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Summary 9 

The effects of UV light on the skin have been extensively investigated. However, 10 

systematic information about how exposure to UVA light, the least energetic but the 11 

most abundant UV radiation reaching the Earth, shapes the subcellular organization of 12 

proteins is lacking. Using subcellular fractionation, mass-spectrometry-based 13 

proteomics, machine learning algorithms, immunofluorescence, and functional assays, 14 

we mapped the subcellular reorganization of the proteome of human keratinocytes in 15 

response to UVA light. Our workflow quantified and assigned subcellular localization 16 

and redistribution patterns for over 3000 proteins, of which about 600 were found to 17 

redistribute upon UVA exposure. Reorganization of the proteome affected modulators 18 

of signaling pathways, cellular metabolism and DNA damage response. Strikingly, 19 

mitochondria were identified as the main target of UVA-induced stress. Further 20 

investigation demonstrated that UVA induces mitochondrial fragmentation, up-21 

regulates redox-responsive proteins and attenuates respiratory rates. These observations 22 

emphasize the role of this radiation as a potent metabolic stressor in the skin. 23 
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Introduction 24 

Ultraviolet-A (UVA) light (315–400 nm) constitutes about 95% of all ultraviolet 25 

radiation (UVR) that reaches the Earth1. The causal association between UVR exposure 26 

and skin cancer is well established, but epidemiology has little capacity to distinguish 27 

between the carcinogenic effects of UVA and UVB2. At the molecular level, the effects 28 

of UVA and UVB in skin cells are of different natures, suggesting that each wavelength 29 

range defines a different path towards malignant transformation3. 30 

For example, UVB is absorbed by pyrimidines, giving rise to cyclobutane pyrimidine 31 

dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts. Thus, UVB’s 32 

carcinogenic action depends on the direct generation of mutagenic DNA lesions1. On 33 

the other hand, UVA photons are poorly absorbed by the DNA, being more relevantly 34 

absorbed by other cellular chromophores4. In this sense, UVA relies on the generation 35 

of photoexcited species, such as singlet oxygen, that may lead to oxidative damage5. 36 

Skin cells orchestrate complex responses to light stress, coordinating gene expression, 37 

metabolism and protein function6. Protein function is fine-tuned in a sophisticated 38 

manner, involving modulations in abundance, chemical modifications, and spatial and 39 

temporal delimitations7. Mutational dynamics is the primary driver of carcinogenesis. 40 

However, modulation of metabolism and protein function can contribute to this process 41 

by impacting signaling, organelle interactions and cell fate decisions towards apoptosis, 42 

senescence or malignant transformation2,8. 43 

Even though the effects of UVR on DNA modification9, gene expression10, protein 44 

expression11 and post-translational modifications12,13 have been investigated, 45 

information about how specific UVR components shape the subcellular organization of 46 

proteins in cells is still lacking. Advances in high-throughput mass spectrometry14,15 and 47 

microscopy7,16 and machine learning applications for these techniques17,18 allow 48 

proteome-wide investigations into subcellular localization dynamics and organellar 49 

communication in cells under stress. Spatial or organellar proteomics workflows may 50 

combine cell fractionation with mass spectrometry to characterize changes in protein 51 

levels in multiple subcellular niches17. Indeed, methods such as Protein Correlation 52 

Profiling (PCP)19,20 and Hyperplexed Localisation of Organelle Proteins by Isotope 53 

Tagging (LOPIT)21,22 and other organellar mapping approaches23,24 have been 54 

developed to monitor protein dynamics over space in an unbiased manner. 55 
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The principle behind these methodologies is to quantify the distribution of proteins 56 

across subcellular fractions under different biological conditions. The fractionation 57 

profiles of proteins reflect the complexity of subcellular localization better than the 58 

presence or absence in a single purified fraction. Thus, they are used as an input for 59 

learning algorithms, allowing the prediction and classification of subcellular 60 

localization. Recently, machine learning pipelines predicted translocation events 61 

between subcellular niches by allowing the comparison of fractionation profiles under 62 

different biological conditions25. 63 

In light of these advances, we used spatial proteomics coupled with machine learning 64 

techniques to systematically analyze the subcellular reorganization of the proteome of 65 

skin cells in response to UVA radiation. Our results show that a low UVA dose, 66 

equivalent to about 20 minutes of midday sun exposure26, leads to a profound spatial 67 

remodeling of the skin cells’ proteome. We found that the spatial stress response relies 68 

on changes in mitochondrial dynamics, nucleocytoplasmic translocations triggered by 69 

DNA damage, and protein degradation. Furthermore, our results provide a resource for 70 

further investigations of UVA-triggered translocations.  71 

Results 72 

Workflow used to investigate proteome remodeling of skin cells under UVA light 73 

stress 74 

An overview of the experimental protocol is shown in Fig. 1A. In the experimental 75 

pipeline, HaCaT skin cells were exposed to a non-cytotoxic low dose of UVA light (6 76 

J/cm², using a simulator of the solar UVA spectrum) or kept in the dark under the same 77 

environmental conditions. Mock-treated and UVA-exposed cells were collected, the 78 

plasma membranes were lysed in hypoosmotic solution, and the organelles were 79 

separated by differential centrifugation. Fractions were collected after each 80 

centrifugation step, and proteins were quantified in each fraction by conventional label-81 

free mass spectrometry. A total of 5351 protein groups were identified and quantified in 82 

90 samples, comprising nine fractions for each of the five biological replicates of each 83 

condition. The dataset was filtered for proteins with label-free quantifications (LFQ) of 84 

greater than zero in at least one-third of all samples, yielding a matrix of 3287 protein 85 

groups. This step was performed to exclude proteins that were irregularly quantified 86 

across replicates and fractions. 87 
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Next, to assess if the dataset’s structure reflected subcellular localization, we used three 88 

complementary approaches to inspect data quality, predict subcellular localization and 89 

infer protein translocation. First, we used t-SNE as a dimensionality reduction method 90 

overlaid with different databases (Uniprot, Gene Ontology and Cell Atlas) to inspect 91 

cluster formation. Second, we used a neural network algorithm to assess if subcellular 92 

localization could be predicted accurately by learning the fractionation patterns of 93 

organellar markers with well-established localization. Lastly, after validating the 94 

dataset’s structure, we used the Translocation Analysis of Spatial Proteomics 95 

(TRANSPIRE) computational pipeline25, which is based on a gaussian process 96 

classifier, to investigate changes in the subcellular landscape induced by UVA light in 97 

human keratinocytes. An overview of the computational workflow is presented in Fig. 98 

