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Abstract 21 

Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite 22 

their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs) 23 

(satellite cells) have been thought to possess distinct gene signatures and signaling pathways. 24 

Here we shift this paradigm by uncovering how adult MuSC behavior is affected by the 25 

expression of a subset of EC transcripts. We used several computational analyses including 26 

single-cell RNAseq to show that MuSCs express low levels of canonical EC markers. We 27 

demonstrate that MuSC survival is regulated by one such prototypic 28 

endothelial signaling pathway (VEGFA-FLT1).  Using pharmacological and genetic gain- and 29 

loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying 30 

VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-31 

FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how 32 

the minor expression of select transcripts is sufficient for affecting cell behavior. 33 

  34 

  35 
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Introduction 36 

Skeletal muscle and endothelial cells (ECs) and their progenitors from the trunk and limbs are 37 

derived from the somites during early developments. Previous works demonstrated the existence 38 

of bipotent progenitors which express both Pax3 and FLK1 (Eichmann et al., 1993; Ema et al., 39 

2006; Esner et al., 2006; Kardon et al., 2002; Tozer et al., 2007). These bipotent progenitors 40 

migrate into trunk and limb buds from ventrolateral region of the somites to generate MyoD(+) 41 

myogenic cells followed by skeletal muscle and PECAM1(+) ECs followed by vasculatures 42 

(Hutcheson and Kardon, 2009; Kardon et al., 2002; Lagha et al., 2009; Mayeuf-Louchart et al., 43 

2014; Mayeuf-Louchart et al., 2016). In addition, FLK1(+) cells give rise to myogenic cells 44 

during development and oncologic transformation (Drummond and Hatley, 2018; Mayeuf-45 

Louchart et al., 2014; Motoike et al., 2003). Lastly, multipotent mesoangioblasts, vessel‐46 

associated stem cells, have been identified in embryonic dorsal aorta (Minasi et al., 2002). These 47 

cells are able to differentiate into several types of mesodermal tissues including skeletal muscle 48 

and ECs (Roobrouck et al., 2011). Interestingly, these myogenic cells show the same 49 

morphology as muscle satellite cells (MuSCs), stem cell populations for skeletal muscle, and 50 

express a number of myogenic and EC markers such as MyoD, M-cadherin, FLK1 and VE-51 

cadherin (De Angelis et al., 1999). However, it is not clear whether adult MuSCs derived from 52 

these bipotent progenitors still maintain canonical EC signals. Curiously, blood vessel-associated 53 

myoendothelial cell progenitors that express both myogenic and EC markers, and are able to 54 

differentiate into myogenic cells following transplantation have been identified in the interstitial 55 

spaces of both murine and human adult skeletal muscle (Tamaki et al., 2002; Zheng et al., 2007; 56 

Huang et al., 2014). However, the relationship between these myoendothelial cell progenitors 57 

and MuSCs remains unclear. 58 
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 59 

Vascular endothelial growth factor (VEGF), specifically VEGFA modulates many 60 

biological aspects including angiogenesis through its two receptors, FLT1 and FLK1. Although 61 

FLK1 possesses stronger signaling capability and the major signaling receptor tyrosine kinase 62 

(RTK) for VEGFA, FLT1 has considerably higher affinity for VEGF but weaker cytoplasmic 63 

signaling capability. In normal tissue, FLT1 acts as a decoy receptor and a sink trap for VEGF 64 

thereby preventing excessive normal and pathological angiogenesis. In addition, there are two 65 

co-receptors for VEGFA (NRP1 and NRP2) that function with FLK1 to modulate VEGFA 66 

signaling. While VEGF signaling has been extensively studied for its role in development, 67 

proliferation, and survival of endothelial cells (ECs), its role in non-vascular systems such as 68 

neuron and bone has only recently been appreciated (Liu et al., 2012; Okabe et al., 2014; Poesen 69 

et al., 2008). Skeletal muscle tissue is the most abundant producer of VEGFA in the body. It has 70 

already been extensively studied in the skeletal muscle fibers in models of Vegfa knockout mice 71 

(Olfert et al., 2009; Tang et al., 2004; Wagner et al., 2006) as well as Vegfa overexpression 72 

