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Abstract

Model-based data analysis of whole-brain dynamics links the observed data to
model parameters in a network of neural masses. In recent years a special focus
was placed on the role of regional variance of model parameters for the emer-
gent activity. Such analyses however depend on the properties of the employed
neural mass model, which is often obtained through a series of major simplifi-
cations or analogies. Here we propose a data-driven approach where the neural
mass model needs not to be specified. Building on the recent progresses in
identification of dynamical systems with neural networks, we propose a method
to infer from the functional data both the neural mass model representing the
regional dynamics as well as the region- and subject-specific parameters, while
respecting the known network structure. We demonstrate on two synthetic data
sets that our method is able to recover the original model parameters, and that
the trained generative model produces dynamics resembling the training data
both on the regional level and on the whole-brain level. The present approach
opens a novel way to the analysis of resting-state fMRI with possible applica-
tions in understanding the changes of whole-brain dynamics during aging or in
neurodegenerative diseases.

Keywords: large-scale brain network modeling, model discovery, parameter
inference, resting-state fMRI

1. Introduction

One avenue for analysis of resting-state functional magnetic resonance imag-
ing (fMRI) is the use of computational models of large-scale brain network
dynamics (Breakspear, 2017; Suárez et al., 2020). A general goal of this ap-
proach is to relate the observed brain activity to the dynamical repertoire of
the computational model, possibly via identification of optimal model param-
eters, leading to a better mechanistic interpretation of the observations. Such
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models are network-based, where the nodes represent brain regions and the
edges the structural connections between them. Models constrained by indi-
vidual brain imaging data are referred to as virtual brains and typically use
diffusion-weighted imaging data for the edges and neural mass models for the
local dynamics of a brain region. Neural masses are low-dimensonal models of
neuronal population activity.

When linking the models with the observations, until recently studies fo-
cused only on a small number of parameters - such as the global coupling
strength - due to the computational costs associated with the exploration of
a high-dimensional parameter space. In recent years, however, several works
utilized the whole-brain modeling framework in order to explore the role of
spatial heterogeneity of model parameters. Specifically, the studies found that
the whole-brain models can better reproduce the features of resting-state fMRI
when the regional variability is constrained by the MRI-derived estimates of
intracortical myelin content (Demirtaş et al., 2019), functional gradient (Kong
et al., 2021), or gene expression profiles (Deco et al., 2021), and similar regional
variability was found even without prior restrictions (Wang et al., 2019).

Neural mass models employed in these studies (such as the dynamic mean
field model of conductance-based spiking neural network (Deco et al., 2013)
or Hopf bifurcation model of neural excitability (Deco et al., 2017)) are de-
rived through a series of major simplifications or built upon loose mathematical
analogies. It can thus be questioned to what degree the dynamical structure
embodied in these models is sufficient to capture the essential elements of the
neural dynamics manifesting in the observed data. Would two different neural
mass models lead to the same conclusions, or do the results strongly depend on
the exact model form? Such questions are not yet sufficiently answered.

Meanwhile, novel techniques to learn the models of nonlinear dynamical sys-
tems from the data itself are being developed and applied in various fields of
physical and life sciences (Linderman et al., 2017; Duncker et al., 2019; Roeder
et al., 2019; Nassar et al., 2019; Schmidt et al., 2021), including in neuroscience
on all scales (Pandarinath et al., 2018; Koppe et al., 2019; Singh et al., 2020).
The common assumption in these approaches is that the observed data are
generated by an unknown dynamical system of reasonably low dimensionality,
which can be represented with a flexible artificial neural network. The param-
eters of this network are learned during training, so that it best reproduces the
data.

These developments raise the question whether a similar approach can be
applied in the context of whole-brain modeling: Can we learn a dynamical
system representing a neural mass at each node of a large-scale brain network?
Such approach would allow to side-step the issue of reliance on a specific neural
mass models which lie at the heart of the large-scale modeling, and instead
extract this model directly from the functional data. That is what we aim
to investigate in this work. Using the known network structure, derived from
diffusion-weighted imaging, and the observed resting-state fMRI, we infer the
dynamical system representing the neural masses in the nodes of the network.
To account for the regional and subject heterogeneity, we allow this (initially
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unknown) neural mass model to depend on a region-specific and subject-specific
parameters. These parameters we also infer from the observations together with
the model, obtaining the map of dynamically-relevant parameters.

To do so, we utilize the framework of amortized variational inference, or
variational autoencoders (Kingma and Welling, 2019), inspired in particular by
its application for inferring neural population dynamics (Pandarinath et al.,
2018) and for dynamical systems with hierarchical structure (Roeder et al.,
2019). In brief, our system is composed of an encoding network, mapping the
observed time series to the subject- and region-specific parameters and to the
trajectory in the source space, a neural network representing the dynamical
system, and the observation model acting as the decoder from the source to
the observation space. These are jointly trained to maximize the evidence lower
bound, so that the predictions of the trained model closely resemble the original
data.

In this work we test our method on two synthetic data sets, generated with
the two models commonly used in large-scale brain modeling: the mean field
model of conductance-based spiking neural network, or mean field model for
short (Deco et al., 2013), and the Hopf bifurcation model (Deco et al., 2017).
For both test cases we use a cohort of eight subjects with realistic structural con-
nectomes, and with model parameters varying across subjects and brain regions.
We show that the trained generative model can reproduce many features of the
original data set, and we demonstrate that the method can extract regional and
subject-specific parameters strongly related to the original parameters used for
the simulation.