1B. The results obtained by TRANSPIRE were further validated by conventional 99 

biochemical assays (Fig. 1C).  100 

Validating the resolving power of the fractionation method 101 

Following our workflow, we first inspected the t-SNE plot generated from the filtered 102 

dataset to reduce dimensionality and detect the presence of clusters. The plot revealed 103 

the presence of four main clusters in distinct regions (Fig. 1S). When overlaid with the 104 

subcellular localization data from three different databases (Uniprot, Cell Atlas and 105 

Gene Ontology), we found that the four clusters represented four distinct subcellular 106 

environments: the nucleus, cytosol, mitochondria, and secretory organelles. The 107 

database classifications were binned such that secretory organelles included proteins 108 

from the ER, peroxisome, Golgi, lysosome and plasma membrane (Fig. 1S). 109 

Since this analysis showed that the fractionation scheme provides the resolution 110 

necessary for differentiating these four main subcellular compartments, we curated 111 

organellar markers for each compartment to investigate if protein localization could be 112 

predicted based on the fractionation scheme. The Uniprot and Gene Ontology 113 

classifications of subcellular localization were used for curating the organellar markers. 114 

Thus, for a protein to be considered an organellar marker, it had to be classified in both 115 

databases as uniquely pertaining to one subcellular niche among the four compartments 116 

(i.e., cytosol, nucleus, mitochondria and secretory) established through dimensionality 117 

reduction. The fractionation profiles of uniquely localized proteins were then manually 118 

inspected to assure that the markers were reproducibly quantified and did not present 119 

missing values across replicates in our experiment.  120 
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Based on these criteria, 247 organellar markers were curated into four subcellular 121 

niches: the cytosol (64), nucleus (75), mitochondria (60), and secretory organelles (48). 122 

Fractionation profiles of markers from different compartments present characteristic 123 

shapes, demonstrating that proteins from the same subcellular niche tend to fractionate 124 

similarly (profile plots, Fig. 2A). The t-SNE supports the patterns observed in the 125 

profile plots, showing that organellar markers from different compartments cluster in 126 

separate plot regions, while markers of the same compartment cluster similarly (Fig. 127 

2B).  128 

Following this analysis, a neural networks algorithm implemented in pRoloc27, utilizing 129 

as references of each compartment the fractionation profiles of curated organellar 130 

markers, classified proteins into four discrete subcellular compartments. To assess the 131 

reproducibility of prediction across replicates, we applied the algorithm to each of the 132 

five biological replicates of each condition separately. Fig. 2C contains the t-SNE plots 133 

representing the most frequent classification of each protein across the five replicates 134 

for each condition. All of the 3287 protein groups were classified into four subcellular 135 

niches: the cytosol (623 ± 47 proteins, considering the mean and standard deviation 136 

across replicates), nucleus (640 ± 144), mitochondria (1293 ± 179), and secretory 137 

organelles (707 ± 183), with slight differences for the total number of classifications 138 

between conditions (Fig. 2D). The cellular compartment classification obtained for each 139 

replicate was then compared to the GO classification. The results revealed that the 140 

neural networks algorithm achieved a mean prediction accuracy of 75% in control 141 

samples and 73% in treated samples (Fig. 2E). Classifications were also highly 142 

reproducible, with 80 and 85% of all proteins in the treated and control samples, 143 

respectively, receiving the same classification in at least 3 out of 5 biological replicates 144 

(Fig. 2F). All classifications obtained from the machine learning algorithm are 145 

accompanied by classification probability scores that reflect the reliability of the 146 

assignment. In this context, low scores are often associated with profiles not directly 147 

modeled by the organellar markers used in the algorithm (e.g., multilocalized 148 

proteins)24.  149 

In addition, we analyzed if the dataset could provide sub-organellar resolution by 150 

overlaying the t-SNE plot with markers of sub-organellar compartments (obtained from 151 

Uniprot, Cell Atlas and Gene Ontology). The results indicate a partial divide between 152 

the mitochondrial matrix, membrane and nuclear subniches, such as the nucleolus, 153 
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nucleoplasm, and chromatin clusters (Fig. 2G). Moreover, the t-SNE plot also reveals 154 

that specific protein complexes colocalize in vivo. For example, our dataset's clustering 155 

of the heavy and light ribosome subunits and the proteasome supports the notion that 156 

the fractionation preserves the colocalization of interaction networks. 157 

Altogether, these results indicate that the dataset is structured in a way that is dependent 158 

on subcellular localization, considering compartments delimited by membranes (i.e., 159 

organelles) and compartments delimited by protein complex formation (i.e., the 160 

nucleolus and the proteasome). This analysis provides a comprehensive investigation of 161 

HaCaT subcellular architecture, allowing for inferences about UVA-induced 162 

translocations.  163 

UVA light elicits extensive changes in the subcellular distribution of proteins 164 

Next, we used the recently developed TRASPIRE pipeline25 to predict UVA-triggered 165 

translocation in the spatial proteomics dataset. This pipeline creates synthetic 166 

translocation classes from organellar markers, trains a Gaussian process classifier based 167 

on the synthetic translocation classes and predicts translocations in the actual dataset. 168 

The basis of this approach relies on first concatenating the organellar markers between 169 

the different biological conditions to produce synthetic markers. Then the synthetic 170 

markers are further clustered to provide different translocation and non-translocation 171 

classes, allowing the algorithm to predict the directionality of protein trafficking across 172 

subcellular niches. 173 

The algorithm performs all possible combinations of organellar markers between 174 

conditions to generate synthetic translocations of different classes. In this sense, 175 

“Nucleus to Cytosol” and “Mitochondria to Mitochondria” would represent two 176 

different classes. Thus, the algorithm's output consists of the translocation classes 177 

attributed to each protein and translocation scores, calculated as described by Kennedy 178 

et al.25. False-positive rates (FPR) were calculated based on the learning model, and a 179 