(Arsic et al., 2004; Bouchentouf et al., 2008; Messina et al., 2007; Yan et al., 2005). 73 

Adult skeletal muscle also contains the tissue resident muscle stem cell population, 74 

termed MuSCs, which mediate postnatal muscle growth and muscle regeneration (Motohashi and 75 

Asakura, 2014). After muscle injury, quiescent MuSCs initiate proliferation to produce myogenic 76 

precursor cells, or myoblasts. The myoblasts undergo multiple rounds of cell division before 77 

terminal differentiation and formation of multinucleated myotubes by cell fusion. Importantly, 78 

the MuSC-derived myoblasts also express VEGFA, which has been shown to increase the 79 

proliferation of myoblasts (Christov et al., 2007). Our data obtained from genetical model mice 80 

demonstrated that MuSCs express abundant VEGFA, which recruits ECs to establish vascular 81 
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niche for MuSC self-renewal and maintenance (Verma et al., 2018). In addition, VEGFA and its 82 

receptors are expressed in the myoblast cell line, C2C12 cells, and the signaling can induce cell 83 

migration and protect apoptotic cell during myogenic differentiation in vitro (Bryan et al., 2008; 84 

Germani et al., 2003; Mercatelli et al., 2010). However, it is not clear whether MuSCs also 85 

express VEGF receptors and if cell-autonomous VEGFA signaling plays an essential roles in 86 

MuSC fucction during muscle regeneration in vivo. 87 

We have previously shown that Flt1 heterozygous gene knockout and conditional 88 

deletion of Flt1 in ECs display increased capillary density in skeletal muscle, indicating the 89 

essential roles for Flt1 in adult skeletal muscle. More importantly, when crossed with the 90 

Duchenne muscular dystrophy (DMD) model mdx mice, these mice show both histological and 91 

functional improvements of their dystrophic phenotypes. This was due to the effect of increased 92 

ECs leading to an increase in MuSCs (Verma et al., 2010; Verma et al., 2019). However, the 93 

effect of VEGFA on MuSC in vivo remained unknown. We found that MuSCs express low levels 94 

of canonical EC markers including VEGF receptors using single cell transcriptomics. Therefore, 95 

we examined the effects of VEGFA on MuSCs and show that it has a drastic effect on cell 96 

survival in the via its receptor FLT1 by signaling through AKT1. 97 

 98 

Results  99 

EC gene signal including Vegf receptors in MuSCs 100 

EC signatures in MuSCs has been seen in several gene expression data sets (Figure S1A-D, 101 

Table S1) (Fukada et al., 2007; Ryall et al., 2015; van Velthoven et al., 2017; Yue et al., 2020). 102 

However, with the lack of EC control, we questioned whether these were true expression or 103 

artifact. To isolate EC and MuSC populations, we first crossed the Flk1+/GFP mice to label the 104 
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ECs of the vasculature (Ema et al., 2006) and the Pax7+/CreERT2:ROSA26+/Loxp-stop-Loxp-tdTomato 105 

(Pax7+/CreERT2:R26R+/tdT) mice to mark the MuSC lineage (Murphy et al., 2011; Verma et al., 106 

2018). We performed bulk RNA sequencing (RNAseq) on FACS sorted ECs and MuSCs as well 107 

as freshly isolated single muscle fibers (Figure 1A, S1E-G). We found that single muscle fibers 108 

routinely have ECs fragments attached to the fiber (Figure S1G) and so we removed such fibers 109 

based of Flk1GFP expression from the samples collected for sequencing. We surveyed for 110 

canonical genes for each cell type (Figure 1B) and found minimal but reliable expression of 111 

canonical ECs genes such as Pecam1, Cdh5, Kdr, and Flt1 in MuSCs.  112 

It is possible that these EC signatures detecting in MuSCs were not due to small amounts 113 

of contaminating ECs with very high expression of the canonical EC genes skewing the average 114 

expression in MuSC RNA samples. To rule out this possibility, we performed single cell 115 