2. Methods

2.1. Structural connectomes
The synthetic data sets were generated using the structural connectomes

of eight subjects from Human Connectome Project (Van Essen et al., 2012).
Specifically, eight subjects from HCP 1200 Subjects cohort were used (ID num-
bers 100307, 100408, 101107, 101309, 101915, 103111, 103414, and 103818). For
those, Structural Preprocessed and Diffusion Preprocessed packages were down-
loaded (Glasser et al., 2013). Next, the structural connectomes were built for
the cortical regions of Desikan-Killiany parcellation (Desikan et al., 2006) us-
ing MRtrix 3.0 (Tournier et al., 2012). To do so, first the response function for
spherical deconvolution was estimated using the dhollander algorithm (Dhollan-
der et al., 2016). Next, fibre orientation distribution was estimated using multi-
shell multi-tissue constrained spherical deconvolution (Jeurissen et al., 2014).
Then 10 million tracks were generated using the probabilistic iFOD2 (second-
order integration over fiber orientation distributions) algorithm (Tournier et al.,
2010). These were then filtered using the SIFT algorithm (Smith et al., 2013).
Finally, the connectome were built by counting the tracks connecting all pairs
of brain regions in the parcellation. The connectome matrices were normalized
so that the largest element in each was equal to one.
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Figure 1: Overview of the method architecture visualized for one brain region. In the sketches
we drop the region indices for simplicity, and keep only the time indices. (A) Generative
model. With known functions f and g, and given initial conditions x0 and parameters θr

and θs, the model can be simulated in forward fashion, influenced by the system noise η
and observation noise ν. The network input for region j at time k is calculated on the fly
from the current states of other regions, uj,k =

∑n

i=1 wjiyi,k. (B) Inference model. The
data (observation time series y, precomputed network input time-series u and one-hot vector
c identifying the subject) are mapped through the encoder functions h1, h2, and h3 onto
the system states x, region-specific parameters θr and subject-specific parameters θs. The
observation function g appears in the likelihood function, while the system evolution function
f enters the prior on the states. The noise η and ν is present only implicitly via the likelihood
and the prior functions. The inference problem amounts to the maximization of the resulting
ELBO over the parameters of the generative model f , g, encoder functions h1, h2, h3, and
variance of the system and observation noise.

The perturbed connectomes were constructed by taking the original connec-
tome W and adding a matrix with elements from random normal distribution,
scaled by the perturbation magnitude ε, i.e. Wε = W + εA. For each value of
perturbation magnitude, four different perturbed connectomes were built. The
log-scaled connectome was calculated as Wlog = log10(W + 10q) with q = −3.
In all cases the matrices were also normalized so that the maximal element was
equal to one.

2.2. Amortized variational inference for networks of nonlinear dynamical sys-
tems

Overview. Before we delve into the details of the method, we introduce the
general ideas behind our approach. We follow the general framework of large-
scale brain network modeling, and we assume that for a specific subject the
observations yj(t) of a brain region j are generated by a dynamical system

ẋj(t) = f
(
xj(t),θrj ,θ

s, uj(t)
)

+ ηj(t), (1)
yj(t) = g(xj(t)) + νj(t) (2)

where xj(t) ∈ Rns is the state at time t, θrj ∈ Rmr and θs ∈ Rms are the
region-specific and subject-specific parameters, and

uj(t) =
n∑
i=1

wjigc(xj(t)) (3)
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is the network input with {wij}ni,j=1 being the structural connectome matrix of
the network with n nodes. The functions f , g, and gc are initially unknown,
and ηj(t) and νj(t) is the system and observation noise, respectively (Fig. 1A).

From the observed time series of multiple subjects we wish to infer both
the model functions f and g (and gc, which for simplicity we assume is iden-
tical to g), shared across the subjects, as well as region- and subject-specific
parameters θrj and θs. To do so, we adopt the general framework of amortized
variational inference (Kingma and Welling, 2019) with hierarchical structure
in parameters (Roeder et al., 2019) (Fig. 1B). We consider the states xj , and
the parameters θrj and θs the latent variables, and we seek their approximate
posterior distribution represented by multivariate Gaussian distributions. In
the spirit of amortized variational inference, we do not optimize their param-
eters directly, but through encoder functions h1, h2, and h3, which transform
the data in the latent variables (system states, regional, and subject parame-
ters respectively). The assumption that the observation and coupling functions
are identical, g ≡ gc, allows us to effectively decouple the network problem to
uncoupled regions with known network input, and so we can consider time-
series of one region of one subject as a single data point. We represent the
nonlinear function f with a generic artificial neural network, and function g as
a linear transformation. The inference problem is ultimately transformed into
optimization of the cost function, evidence lower bound (ELBO), which is to be
maximized over the weights of f , g, h1, h2, and h3, and over the variances of the
system and observation noise. After the optimization, we obtain the description
of the dynamical system in terms of functions f and g, probabilistic represen-
tation of the regional and subject parameters θrj and θs, as well as projections
of the observations in the state space xj . The inferred parameters θrj and θs
will not have a mechanistic meaning; however, they can provide a measure of
(dis)similarity of the regions and subject, and they can be interpreted via the
inferred dynamical system f .

Generative dynamical system. As outlined above, to make the inference problem
more tractable, we simplify the problem and assume that the nodes are coupled
through the observed variable yj . More precisely, we assume that in Eqs. (1-3)
g ≡ gs, and that the observation noise term νj is small enough that it can be
included in the coupling. Then the network input has the form

uj(t) =
n∑
i=1

wjiyi(t). (4)

This form has the advantage that the network input is independent of any
hidden variables and can be computed directly from the known observations yj .
This effectively decouples the time series in different nodes so that they can be
processed separately, as described below.

For the purpose of the inference, we use the time-discretized form of Eqs. (1-
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2) utilizing the Euler method,

xj,k+1 = xj,k + ∆tf
(
xj,k,θ

r
j ,θ

s, uj,k
)

+ ηj,k,
yj,k = g(xj,k) + νj,k,

where we denote the time step with the index k.

