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Abstract 

The causal variants and genes underlying thousands of cardiac GWAS signals have yet to be identified. To address this 

issue, we leveraged spatiotemporal information on 966 RNA-seq cardiac samples and performed an expression quantitative 

trait locus (eQTL) analysis detecting ~26,000 eQTL signals associated with more than 11,000 eGenes and 7,000 eIsoforms. 

Approximately 2,500 eQTLs were associated with specific cardiac stages, organs, tissues and/or cell types. Colocalization 

and fine mapping of eQTL and GWAS signals of five cardiac traits in the UK BioBank identified variants with high posterior 

probabilities for being causal in 210 GWAS loci. Over 50 of these loci represent novel functionally annotated cardiac GWAS 

signals. Our study provides a comprehensive resource mapping regulatory variants that function in spatiotemporal context-

specific manners to regulate cardiac gene expression, which can be used to functionally annotate genomic loci associated 

with cardiac traits and disease. 
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of loci associated with cardiac traits and diseases 1, 

but for the vast majority of these associations the underlying causal variants and genes have not yet been delineated. Many 

approaches have been developed to identify causal variants and genes, including annotating GWAS loci with their closest 

gene 1, prioritizing variants that overlap regulatory elements active in cardiac tissues 2,3, and integrating GWAS variants 

with adult cardiac (expression quantitative trait loci) eQTL signals 4. However, these approaches have been limited due to 

the fact that regulatory elements can regulate the expression of multiple genes over hundreds of kilobases 5,6; in a GWAS 

loci there can be multiple regulatory elements and hundreds of neutral variants in linkage disequilibrium with the causal 

regulatory variant; and regulatory variants frequently work in a spatiotemporal context not captured in previous eQTL 

analyses 7-11. While for some diseases, such as diabetes, efforts have been made to fine map each GWAS locus and find 

potential associations between genetic variation, gene expression and disease at a genome-wide level 12-14, the cardiac field 

still lacks a comprehensive resource for conducting in depth annotations of GWAS loci. Therefore, combining GWAS 

signals for multiple cardiac traits on hundreds of thousands of individuals with intermediate phenotypes, such as gene 

expression in multiple cardiac developmental stages, tissues, and cell types, would provide a powerful approach for fine 

mapping causal regulatory variants and understanding the molecular mechanisms underlying cardiovascular GWAS traits 

and disease. 

Gene expression has long been known to be regulated in a spatiotemporal-specific manner 15-22, indicating that cardiac 

regulatory variants function, and hence affect the expression of a gene and its associated cardiac traits and disease, across a 

range of developmental stages and in different cellular contexts 15-17,23-26. With the development of cell type deconvolution 

techniques 27,28, bulk RNA-seq enables the characterization of cell type-specific gene expression as well as the expression 

of both genes and associated isoforms 24,29,30. Furthermore, the GTEx consortium have generated bulk RNA-seq from 

hundreds of adult cardiac samples from multiple tissue types and whole genome-sequenced the donors 25. Although several 

fetal-associated factors, such as low birth weight, maternal preeclampsia, under- and malnutrition and oxidative stress in 

utero, have been associated with increased risk of developing cardiovascular disease as adults 31,32, large numbers of human 

fetal cardiac specimens are not readily available and functional genetic variation in fetal heart cell types remains largely 

unstudied. To overcome ethical and availability issues associated with the use of fetal samples, iPSCORE has developed 

strategies to employ induced pluripotent stem cells (iPSC) derived cardiovascular precursor cells (iPSC-CVPCs) from 

hundreds of whole-genome sequenced individuals to study early developmental cardiac traits and disease 29,33-35. We and 

others have shown that iPSC-CVPCs display epigenomic and transcriptomic properties similar to that of fetal cardiac cells 

29,36-41 and their differentiation results in both cardiomyocytes and epicardium-derived cells 33. Hence, combining the adult 

GTEx 25 and iPSCORE fetal-like 33 cardiac expression datasets enables the genome-wide mapping of regulatory variant 

functions in a spatial (organ, tissue or cell type) and temporal (fetal-like and adult) specific manner. 

In this study, we performed an expression quantitative trait locus (eQTL) analysis on 966 cardiac bulk RNA-seq samples, 

including adult (atrium, ventricle, aorta and coronary artery) and fetal-like  (iPSC-CVPCs) tissues, and identified ~26,000 

cardiac eQTL signals associated with more than 11,000 eGenes and more than 7,000 eIsoforms. Less than half of the 
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eIsoforms shared the same eQTL signal with their associated gene, indicating that molecular mechanisms underlying the 

associations of genes and their isoforms with cardiac traits and disease are different in many cases. By leveraging 

information about the source of each sample and cellular heterogeneity, we were able to detect more than 2,500 eQTLs that 

function in a spatiotemporal manner. We exploited the cardiac eQTLs to investigate the molecular underpinnings of five 

cardiac traits and diseases from the UK BioBank and found that ~25% of the cardiac GWAS signals that colocalized with 

eQTL signals 42 function in a specific cardiac stage, organ, tissue and/or cell type context. We also observed that three of 

the cardiac traits were enriched for eQTLs that function in specific spatiotemporal contexts, including pulse pressure with 

fetal-like-, arteria- and smooth muscle cell- eQTLs; pulse rate with adult-, heart- and atrial- eQTLs; and atrial fibrillation 

with left ventricle- and cardiac muscle cell- eQTLs. We used the colocalized eQTL and GWAS signal for fine mapping, 

which allowed us to identify a potential causal variant for 210 cardiac GWAS loci. While the causal variant had previously 

been reported or was in high LD with a previously reported GWAS variant associated with the same cardiac trait in most of 

the 210 loci, over 50 GWAS loci detected in this study were novel. Overall, our study serves as a comprehensive resource 

mapping cardiac regulatory variants that function in spatiotemporal context-specific manners to alter gene expression and 

affect cardiac traits, thereby providing potential molecular mechanisms underlying the associations of hundreds of GWAS 

loci with cardiac traits and disease. 
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Results 

To investigate associations between genetic variation and cardiac gene expression we obtained RNA-seq for 180 fetal-like 

iPSC-CVPCs (from 149 iPSC lines from 139 individuals) from the iPSCORE collection 33 and integrated with RNA-seq 

data for 786 adult cardiac tissues, including atrial appendage, left ventricle, aorta and coronary artery from 352 individuals 

included in the GTEx Consortium 43 (Table S1). To map the regulatory effects of genetic variants on these fetal-like and 

adult cardiac tissues, we performed an eQTL on all 966 samples using a linear mixed model (LMM) with stage, organ, 

tissue and cell type as interaction terms. Among 19,586 expressed autosomal genes (TPM ≥ 1 in at least 10% samples), we 

identified at least one eQTL for 11,692 genes (eGenes, 59.7% of tested genes, Figure 1A, Table S2). By regressing out the 

genotype of each lead variant, we observed that, on average, each eGene had 1.54 eQTLs (range: 1-6), in line with what has 

recently been reported by GTEx 43. Specifically, we obtained conditional eQTLs for 4,394 eGenes (37.6% of all eGenes), 

including 1,315 with two conditional eQTLs, 395 with three, 160 with four and 74 with five (Figure 1A). We also examined 

37,032 autosomal isoforms (corresponding to 10,337 genes; at least two isoforms/gene with usage ≥ 10% in at least 10% 

samples) and identified 7,165 with at least one eQTL (eIsoforms, 13.8% of all tested isoforms, corresponding to 3,847 

genes), including 988 with one or more conditional eQTL (Figure 1A). The number of identified eIsoforms is smaller than 

the number of eGenes likely because of decreased power in detecting eQTL associations, caused by a more stringent 

multiple testing correction, as we tested twice as many more isoforms than genes.  