RNAseq (scRNAseq) on MuSCs and ECs isolated from mouse hind limb muscle from both basal 116 

condition and 3-days post injury to look at both quiescent and activated MuSCs from the reporter 117 

mice specified above (Figure 1A). We could reliably delineate injured and activated MuSCs via 118 

side and forward scatter (Figure S1H, S1I). We FACS isolated cells from both days separately 119 

and spiked in 20% of the ECs into the MuSCs, and performed scRNAseq for each time point 120 

(Figure 1A). We performed sequencing with ~300K read/cell compared with the commonly used 121 

sequencing with 60K reads/cell, in order to maximize the possibility of detecting low abundance 122 

transcripts (Zhang et al., 2020). In the aggregated dataset, the MuSCs showed low overlap 123 

between D0 and D3 owing to the different stages of the myogenic differentiation cycle, while the 124 

ECs clusters showed near perfect overlap (Figure 1C, 1D). While drastic morphological changes 125 

in ECs have been shown during muscle regeneration (Hardy et al., 2016), transcriptomic changes 126 

are much more tapered, especially compared with MuSCs (Latroche et al., 2017). We were able 127 
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to deconvolve the quiescent MuSCs from the activated and differentiating MuSCs, ECs, and 128 

other cell types from gene signatures. (Figure S1J). We also introduced an artificial chromosome 129 

loci in our sequencing reference genome to allow for mapping of custom genes such as eGFP-130 

SV40 and tdTomato-WPRE-BGHPolyA transgenes and were able to confirm high expression of 131 

these genes to their respective clusters (Figure 1E). Importantly, data from scRNAseq were able 132 

to recapitulate the minimal expression of canonical EC genes in the MuSC clusters such as Cdh5 133 

(Figure 1E) as seen in our Bulk RNAseq results (Figure 1B). These included the Vegf receptors 134 

Flk1 (Kdr) and Flt1 (Figure 1E).  135 

As a quality control measure, we mapped parts of the three transgene genes, eGFP from 136 

Flk1+/GFP, and tdTomato and CreERT2 from Pax7+/CreERT2:R26R+/tdT that can be detected in ECs 137 

and MuSCs, respectively, as expected (Figure S1L). Surprisingly, we also found eGFP in the 138 

MuSCs and tdTomato in EC fraction, while the CreERT2 expression remained mainly restricted 139 

to the MuSCs (Figure S1K). FACS analysis and FACS-sorted cells confirmed that GFP(+) and 140 

tdTomato(+) cells are exclusively restricted as ECs and MuSCs, respectively (Figure S1E, S1F). 141 

Therefore, we hypothesized that this was due to the ambient free mRNA from the digested cells 142 

that is intrinsic to any droplet based single cell sequencing platform. By using SoupX (Young 143 

and Behjati, 2020), we performed careful background subtraction using genes expressed 144 

exclusively in myofibers as our negative control and genes validated by in situ hybridization as a 145 

positive control (Figure S1K) (Kann and Krauss, 2019). We observed decreased but sustained 146 

eGFP expression in the MuSC fraction and tdTomato expression in the EC fraction after SoupX 147 

subtraction (Figure S1K). In addition, the EC signatures such as Cdh5 expression in the MuSC 148 

fraction was also sustained. These results conclude that MuSCs contain mRNAs from canonical 149 
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ECs genes. We showed that the canonical EC genes were broadly expressed in the myogenic 150 

cells in our dataset (Figure 1E).  151 

Since detection of rare subpopulation in single cell dataset is a factor of cell numbers, we 152 

re-analyzed previously published dataset with 2,232 myogenic cells across different states (Torre 153 

et al., 2018; De Micheli et al., 2020). We were able to classify cell as quiescent, proliferative vs. 154 

differentiating states based on the expression of Calcr, Cdk1 and Myog, respectively (Figure 155 

S1L). We noticed that EC prototypic markers such as Flt1 are broadly expressed with small 156 

amounts in MuSCs. Complementary data from different laboratories showed the clear expression 157 

of EC prototypic markers such as Cdh5, Flt1 and Kdr, using microarrays and Bulk-RNAseq 158 

(Figure S1A, S1B; Fukada et al., 2007; Ryall et al., 2015). Recently, RNAseq data from fixed 159 

quiescent, early activated and late activated MuSCs show that Flt1 may be transiently 160 

upregulated during the early activation process (Figure S1C) (Yue et al., 2020). To confirm 161 

whether the EC gene mRNAs were transcribed from MuSCs, we utilized previously published 162 