Evidence lower bound. As usual in variational inference, we aim to maximize
the evidence lower bound (ELBO), and by doing so at the same time minimize
the Kullback-Leibler divergence between the true posterior and the approximate
posterior q. In the following text, we consider only a single data point from one
subject and one region, and we omit the region indexing for brevity.

A single data point {y,u, c} representing the data from a one region is
composed of the observed time series y ∈ Rnt , network input time series u ∈
Rnt , and one-hot vector c ∈ Rnsub , that is, a vector with zeros everywhere except
i-th position with value one, encoding the identity of subject i. For this data
point the ELBO can be expressed as follows. (For details see Supplementary
Information.)

L = Eq[log p(y|x,θr,θs,u)] (5)

+ Eq[log p(x|θr,θs,u)] + Eq[log p(θr)] + 1
n
Eq[log p(θs)] (6)

− Eq[log q(x|y,u, c)]− Eq[log q(θr|y,u, c)]− 1
n
Eq[log q(θs|c)] (7)

Here the first line represents the decoder loss, second line the priors for states
x and region- and subject-specific parameters θr and θs, and the third line the
approximate posteriors again for states, region-, and subject-specific parameters.

Decoder, or the observation model. We assume that the observation model can
be modeled as a linear transformation of the system state with Gaussian noise,
y = g(x) + ν = a · x+ b+ ν. This forward projection essentially represents the
decoder part of the encoder-decoder system, and so the likelihood in Eq. (5)
can be expanded over time as

p(y|x,θr,θs,u) =
nt∏
k=1

p(yk|xk) =
nt∏
k=1

N(yk|a · xk + b, σ2
o), (8)

where N(y|µ, σ2) stands for normal distribution with mean µ and variance σ2.
The parameters of the observation model, which are to be optimized, are the
coefficients of the linear projection a and b, together with the observation noise
variance σ2

o .

Prior on the system states. The first term in Eq. (6) represents the prior func-
tion on the system states x given the input u and parameters θr and θs, and
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Parameter Value
State space dimension ns 2
Number of region-specific parameters mreg 2
Number of subject-specific parameters msub 1
Number of hidden units in f 32
Number of LSTM units in h1 and h2 32
Batch size 16
Number of samples to evaluate expectation over the approxi-
mate posterior

8

Table 1: Method parameters used in the test cases on synthetic data.

it is here where the dynamical system f appears in the ELBO. This term can
be expanded over time as

p(x|θr,θs,u) = p(x0)
nt∏
k=1

p(xk+1|xk,θr,θs, uk)

= N(x0|0, I)
nt∏
k=1

N(xk+1|xk + ∆tf(xk,θr,θs, uk), diag(σ2
s)).

(9)

Here we use the standard normal distribution as a prior for the initial state
x0, and then evolve the system over time according to the function f . We
represent the function f as a two-layer neural network, with a Rectified Linear
Unit (ReLU) activation function in the hidden layer. The weights of the network
are to be optimized, together with the system noise standard deviation σs. The
number of hidden units is given in the Tab. 1.

Prior on the parameters. For the region- and subject-specific parameters we
utilize the standard normal distribution as a prior, as is often used in variational
autoencoders. The priors in the second and the third term in Eq. (6) can thus
be written as p(θr) = N(θr|0, I) and p(θs) = N(θs|0, I).

Approximate posteriors. We follow the standard approach and utilize multi-
variate normal distributions for the approximate posteriors in Eq. (7). For the
states x and region-specific parameters θr we use the idea of amortized varia-
tional inference and instead of representing the parameters directly, we train a
recurrent neural network to extract the means and the variances from the time
series of the observations y, time series of the network input u, and the one-hot
vector c encoding the subject identity:

(µx, logσ2
x) = h1(y,u, c), (10)

q(x|y,u, c) = N(x|µx,diag(σ2
x)), (11)
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and

(µr, logσ2
r) = h2(y,u, c), (12)

q(θr|y,u, c) = N(θr|µr,diag(σ2
r)). (13)

Specifically, we use Long Short-Term Memory (LSTM) networks for both func-
tions h1 and h2. The input to the networks at step k is the concatenated
observation yk and the network input uk, to which is also appended the time-
independent one-hot vector c.

The subject-specific parameters θs depend only on the subject identity en-
coded in the one-hot vector c. They are represented directly in the matrices of
means M s and log-variances V s. For a specific subject the relevant values are
extracted through the product with the one-hot vector c,

(µs, logσ2
s) = h3(c) = (M s · c,V s · c) (14)

q(θs|c) = N(θs|µs,diag(σ2
s)) (15)

Optimization. The optimization target is the negative dataset ELBO,

Ldataset =
nsub∑
i=1

n∑
j=1

Lij , (16)

where Lij is the ELBO associated with a subject i and region j, defined by
Eqs. (5-7). We minimize the cost function over the weights of the LSTM net-
works h1, h2, weights of the neural network f , means and variances of the
subject-specific parametersM s, V s, system and observation noise variances σ2

s

and σ2
o (in log-scale), and forward projection parameters A and b.

The method is implemented in Keras 2.4 (Chollet et al., 2015). The pa-
rameters of the method and of optimization procedure are given in Tab. 1. For
optimization we use the Adam algorithm (Kingma and Ba, 2017). The expecta-
tions in Eqs. (5-7) are approximated using samples drawn from the approximate
posterior distribution. The optimization is run for 2000 epochs with learning
rate 0.003 and then for additional 1000 epochs with learning rate 0.001. To
make the optimization more stable we use gradient clipping with limits (-1000,
1000). To better guide the optimization procedure, we follow the previous works
(Pandarinath et al., 2018) with initial ELBO relaxation: The terms correspond-
ing to the priors and approximate posteriors for states x and parameters θr and
θs (Eqs. (6-7)) are scaled by a coefficient β, which linearly increases from 0 to
1 between the first and 500th epoch.