Different mechanisms underlie eQTLs for genes and isoforms 

We investigated the extent to which underlying genetic mechanisms differ between eQTL signals for gene expression and 

isoform usage. We observed that, of the 3,847 genes associated with the 7,165 eIsoforms, 938 were not eGenes 

(corresponding to 1,421 eIsoforms; 19.8%, Figure 1B). To determine if, for the 2,909 eGenes that had at least one eIsoform 

(5,744 eIsoforms) the same genetic variants were associated with both gene expression and isoform use, we performed a 

colocalization analysis 42, a Bayesian approach that provides posterior probabilities of signals for two traits at one locus 

(trait 1 = eIsoform; trait 2 = eGene) for five hypotheses: H0) neither trait is associated; H1) only trait 1 is associated; H2) 

only trait 2 is associated; H3) both traits are associated, but with different underlying causal variants; and H4) both traits 

are associated with the same underlying causal variants. For 3,221 eIsoforms (45.0% of all eIsoforms), the most likely 

hypothesis was 4, indicating that the eIsoform and eGene eQTL signals share the same causal variant (Figure 1B, Table 

S3). For example, B4GALT7 and its isoform (ENST00000029410.10_2) shared a common eQTL signal, with their lead 

variant (rs28473516) having >99% PPA of being causal for both gene expression and isoform use (Figure 1C). One quarter 

of eIsoforms (1,674, 23.4%, corresponding to 1,108 eGenes) had a different signal than their associated eGene. For example, 

the lead variant for RNH1 (rs61876335) was located ~6 kb downstream of the 3’ end of the gene, whereas the lead variant 

for its isoform (rs17584, ENST00000397604.7_2), which is not in LD with rs61876335 (r2 = 0.019 in EUR individuals), 

was a synonymous coding variant (Figure 1D). For the remaining 849 eIsoforms (corresponding to 11.9% of all eIsoforms 

associated with eGenes), the eQTL signals for the eIsoform (hypothesis 1), for the eGene (hypothesis 2) or for both 

(hypothesis 0) were likely underpowered. These results show that only 45% of eIsoforms shared the same signal with their 
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associated eGene, suggesting that different mechanisms underlie the association of genetic variation with gene expression 

and isoform use. 

To test if eQTLs for genes and isoforms have different properties, we investigated their overlap with gene bodies and 

promoters. We observed that gene eQTLs are more likely to occur in intergenic regions than isoform eQTLs (p ≈ 0), whereas 

isoform eQTLs are more likely to overlap gene bodies, including introns (p = 1.9 x 10-87), UTRs (p = 7.8 x 10-88), splice 

donor sites (p = 9.0 x 10-19), splice acceptor sites (p = 1.1 x 10-31) and exons (p = 1.1 x 10-47, Figure 1E), indicating that 

isoform eQTLs are more likely to influence transcript stability than regulatory elements. For example, we found that the 

lead eVariant (rs11589479) for an ADAM15 isoform (ENST00000271836.10_1: the most common isoform of ADAM15) is 

a G>A substitution that likely disrupts the splice site for exon 19 (Figure 1F,G). ADAM15 encodes a disintegrin and 

metalloprotease involved in cell-cell and cell-matrix interactions and has an established role in inflammation and 

angiogenesis 44. Of note, rs11589479 did not colocalize with the primary eQTL signal for ADAM15 expression. We observed 

that ADAM15 exon 19 was expressed at lower levels in samples carrying heterozygous or homozygous alternative alleles 

for rs11589479 and that the overall expression of exon 19 was reduced by ~80% in homozygous alternative samples 

compared with the surrounding exons, whereas in samples carrying homozygous reference alleles for rs11589479 the 

expression of exon 19 was comparable with the surrounding exons. These data show that the molecular mechanisms 

underlying the associations of genes and their isoforms with cardiac traits and disease will be different in many cases, with 

gene expression being likely associated with regulatory variants at promoters and enhancers and isoform usage associated 

with variants that affect post-transcriptional modifications. 

Mapping spatiotemporal cardiovascular eQTLs  

To determine the associations between eQTLs and stage, organ or tissue, we compared the eQTL signal between samples 

at each stage (iPSC-CVPC or adult) or annotated as a specific organ (arteria and heart) or tissue (atrium, ventricle, aorta and 

coronary artery) against all the other samples using an interaction test between genotype and each of these features 45. From 

this analysis, we classified eQTL signals as shared, specific or associated (Figure 2A-E, Figure S1, Figure S2, Table S4). 

For example, for RPS26 we did not observe a significant interaction between the genotype of the lead eQTL signal variant 

(rs1131017) and stage (β = 0.002, p = 0.21, Figure 2C), therefore we annotated this eQTL as “shared” between both stages. 

Conversely, the eQTL signals for DDTL and for ADAM15 transcript ENST00000271836.10_1 showed a significant 

interaction between genotype (rs9612520 and rs11589479, respectively) and stage (β = -0.90, p = 2.0 x 10-42 for DDTL; β 

= -1.09, p = 2.6 x 10-7 for ADAM15, Figure 2D,E), suggesting that their expression is differentially associated with genotype 

between iPSC-CVPC and adult heart. However, these two eQTL signals show substantial differences. The genotype of 

rs9612520 is not associated with DDTL in adult cardiac samples (β = 0, p = 0.90), suggesting that this eQTL signal is iPSC-

CVPC-specific, whereas the eQTL signal for ADAM15 is significant in both iPSC-CVPC (β = -2.32, p = 2.7 x 10-22) and 

adult heart (β = -0.92, p = 8.0 x 10-14), when tested independently. Since the signal in iPSC-CVPC is stronger than adult, 

we labeled this eQTL as “iPSC-CVPC-associated”. We found 814 stage- eQTL signals (combined -specific and -associated) 

for eGenes and 297 for eIsoforms (Bonferroni-corrected p < 0.05). Of these, the majority (620 eGenes and 191 eIsoforms) 
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had adult-specific eQTL signals; 105 eGenes and 76 eIsoforms had associated eQTLs (i.e., in both stages but with 

significantly different effect sizes); and 89 eGenes and 30 eIsoforms had iPSC-CVPC-specific eQTL signals. We also 

observed organ- and tissue-specific or -associated eQTL signals for 1,246 eGenes and 350 for eIsoforms (Figure 2A,B, 

Figure S2). Since the same eQTL signal may be associated with both stage and tissue or organ, in total our interaction eQTL 

approach identified 1,665 eQTL signals for eGenes and 565 for eIsoforms associated with cardiac stage, organ or tissue. 