0.5% FPR threshold was applied to define a true translocation event. 180 

Importantly, changes in the fractionation profile may reflect diverse phenomena, such as 181 

translocation events23, altered organellar dynamics24, or possibly altered rates of 182 

synthesis and degradation of proteins within specific subcellular niches25. Learning 183 

algorithms applied to spatial proteomics present limitations in differentiating among 184 

these events since they only classify proteins according to translocation classes17,24. 185 
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As shown in Fig. 3A, the classifier achieved a high level of accuracy during training, 186 

reaching values above 90%, and identified 611 possible targets of translocation (FPR 187 

0.5%) altogether. The number of proteins assigned to each translocation class is shown 188 

in Fig 3B. By aligning the translocation classes in a circular plot (Fig. 3C), it is possible 189 

to see that they are not equally distributed across the four subcellular niches. Indeed the 190 

efflux is more intense for secretory organelles than for other compartments. This 191 

observation possibly reflects the crucial role secretory organelles play in protein 192 

trafficking between different subcellular niches. Translocating proteins are significantly 193 

enriched for biological processes related to cellular localization (“cellular localization”, 194 

“establishment of localization in cell’, “cellular component organization”) and 195 

mitochondrial translation (“mitochondrial translation elongation”, “mitochondrial 196 

translation termination”) (Fig. 3D). The GO terms for the cellular compartment indicate 197 

that translocating proteins are mainly cytosolic and mitochondrial, reinforcing the 198 

possible role of mitochondria in UVA-induced damage. 199 

Further evaluation of the 12 highest scoring translocating proteins revealed that five 200 

(MAP2K3, PARP4, YTHDF2, OAS1, RNF114) were reported to be multilocalized 201 

according to the GO and Uniprot classifications (Fig. 3E). Previously, MAP2K3, 202 

RPS6KA4 and CLDN7 were reported to be UV-responsive28–31. Notably, MAP2K3, a 203 

protein responsible for activating the p38-MAPK signaling and one of the most 204 

significant pathways involved in the response against UV-induced stress in human cells, 205 

had the highest score32.  206 

Considering that mitochondrial translocation and nucleocytoplasmic translocations were 207 

some of the most frequent types of events predicted by the algorithm and are 208 

unequivocally relevant to UVA’s biological action, we explored these processes in more 209 

depth, validating some translocation targets involved in the response of keratinocytes to 210 

DNA damage and UVA-induced metabolic stress. 211 

Spatial remodeling provides clues about UVA’s oxidative potential 212 

We first focused on curating the translocation labels predicted by the algorithm using 213 

GO classifications and a review of the literature to validate specific UVA-triggered 214 

translocations between the cytoplasm and nucleus. The algorithm identified a total of 215 

100 proteins that translocate between the cytosol and the nucleus, considering a 0.5% 216 

false-positive rate. The localization prediction of each protein in the control cells was 217 
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compared to the respective GO classification to achieve a more stringent list of 218 

translocation targets. We only kept proteins with concordant classifications for further 219 

analysis, which resulted in 67 out of the initial 100 proteins. Then, a literature review 220 

was performed to identify targets for which nucleocytoplasmic translocations had been 221 

previously identified, or at least for which dual nuclear-cytoplasmic localization and 222 

functions were previously reported. A total of 25 proteins fulfilled both conditions. 223 

These targets and their respective translocation scores are provided in the 224 

Supplementary Information. 225 

The 25 protein targets play diverse biological roles. While some are transcription 226 

factors, others participate in nuclear cytoskeleton remodeling, signaling pathways and 227 

RNA processing. Nucleocytoplasmic translocations induced by DNA damage have been 228 

previously reported for UBL4A33, CETN234,35, FAF136, CTBP137, RELA38, NFKB138, 229 

CIAO2B39 and CSNK240. Moreover, three proteins (CIAO2B39, CETN234 and 230 

CSNK241) have been shown to interact with nucleotide-excision repair (NER) 231 

components, which are involved in recognizing and repairing cyclobutane pyrimidine 232 

dimers (CPD) generated as a consequence of UVR exposure. 233 

The β subunit of CSNK2 (CSNK2B), one of the strongest hits, was first implicated in 234 

the DNA damage response through its interaction with the tumor suppressor p5340. 235 

CSNK2 is also involved in the phosphorylation of two NER components (XPB, 236 

CETN2)42,43. Additionally, it has been demonstrated that XPC- and XPD-deficient cells 237 

expressing higher levels of CSNK2B are more resistant to UV-induced death44, 238 

especially since increases in CSNK2B lead to dramatic increases in CSNK2 activity45. 239 

In our experiment, CSNK2B shifts from a central position in the cytosolic cluster in 240 

controls to the interface between the cytosolic and nuclear clusters in irradiated samples 241 

(Fig. 4A). This behavior is consistent with a significant difference between groups 242 

observed for this protein in the profile plot, especially in the last fraction that is enriched 243 

with cytosolic proteins (Fig. 4B). Redistribution of CSNK2B from the cytoplasm to the 244 

nucleus upon irradiation was corroborated by immunofluorescence, indicating that 245 

UVA exposure leads to the translocation of cytosolic CSNK2B to the nucleus (Fig. 4C). 246 

To confirm that our irradiation conditions generated significant levels of DNA damage, 247 

we performed a modified version of the comet assay to detect different types of DNA 248 

lesions in cells following exposure to 6 J/cm² of UVA light (Fig. 4D). The comet assay 249 

was modified through the addition of formamidopyrimidine-DNA glycosylase (FPG), 250 
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endonuclease V (endoV) and endonuclease III (endoIII) to detect oxidized pyrimidines, 251 

CPD and oxidized purines, respectively. The predominant types of lesions generated 252 

immediately after exposure to UVA are CPD and oxidized purines, in agreement with 253 

what has been previously described for this radiation dose46. However, while oxidized 254 

purines seem to be efficiently removed from the DNA one hour after exposure to the 255 

radiation, CPD reaches a plateau and persists in HaCaT cells for at least four hours after 256 

irradiation. The DNA lesion profile identified here and its repair kinetics are consistent 257 

with NER activation, consequently triggering translocation events associated with this 258 

pathway. Even though UVA generates lower levels of CPD than UVB, CPD generation 259 

can still promote CSNK2B recruitment to the nucleus. 260 

The algorithm also predicted the translocation of two NF-κB subunits (RELA and 261 