Two regularization terms are added to the cost function. First is a L2 reg-
ularization on the kernel weights biases and of the neural network representing
function f , αf

(∑nw

i=1(wfi )2 +
∑nb

i=1(bfi )2
)
, where nw and nb is the number of

kernel weights wfi and bias coefficients bfi , respectively. Second is on the states
x, αx

∑ns

i=1
∑ns

k=1 x
2
k,i. We set αf = 0.01 and αx = 0.01.

The initial conditions for the optimization are set as follows. The log vari-
ances of the system noise are set to -2, and the log variances of the observation
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noise to 0. The projection vector a is initialized randomly drawing from normal
distribution (mean 0, std 0.3), and the projection bias b is set to zero. Matrices
for subject-specific parameters M s and V s are initialized randomly drawing
from a normal distribution (mean 0, std 0.01). All layers of employed neural
networks use the default initialization provided by Keras.

2.3. Whole-brain network models for simulated data sets
Hopf bifurcation model. The Hopf model of large-scale brain dynamics (Deco
et al., 2017) is built by placing a neural mass near supercritical Hopf bifurca-
tion at each node of a brain network. Each neural mass i is described by two
parameters: bifurcation parameter ai and intrinsic frequency fi. For ai < 0 the
uncoupled neural mass has one stable fixed point, and for ai > 0 the neural
mass has a stable limit cycle indicating sustained oscillations with frequency fi.
The bifurcation exists at the critical value ai = 0. The dynamics of each node
in the network are given by a set of two coupled nonlinear stochastic differential
equations,

ẋi =(ai − x2
i − y2

i )xi − ωiyi +G
n∑
j=1

wij(xj − xi) + βηxi (t), (17)

ẏi =(ai − x2
i − y2

i )yi + ωixi +G
n∑
j=1

wij(yj − yi) + βηyi (t), (18)

where ωi = 2πfi, G > 0 is the scaling of the coupling, wij is the weight of
connection from node j to node i. Additive Gaussian noise η is included in the
equations, with standard deviation β.

To generate the synthetic dataset, we use the structural connectome ma-
trices of human subjects as described above. We simulate eight subjects, with
increasing coupling coefficient G spaced linearly between 0 and 0.7. The intrin-
sic frequency fi of all nodes is sampled randomly from uniform distribution on
[0.03, 0.07] Hz. The bifurcation parameter a is sampled randomly from uniform
distribution [−1, 1]. The initial conditions of the system for all subjects and both
variables are chosen randomly from normal distribution N(0, 0.3), the system is
then simulated for 205 s. First 25 s are then discarded to avoid the influence of
the initial conditions, leaving 180 s of data. The system is simulated with Euler
method with time step ∆t = 0.02 s. As the observed variable we take the first of
the two variables in each node (i.e., xi), downsampled to 1 Hz, therefore every
timeseries contain 180 time points. The data are normalized to zero mean and
variance equal to one (calculated across the whole data set).

Parametric mean field model. The parametric mean field model (pMFM) was
derived as a reduction from a spiking neural model (Deco et al., 2013). The
resulting model is described by one nonlinear stochastic differential equation in
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each node of the brain network,

Ṡi =− Si
τs

+ (1− Si)γH(xi) + σηi(t), (19)

H(xi) = axi − b
1− exp (−d(axi − b))

, (20)

xi =riJSi + Io + In, (21)

where xi is the total input current, H(xi) is the population firing rate, and
Si the average synaptic gating variable. The total input current depends on
the recurrent connection strength ri, synaptic coupling strength J = 0.2609 nA,
excitatory subcortical input Io = 0.295 nA, and the regional coupling In =
G
∑n
j=1 wijSj , scaled by the global scaling coefficient G. The strength of the

coupling between region j and i is proportional to the structural connection
strength wij . The kinetic parameters of the models are the decay time constant
τs = 100 ms and γ = 0.641/1000. Values for the input-output function H(xi)
are a = 270 nC−1, b = 108 Hz, d = 0.154 s. Depending on the parameter values
and the strength of the network coupling, the system can be either in monostable
downstate regime at low firing-rate values, bistable regime with two stable fixed
points, or monostable upstate regime at high firing-rate values. The stochastic
transitions between states are driven by the additive Gaussian noise ηi with
standard deviation σ.

The initial conditions for Si were chosen randomly from uniform distribu-
tion on [0.2, 0.8]. The system was simulated for eight subjects with connectome
matrices described above. For each subject, a specific value of coupling coef-
ficient G producing the strongest functional connectivity was used. This was
determined by performing 4 minute long simulations with subject-specific con-
nectome and fixed regionally heterogeneous parameters, repeated for 31 values
of G between 0.17 and 0.22 (where optimal value was expected to lie), and pick-
ing the value where the mean of functional connectivity from the last 2 minutes
was the highest. With this value of G, the activity of each subject was simulated
for 16.4 minutes, first two of which were discarded to avoid the influence of the
initial conditions. The Euler method with time step ∆t = 10 ms was used for
the simulation. The resulting time series of Si were temporally averaged over
windows of size 0.72 seconds, leaving 1200 time points in every time series. The
data are normalized to zero mean and variance equal to one (calculated across
the whole data set).