MuSC nascent RNA transcriptome from TU-tagged samples (Gay et al., 2013; van Velthoven et 163 

al., 2017). As expected, Myh1 was represented in the whole muscle but was absent in the TU-164 

tagged MuSCs (Figure 1F), indicating that the nascent MuSCs were devoid of cellular 165 

contamination from other cells in the muscle. Inversely, the nascent MuSC transcript was over-166 

represented for MuSC related genes such as Calcr and Sdc4. Interestingly, we were able to detect 167 

EC genes such as Kdr and Pecam1 in the TU-tagged MuSC samples indicating that they were 168 

actively transcribed by MuSCs (Figures 1F, S1D).  169 

We also verified the expression of Vegfr genes (Kdr, Flt1, Nrp1 and Nrp2) in MuSCs 170 

using RT-qPCR (Figure 1G). In addition, we verified the expression of Flt1 by performing in-171 

situ hybridization using RNAScope on MuSC on whole muscle fiber, which we currently believe 172 
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to be the gold standard for expression studies (Figure 1H). Finally, in MuSC-derived myoblasts, 173 

NRP1and NRP2 expression was detectable with comparable intensity compared with EC cell 174 

line, while FLT1 expression was detectable with lower intensity compared with EC cell line 175 

(Figure 1I). By contrast, PECAM1, VE-Cadherin and FLK1 expression, which was clearly 176 

detected in EC cell line, was undetectable level in myoblasts. Taken together, these data indicate 177 

that there are both transcripts of these EC canonical genes and EC canonical proteins in MuSCs. 178 

 179 

VEGFA induces proliferation and cell survival but not differentiation in myoblasts  180 

Since VEGFRs were expressed in MuSCs in small amounts and their ligand, VEGFA, was 181 

highly expressed in MuSCs (Figure 2A; Verma et al., 2018), we wanted to investigate whether 182 

there were any biological effects to induction by VEGFA. We found that treatment with VEGFA 183 

could increase proliferation of MuSC-derived myoblasts at low dose but inhibit proliferation at 184 

high dose of VEGFA, a phenomenon that has been previously described in ECs (Noren et al., 185 

2016) (Figure S2A). We saw no effect on differentiation by VEGFA as evaluated by myosin 186 

heavy chain (MyHC) staining, fusion index and RT-qPCR (Figure S2B, S2C, S2D). By contrast, 187 

crystal violet staining showed that VEGFA could significantly increase survived cell number of 188 

myoblasts following UV-mediated apoptotic cell death induction (Figure S2E, S2F). To 189 

investigate apoptosis in detail, we optimized Annexin V assay following thapsigargin-mediated 190 

endoplasmic reticulum (ER)-stress (Hirai et al., 2010) so that we could study deviation at ~ED50 191 

while still performing experiments to remove the confounding variable to proliferation from the 192 

experimental setup (Figure S2G and S2H). We had previously shown that MuSCs are the 193 

predominant cells that secrete VEGFA in skeletal muscle (Figure 2A; Verma et al., 2018) and 194 

while adding exogenous VEGFA did not improve cell survival, blocking VEGFA via a soluble 195 
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form of FLT1-FC increased the number of apoptotic and necrotic myoblasts in vitro (Figure 2C-196 

E).  197 

 198 

VEGFA-facilitated cell survival in MuSC-derived myoblasts is mediated through FLT1 199 

To characterize the VEGF receptor responsible for the anti-apoptotic effect of VEGFA on 200 

MuSC-derived myoblasts, we used pharmacological inhibitors of the VEGF receptors (Figure 201 

2F). We used blocking antibody for the VEGF receptors FLT1 (anti-FLT1 antibody), small 202 

molecule inhibitors for FLK1 (SU4502 and ZM306416) and the FLK1 co-receptor NRP1 203 