NFKB1). The RELA subunit contains the transactivation domain, responsible for the 262 

transcription factor function38, and we chose this subunit for further validation by 263 

confocal microscopy. In our translocation experiment, RELA of non-irradiated samples 264 

presents a typical cytosolic fractionation pattern, with peaks in the 6th and last fractions. 265 

However, upon irradiation, we observe a decrease in abundance in the 6th fraction and 266 

an increase in the 3rd fraction (Fig. 5A). Changes between conditions can also be 267 

observed in the t-SNE plots (Fig. 5B). Importantly, RELA is in the center of the 268 

cytoplasmic cluster in the control samples but shifts to the interface between the 269 

cytoplasmic and nuclear clusters following irradiation. To investigate NF-κB dynamics 270 

further, we immunolabeled the RELA subunit and performed immunofluorescence (IF) 271 

microscopy. Immunolabeling of the RELA subunit revealed a reduction in the overall 272 

levels of this transcription factor (Fig. 5C), which seems to be consistent with the 273 

attenuated abundance observed in the 6th fraction of irradiated cells. In control cells, 274 

RELA is present throughout the entire cytoplasm. However, in irradiated cells, RELA 275 

labeling weakens, assuming punctate structures and possibly reflecting the cellular 276 

compartmentalization of protein degradation. Previous studies addressing functional 277 

aspects of NF-κB in HaCaT cells exposed to UVA light revealed contradictory roles for 278 

this protein in this type of stress response47–49. It was reported that UVA doses lower 279 

than 1 J/cm² induce NF-κB activation, while higher doses lead to decreased NF-κB 280 

levels50. Moreover, in agreement with our results, UVA light has been previously 281 

described to induce NF-κB degradation in human keratinocytes47. In this context, 282 

deuterated water enhanced UVA-induced NF-κB degradation and low concentrations of 283 
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sodium azide abolished this effect. Importantly, since deuterated water prolongs the 284 

half-life of singlet oxygen and sodium azide is a singlet oxygen quencher, UVA-285 

induced NF-κB degradation has been mainly attributed to singlet oxygen generation.  286 

UVA light promotes metabolic stress through mitochondrial fragmentation 287 

Since mitochondrial proteins have been detected as the significant pool of translocating 288 

targets, we investigated and validated the role of the spatial reorganization of 289 

mitochondrial components in the response against UVA-induced stress. Interestingly, 290 

most of the mitochondrial proteins classified as translocating are structural and uniquely 291 

localized to the mitochondria. These proteins are not usually involved in translocations 292 

across different subcellular niches. Examples include mitoribosomal subunits and 293 

electron transport chain components (Fig. 6A). We hypothesized that alterations in the 294 

fractionation profiling of these proteins between conditions might represent alterations 295 

in mitochondrial morphology and not necessarily translocations. Thus, we 296 

immunolabeled a respiratory chain component (COX4I1) and performed an IF 297 

experiment. As shown in Fig. 6B, in controls, COX4I1 displays the typical tubular 298 

appearance of the mitochondrial network and forms punctate structures in irradiated 299 

samples, a sign of UVA-induced mitochondrial fragmentation.  300 

Besides detecting changes in the fractionation profile of structural mitochondrial 301 

proteins, our algorithm also detected the movement of some proteins that have been 302 

previously described as migrating from the mitochondria to the nucleus. Thus, to 303 

determine if changes in the fractionation profiling of non-structural mitochondrial 304 

proteins predicted as translocations also reflect mitochondria fragmentation, we 305 

validated the spatial redistribution of fumarase (FH) and ornithine aminotransferase 306 

(OAT) in irradiated cells. Notably, both FH and OAT have been reported to translocate 307 

from the mitochondria to the nucleus51,52. We also monitored PDHA1 in the same 308 

experiment to check for colocalization of structural and non-structural mitochondrial 309 

proteins. The results showed that both FH and OAT display similar migration patterns 310 

in the t-SNE, shifting from the interface between the mitochondrial and nuclear clusters 311 

in control cells to the interface between the mitochondrial and cytosolic clusters in 312 

treated cells (Fig. 7A-B). Thus, both proteins display decreasing levels in the first 313 

fractions (1-3) of irradiated samples compared to control samples, accompanied by 314 

increased levels in the last fraction (Fig. 7C-D). Immunofluorescence images confirmed 315 

the same mitochondrial fragmentation phenomenon observed for labeling structural 316 
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mitochondrial proteins (COX4I1 and PDHA1), reinforcing our previous results (Fig. 317 

7E-F).  318 

Since cells displaying fragmented mitochondria usually have a reduced respiratory 319 

capacity53, we measured oxygen consumption rates in HaCaT cells exposed to UVA 320 

light using a Seahorse Analyzer XF24 to validate the functional impact of mitochondrial 321 

fragmentation. Accordingly, basal and maximal mitochondrial respiration are decreased 322 

in irradiated cells compared to control samples, supporting the notion of electron 323 

transport chain dysfunction (Fig. 8A). Changes in mitochondrial respiration were 324 

accompanied by a decrease in the cell’s reductive power up to 24 hours after irradiation, 325 

without losses in viability, as inferred by the MTT results and the trypan blue exclusion 326 

assay (Fig. 2S). The reduction in the cell’s reductive power occurs in a radiation dose-327 

dependent manner. Importantly, we did not observe leakage of cytochrome c from the 328 

mitochondria to the cytosol or BAX translocation, as would be expected of cells 329 

entering apoptosis (Fig. 2S). We also searched for changes in the fractionation profiles 330 

of MFN1 and MFN2, two key regulators of mitochondrial dynamics, to further confirm 331 

mitochondrial fragmentation. Indeed, as shown in Fig. 8B, both proteins displayed 332 

differential fractionation profiles between biological conditions. 333 

Since UVA light is known to cause oxidative and genotoxic stresses1 and help explain 334 

the changes in mitochondrial dynamics, we tested if a low dose of UVA could promote 335 

alterations in the levels of stress-responsive proteins one and a half hours after radiation 336 

exposure. After this period, 138 proteins were significantly modulated between groups 337 