3. Results

Evaluation workflow. We test the proposed method on two synthetic data sets,
where the data are generated by models commonly used in whole-brain model-
ing. First is the Hopf bifurcation model (Deco et al., 2017), shown on Fig. 2.
That is a two-equation neural mass model, where depending on the value of the
bifurcation parameter ai the dynamics is either noise-driven around a stable
fixed point (for ai < 0) or oscillatory with frequency fi (for ai > 0). In the
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Figure 2: Hopf model test case: example subject. (A-C) The training data are simulated using
a network model of brain dynamics, where in each node a Hopf neural mass model is placed
(A). The nodes are coupled through a connectome derived from diffusion-weighted imaging
(B) scaled by a subject-specific coupling parameter G. The values of bifurcation parameter
ai and intrinsic frequency fi vary across brain regions (C). (D) Timeseries generated with
the original model with three examples (bottom) and the calculated functional connectivity
(right). (E) Inferred regional parameters for all regions (top left, example nodes highlighted in
color) and inferred subject-specific parameter (bottom left, in gray among parameters for all
subjects in the dataset). The span of the crosses/lines corresponds to two standard deviations
of the inferred Gaussian distribution. In the bottom panel circles are added for visual aid due
to the small standard deviations. The inferred dynamics in state space of the three example
nodes are on the right. The vector field is evaluated assuming zero network input and using
the inferred region- and subject-specific parameters. (F) Inferred regional parameters colored
by the ground truth values of the bifurcation parameter ai (top) and frequency fi (bottom).
The bifurcation parameter correlates with inferred θr

2 , while frequency correlates with θr
1 , but

only for regions in the oscillatory regime, i.e. where ai > 0. (G) Timeseries generated with
the trained model and using the inferred parameters. Important features of the data are
preserved both the level of single regions (amplitude, frequency) as well as on the network
level (functional connectivity).

synthetic data set, these two parameters are randomly varied across regions.
Second model is the parametric mean field model (pMFM Deco et al., 2013),
shown on Fig. 3. That is an one-equation model, and depending on the network
input, it can be pushed into monostable down- or up-state, or a bistable regime.
The switching between the states is noise driven, and we vary the noise strength
across brain regions.

Both models are used to generate synthetic data for eight subjects, each with
individual structural connectome containing 68 cortical regions of the Desikan-
Killiany parcellation (Desikan et al., 2006). The connectome is scaled by the
global coupling strength G which we set to increase linearly across subjects
for the Hopf model, or which we set to the optimal value (in terms of highest
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Figure 3: Parametric mean field model test case: example subject. Layout same as in Fig. 2.
(A-C) The training data are simulated using a network of pMFM neural masses. Depending
on the network input, these can be forced into the monostable regime (down or up state) or
into the bistable regime. The dynamics is noise driven, with noise strength varying across
regions. (D) Timeseries generated with the original model and the functional connectivity.
Three examples shown in the bottom panel, with a window of hundred seconds on the right.
(E) Inferred regional parameters (top left) and subject-specific parameter. Circles are added
for visual aid due to the small standard deviations. The inferred dynamics in state space of
the three examples are on the right. (F) Inferred regional parameters colored by the ground
truth values of the noise strength parameter (top); the original parameter is encoded along
the diagonal of the inferred parameters. Bottom panel shows coloring according to the mean
of the original timeseries, which does not represent an original model parameter, rather a data
feature. (G) Timeseries generated with the trained model and using the inferred parameters.
Region-specific features (switching between states, noisiness) are well preserved. Structure of
the regional correlations is also reproduced, but the correlations are weaker compared to the
original.

produced functional connectivity), different for every subject, with pMFM.
To establish the performance of the described method, we proceed as follows.

First, we simulate the data with the original model and random values of re-
gional parameters (Fig. 2D and Fig. 3D). Next, using the whole data set of eight
subjects, we train the model, obtaining at the same time the trained generative
model described by the function f of the dynamical system, and also the prob-
abilistic representation of subject- and region-specific parameters (Fig. 2E and
Fig. 3E). Taking random samples from the posterior distributions of the param-
eters, and using random system and observation noise, we repeatedly generate
new timeseries using the trained model (Fig. 2G and Fig. 3G).

We evaluate the quality of the trained model based on the following criteria.
First, we establish whether the inferred parameters are related to the original
parameters of the model (Figs. 2F, 3F, 4A,E). Second, we wish to evaluate
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Figure 4: Quantitative evaluation of the synthetic test cases. Top row - Hopf model, bot-
tom row - parametric mean field model. (A, E) Nonlinear correlation between the original
parameters and the optimal projection of the inferred region-specific parameters (bifurcation
parameter a and frequency f for Hopf model, noise strength for pMFM) and subject-specific
parameter (coupling strength G). (B, F) Fit between the regional features of the original
timeseries and those generated by the trained model. We show the cosine similarity of the
timeseries spectra and the difference in variance for the Hopf model, and Wasserstein distance
of the distributions in the observation space and the difference in logarithm of number of
switches for pMFM. These are evaluated for the examples from Fig. 2 and Fig. 3, all time-
series generated by the trained model, and the surrogates described in the main text. (C,
G) Fit between the functional connectivity of the original and generated timeseries. (D, H)
Mean value of non-diagonal elements of functional connectivity matrices. For both models,
the correlation strength is underestimated, even if the structure is preserved. In all panels,
the bars show the (5, 95) percentile interval with the dot representing the median value. The
statistics are computed from 50 samples of the posterior distribution for 8 subjects (grouped
together in A, B, E, F) and 68 regions (for region-specific parameters and features). The
statistics of the surrogate distributions using the original model are also calculated from 50
samples.

whether the features of the generated timeseries resemble those of the original
timeseries, both on the regional level (Fig. 4B,F) and on the network level
(Fig. 4C,D,G,H). We explore these aspects in the following paragraphs.