(EG00229) following thapsigargin induction (Figure 2D). Surprisingly, inhibiting FLK1, the 204 

major signaling RTK for VEGFA, had no effect on myoblasts survival following thapsigargin 205 

induction (Figure 3E). By contrast, blocking FLT1 via blocking antibody greatly decreased the 206 

survival of myoblasts following thapsigargin induction (Figure 3E). To confirm this interesting 207 

result using genetic tools, we obtained myoblasts with Pax7-CreER-inducible deletion of Flt1 208 

mice (Pax7+/CreER:Flt1Loxp/Loxp or MuSC-Flt1Δ/Δ) and the control mice (Pax7+/+:Flt1Loxp/Loxp). In 209 

vitro 4-OHT-mediated genetic deletion of Flt1 (MuSC-Flt1Δ/Δ) resulted in down-regulation of 210 

Flt1 RNA and FLT1 protein expression (Figure S2I, S2J), and increased spontaneous apoptotic 211 

cell death even without induction of apoptosis (Figure 2F). By contrast, Flt1 deletion did not 212 

affect cell proliferation assessed by EdU staining or myogenic differentiation assessed by MyHC 213 

staining (Figure S2K-M). When thapsigargin-induced apoptosis was induced, the MuSC-Flt1Δ/Δ 214 

myoblasts had increased apoptosis that was not responsive to exogenous VEGFA (Figure 2G).  215 

 216 

AKT signaling is involved in apoptosis of muscle stem cells.  217 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.08.28.458037doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.28.458037


 11 

VEGFA signaling is mediated through Extracellular signal-Regulated Kinase (ERK), p38 218 

Mitogen-Activated Protein Kinase (MAPK), and Protein kinase B (AKT). In ECs, VEGFA is 219 

known to protect cells from apoptosis via AKT (Domigan et al., 2015; Lee et al., 2007). 220 

However, it is not known whether VEGFA can similarly activate AKT in MuSC-derived 221 

myoblasts. While the role of AKT has been explored in proliferation and differentiation in 222 

myoblasts, its role in apoptosis has not been well characterized (Loiben et al., 2017). We 223 

assessed for AKT activation via phosphorylated AKT (pAKT) in MuSC-derived myoblasts. We 224 

found that exogenous VEGFA could induce AKT phosphorylation (pAKT) (Figure 2H, 2I). This 225 

response was blunted in MuSC-Flt1Δ/Δ myoblasts and was no longer responsive to VEGFA 226 

(Figure 2H, 2I). Lastly, we wanted to confirm that AKT activation could improve myoblast 227 

survival. We infected lentiviral E4ORF1 or MyrAKT vectors in myoblasts (Figure 2J), both of 228 

which gene products have been shown to specifically activate AKT without activating ERK or 229 

p38 (Kobayashi et al., 2010). We found that overexpression of either of these genes improved 230 

cell survival compared with the control in vitro following induction of apoptosis via thapsigargin 231 

(Figure 2J). These data establish FLT1-AKT as the cascade linking VEGFA to apoptosis in 232 

MuSC-derived myoblasts during muscle regeneration (Figure 2K).  233 

 234 

VEGFA-FLT1 pathway protects MuSCs from apoptosis in vivo 235 

Endogenous and exogenous VEGFA have been shown to regulate cell survival and protect ECs 236 

from apoptosis in vitro (Gerber et al., 1998; Lee et al., 2007). To assess whether additional 237 

VEGFA had an effect of MuSC behaviors in vivo, we used mice carrying the VEGFA+/Hyper allele 238 

for injury-mediated tibialis anterior (TA) muscle regeneration following BaCl2 injection (Figure 239 

3A, 3B) (Miquerol et al., 1999). MuSC-derived myoblasts from Pax7+/tdT:VEGFA+/Hyper mice 240 
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showed around 2.8 fold increased expression of Vegfa but not the Vegfrs compared with 241 

myoblasts from wild-type mice (Figure S3A). Interestingly, while treatment with VEGFA alone 242 

had no effect on apoptosis in vitro, the MuSCs from Pax7+/tdT:VEGFA+/Hyper mice showed 243 

decreased cell death in regenerating muscle by 1 day following BaCl2 injection (Figure 3C). 244 

Consequently, single muscle fibers from Pax7+/tdT:VEGFA+/Hyper mice showed increased number 245 

of MuSCs, compared with those from Pax7+/tdT:VEGFA+/+ mice by 28 days following BaCl2 246 

injection (Figure 3D). In addition, muscle regeneration was promoted in VEGFA+/Hyper mice in 247 

the early and late muscle repair processes as judged by fiber diameter (Figures 3B, 3E, 3F, S3B-248 