(Fig. 8C). Focusing on stress-responsive proteins (Fig. 8C), we observed the up-338 

regulation of DNA damage response components (RAD23B and XRCC6), a few DNA 339 

replication licensing factors, antioxidant enzymes (GSTP1 and PRDX1) and heat shock 340 

proteins. Additionally, a few subunits of the electron transport chain complexes and a 341 

few redox-responsive proteins (CAT and PRDX3) were down-regulated.  342 

By analyzing the fold change of proteins between treatments in a compartment-specific 343 

fashion (Fig. 8D), we found that the fold change of mitochondrial proteins is 344 

significantly lower when compared to the whole proteome (p = 1.47 × 10-17, Wilcox 345 

test, FDR correction), suggesting that decreasing levels of electron transport chain 346 

components recapitulate mitochondrial proteome changes as a whole. Importantly, 347 

mitochondrial fragmentation usually facilitates mitophagy of damaged mitochondria54. 348 
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These results show that exposing skin cells to UVA light impacts mitochondrial 349 

dynamics, leading to fragmentation, respiratory dysfunction, and the upregulation of 350 

stress response proteins.  351 

Discussion  352 

The present study is the first to provide a map of subcellular protein reorganization 353 

induced by the UVA component of sunlight in a skin cell type. High sensitivity MS-354 

based proteomics coupled to machine learning algorithms quantified and assigned 355 

subcellular localization and redistribution patterns for over 3000 proteins in human 356 

keratinocytes exposed to UVA light. Our unbiased approach revealed that a single low 357 

dose of UVA light could affect the proteomic architecture of skin cells, provoking the 358 

reorganization of subcellular structures due to genotoxic and metabolic stresses. 359 

In this work, about 20% of the identified and quantified proteins (over 600 proteins 360 

from a total of 3200) relocalized in response to UVA exposure. Our results showed that 361 

redistribution of proteins across subcellular niches encompass different phenomena, 362 

such as changes in organelle dynamics, translocation and targeting for degradation. 363 

After considering all redistribution events, important modulators of cellular metabolism, 364 

mitochondrial function, protein and vesicle trafficking, signaling pathways and DNA 365 

damage recognition and repair were identified. 366 

Previously it was reported that DNA damage response rewires metabolic circuits, fine-367 

tuning protein synthesis, trafficking and secretion55. However, it is not clear how 368 

genotoxic components of the sunlight affect protein localization or organelle 369 

architecture and interactions. We showed that UVA exposure caused nucleocytoplasmic 370 

translocations induced by DNA damage. For instance, our algorithm detected with high 371 

confidence the nucleocytoplasmic translocation of CSNK2B in UVA-irradiated cells, a 372 

finding further confirmed by confocal microscopy. CSNK2 has many biological targets, 373 

maintaining cellular viability and the DNA damage response41,56,57. Its role in the 374 

cellular response against UVR has been described in terms of its interaction with p53 375 

and NER components41. Indeed, using the Comet assay, we observed that UVA 376 

radiation leads to simultaneous CPD formation and CSNK2B translocation. We also 377 

monitored DNA damage over time and observed that CPDs are repaired over 24 hours, 378 

indicating NER activation. Collectively, these results demonstrate that UVA triggers a 379 
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classical DNA damage signaling pathway, even though it generates lower levels of CPD 380 

than the more energetic UVB light.  381 

Besides having oxidative effects on the DNA, we also provide evidence that UVA can 382 

target NF-κB’s catalytic subunit for degradation, which likely occurs in a singlet 383 

oxygen-dependent manner, as previously proposed47. Since NF-κB is ubiquitously 384 

distributed across the cytoplasm, the extensive degradation of this protein indicates that 385 

the oxidative potential of UVA may bear consequences for the entire surface of cells. 386 

Importantly, this evidence also reinforces the differential immunomodulatory effects of 387 

UVA and UVB on the skin26 since UVB has been extensively reported to trigger NF-388 

κB’s nuclear translocation and subsequent activation of this transcription factor58. In 389 

contrast, UVA seems to trigger the opposite effect. 390 

The most striking result of our systematic proteomic profiling was identifying 391 

mitochondria as the main target of UVA-induced stress. We showed that UVA induces 392 

mitochondrial fragmentation, up-regulates redox-responsive proteins and reduces the 393 

respiratory rate, leading to changes in the cells’ overall energetic status. These results 394 

expand on previous characterizations of mitochondrial dysfunction in response to UV 395 

radiation59,60 and show that alterations occur even with acute low-dose exposures to 396 

UVA, the least energetic component of the UV spectrum. It has been suggested that 397 

UVA-induced deletions in mtDNA underlie the long-term effects of UVA during 398 

photoaging61. However, our results suggest that UVA also has short-term effects on the 399 

mitochondria, acting as a potent stressor immediately after exposure. Some endogenous 400 

metabolites have been proposed to play a role in UVA’s photosensitization in skin cells, 401 

such as flavin-derivatives, NADH, NADPH, FADH, urocanic acid, porphyrins and 402 

some sterols5. Mitochondria, in particular, contain high concentrations of putative UVA 403 

chromophores, such as flavin-derivatives, NADH, FADH and NADPH, which could 404 

mediate the damage to this organelle.  405 

Several studies showed that high doses of UVB irradiation (e.g., > 100 mJ/cm²) trigger 406 

mitochondrial fragmentation in keratinocytes60,62,63. On the other hand, UVC (60 407 

mJ/cm²) leads to mitochondrial hyperfusion instead of fragmentation in mouse 408 

fibroblasts, suggesting that UVR-induced modulations of mitochondrial dynamics are 409 

complex and context-dependent64. Our results show that even low doses of less 410 

energetic UVA light induce mitochondrial fragmentation.  411 
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UVB-induced mitochondrial fragmentation is dependent on DRP1 mitochondrial 412 

translocation, with partial roles for MFN1 and OPA160, frequently followed by 413 

apoptosis62,63. In our experiments with UVA irradiation, we did not detect changes in 414 

molecular markers of apoptosis, such as cytochrome c leakage from mitochondria, BAX 415 

translocation, or attenuated cell viability. Moreover, we did not observe changes in the 416 

abundance or subcellular reorganization of DRP1 or OPA1. However, we did observe 417 

that MFN1 and MFN2 displayed a differential fractionation profile between conditions, 418 

suggesting that UVA may affect their function differently than other UV wavelength 419 

ranges. Importantly, MFN1 and MFN2 modulations have been reported to occur in 420 

response to oxidative stress 65. For example, fibroblasts exposed to exogenous H2O2 up-421 

regulate the ubiquitination of MFN1 and MFN2, triggering mitochondrial 422 

fragmentation66. 423 

Our study has several strengths. First, machine learning predictions involving DNA 424 

damage response, inflammation and cellular metabolism were validated using confocal 425 

microscopy and functional assays. Second, our dataset opens up possibilities for further 426 

investigation of UVA-triggered translocation events in less studied subcellular niches. 427 