Inferred parameters encode the original model parameters. The example on
Fig. 2 shows how are the original regional parameters encoded in the inferred
parameters θr for the Hopf model. The bifurcation parameter a is encoded in
the inferred parameter θr1 (upper panel), while the frequency f is encoded in θ2

r

(lower panel). The latter is however true only for the regions in the oscillatory
regime, i.e. with a > 0. That is not a deficiency of the proposed method: in
the fixed point regime the activity is mainly noise-driven, and the value of the
frequency parameter has small to negligible influence (see the example C on
Fig. 2D). In other words, the parameter is not identifiable from the data. That
is reflected in the inferred parameters. For the regions with a > 0 (or equiv-
alently with θr1 > 0) the inferred parameters θr2 have low variance, and their
mean encodes the original frequency parameter. For the regions with a < 0,
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however, inferred θ2
r have high variance, close to the prior value 1, and over-

lapping distributions, indicating that not much information is encoded in θ2
r in

this regime.
Also for the pMFM test case the noise strength parameter is well identified

(Fig. 3F), however the second dimension of the region-specific parameter θr2
is used to encode the mean of the regional timeseries. Presumably, this is so
that the parameter θr2 can compensate for the weaker network coupling, which
we discuss later. For both examples the subject-specific coupling strength is
encoded in the subject parameter θs (Figs. 2E, 3E, lower panels).

The quantitative analysis of the goodness-of-fit is shown on Fig. 4A,E. To
evaluate it, for each of the original parameters we first identified the direction
in the parameter space along which the parameter is encoded by taking a lin-
ear regression of the posterior distribution means. Then, we repeatedly took
samples from the posterior distributions of the parameters, projected them on
the identified subspace, and calculated the nonlinear Spearman’s correlation co-
efficient ρ. For most parameters the values are close to the optimal value of
1, indicating that the original parameters are indeed accurately recovered in
the inferred parameters. The exception is the frequency f due to the above
discussed non-identifiability. If, however, we restrict the regions only to those
where the bifurcation parameter is positive, the correlation markedly increases,
as expected based on the discussed example.

On Fig. S1 we further evaluate how the goodness-of-fit changes with the
increased coupling in the Hopf model. Presumably, as the coupling increases,
the regional timeseries are more affected by the activity of the connected regions
and less by its internal parameters, and it is thus more difficult to recover the
original parameters from the data. Indeed, that is the trend that we observe
both for the bifurcation parameter a and frequency f of the nodes in oscillatory
regime.

Trained model reproduces the features of regional timeseries. A crucial test of
the trained model is an evaluation whether the generated data resemble those
used for the initial training. This resemblance should not be understood as
reproducing the timeseries exactly, since they depend on a specific noise instan-
tiation, rather that the features we consider meaningful should be preserved.
For both test cases, we evaluate the similarity of two features. For the Hopf
model with its oscillatory dynamics we evaluate the cosine similarity of the
spectra of the original and generated timeseries, and the difference between the
variance of the timeseries, since the variance differs greatly between the nodes
in oscillatory and fixed-point regimes (Fig. 4B). For the pMFM, we compare
the timeseries based on the distribution in the 1D observation space (that is,
taking the samples collapsed across time) using the Wasserstein distance (called
also Earth mover’s distance) of two distributions. Second feature of pMFM
timeseries is the log-scaled number of switches between the up- and down-state,
capturing the temporal aspect of the switching dynamics (Fig. 4F).

We evaluate the measures for 50 different noise instantiations, leading to
50 different time series for each region, obtaining a distribution of goodness-of-
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fit metrics. The same metrics are evaluated also for three surrogates: First is
the original computational model, run with different noise instantiations. That
provides an optimistic estimate of what can be achieved in terms of goodness-
of-fit, considering that the features will necessarily depend on the specific noise
instantiation used in the initial simulations. Second surrogate is obtained by
randomly reshuffling the original data between regions and subjects. Third
surrogate is simply white noise with zero mean and variance equal to one (which,
due to the data normalization, is equal to the mean and variance of the original
data set taken across all subjects and regions).

In most measures, the trained model performs comparably or slightly worse
than the original model and markedly better than the surrogates. The exception
is cosine similarity of the spectra with the Hopf model. That is due to the very
strong coupling in some subjects (for coupling coefficients G ≥ 0.5) leading
to close to homogeneous activity across brain regions, and thus comparable
performance of the reshuffling surrogate.

Functional network structure is reproduced, but with lowered strength. Just as
the well trained model should be able to reproduce the features of the original
data on the level of single regions, it should also be able to reproduce the relevant
features on the network level. Specifically, we evaluate how well is the functional
connectivity reproduced. In general, functional connectivity (FC) quantifies the
statistical dependencies between the time series from brain regions. While there
are multiple ways to measure it, the most ubiquitous is the linear (Pearson’s)
correlation of the time series, which we use here as well. This static FC captures
the spatial structure of statistical similarities, however, it has its limitations,
notably it ignores the temporal changes in FC structure (Preti et al., 2017;
Lurie et al., 2020).

The examples for both investigated models indicate that the FC structure
is indeed well reproduced, but with lower strength, particular in the case of
pMFM example (Figs. 2G and 3G).

This is further analyzed for all subjects on Fig. 4, and visualized on Fig. S2
and Fig. S3. For the Hopf model, the coupling coefficient was increased be-
tween subjects. For low coupling values, the FC structure is not reproduced (as
measured by Pearson correlation between the non-diagonal elements of original
FC and trained model FC; Fig. 4C). That is however true also for the original
model due to the FC elements being close to zero and noise-dependent. For
stronger coupling, the structure is preserved better, although the trained model
plateaus around values of 0.7 for the correlation between the FC matrices, even
when the correlations between the original model increases further. The com-
parison of the mean value of non-diagonal FC elements furthermore reveals that
the strength of the correlations is considerably underestimated with the trained
model (Fig. 4D).