To assess the associations between eQTLs and cell types, we divided samples according to their deconvoluted cell type 

populations, as calculated using CIBERSORT 27,29, and, for each cell type, tested the interaction between genotype and cell 

type proportions and compared the top and bottom quartiles (Figure 2F-H, Figure S3). We identified cases, such as ESPNL, 

where the interaction was not significant (β = -0.003, p = 1.0, Figure 2F), suggesting that these eQTLs were shared across 

cell types. For eQTL signals with a significant interaction, we compared the top and bottom quartile and annotated the eQTL 

as “cell type-specific” if only the expression levels in the samples included in the top quartile were associated with the 

genotype (for example, SYNE2 and cardiac muscle, Figure 2G), and as “cell type-associated” if both the top and bottom 

quartile were significantly associated, but the signal in the top quartile was stronger (for example, LINC01535, Figure 2H) 

Using this method, we found 1,191 cell type-specific or -associated eQTL signals for eGenes and 364 for eIsoforms (Figure 

2A,B). To validate cell type- eQTLs (combined -specific and -associated), we tested the overlap between cardiac muscle 

eQTLs with regulatory elements in nine cardiac cell types obtained from a single nuclei ATAC-seq (snATAC-seq) study 

on adult cardiac cells 46. We observed that cardiac muscle eQTLs were more likely than expected to overlap regulatory 

elements enriched for being active in atrial and ventricular cardiomyocytes (p = 4.8 x 10-14 and p = 8.4 x 10-9, respectively, 

Figure S4, Table S5) and were less likely to overlap regulatory elements active in other cell types, including macrophages 

(p = 8.1 x 10-16), fibroblasts (p = 6.4 x 10-10) and adipocytes (p = 6.4 x 10-3). Overall, these data show that integrating stage, 

organ, tissue and cell type information with genotype and gene expression, we were able to determine the spatiotemporal 

context of 2,578 eQTL signals (Table S4). 

eQTL signals associated with multiple eGenes are enriched for being spatiotemporal regulated 

Enhancers can regulate the expression of more than one gene 6, therefore we investigated how often eGenes in close 

proximity share the same eQTL signal. Using colocalization, we found that 2,778 eQTL signals were shared between two 

or more eGenes or eIsoforms from different genes (PPA > 0.8, range = 2-9 genes; mean = 2.21 ± 0.62, Table S6). We next 

investigated whether eQTL signals shared between multiple eGenes are enriched for being associated with a cardiac stage-

, organ-, tissue- or cell type. We found a significant positive association between the number of eGenes that share the same 

eQTL signal and the likelihood of their eQTL to be spatiotemporal regulated: adult (combined -specific and -associated) (p 

= 1.6 x 10-17, linear regression, Figure 3A), organ (arteria: p = 9.9 x 10-8; and heart: p = 5.5 x 10-4), tissue (ventricle: p = 

0.023; and aorta: p = 4.8 x 10-3) and/or cell type (cardiac muscle: p = 1.1 x 10-3; smooth muscle: p = 9.5 x 10-4; immune 

cells: p = 3.1 x 10-7; and fibroblasts: p = 3.3 x 10-12). While the absence of significant associations with certain cell types 

(endocardial, endothelial, cardiac neuron and myofibroblasts) or with coronary artery may be explained by the lower 

statistical power for these cell types and tissue, the difference in the enrichment between iPSC-CVPC and adult heart could 
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suggest that fetal- eQTLs are less likely to be associated with multiple eGenes than adult- eQTLs. Furthermore, we observed 

that eGenes that share the same eQTL signals are significantly more likely than expected to be associated with the same 

stage, organ, tissue or cell type (Figure 3B). These results indicate that eVariants that are associated with multiple eGenes 

are enriched for being in regulatory elements that function in a temporal (in the adult, rather than in the fetal-like heart) and 

spatial (organ, tissue or cell type) specific manner. 

Paired genes and antisense RNA enriched for sharing eQTL signals  

Since antisense RNAs are a particular class of non-coding RNAs with regulatory function 47,48, we hypothesized that they 

may share eQTL signals with their associated gene. We observed that 47 pairs of genes and their associated antisense RNA 

shared the same eQTL signal, which was significantly more than expected (odds ratio = 17.1, p = 2.8 x 10-37, Fisher’s exact 

test). For example, rs7589901, located ~350 bp downstream of PAX8-AS1 TSS, was the lead eQTL for both PAX8 and 

PAX8-AS1 (Figure 3C-E). Both these genes have been implicated in embryonic development and cancer 49-51 and multiple 

SNPs in moderate and high LD with rs7589901 have been shown to be associated with susceptibility to cancer, including 

rs10175462 (D’ = 0.995, R2 = 0.875) for cervical cancer and rs4848320 (D’ = 0.853, R2 = 0.345) for leukemia 50,52, 

suggesting that the altered expression of PAX8 and PAX8-AS1 by the genotype of rs7589901 could be associated with tumor 

development. We also observed cases where the signal for an eIsoform colocalized with the expression of its associated 

antisense RNA, such as rs2549009, ENST00000472045.1_2 (IRF1) and IRF1-AS1 (Figure 3F-H). IRF1 is involved in 

cardiac remodeling and its overexpression results is associated with cardiac hypertrophy 53 and rs2549009 is in strong LD 

(D’ = 0.886, R2 = 0.764) with rs7734334, a diastolic blood pressure-associated SNP 54, suggesting a likely role of the gene 

pair IRF1/IRF1-AS1 in driving cardiac remodeling in response to high blood pressure. These results show that genes and 

paired antisense RNAs are enriched for sharing eQTL signals. 

Colocalization identifies potential molecular mechanisms underlying GWAS signals 

To examine the extent to which the causal variants underlying cardiac eQTLs are associated with cardiac traits and disease, 

we performed a colocalization test 42 between eQTL signals for eGenes and eIsoforms and the GWAS signals for pulse rate, 

QRS duration, pulse pressure, atrial fibrillation and myocardial infarction, all obtained from the UK BioBank. For this 

analysis, we focused on 1,444 eGenes and 919 eIsoforms that overlapped or were in close proximity (<500 kb) with genome 

wide-significant GWAS SNPs and found that 206 and 125, respectively (331 overall), colocalized with high posterior 

probability of association (PPA) with at least one GWAS signal (PPA ≥ 0.8, Figure 4, Table S7). Since multiple eGenes 

may share the same eQTL signal and certain eQTL signals may be associated with both gene expression and isoform usage, 

we identified 210 independent GWAS signals associated with eQTLs, including 65 that colocalized with multiple eQTLs 

(range: 1-9) and 145 with a 1:1 correspondence with eQTLs. The vast majority of eQTL-GWAS signal colocalizations were 

associated with pulse pressure (106 signals) and pulse rate (83), whereas QRS interval, atrial fibrillation and myocardial 

infraction were associated with fewer than 10 signals each (five, nine and seven, respectively). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458619doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458619
http://creativecommons.org/licenses/by-nc/4.0/


9 

 

Since associations between genetic variation and complex traits can function in a spatiotemporal manner 24, we investigated 

what fraction of the eQTL signals colocalizing with cardiac GWAS signals were dependent on developmental stage, organ, 

tissue and cell type. Of the 206 eGenes and 125 eIsoforms with a high PPA with at least one GWAS signal, we observed 

that 48 (23.3%) and 21 (16.8%), respectively, had stage, organ, tissue or cell type eQTLs (PPA > 0.8, Figure 5A, Table S7). 