Furthermore, ER and Golgi vesiculation occur in UV-exposed cells55, and our data 428 

suggest that proteins from these compartments are redistributed upon stress. 429 

Our work also has some limitations. Machine learning algorithms applied to spatial 430 

proteomics are not developed to differentiate between protein translocation events, 431 

altered organellar dynamics, or altered protein synthesis and degradation rates within 432 

specific subcellular niches. However, our biochemical validations unequivocally 433 

differentiated among these events. 434 

In summary, our dataset provides valuable information about UVA-triggered 435 

translocation events in subcellular niches. Our experimental strategy employing cellular 436 

fractionation, MS-based proteomics and machine learning algorithms revealed UVA 437 

redistributed approximately 20% of the skin cell proteome, highlighted by the up-438 

regulation of redox-responsive proteins, DNA damage and mitochondrial 439 

fragmentation.  440 
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Materials and Methods  441 

Cell Culture 442 

HaCaT cell line, a spontaneously immortalized human keratinocyte, was cultured in 5% 443 

CO2 at 37°C and grown in Dulbecco's Modified Eagle's Medium (DMEM) 444 

supplemented with 10% fetal bovine serum, 100 U/mL penicillin and 100 ug/mL 445 

streptomycin. Professor Mauricio S. Baptista (Institute of Chemistry, University of São 446 

Paulo) provided the cell line, and it was tested for mycoplasma contamination.  447 

Irradiation conditions 448 

An Oriel SOL-UV 2 solar simulator (Newport, USA) equipped with a Xenon arc lamp 449 

was used for cell irradiation. The simulator was equipped with an IR bandpass blocking 450 

filter plus a UVB-blocking filter (emission spectra of the simulator radiation with and 451 

without the UVB-blocking filter are displayed in Fig. 2S). Before irradiation, the 452 

simulator's output was measured with a dosimeter from International Light Inc 453 

(Newburyport, MA, USA), model IL1700, with a SED033 detector. Using the IR and 454 

UVB blocking filters, the output measured in the area where the cell plates would be 455 

positioned, at a 10 cm distance from the light source, yielded a mean of 5.0 mW/cm², 456 

with a maximum variation of 10% between biological replicates. Each dish was 457 

irradiated for 26 minutes, corresponding to a total dose of 6 J/cm², which humans can be 458 

exposed to during routine daily living without affecting cellular viability (Fig. 2S). 459 

Cells were washed three times with phosphate-buffered saline (PBS) and kept in PBS 460 

during irradiation (26 minutes). Mock-treated controls were kept in PBS and maintained 461 

in the dark at room temperature for the same amount of time. 462 

Subcellular proteome sample preparation 463 

For the spatial proteomics assay, two million cells were plated in 100 mm dishes 48 464 

hours before the experiments (until cells reached 80-90% confluency). An entire dish 465 

containing around eight million cells yielded at least 10 µg of protein in the fraction 466 

with the lowest yield, which was enough for mass spectrometry analysis.  467 

Cells were trypsinized and harvested by centrifugation 30 minutes after irradiation. The 468 

cell pellet was washed twice in PBS and incubated for 10 minutes in 1 mL of hypotonic 469 

lysis buffer (25�mM Tris-HCl, pH 7.5, 50�mM Sucrose, 0.5�mM MgCl2, 0.2�mM 470 

EGTA) on ice. Cells were then transferred to a Potter-Elvehjem homogenizer and 471 
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homogenized with 30 strokes on ice (until at least 70% of cells were stained with trypan 472 

blue). After homogenization, 110 µL of hypertonic sucrose buffer (2.5 M sucrose, 25 473 

mM Tris pH 7.5, 0.5 mM MgCl2, 0.2 mM EGTA) was used to restore osmolarity. The 474 

cell lysate was transferred to 2 mL tubes and centrifuged twice at 200 × g for 5 minutes 475 

to remove intact cells. The lysate was then subjected to a series of differential 476 

centrifugations: 1000 × g for 10 minutes, 3000 × g for 10 minutes, 5000 × g for 10 477 

minutes, 9000 × g for 15 minutes, 12000 × g for 15 minutes, 15000 × g for 15 minutes, 478 

30000 × g for 20 minutes and 80000 × g  for 40 minutes. In total, each of the five 479 

biological replicates of each condition yielded nine fractions. The supernatant was 480 

collected because it contains the remaining cytosolic proteins. Afterward, fractions 481 

enriched with different organelles were lysed in 8 M urea containing 0.1% 482 

deoxycholate. The total protein concentrations were quantified using a BCA assay kit 483 

(Thermo Scientific), and 10 µg of protein per fraction were digested and analyzed by 484 

mass spectrometry.  485 

Protein digestion 486 

Aliquots corresponding to 10 µg of protein per sample were reduced with 5 mM 487 

dithiothreitol for one hour, alkylated with 15 mM iodoacetamide for 30 minutes, diluted 488 

ten-fold with 100 mM ammonium bicarbonate, and digested by the addition of two 489 

aliquots of trypsin (1:40 and 1:50, respectively, with an interval of four hours between 490 

the additions). The samples were digested overnight at 30°C with agitation (400 rpm). 491 

Digestion was stopped by adding 4% trifluoracetic acid (TFA), and then the samples 492 

were dried. Samples were desalted using the StageTip protocol 67. Peptides were 493 

washed ten times with 0.1% TFA in the StageTips and eluted with 50% acetonitrile and 494 

0.1% TFA. 495 

LC-MS/MS measurements 496 

Each sample was injected in an Orbitrap Fusion Lumos mass spectrometer (Thermo 497 

Fisher Scientific, Bremen, Germany) coupled to a Nano EASY-nLC 1200 (Thermo 498 

Fisher Scientific, Bremen, Germany). Peptides were injected into a trap column 499 

(nanoViper C18, 3 μm, 75 μm × 2 cm, Thermo Scientific) with 12 µL of solvent A 500 