For the pMFM, the coupling coefficient was set to optimal value (in the
sense of maximal FC), specific to each subject. Also there we can see well
reproduced structure of the correlations (Fig. 4G), although too with reduced
strength (Fig. 4H).
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Figure 5: Effect of the connectome perturbation. (A) Spearman’s correlation coefficient for
the recovery of the noise parameter for the log-scaled connectome (blue), original connectome
(red), and five perturbed connectomes (black). (B) Spearman’s correlation coefficient for the
recovery of the coupling parameter G. (C) Wasserstein distance of the distributions in the
observation space of the original data and the data generated by the trained model. (D)
Difference of the logarithm of number of switches between down- and up-state of the regional
timeseries. (E) Relative FC fit, that is, normalized Pearson’s correlation coefficient between
the non-diagonal elements of the original FC and the FC generated by the trained model.
The normalization is performed by dividing the coefficients by the mean of values obtained
for the true connectome for every subject separately. The normalization is done in order to
make the values comparable across subjects. For all panels, data were generated using four
different connectome perturbations for each magnitude value, and one connectome for the
original and log-scaled connectome. In panels A and B, 100 samples were drawn from the
parameter distributions for each trained model. In panels C-E 50 simulations were performed
to calculate the measures of goodness-of-fit for each model. These were then aggregated across
all subjects (and across regions apart from panels B and E). Each line represents the 5 to 95
percentile range, with the dot representing the median.

These results indicate that while the trained model can discover the existence
of the network coupling, it systematically underestimates its strength. Given
that in the pMFM the strength of the network input can shift a single neural
mass from the monostable down-state to bistable regime and to monostable up-
state, the underestimated coupling leads to the necessity of utilizing the regional
parameter to compensate for the missing coupling (Fig. 3F).

Large perturbations of the connectome lead to reduced performance. To assess
the influence of the inexact structural connectome on the goodness-of-fit, we
have trained the model on the pMFM data set with perturbed connectomes.
That is, instead of the original connectivity matrix W we have trained the
model withWε = W+εA, where A is matrix with elements drawn from standard
normal distribution, and ε > 0 is the perturbation magnitude. In addition we
have also used a log-scaled connectivity matrix.

Fig. 5 shows how are the indicators of goodness-of-fit from Fig. 4 modified
by these perturbed connectomes. High perturbation magnitudes reduces the
recovery of regional and subject parameters (Fig. 5A,B) as well as the similar-
ity of the generated functional connectivity (Fig. 5E). The regional features,
on the other hand, are reproduced similarly well even for large perturbations
(Fig. 5C,D). Using the log-scaled connectome has a similar negative effect, al-
though less pronounced.
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4. Discussion

Summary. In this work we have introduced a method for analysis of whole-
brain dynamics based on a model of networked dynamical systems. Using the
structure of the network and the functional data, the method allows to infer
both the unknown generative dynamical system, and the parameters varying
across regions and subjects.

We have tested the method on two synthetic data sets, one generated by a
virtual brain model composed of nodes with a Hopf model (Fig. 2) and one gen-
erated by virtual brains with a parametric mean field model (Fig. 3). Detailed
analysis of the results has shown that the proposed method can recover the
original parameters as well as reproduce the important features of the original
data both the single region level and on the network level (Fig. 4). With these
results in hand, the planned next step is evaluation of the method on human
resting-state fMRI data remains, which is yet to be performed.

Importance of dynamically-relevant parameters. Large-scale brain dynamics dur-
ing resting-state is altered in neurodegenerative diseases (Hohenfeld et al., 2018)
and in normal aging (Ferreira and Busatto, 2013). Myriads of regionally varying
parameters that can plausibly influence the large-scale dynamics can be mea-
sured either in vivo or post mortem, such as cell density, cell type composition,
local connectivity structure, connectivity to subcortical structures, or receptor
densities, to name just a few. But which ones are in fact relevant for large-
scale brain dynamics, and how do they influence it? Construction of bottom-up
mechanistic models that would include all possible parameters and allow to in-
vestigate their role is unfeasible due to the complexity of human brain with its
dynamics spanning multiple temporal and spatial scales, even if the parameters
were in fact accurately measured (Frégnac, 2017).

Our approach instead pursues this understanding from the opposite direc-
tion. We use the amortized inference framework to learn the dynamical system
driving the dynamics, and with it also the parameters varying across regions
and subjects. Since these parameters are inferred from the functional data in
unsupervised fashion, they are by construction the parameters relevant for the
large-scale dynamics. Given the abstract nature of the inferred model, the mech-
anistic meaning of these dynamically-relevant parameters is not self-evident, yet
they still provide a measure of similarity of brain regions and different subjects
and their effect on the dynamics can be investigated through the trained model.
Furthermore, given large enough data set, the dynamically-relevant parame-
ters may be linked to the measured quantities (or their combinations). Such
link may provide insights into the origin of neurodegenerative diseases if the
dynamically-relevant parameters differ between the disease stages.

Importantly, the link between dynamically-relevant parameters and the mea-
surable quantities can be estimated from a preexisting patient cohort, and then
only applied to single subject. That is advantageous if the measurement is diffi-
cult, costly, or impossible to perform in clinical setting (such as for cell type com-
position estimated from post mortem studies); in such cases, the dynamically-
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relevant parameters may instead be estimated from easy-to-obtain resting-state
fMRI and then mapped using the known link.

Learning complex dynamics. We have tested the method on synthetic data gen-
erated using the Hopf model and parametric mean field model as neural masses
embedded in a whole-brain network. Admittedly, these two models, while of-
ten used in whole-brain modeling, are dynamically quite simple - after all, they
are represented by one or two differential equations per node. And even for
these models some shortcomings of the method are noticeable, in particular
the insufficiently captured network interactions leading to weakened functional
connectivity in the generated data.

