 

752 analysis results. The Grafman software is available from Bonchev [85]. Cytoscape plugin MCODE 

753 (http://apps.cytoscape.org/apps/mcode) was used to identify network clusters. Node influence was 

754 calculated using the algorithms discussed by Qiao et al. [60]. Adjacency matrices were calculated 

755 in Python (available at GitHub) and visualized in using the R package pheatmaps (http://cran.r-

756 project.org/package=pheatmap). Distance matrices were calculated in Python (available at 

757 GitHub). Frequency distribution for each network was calculated using a Python script (available 

758 at GitHub). The frequency distributions were then scaled to probabilities and subsequently plotted 

759 in R v 3.1.1. Log-log plots associated with each of the model forms were used to estimate the 

760 model parameters. All parameters were estimated using linear regression on the log-transformed 

761 data [35-36]. 
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1007 from young and old mice and across 3 mouse strains. The C2-5 signature with 130 selected 

1008 genes was identified from ICA/GSEA. The C2-5 signature distinguishes young from old mice 

1009 (A), but also the genetic origins in young mice (B). The clustering of the 3 strains in young mice 

1010 (B) is, however, lost in old mice (C). Key genes where co-expression was observed are underlined 

1011 with TCR related genes (green boxes) co-stimulation molecules as CD28 (pink), CD69 an early 
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1012 activation marker and other markers revealed as centrality as the receptor for leptin (Leprotl1 

1013 gene).

1014 S2 Fig. Ingenuity Pathway Analysis of the C2-5 aging signature reveal altered gene 

1015 expression and pathways in old mice. (signature score: 40, focus molecules: 23). In A) genes 

1016 with altered expression in the T-cells from old mice are involved in cellular development, cellular 

1017 growth and proliferation, hematological system development and function. Genes belonging to 

1018 TCR complex are underlined in green, CD28 downstream genes in orange, and those involved in 

1019 T-cell signal transduction in blue. B) For this C2-5 aging signature, the top disease and functions 

1020 are indicated. 

1021 S3 Fig. MCODE generated network clusters. In this figure we display only the MCODE 

1022 generated clusters, not the full network structures. A total of four clusters were generated for the 

1023 young group (A), and six clusters generated for the old group (B).
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