(0.1% formic acid) at 980 bar. After this period, the trapped peptides were eluted onto a 501 

C18 column (nanoViper C18, 2 μm, 75 μm × 15 cm, Thermo Scientific) at a flow rate 502 

of 300 nL/min and subsequently separated with a 5-28% acetonitrile gradient with 0.1% 503 
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formic acid for 80 minutes, followed by a 28-40% acetonitrile gradient with 0.1% 504 

formic acid for 10 minutes. 505 

The eluted peptides were detected in the data-dependent acquisition mode under 506 

positive electrospray ionization conditions. A full scan (m/z 400-1600) was acquired at a 507 

60000 resolution, followed by HCD fragmentation of the most intense ions, considering 508 

an intensity threshold of 5 × 104. Ions were filtered for fragmentation by the quadrupole 509 

with a transmission window of 1.2 m/z. HCD fragmentation was performed with a 510 

normalized collision energy of 30, and the Orbitrap detector analyzed the fragments 511 

with a 30000 resolution. The number of MS2 events between full scans was determined 512 

by a cycle time of 3 seconds. A total of 5 × 105 and 5 × 104 ions were injected in the 513 

Orbitrap with accumulation times of 50 and 54 seconds for the full scan and MS2 514 

acquisition, respectively. Monocharged ions or ions with undetermined charges were 515 

not selected for fragmentation. 516 

Comet assay 517 

A total of 500,000 cells were plated in 6-well plates 24 hours before the experiment (n = 518 

3). After irradiation, cells were trypsinized and collected by centrifugation. The 519 

supernatant was discarded, and cell pellets were mixed with 100 µL of PBS. 10 µL of 520 

cell suspension was added to 90 µL of 0.5% low melting point agarose. Subsequently, 521 

75 µL of this cell suspension was pipetted onto slides pre-coated with 1.5% normal 522 

melting point agarose. Slides were covered with coverslips and kept at 4°C for 30 523 

minutes to allow the agarose to solidify. Next, the coverslips were removed, and the 524 

slides were kept in a tank containing lysis buffer (2.5 M NaCl, 100 mM EDTA, 10 mM 525 

Tris, 1% Triton X-100, and 10% DMSO, pH 10) overnight at 4°C in the dark. 526 

After lysis, slides were washed with cold PBS three times in the dark and immersed 527 

three times in cold reaction buffer (40 mM HEPES, 0.1 M KCl, 0.5 mM EDTA, 0.2 528 

mg/mL BSA, pH 8) for 5 minutes each time. After that, the reaction buffer or reaction 529 

buffer containing T4 endonuclease V (0.1 U/mL), FPG (0.2 U/mL) or endonuclease III 530 

(10 U/mL) enzymes were pipetted onto each slide. Coverslips were placed over the 531 

slides, and they were incubated for 30 minutes at 37°C in the dark. The slides were then 532 

transferred to cold electrophoresis buffer (10 M NaOH, 200 mM EDTA, pH 13 in 533 

water) and incubated for 20 minutes. Then, the slides were submitted to electrophoresis 534 

for 20 minutes at 25 V, 300 mA. After electrophoresis, the slides were immersed in 535 
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neutralizing solution (0.4 Tris, pH 7.5) three times for 5 minutes each time and fixed in 536 

methanol for 10 minutes. After washing, all the slides were air-dried at room 537 

temperature. The DNA was stained with 20 µL of a solution containing 2.5 ug/mL of 538 

propidium iodide for 10 minutes. Fifty randomly selected comets per sample were 539 

analyzed on a fluorescence microscope (Olympus BX51) using the Komet 6 software. 540 

Two technical and four biological replicates were analyzed per condition. 541 

Immunofluorescence  542 

Cells were seeded on 8-well Lab-Tek® II Chambered Coverglass plates (Thermo 543 

Scientific, # 155409) under standard cell culture conditions. Samples were fixed with 544 

ice-cold 4% paraformaldehyde in PBS without Ca2+ and Mg2+. After removing the PFA, 545 

the cells were incubated for 20 minutes at room temperature with freshly prepared 546 

permeabilization buffer (0.1 % Triton X-100, PBS, pH 7.4). After that, cells were 547 

washed in PBS three times for 5 minutes each time.  548 

For cell staining, samples were first rinsed for one hour with blocking buffer (3% fetal 549 

bovine serum, PBS, pH 7.4) at room temperature. Then, primary antibodies (OAT, 550 

Invitrogen #PA5-66715, 1:500; Fumarase, Invitrogen #PA5-82899, 1:500; Casein 551 

Kinase 2 beta, Abcam #ab151784, 1:500; PDHA1 [9H9AF5], Abcam #ab110330, 552 

1:200, and COX4I1 Abcam #ab33985) were diluted (as indicated above) in blocking 553 

buffer and incubated overnight at 4°C. Next, the chambered coverglass plates were 554 

rinsed three times with PBS and cells were labeled with fluorescently conjugated 555 

secondary antibody (anti-Rabbit Alexa Fluor 488, Invitrogen #A-11008, 1:500; anti-556 

Mouse Alexa Fluor 647, Abcam # ab150119, 1:500) in blocking buffer for one hour at 557 

room temperature. Afterward, unbound secondary antibodies were removed by washing 558 

with PBS three times for 5 minutes each at room temperature. Finally, nuclei were 559 

labeled with 1 μg/mL Hoechst 33342 in PBS (Invitrogen #H1399). Imaging was 560 

performed in PBS. A Zeiss LSM 710 laser scanning confocal microscope was used, and 561 

cells were imaged using x63 oil immersion objective (Plan Apochromat NA 1.40). 562 

Respirometry 563 

One day before the experiment, on four different days, 60,000 cells were plated on 564 

XF24 cell plates (Agilent) to measure cell respiration. After irradiation, PBS was 565 

replaced by DMEM without sodium bicarbonate, and cells were incubated for 1 hour at 566 
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37°C and atmospheric pressure of CO2. Oxygen consumption rate (OCR) was measured 567 

in a Seahorse XF24 Analyzer (Agilent), before and after subsequent additions of 1 µM 568 

oligomycin, 1 µM CCCP and a mix of 1 µM antimycin and 1 µM rotenone. Each 569 

compound was added after three cycles of measurements of 3 minutes each. The 570 

concentration of CCCP was determined through the previous titration. At the end of the 571 

experiments, each well was washed once with PBS and proteins were resuspended in 572 