For example, the cardiac muscle-specific eQTL signal for SYNE2 (Figure 2G, Figure 5B-D), a gene that encodes for protein 

included in the nesprin family that links organelles and nuclear lamina to the actin cytoskeleton 55, colocalized with an atrial 

fibrillation GWAS signal (PPh4 = 98.3%). The most likely causal variant (rs2738413) is located in an intron of SYNE2 and 

has been described as associated with atrial fibrillation 2,4, but proposed to affect expression of the estrogen receptor ESR2 

4, which is located downstream of SYNE2, as 17β-estradiol has arrhythmogenic effects on cardiomyocytes 56. Since nesprins 

affect the mechanical properties of the actin cytoskeleton 57,58 and ESR2 is not expressed in cardiac samples, our results 

show that the most likely mechanism underlying the association between rs2738413 and atrial fibrillation involves changes 

in the expression of SYNE2 in cardiac muscle cells. Overall, these data show that about one quarter of the eQTL signals that 

colocalize with cardiac GWAS traits function in a spatiotemporal manner. 

Cardiac traits enriched for eQTLs that function in specific spatiotemporal contexts 

To characterize the associations between each trait and eVariants that function in a specific cardiac stage, organ, tissue and 

cell type, we performed an enrichment analysis 30. Significant associations we observed for three of the five traits: pulse 

pressure, pulse rate and atrial fibrillation (Figure S5, Figure S6, Table S8). Pulse pressure was enriched for iPSC-CVPC-, 

arteria-, aorta-, smooth muscle-, endocardial- and immune- eQTLs (Figure 5E); pulse rate was associated with adult -, heart-

, arteria- (lower extent), and atrium- eQTLs (Figure 5F); and atrial fibrillation with heart-, left ventricle- and cardiac muscle- 

eQTLs (Figure 5G). While most of these enrichments were expected, the enrichment of pulse pressure for fetal-like iPSC-

CVPC-eQTLs was surprising (Figure S7). The eQTL signals underlying this enrichment were for five eGenes (AKR1B1, 

CBWD1, RPL13, THAP9-AS1 and TBX2-AS1) and three eIsoforms (DMPK, RPL13 and PRKG1), of which two were iPSC-

CVPC-specific (AKR1B1 and TBX2-AS1), indicating that the variants at these loci associated with pulse pressure in the 

adult could exert their function during cardiac development. Conversely, seven adult- eGenes (ACHE, EIF4E2, FLCN, 

RAB40C, RBL2, SPON1 and WFIKKN1) and three adult- eIsoforms (AC073254.1, B3GAT3, and RBL2), of which six were 

adult-specific (ACHE, EIF4E2, RAB40C, RBL2, SPON1 and AC073254.1), colocalized with pulse rate, resulting in the 

enrichment of pulse rate for adult-eQTLs (Figure S8). We also observed an unexpected association between pulse pressure 

and immune cell- eQTLs. Multiple immune cell- eGenes that colocalized with pulse pressure are involved in immune 

response and inflammation, including ASAP2, SH3YL1, ARVCF and ATP1B1 59-62, and changes in their expression may 

affect the mechanisms that trigger the inflammatory response and its effects on blood pressure. In summary, by integrating 

context-associated eQTLs with GWAS, we were able to find that the SNPs associated with three of the five cardiac traits 

are enriched for being functional in specific spatiotemporal contexts, including associations between pulse pressure and 

fetal-like iPSC-CVPC-eQTLs and between pulse rate and adult-eQTLs. 

Fine mapping identifies the potential causal variants for hundreds of loci 
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To identify putative causal variants underlying the shared GWAS and eQTL signals we used the colocalization data to 

conduct fine mapping. For each of the 210 GWAS signals and each of their colocalizing eGenes and eIsoforms (331 GWAS-

eQTL combinations) we computed 99% credible sets (defined as the SNPs whose sum of PPAs is >99%). In the 65 cases 

where multiple eGenes or eIsoforms colocalized with the same GWAS signal, we retained only the credible set with the 

smallest number of SNPs and, in cases of multiple credible sets with the same number of SNPs, we retained the one having 

the lead SNP with highest PPA. Across the five cardiac GWAS traits, we found that most credible sets (113, 53.8%) included 

10 or fewer SNPs, including 28 (13.3%) having one single causal variant and 51 (24.3%) between two and five (Figure 6A-

E, Table S9). Only two credible sets, both associated with QRS duration, included more than 100 SNPs and were considered 

as not resolved. These results show that fine mapping loci containing colocalized GWAS and eQTL signals reduces the 

number of candidate causal variants to only a handful in the majority of these loci and provides a molecular mechanism 

underpinning the association between genetic variation and cardiac traits.  

To determine if the causal variants identified by our colocalization analysis correspond to lead index GWAS SNPs that have 

previously been described, we investigated whether they were reported as associated with the same trait in the GWAS 

Catalog 1. We intersected the SNPs with the highest PPA in each of the 210 credible sets with 4,772 trait-associated index 

SNPs in the GWAS catalog 1, and found that only 43 (20.5%) have been previously reported as index SNP for the same trait 

(Figure 6F, Table S9). We reasoned that most of the other SNPs may be in high LD with previously reported index SNPs. 

Indeed, for 114 signals (54.3%), the putative causal SNP that we identified was in high LD with index SNPs in the GWAS 

catalog (13 with R2 ≥ 0.8 and 101 with D’ ≥ 0.8), indicating that the causal variant is likely not the reported index SNP but 

rather in strong LD with it. For example, we found that the SNP with highest PPA for pulse rate at the GNB4 locus was 

rs11922153 (PPA = 0.44, Figure 6G-I), which is in high LD (R2 = 0.91) with rs7612445 (PPA = 0.16), which was previously 

identified as index SNP 63-65. For the remaining 53 signals (25.2%), the putative causal SNP that we identified was in a locus 

not associated with the same trait in the GWAS catalog. One example of these “novel” GWAS signals was rs1708618, 

which was associated with an FLCN isoform (ENST00000389168.6_2) and pulse rate (Figure 6J-L). Although this locus 

has not previously been described in cardiac-related GWAS, it was shown that loss of FLCN in the heart results in excess 

energy and upregulated mitochondrial metabolism, suggesting an important role of this gene in cardiac homeostasis 66. 