D).  249 

We then performed the reciprocal experiment to investigate the consequence of Vegfa 250 

loss in MuSCs in vivo, and utilized MuSC-specific Vegfa knockout mice 251 

(Pax7+/CreER:VEGFALoxp/Loxp). We have previously shown that vasculature in the MuSC-252 

VEGFAΔ/Δ mouse muscle is perturbed and the proximity between the MuSC and EC is increased 253 

(Verma et al., 2018). However, the functional consequences of this remained unknown. We 254 

confirmed that clear downregulatin of VEGFA protein in MuSC-derived myoblasts isolated from 255 

MuSC-VEGFAΔ/Δ mice (Figure S3E). We noticed that deletion of Vegfa in MuSCs in the MuSC-256 

VEGFAΔ/Δ mouse muscle led to an increase in the proportion of dead MuSCs following BaCl2 257 

injection (Figure 3G). Consequently, the number of MuSCs in the MuSC-VEGFAΔ/Δ muscle were 258 

significantly reduced following recovery after injury (Figure 3H). There was no difference in the 259 

MuSC numbers in MuSC-VEGFAΔ/Δ muscle at homeostasis. In addition, the muscle had a 260 

regenerative defect as indicated by the shift in fiber size distribution and increased adipose 261 

following muscle injury (Figure 3B, 3I, 3J, S3F-H). While a limitation of this experiment is that 262 

the MuSC fusion into the fiber also deletes Vegfa from the fiber themselves, muscle fiber 263 
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specific deletion of Vegfa has not shown to have an effect on fiber size (Delavar et al., 2014). 264 

These data indicate that cell intrinsic VEGFA improves cell survival of MuSCs and that loss of 265 

MuSC-derived VEGFA results in reduced muscle regeneration.  266 

Since FLT1 but not FLK1 was detected in MuSCs and MuSC-derived myoblasts, we 267 

asked whether the Flt1 had an effect on MuSC survival in vivo, we evaluated cell death in 268 

MuSCs from MuSC-Flt1Δ/Δ mouse muscle. We induced muscle regeneration using BaCl2 for 1 269 

day and assessed for cell death in MuSCs. As seen in vitro, we found that loss of Flt1 in MuSCs 270 

(Figure S2I, S2J) resulted in increased cell death during early regeneration (Figure 3K). 271 

Consequently, single muscle fibers from MuSC-Flt1Δ/Δ mice showed decreased number of 272 

MuSCs, compared with those from MuSC-Flt1+/+ mice by 28 days following BaCl2 injection 273 

(Figure 3L). We also examined the long-term in vivo consequence of deleting Flt1 from MuSC. 274 

There was no significant muscle phenotype in MuSC-Flt1Δ/Δ muscle at homeostasis (Figures 3B, 275 

3M, 3N). However, following injury, the MuSC-Flt1Δ/Δ muscle had a modest regenerative defect 276 

as indicated by the shift in fiber size distribution following muscle injury (Figures 3B, 3M, 3N, 277 

S3J-N).  278 

 279 

VEGFA-FLT1 pathway regulates muscle pathology in DMD model mice 280 

While angiogenic defects have been reported in the mdx mice as well as in golden retrieval 281 

muscular dystrophy (GRMD; canine model of DMD) (Latroche et al., 2015; Verma et al., 2019, 282 

2010; Kodippili et al., 2021; Podkalicka et al., 2021), it is not clear whether VEGF family and its 283 

receptors are implicated in human dystrophinopathies. We probed the VEGF ligands and 284 

receptors in microarrays (Table S1) from skeletal muscles and MuSCs from mdx mice 285 

(Pallafacchina et al., 2010; Tseng et al., 2002) and skeletal muscles from the GRMD (Vieira et al., 286 
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2015). Vegfa was downregulated in both models (Figure S4A). Flt1 was also downregulated in 287 