100 µM ammonium bicarbonate, containing 8 M urea and 1% sodium deoxycholate. 573 

After homogenization, protein concentration was determined by using a BCA assay kit. 574 

The OCR values were normalized by the amount of total protein in each well.  575 

Statistical Analysis 576 

Descriptive data analysis 577 

Raw files were processed using MaxQuant68. Each fraction was considered a different 578 

sample in the experimental design annotation file required for the MaxQuant analysis. A 579 

matrix of relative quantification data (LFQ)69 for proteins in each fraction was obtained 580 

and used for subsequent analysis. Each protein was normalized by the total sum of the 581 

LFQs for a given replicate/cell map, yielding a value between 0 and 1. Proteins that 582 

were not quantified in at least 30 of the 90 samples were filtered out to remove 583 

uninformative fractionation profiles with missing values generated by stochastic 584 

fragmentation in the shotgun proteomics approach.  585 

Dimensionality reduction was achieved using the t-distributed stochastic neighbor 586 

embedding technique (t-SNE)70. The fractionation data was plotted with different 587 

perplexity parameters (perplexity = 30 yielded the best cluster separation). The plots 588 

were overlaid with categorical subcellular classifications from the Cell Atlas initiative71, 589 

Uniprot72 and Gene Ontology73
 databases, providing information on the clusterization of 590 

different subcellular compartments.  591 

Organellar markers were selected based on a previous subcellular proteomics study22 592 

and the curation of proteins classified as unimodally distributed by the Cell Atlas, 593 

Uniprot and Gene Ontology databases. Markers had to be reproducible across all 594 

replicates, and profile plots were manually curated to remove proteins with missing 595 

values. Organellar markers from four different compartments (cytosol, mitochondria, 596 

nucleus, and secretory organelles) were assigned with different colors to visualize 597 
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clusterization in the t-SNE plots. The secretory compartment comprises proteins 598 

initially assigned to peroxisomes, endoplasmic reticulum (ER), plasma membrane, 599 

Golgi apparatus and lysosomes. These organelles were grouped under the term 600 

“secretory” because they share similar fractionation profiles that were not well 601 

distinguished by the machine learning algorithms.  602 

Localization prediction 603 

As described previously27,74, a supervised machine learning approach was used for the 604 

subcellular localization prediction. We used a model of an averaged neural networks 605 

algorithm27 to produce the paper's results, but a support vector machine was also tested 606 

and yielded similar results. The organellar markers were used to train the model for 607 

subcellular localization prediction. Organellar markers were divided into a training and 608 

validation set (80/20% proportion for each set) with a 5-fold cross-validation through 609 

100 iterations of the algorithm. We used a grid search to achieve hyperparameter tuning. 610 

The accuracy of the classifier was estimated through the F1 score74
, and the best 611 

hyperparameters were chosen according to the accuracy of the classifier. The best 612 

network size ranged from 4 to 6, and the best decay was 10-4. 613 

Translocation prediction 614 

The TRANSPIRE pipeline was used for the translocation prediction, as previously 25. 615 

Curated organellar markers were utilized to generate synthetic translocations, which are 616 

then used to train the learning algorithm in distinguishing translocation classes and 617 

consequently translocating from non-translocating proteins. In brief, each organellar 618 

marker in the control samples is concatenated with every other organellar marker of the 619 

treated samples, producing synthetic translocations and non-translocations (when 620 

markers of the same compartment are concatenated). For example, a synthetic 621 

translocation that simulates the migration of a protein from the nucleus to the cytosol 622 

would have a fractionation profile that is characterized by the combination of a nuclear 623 

marker profile in all control samples (45 fractions) with the cytosolic marker profile in 624 

the treated samples (also 45 fractions, yielding a total of 90 “fractions” per synthetic 625 

translocation).  626 

Synthetic translocations were used to train a Stochastic Variational Gaussian Process 627 

Classifier (SVGPC) implemented in TRANSPIRE through the GPFlow package (built 628 

upon the TensorFlow platform in Python). This model is composed of a kernel function, 629 
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a likelihood function, n latent variables (which account for the number of translocation 630 

classes), a training set, and a subset of the training set used as inducing points25. The 631 

model implemented in TRANSPIRE uses softmax as a likelihood function to improve 632 

score calibration. 633 

Hyperparameter tuning involved choosing the kernel type (squared exponential, rational 634 

quadratic, exponential Matern32 and Matern52, as implemented by TRANSPIRE 635 

through GPFlow) and the number of inducing points (ranging from 1 to 500). The 636 

synthetic translocation data were divided into training, validation, and test sets in a 637 

50/20/20% proportion, respectively, during training. The training data was further split 638 

into five balanced folds during hyperparameter tuning, allowing for a 5-fold cross-639 

validation. A class imbalance was prevented by allowing the most frequent 640 

translocation classes to have, at most, three times more proteins than the least frequent. 641 

The best hyperparameters selected through the grid search were the squared exponential 642 

kernel and 30 inducing points (optimization plots are shown in the Supporting 643 

Information). The results were evaluated by maximizing the evidence lower bound 644 

(ELBO) using the Adam optimizer. Afterward, the resulting model was used to predict 645 

translocations in the actual dataset and performance was evaluated based on the held-out 646 

test partition of the synthetic translocation data. 647 

The output of the TRANSPIRE pipeline entails the classification of a translocation class 648 

(e.g., “Nucleus to Cytosol”) for each protein plus a classifier score. The classifier score 649 

ranges from 0 to 1 for each translocation class, and the sum of the scores for all classes 650 

for each protein should be equal to 1. Class prediction is based on the highest classifier 651 

score for a given translocation class. This score is referred to as “predicted scores” in 652 

the spreadsheets in the Supporting Information. Additionally, the TRANSPIRE pipeline 653 

provides a translocation score, defined as the sum of the predicted scores for all true 654 

translocation classes. This score accounts for situations in which high classifier scores 655 

are split among at least two translocation classes. 656 

TRANSPIRE also allows for the computation of false-positive rates (FPR), based on the 657 

model’s performance, setting thresholds for the translocation scores to minimize the 658 

likelihood of false positives. Herein, we adopted a 0.5% FPR to generate a more 659 

stringent list of translocation targets.  660 

  661 
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