Another example of a novel GWAS SNP associated with pulse rate was rs12724121, which is the lead eVariant for ACTN2 

(Figure 6M-O). ACTN2 encodes alpha-actinin-2, a major component of the sarcomere Z-disc expressed in cardiac and 

skeletal muscle cells. Rare missense mutations in ACTN2 result in ventricular fibrillation, cardiomyopathy, and sudden 

death 67,68, and a distal variant (rs535411) associated with heart failure in a GWAS 69 was in high LD with rs12724121 (D’ 

= 1; R2 = 0.035). Our results indicate that rs12724121 may regulate pulse rate (i.e, a proxy for heart rate) through the altered 

expression of ACTN2 and, since elevated resting heart rate may cause heart failure 70, our findings may explain the 

previously observed GWAS association between this locus and heart failure. Of note, these observations show the 

importance of investigating LD in terms of D’, suggesting that synthetic associations 71,72 between variants should be 

considered when characterizing the causal SNPs at GWAS loci. In summary, our fine mapping analysis identified the likely 

causal SNPs in 157 previously characterized GWAS loci and 53 novel GWAS loci, demonstrating the power of fine mapping 

approach to uncover insights into the biology of cardiac traits and disease.  
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Discussion 

We have conducted one of the largest eQTL analyses of human cardiac samples considering both eGenes and eIsoforms 

and taking spatiotemporal context into consideration. We combined 180 fetal-like cardiac samples (iPSC-CVPC) with 766 

adult cardiac samples from multiple tissues, including atrium, ventricle, aorta and coronary artery. We showed that ~50% 

of eIsoforms were either not associated with an eGene or had a different eQTL signal than their associated eGene; and that 

eGenes were enriched for being associated with regulatory variants at promoters and enhancers while eIsoforms were 

enriched for being associated with variants that affect post-transcriptional modifications. Taking spatiotemporal information 

about the cardiac samples into account provided us with the unique opportunity to identify more than 2,500 eQTL signals 

dependent on stage, organ, tissue and/or cell type. Using these data, we show that regulatory variants underlying eQTL 

signals shared between multiple eGenes are more likely to function in a spatiotemporal manner; and that eGenes which 

share the same eQTL signals tend to display the same spatiotemporal regulation. Our findings also indicate that fetal-like- 

eQTLs are less likely to be associated with multiple eGenes than adult- eQTLs, which suggests that gene expression could 

be more individually regulated in early cardiac development. We demonstrate that, when paired genes and antisense 

transcripts are both eGenes, they are enriched for sharing the same eQTL signal, suggesting that a tight regulation of protein 

synthesis is required. Overall, we have generated an invaluable resource comprised of 26,000 cardiac eQTL signals which 

can be used to understand the molecular mechanisms underlying the association of genetic variants with cardiac traits and 

disease.  

Recent studies showed that certain GWAS loci are associated with tissue- and cell type-specific regulatory elements and 

eQTLs 4,15,16,24,30. Furthermore, GWAS of multiple cardiac traits, such as atrial fibrillation and PR interval, identified loci 

associated with embryonic development-associated genes and genes whose mutations are known to cause serious heart 

defects, such as TTN, GATA4, MYH6, NKX2-5, PITX2 and TBX5 2-4. However, the extent to which regulatory variants that 

function in a spatiotemporal manner underlie cardiac trait GWAS signals was unknown. We showed that ~25% of eQTL 

signals that colocalize with cardiac GWAS traits function in a spatiotemporal manner. Furthermore, we found that three of 

the five traits examined in this study were enriched for eQTLs that function in specific spatiotemporal contexts. Surprisingly, 

pulse pressure was enriched for fetal-like- eQTLs, indicating that a subset of genetic variants associated with this adult trait 

exert their function during early cardiac developmental.  

Using colocalization between eQTL and GWAS signals, we fine mapped 210 unique GWAS signals for five cardiac traits 

and disease. We were able to identify one single likely causal variant (with posterior probability of being causal >99%) for 

28 of these GWAS signals, while for additional 51 we were able to restrict the number of likely causal variants to fewer 

than five. For ~75% of the 210 GWAS signals the SNP with the highest PPA in the credible was either the index SNP or in 

LD with the index SNP for the same trait in the GWAS catalog. Interestingly, in 103 of these signals the most likely causal 

variant was in high D’, but low R2, with the reported index SNP, suggesting that synthetic associations between common 

and rare variants may play a role in GWAS loci71,72. For the remaining ~25% of the GWAS signals, the putative causal SNP 

that we identified was in a locus not associated with the same trait in the GWAS catalog. These findings show that fine 

mapping provides the blueprint to both understand the molecular mechanisms underlying known and novel GWAS loci and 
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to uncover insights into the biology of important cardiac traits and disease. Of note, there were hundreds of GWAS signals 

that did not colocalize with eQTLs, indicating that additional studies will likely require integration with epigenomic data to 

identify candidate causal variants 37. Overall, we show that using our cardiac eQTL resource for fine mapping identified the 

causal variant underlying hundreds of GWAS signals in five cardiac traits, led to an understanding of the underlying 

molecular mechanisms, and provided novel insights into the biology of the corresponding cardiac GWAS trait.  
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Methods 

Data processing 

We obtained RNA-seq and WGS data from two sources: 180 iPSC-CVPC samples from 139 subjects from the iPSCORE 

Collection 33,73 and 786 adult cardiac samples (227 aorta, 125 coronary artery, 196 atrial appendage and 238 left ventricle) 

from 352 GTEx subjects 25.  

VCF files from WGS data were obtained from dbGaP (phs001325 and phs000424). All variants with allele frequency ≥ 5% 

and in Hardy-Weinberg equilibrium (p > 1 x 10-6 in the GTEx samples) were used for eQTL analysis. A kinship matrix was 

built using plink 1.90b3x 74 on variants with alternative allele frequency between 30% and 70%. This set of variants was 

also used to generate genotype PCA.  

RNA-seq data from the two sources was obtained from dbGaP (phs000924 and phs000424) and integrated as described in 

D’Antonio et al. 29. Briefly, FASTQ files were aligned to 62,492 autosomal genes and their corresponding 229,835 isoforms 

included in Gencode V.34lift37 75, as previously described 29,33,76. Only 19,586 autosomal genes with TPM ≥ 1 in at least 

10% of samples were considered as expressed and used for eQTL analysis. Likewise, 37,032 isoforms from expressed genes 

(TPM ≥ 1 and usage >10% in at least 10% of samples) were used for isoform eQTL analysis. Only isoforms from 10,337 

genes with at least two expressed isoforms were used. 

Covariates for eQTL mapping 

To determine the optimal combination of PEER factors to maximize the number of cardiac eQTLs, we selected random 200 

genes. To avoid biases due to the expression levels of these genes, we divided all autosomal expressed genes in ten deciles 

and selected 20 random genes from each decile. We performed eQTL mapping using the following covariates: 1) sex; 2) 

normalized number of RNA-seq reads; 3) % of reads mapping to autosomes or sex chromosome; 4) % of mitochondrial 

reads; and 5) 20 genotype principal components. To account for ancestry differences between individuals, we used genotype 

principal components, rather than reported ancestry. To determine the genotype principal components, we selected 

1,634,010 SNPs with allele frequency between 30% and 60% in the 1000 Genomes Phase 3 project and genotyped in both 

GTEx and iPSCORE. We merged VCF files from 1000 Genomes, GTEx and iPSCORE and performed PCA using plink 

1.90b3x 77. We calculated 300 PEER factors 78 on the 10,000 expressed genes with the largest variance across all samples 

and used different combinations (between 10 and 300) to perform the eQTL mapping for each of the 200 test genes. We 

selected 285 PEER factors to perform gene eQTLs, as this number was associated with the largest number of eQTLs in the 

200 test genes. For isoform eQTLs we used 80 PEER factors, as a compromise between obtaining the largest number of 

eQTLs and computational burden. 