GRMD but not mdx muscles. To examine whether VEGF signaling is altered in DMD patients, 288 

we performed gene expression analysis on previously available data from microarrays from 289 

patients with DMD (Chen et al., 2000). We also aggregated and probed microarray data from 290 

muscle biopsies of patients with various neuromuscular diseases or of healthy individuals after 291 

exercise (Bakay et al., 2006). In the microarray data, Vegfa expression was increased after an 292 

acute bout of exercise, and Vegfa expression was reduced in ALS muscle, BMD muscle, as well 293 

as both early and late phases of DMD muscle (Figure S4A). These data indicate that Vegfa 294 

expression is decreased in dystrophinopathy, and thus may benefit people with DMD by 295 

increasing VEGFA as a therapeutic target.  296 

Therefore, we crossed the MuSC-Flt1Δ/Δ mice with the chronically regenerating DMD 297 

model mice (mdx) to generate mdx:MuSC-Flt1Δ/Δ mice, and analyzed long term effects of Flt1 298 

deletion (Figure 4A, S4B). Importantly, we found a significant decrease in fiber diameter and 299 

increased fibrosis (Figures 4B-D, S4C) in TA muscle accompanied by a physiological decease in 300 

muscle perfusion as shown by laser Doppler flow at 12 months age (Figure 4E) as well as a 301 

functional decline in muscle strength as judged by grip strength both acutely and chronically 302 

(Figure 4F).  303 

By contrast, when we crossed the VEGFA+/Hyper mice with mdx mice (Figure 4A, S4D), 304 

we noticed a significant increase in fiber diameter and decreased fibrosis (Figures 4G-J, S4E) in 305 

both TA and diaphragm muscle of mdx:VEGFA+/Hyper mice accompanied by a physiological 306 

increase in muscle perfusion as shown by laser Doppler flow at 12 months age (Figure 4K) as 307 

well as a functional increase in muscle strength as judged by grip strength (Figure 4L). These 308 
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data indicate that VEGFA-FLT1 axis is a therapeutic target for the pathology seen in the mdx 309 

mice  310 

 311 

Discussion 312 

In this report, we performed bulk and single cell RNA sequencing on MuSCs and ECs.  Since 313 

deep reads can significantly reduce the effect of the technical noise in scRNAseq, it can improve 314 

estimation of minor transcriptional state of a given cell (Zhang, 2020). Unexpectedly, we found 315 

that MuSCs broadly express EC prototypic markers in small amounts and used multiple different 316 

bioinformatics techniques to validate the results. While similar phenomenon in myogenic cells 317 

during development and existence of blood vessel-associated myoendothelial cells in the adult 318 

skeletal muscle have been previously described, no functional follow up as been performed 319 

leading to the questions whether these minor expression profiles were artifacts or functional (De 320 

Angelis et al., 1999; Minasi, 2002; Tamaki et al., 2002; Zheng et al., 2007; Roobrouck, 2011; 321 

Huang et al., 2014; Charville et al., 2015; Goel et al., 2017; Giordani et al., 2018). Our goal was 322 

to see whether this small expression pattern had biological consequences. We ultimately decided 323 

to use Flt1 for further investigations and used RNAscope and immunostaining to validate its 324 

expression in MuSCs. We found that Flt1 indeed exerts a biological function even at a low 325 

expression. Signaling through VEGFA-FLT1-AKT can improve cell survival in MuSCs both in 326 

vivo and in vitro. 327 

On a grander scale, our finding of EC prototype markers expressed in MuSC calls into 328 

two questions 1) the genes that we used to specify cellular identities and 2) the cellular identity 329 

of MuSCs and ECs. The former is important as when we experimentally label, induce or perform 330 

Cre-mediated gene knockout experiments based on our assumptions of different gene expression 331 
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results which may be confounded for these low expressing genes. For example, we have 332 

previously investigated both Flt1 and Kdr in mouse muscle using three different reporters and 333 

found them to be negative in MuSCs, thereby disregarding their cell-autonomous effect when 334 

evaluating global knockouts (Verma et al., 2018, 2010). It is also possible that EC mRNAs are 335 

results of transcription from the cell or a result of mRNA transfer from neighboring cells 336 

(Desrochers et al., 2016). Of note, the transmission of tdTomato mRNA and protein from 337 