One can ask whether the method would be able to handle more complex
dynamics, generated by higher dimensional models, with many coexisting fixed
points and limit cycles, and possibly acting on multiple time scales. In principle,
the present method can be applied to more complex data, and, if the state space
is set to be sufficiently large and the hidden layer in function f sufficiently wide,
arbitrarily complex dynamics can be represented by the architecture. Whether
such system can be successfully discovered through the optimization process is
however a different question, one that we are not able to answer here, since
designing neural network architectures for novel tasks is notoriously difficult
problem without robust theoretical guidelines.

Considerable amount of other architectures were explored in related works,
and although they were not applied in a networked setting, their elements could
be incorporated in our framework to improve its performance for more complex
dynamics. For instance, Duncker et al. (2019) relied on Gaussian processes con-
ditioned on set of fixed points to learn the system dynamics, and demonstrated
its efficacy on multistable dynamical systems. Nassar et al. (2019) used a tree
structure to partition the state space and approximate the system in each par-
tition with linear dynamics. Koppe et al. (2019) used piecewise linear recurrent
neural network to analyze fMRI data. Schmidt et al. (2021) later expanded on
this work introducing an approach for better approximation of systems with
multiple time scales through creation of slow manifolds in the state space using
a regularization scheme of the dynamical system.

Imperfect connectome. Our method assumes that the structural connectome
through which the local dynamics is coupled is known. What we can obtain,
however, is only an estimate from diffusion tractography, suffering from a range
of biases (Rheault et al., 2020; Grisot et al., 2021). Our results indicate that
while the method can handle small perturbations of the connectome, larger per-
turbations or different scaling can considerably degrade its performance (Fig. 5).
To some extent this might be overcome by running the method with several con-
nectomes using different scalings (linear, logarithmic) or different corrections
for known biases and choosing the optimal connectome via model comparison
methods.

If that would not produce results of sufficient quality, alternate approach can
be pursued, one that would use the estimated structural connectome not as hard
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data but only as a soft prior for the effective connectivity of the model. Such
approach was described for whole-brain dynamics generated by the multivari-
ate Ornstein-Uhlenbeck process, using the thresholded structural connectivity
as a topological mask for the inferred effective connectivity (Gilson et al., 2019,
2020). The model connectivity may be inferred even without any prior anatom-
ical constraints, as demonstrated by the MINDy method that relies on a simple
one-equation neural mass model (Singh et al., 2020).
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Appendix A. Supplementary information

Evidence lower bound (ELBO)

For a single subject, the observations contain the time series from all n
regions, Y = (y1, . . . ,yn). They are complemented by the region time series
for the network input, U = (u1, . . . ,un), and the one-hot vector c encoding
the subject identity. The latent variables Z contain the state time series xj for
all regions j, region-specific parameters θrj , and subject specific parameters θs,
that is, Z = (x1, . . . ,xn,θ

r
1, . . . ,θ

r
n,θ

s). Our goal is to minimize the Kullback-
Leibler divergence between the approximate and true posterior, which can be
rewritten as a sum of subject ELBO and evidence itself,

KL(q(Z|Y ,U , c) || p(Z|Y ,U , c)) = Eq[log q(Z|Y ,U , c)]− Eq[log p(Z|Y ,U , c)]
= Eq[log q(Z|Y ,U , c)]− Eq[log p(Y |Z,U , c)]− Eq[log p(Z|U , c)]︸ ︷︷ ︸

−Lsubject

+Eq[log p(Y |U , c)].

Maximizing the ELBO then minimizes the KL divergence. We can factorize all
terms of the ELBO across n brain regions: the approximate posterior,

q(Z|Y ,U , c) =
n∏
j=1

q(xj |yj ,uj , c)
n∏
j=1

q(θrj |yj ,uj , c)q(θ
s|c),

the data likelihood,

p(Y |Z,U , c) =
n∏
j=1

p(yj |xj ,θ
r
j ,θ

s,uj , c),

and the prior,

p(Z|U , c) = p(x1, . . . ,xn|θr1, . . . ,θ
r
n,θ

s,U , c) p(θr1, . . . ,θ
r
n,θ

s|U , c)

=
n∏
j=1

p(xj |θrj ,θ
s,uj , c)

n∏
j=1

p(θrj |uj , c)p(θ
s|c).

We require that the data likelihood and priors depend on the subject identity
only through the latent variables, so we remove the dependence on c. We also
require that the priors of θrj do not depend on the external input uj . Then we
define the region ELBO as

Lj = Eq[log p(yj |xj ,θ
r
j ,θ

s,uj)]

+ Eq[log p(xj |θrj ,θ
s,uj)] + Eq[log p(θrj)] + 1

n
Eq[log p(θs)]

− Eq[log q(xj |yj ,uj , c)]− Eq[log q(θrj |yj ,uj , c)]−
1
n
Eq[log q(θs|c)]

so that the subject ELBO is the sum of region ELBOs, Lsubject =
∑n
j=1 Lj .
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Figure S1: Recovery of the region-specific parameters in the Hopf model for different subjects
with different coupling coefficient G. The figure contains the data from Fig. 2A, separated for
the individual subjects.

SC

Subject 1

FC
 d

at
a

FC
 g

en
er

at
ed

(e
xa

m
pl

e)
FC

 g
en

er
at

ed
(m

ea
n)

Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

0.0

0.5

1.0

1

0

1

Figure S2: Structural and functional connectivity matrices for all subjects in the Hopf model
test case. First row: structural connectivity. Second row: Functional connectivity of the
original data used for the training. Third row: Functional connectivity of the example data
generated with the trained model. Fourth row: Functional connectivity of the data generated
with the trained model, averaged over 50 samples.
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