Since iPSCORE samples were derived from related subjects and that multiple samples from the same individual were 

analyzed in GTEx, we generated a kinship matrix to account for sample relatedness. We used plink to build a kinship matrix 

based on the same 1,634,010 SNPs used for determining genotype principal components 77. 
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eQTL mapping 

For each expressed gene, we used bcftools query 79 to obtain the genotypes for all the variants within 500 kb of each 

autosomal gene’s coordinates. To account for relatedness between samples, we performed eQTL mapping using a linear 

mixed model (LMM) with limix v.3.0.4 45 (scan function):  

𝑌𝑖  =  𝛽𝑗 𝑋𝑖𝑗  + ∑ 𝛾𝑚𝑃𝐶𝑖𝑚

𝑀

𝑚=1

+ ∑ 𝛾𝑛𝑃𝐸𝐸𝑅𝑖𝑛

𝑁

𝑛=1

+ ∑ 𝛾𝑝𝐶𝑖𝑝

𝑃

𝑝=1

+ 𝑢𝑖 + 𝜖𝑖𝑗  

Where 𝑌𝑖 is the normalized expression value for sample 𝑖, 𝛽𝑗 is the effect size (fixed effect) of SNP 𝑗, 𝑋𝑖𝑗 is the genotype of 

sample 𝑖 at SNP 𝑗, 𝑃𝐶𝑖𝑚  is the value of the 𝑚th genotype principal component for the individual associated with sample 𝑖, 

𝛾𝑚  is the effect size of the 𝑚th genotype principal component, 𝑀 is the number of principal components used (M = 20),  

𝑃𝐸𝐸𝑅𝑖𝑛 is the value of the 𝑛th PEER factor for sample 𝑖, 𝛾𝑛 is the effect size of the 𝑛th genotype principal component, 𝑁 is 

the number of PEER factors used, 𝐶𝑖𝑝  is the value of the 𝑝th covariate for sample 𝑖, 𝛾𝑝 is the effect size of the 𝑝th covariate, 

𝑃 is the number of covariates used, 𝑢𝑖 is a vector of random effects for the individual associated with sample 𝑖 defined from 

the kinship matrix, and 𝜖𝑖𝑗  is the error term for individual 𝑖 at SNP 𝑗. The principal components term captures each 

individual’s ancestry. The random effects term captures relatedness between samples.   

To perform FDR correction, we used a two-step procedure similar to the one described in Huang et al. 80. 1) For each gene, 

p-values were FDR-corrected using eigenMT, which takes into account the LD structure of the tested variants 81, and the 

most significant variant (top hit) was considered as lead-eQTL. If multiple variants had the same p-value, the one with the 

largest absolute effect size was considered as lead. 2) Across all genes, p-values were corrected for false discovery rate 

(FDR) using Benjamini-Hochberg’s correction and considered only eQTLs with q-values < 0.05 as significant.  

For all significant eQTLs, we tested whether additional variants had independent associations (conditional eQTLs). For 

each eGene, we regressed out the genotype for the lead eQTL and repeated the eQTL mapping. We repeated this operation 

to discover up to five conditional associations. 

To test the overlap between eQTLs and intergenic regions, introns, promoters, UTRs, splice donor sites, splice acceptor 

sites and exons, we selected the lead variant for each eGene and eIsoform and tested its overlap with Gencode V.34lift37 

genes, promoters (defined as the 2000 bp upstream of the transcription start site), exons and UTRs. For the intronic variants, 

we calculated their distance from the closest exon, in order to determine their overlap with splice sites. 

Summary statistics for all eQTLs are reported in Figshare 82. 

Detecting cell type-, stage- and tissue-specific eQTLs 

To detect associations between eQTLs and cell types, tissue or developmental stage, we used a linear mixed model with an 

interaction between genotype and each cell type, tissue or developmental stage using the iscan function in limix: 
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𝑌𝑖  =  𝛽1𝑗 𝑋𝑖𝑗 + 𝛽2𝑗 𝑍𝑖𝑗 + 𝛽3𝑗 𝑋𝑖𝑗𝑍𝑖𝑗 + ∑ 𝛾𝑞𝐾𝑖𝑞

𝑄

𝑞=1

+ 𝑢𝑖 + 𝜖𝑖𝑗  

Where 𝑌𝑖 is the normalized expression value for sample 𝑖, 𝛽1𝑗 is the effect size (fixed effect) of SNP 𝑗, 𝑋𝑖𝑗 is the genotype 

of sample 𝑖 at SNP 𝑗, 𝛽2𝑗 is the effect size of cell type 𝑗, 𝑍𝑖𝑗 is the fraction of cell type 𝑗 for sample 𝑖, 𝛽3𝑗 is the effect size 

of the interaction between genotype 𝑋𝑖𝑗 and cell type 𝑍𝑖𝑗, 𝐾𝑖𝑝  is the value of the 𝑝th covariate for sample 𝑖, 𝛾𝑞  is the effect 

size of the 𝑝th covariate, 𝑄 is the number of covariates used (as defined for the eQTL analysis described above), 𝑢𝑖 is a 

vector of random effects for the individual associated with sample 𝑖 defined from the kinship matrix, and 𝜖𝑖𝑗  is the error 

term for individual 𝑖 at SNP 𝑗. We only tested the significant lead QTLs (primary and conditional) for each eGene.  

To perform FDR correction, we adjusted p-values of each variant using Bonferroni’s method. We adjusted the p-values 

independently for each cell type, tissue or developmental stage.  

To determine stage, organ and tissue specificity of eQTLs, for each of these elements (for example: left ventricle), we 

divided samples in two groups (left ventricle and all the other samples) and tested the association between each of these two 

groups and genotype, using linear regression (lm function in R). To calculate cell type associations, for each cell type, we 

obtained the samples in the top and bottom quartiles and tested the associations between each of these groups and genotype 

using linear regression. P-values were then corrected using Benjamini-Hochberg’s method.  

All possible scenarios based on the significance of the interaction analysis and the two groups are shown in Figure S1 (stage: 

iPSC-CVPC), Figure S2 (tissue: left ventricle) and Figure S3 (cell type: cardiac muscle).  

Validation of cell type-associated eQTLs 

We obtained the relative accessibility score (RAS) of 286,725 snATAC-seq peaks obtained from human adult hearts 46. 

Peak coordinates were lifted over the hg19 genome using liftOver.  

To obtain a list of the variants most likely to be causal for each eGene, we performed genetic fine mapping of each eQTL 

signal using the finemap.abf function in the coloc R package 42. This Bayesian method converts p-values of all the variants 

tested for a specific gene to posterior probabilities of association (PPA). We selected 201,082 variants with PPA > 0.01, 

intersected their coordinates with the snATAC-seq peaks using bedtools intersect, and found that 18,928 (corresponding to 

10,180 eGenes, including 367 associated with cardiac muscle) overlapped snATAC-seq peaks. If multiple variants 

associated with the same gene overlapped snATAC-seq peaks, we considered only the variant with the highest PPA.  

To test if cardiac muscle-associated eQTLs were more likely to overlap snATAC-seq peaks associated with specific cell 

types, for each of the snATAC-seq cell types (atrial cardiomyocyte, ventricular cardiomyocyte, adipocyte, fibroblast, 

endothelial, smooth muscle, lymphocyte, macrophage and nervous), we performed a paired t-test between the relative 

accessibility score (RAS) value for the tested cell type and the mean value across all other cell types for the 367 cardiac 

muscle-associated eGenes. We repeated this test for all the other cell types. Results for this analysis are shown in Table S5.  
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Colocalization between eQTLs signals for eIsoforms and their associated eGene and between 

different eGenes or eIsoforms 

For each of the 5,744 eIsoforms whose associated genes had eQTLs, we performed colocalization using the coloc.abf 

function from the coloc package in R 42. This Bayesian method uses p-values of the variants tested for two traits (eIsoform 

and eGene) to calculate the posterior probabilities (PP) of five hypotheses at a specific locus: 1) H0: neither trait has a 

significant association at the tested locus; 2) H1: only the first trait is associated; 3) H2: only the second trait is associated; 

4) H3: both traits are associated but the underlying variants are different; and 5) H4: both traits are associated and share the 

same underlying variants. Since multiple eQTL signals may be present for both eIsoforms and eGenes (primary and 

conditional eQTLs), for each eIsoform/eGene pair, we considered only the colocalization with highest PP-H4. 

We used the same colocalization approach to determine whether two eGenes or eIsoforms from different genes shared the 

same eQTL signal.  

To determine whether paired genes and antisense RNAs are enriched for sharing an eQTL, we obtained the gene symbols 

of all eGenes from Gencode. We identified 163 gene/antisense pairs where both the gene and its antisense RNA were eGenes 

and whose gene symbols were “Gene A” and “Gene-A-AS1”. We found that 43 of these pairs shared the same eQTL signal 

(PPA ≥ 0.8) and tested whether this proportions was different than expected using Fisher’s exact test. 

Colocalization between GWAS and eQTL signals 

We obtained summary statistics from five cardiac traits from the pan-UKBB repository 

(https://pan.ukbb.broadinstitute.org/). All data was obtained on hg19 coordinates. We sorted and indexed all the files using 

tabix 79 and, for each trait, extracted all genome-wide significant SNPs (meta-analysis p-value 5 < 10-8). We found 1,444 

eGenes and 919 eIsoforms that overlapped or were in close proximity (<500 kb) with genome-wide significant SNPs. We 

performed colocalization between the eQTL signal of each of these eGenes and eIsoforms and all the genome-wide 

significant GWAS signals at each locus using the coloc.abf function in R 42. We considered a GWAS signal as colocalizing 

with an eGene or eIsoform if PP-H4 > 0.8. All colocalization results between each pair of GWAS and eQTL have been 

deposited to Figshare 82. Since multiple eIsoforms or combinations of eIsoforms and their associated eGene may colocalize 

with the same trait, underlying the presence of a single gene-trait association, for downstream analyses we considered a trait 

as “colocalizing” with a gene if PP-H4 was > 0.8 for the eGene or any of its eIsoforms. 

To determine the number of unique colocalizations between eQTL and GWAS signals, we computed the LD between each 

pair of lead SNPs across all 331 colocalizations and obtained clusters of eQTL signals that shared the same lead SNP or that 

had lead SNPs in high LD (D’ > 0.8). This resulted in 210 unique signals. 

Fine mapping and obtaining 99% credible sets 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458619doi: bioRxiv preprint 

https://pan.ukbb.broadinstitute.org/
https://doi.org/10.1101/2021.09.01.458619
http://creativecommons.org/licenses/by-nc/4.0/


17 

 

Using the coloc.abf function in R 42, we fine mapped the GWAS signals by calculating the posterior probability (PPA) for 

each tested variant to be causal based on the colocalization between the GWAS and eQTL signals. We next sorted the 

variants according to their PPA in decreasing order and selected all the variants whose cumulative PPA was 99% as credible 

sets. For each of the 210 unique signals, we selected the credible set that had the fewest SNPs.  If two credible sets had the 

same number of SNPs, the set containing the lead variant with the highest PPA was chosen. 

Enrichment for the association of cardiac traits with stage-, organ-, tissue- and cell type- eQTLs 

Enrichment of the associations was calculated using a Fisher’s Test at multiple PPH4 thresholds (0–0.95; at 0.05 

increments), where the contingency table consisted of two classifications: (1) if the variant was significantly context-

associated (FDR< 0.05); and (2) if the variant colocalized with the GWAS trait greater than each PP-H4 threshold. We 

considered as associated all the traits that had FDR-corrected p-value < 0.1 (Benjamini-Hochberg) at the 0.8 threshold. 

Data availability 

All data used in this manuscript is available through dbGaP, the Pan UK BioBank resource and Figshare. RNA-seq and 

genotype information are available for GTEx and iPSCORE through the dbGaP studies phs000424 (GTEx), phs000924 

(iPSCORE, RNA-seq) and phs001325 (iPSCORE, whole genome sequencing). RAS values for snATAC-seq peaks were 

obtained from Supplemental Table 5 in Hocker et al. 46. GWAS summary statistics were obtained from the Pan UK BioBank 

resource (https://pan.ukbb.broadinstitute.org/). The GWAS manifest file was downloaded from 

https://docs.google.com/spreadsheets/d/1AeeADtT0U1AukliiNyiVzVRdLYPkTbruQSk38DeutU8/edit#gid=511623409. 

Summary statistics for all eQTLs, fine mapping results and supporting data for all the figures and supplemental tables 

associated with this manuscript have been deposited at Figshare: https://doi.org/10.6084/m9.figshare.c.5594121. 
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Figures 

Figure 1: Gene and isoform eQTLs 

 

(A) Barplot showing the number of eQTLs for eGenes (left) and eIsoforms (right). Colors represent whether each eGene or 

eIsoform does not have eQTLs (white), the number of eGenes with primary and conditional eQTLs (up to five conditional 

signals). 
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(B) Barplot showing the distribution of PPA for each of the five colocalization hypotheses, as described by Giambartolomei 

et al. 42: 1) H0: neither trait (eQTL signal for eIsoform and its associated eGene) has a significant association at the tested 

locus; 2) H1: only the first trait (eIsoform) is associated; 3) H2: only the second trait (eGene) is associated; 4) H3: both 

traits are associated but the underlying variants are different; and 5) H4: both traits are associated and share the same 

underlying variants. All eIsoforms having H4 as the most likely hypothesis were considered as sharing the same eQTL 

signal with their associated eGene, whereas all the eIsoforms having H3 as the most likely hypothesis were considered as 

having a different eQTL signal than their associated eGene. All the colocalizations associated with hypothesis 0, 1 and 2 

were likely underpowered, thus they were labeled as “not resolved”. The 1,421 eIsoforms whose associated gene did not 

have an eQTL were labeled as “no eGene”.    

(C,D) Examples of (C) eQTL signal for an eGene (B4GALT7) that colocalizes with PPA = 1 with the eQTL signal of one 

associated eIsoform and (D) eQTL signal for an eGene (RNH1) that does not colocalize with the eQTL signal of one 

associated eIsoform. In each plot, X axis represents the -log10 (p-value) for the associations between the genotype of each 

tested variant and gene expression, whereas the Y axis shows the -log10 (p-value) for the associations between the genotype 

of each tested variant and isoform use. In red the lead variants are shown (two in panel C, as eGene and eIsoform have 

different associations, one in panel B, as the eGene and eIsoform signal colocalize).   

(E) Enrichment of eGenes compared with eIsoforms for overlapping intergenic regions, introns, promoters, UTRs, splice 

donor sites, splice acceptor sites (short = the first 5 nucleotides upstream of the splice site; long = the first 100 bp) and 

exons. P-values were calculated using Fisher’s exact test. Points (blue = enriched for eGenes; red = enriched for eIsoforms; 

gray = not significant) represent log2 enrichment and horizontal lines represent 95% confidence intervals calculated using 

the fisher.test function in R. 

(F,G) Median normalized read depth signal of ADAM15 gene expression levels in iPSC-CVPCs. Different colors represent 

the genotypes of the lead eVariant for isoform ENST00000271836.10_1 (rs11589479, G>A). The blue rectangle in (F) is 

enlarged in (G). rs11589479 overlaps the splice donor site for exon 19 and its position is shown as a vertical dashed line in 

(G). The plots show that the exon whose splice site is affected by rs11589479 becomes expressed at lower levels when the 

variant is heterozygous or homozygous alternative, as it disrupts the splice site.  
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Figure 2: Stage, organ, tissue and cell type eQTLs 

 

(A,B) Barplots showing the number of (A) eGenes and (B) eIsoforms associated with: cardiac stage (iPSC-CVPC or adult); 

organ (arteria or heart); tissue (atrial appendage, left ventricle, aorta or coronary artery); and cell type. Non-hatched bar 

sections represent eQTLs that are associated with the indicated stage, organ, tissue or cell type, and hatched sections 

represent specific eQTLs. 
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(C-E) Examples of three association types between eQTLs and cardiac stage. For each eGene, boxplots describe the 

normalized expression in iPSC-CVPCs (blue) and all other samples (i.e., adult cardiac samples; gray), grouped by genotype. 

The panels show examples of: (C) an eGene whose eQTL is shared across both cardiac stages; (D) an iPSC-CVPC-specific 

eQTL: the association between genotype and gene expression is only present in iPSC-CVPCs; and (E) iPSC-CVPC-

associated eQTL: while the genotype is associated with gene expression in both iPSC-CVPCs and the adult samples, the 

eQTL is significantly stronger in iPSC-CVPCs. All five possible association types are shown in Figure S1. 

(F-H) Examples of associations between eQTLs and cell types. For each eGene, boxplots describe the normalized expression 

divided into four quartiles according to their cardiac muscle proportion (yellow = low; purple = high), grouped by genotype. 

The panels show examples of: (F) an eGene whose eQTL is shared across cell types; (G) a cardiac muscle-specific eQTL: 

the association between genotype and gene expression is only present in the top quartiles; and (H) cardiac muscle-associated 

eQTL: while the genotype is associated with gene expression in all quartiles, the eQTL is significantly stronger in the top 

quartiles. All five possible association types are shown in Figure S3. 
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Figure 3: eQTL signals associated with multiple genes 

 

(A) Enrichment of eGenes that share the same eQTL signal with other eGenes or eIsoforms for having stage-, organ-, tissue- 

and cell type- eQTLs measured by linear regression analysis. Dots represent effect size and segments represent standard 

errors.  

(B) eGenes that share the same eQTL signals are enriched for being associated with same stage, organ, tissue or cell type 

calculated using a permutation test. Dots represent Z-scores.  
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 (C-H) eQTL signals shared between a gene and its associated antisense RNA: (C-E) PAX8 and PAX8-AS1; (F-H) IRF1 and 

IRF1-AS1. (C,F) scatterplots showing the –log10 (p-value) for the gene (X axis; A: PAX8; D: IRF1) and for the antisense 

RNA (Y axis; A: PAX8-AS1; D: IRF1-AS1). (D,E,G,H) eQTL signal for the gene (in blue, panels B and E) and for the 

antisense RNA (in green, panels C and F). The lead eVariant is highlighted in red. 
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Figure 4: Manhattan plots showing the GWAS signals that colocalize with eQTLs  

 

Manhattan plots showing the GWAS signals for five cardiac traits. Among all genome wide-significant SNPs, the GWAS 

signals that colocalize with eQTLs for eGenes are highlighted in purple, with eQTLs for eIsoforms (light brown), with 

eQTL signals for both eGenes and eIsoforms (green), and those that do not colocalize with eQTLs are shown in turquoise. 

Horizontal dashed blue line represents the genome wide significance threshold (p = 5 x 10-8).  
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Figure 5: Colocalization between spatiotemporal eQTLs and cardiac GWAS  

 

(A) Barplots showing the number of spatiotemporal eQTL signals that colocalize with cardiac GWAS signals. Colors 

represent cardiac stage, organ, tissue and cell type as described in the legend on the right. 

(B-D) Plots showing (B) cardiac muscle eQTL signal for SYNE2, (C) the GWAS signal for atrial fibrillation and (D) the 

PPA of each variant in the colocalization. The lead variant (i.e. the variant with highest PPA of being causal for both the 

eQTL and GWAS signals) is shown as a red diamond: all non-lead variants with PPA > 0.01 are shown as magenta 

diamonds. 

(E-G) Line plots showing the enrichment of stage-, organ-, tissue- and cell-type- eQTLs in various GWAS traits: (E) pulse 

pressure; (F) pulse rate; and (G) atrial fibrillation (ICD10 code: I48). Enrichment is plotted as the log (odds ratio) (Y axis) 

over all PP-H4 thresholds (0.05 to 0.95, in 0.05 increments) of the eQTL signal colocalizing (0 = not colocalizing; 1 = 
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completely colocalizing) with the GWAS signal (X axis). Only contexts with FDR-corrected p-value < 0.01 at PP-H4 = 0.8 

are shown. All associations for the five traits are shown in Figure S5 and Figure S6. 
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Figure 6: Fine mapping of stage and cell type- eQTLs colocalizing with cardiac traits 

 

(A-E) Pie charts showing for each cardiac trait the distribution of SNPs in 99% credible sets. The colors indicate the number 

of SNPs and the numbers around the perimeter indicate the number of credible sets. 

(F) Pie chart showing the overlap between the lead SNP at each GWAS signal in the five cardiac traits and the index SNP 

for the GWAS signal in the GWAS catalog for the same trait. SNPs in “high D’” have R2 < 0.8 but D’ ≥ 0.8. 
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(G-N) Plots showing eQTL signals (top row; panels G, J, M), the GWAS signals (middle row; panels H, K, N) and the PPA 

of each variant in the colocalization (bottom row; panels I, L, O) at three loci: (G-I) GNB4 expression and pulse rate; (J-L) 

FLCN expression and pulse rate; and (L-N) ACTN2 expression and pulse rate. The variant with highest PPA of being causal 

for the colocalized eQTL and GWAS signals is shown as a red diamond. All other variants included in the 99% credible set 

are shown as magenta diamonds.   
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