Pax7+/CreERT2:R26R+/tdT  mice used in this study has been recently shown via exosome, opening 338 

up the possibility of transmission of other mRNA from MuSC to ECs (Murach et al., 2020). The 339 

later is an interesting phenomenon form a developmental point of view. MuSCs and ECs arise 340 

from a bipotent progenitor originated from somites during early development (Kardon et al., 341 

2002; Hutcheson, 2009; Lagha, 2009; Mayeuf-Louchart, 2014; Mayeuf-Louchart, 2016). 342 

Therefore, it is possible that there is a permissive chromatin state that allows for expression of 343 

reciprocal genes in the two populations. Along the lines of these observations, FLK1(+) or VE-344 

cadherin(+) cells can contribute to myogenic cells in vitro and after cell transplantation (Tamaki 345 

et al., 2002; Le Grand et al., 2004; Zheng et al., 2007; Huang et al., 2014;), and during 346 

development (Drummond and Hatley, 2018; Mayeuf-Louchart et al., 2014; Motoike et al., 2003). 347 

Important notion is that the PDGFRα(-)FLK1(+) population exhibited restricted potential to 348 

differentiate into the MuSCs in injured muscle (Sakurai et al., 2008). Interestingly, in the 349 

zebrafish, exogenous expression of Etv2 in the fast muscle can lead to transdifferentiation of 350 

muscle fibers into functional vessels so there is evidence of cell fate flexibility (Veldman et al., 351 

2013). The potential of EC transdifferentiation was also examined by ETV2 overexpression in 352 

five human cell types, skeletal muscle cells, adipose-derived mesenchymal stem cells, umbilical 353 

cord-derived mesenchymal stem cells, embryonic lung fibroblast cells and skin fibroblast cells. 354 
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Among them, human skeletal muscle cells showed the highest amenability for this EC induction 355 

following infection with ETV2 lentivirus vector (Yan et al., 2019). Conversely, Etv2-deficient 356 

vascular progenitors can differentiate  into skeletal muscle cells (Chestnut et al., 2020). It would 357 

be interesting to see whether other EC gene signatures also have functional consequences in the 358 

MuSC or muscle at large.   359 

We decided to focus on function of Flt1 among several EC genes expressed in MuSCs 360 

for further investigations on MuSC biology. Our pharmacological and genetic analyses 361 

demonstrate that MuSC-derived VEGFA has a drastic effect on cell survival in the via its 362 

receptor FLT1 by signaling through AKT1. While VEGFA binds to both FLT1 and FLK1, 363 

VEGFB and PGF only bind to FLT1. This creates a scenario where PGF and VEGFB binding 364 

can sequester FLT1, increasing free VEGFA availability for VEGFA-FLK1 binding which is the 365 

major VEGF signaling pathway for many cell types (Vempati et al., 2014). While PGF is not 366 

normally expressed in adult tissues, VEGFB is expressed in the MuSCs and muscle fiber (data 367 

not shown). Importantly, the VEGFB-FLT1 axis has also been shown to inhibit apoptosis in 368 

retina and brain cells in mouse models of ocular neurodegeneration and stroke (Li et al., 2008). 369 

While our results cannot rule out the involvement of VEGFB in protection of MuSC apoptosis, 370 

we provide evidence from both pharmacological and genetic data to indicate that VEGFA is 371 

involved.  372 

 Despite drastic effect of VEGFA-FLT1 on apoptosis in vitro, the long-term consequences 373 

of in vivo deletion of Flt1 in the MuSC compartment were modest compared with deletion of 374 

Vegfa in the MuSCs unless crossing with mdx mice. Although Vegfa is required for both MuSC 375 

survival and recruitment of vascular niche (Verma et al., 2018), in the steady state, the MuSC 376 

turnover may be low enough that the apoptotic stress burden is low. VEGFA improves cell 377 
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survival during the proliferative stage following injury, however this transient improvement in 378 

survival has only a modest impact on the final regenerative process as shown in 379 

mdx:VEGFA+/Hyper mice.  380 

VEGFA and FLT1 targeted therapies are being explored as both pro- and anti-angiogenic 381 

therapies for several indications including retinal degeneration, cancer, pre-eclampsia and 382 

neuromuscular diseases (Bae et al., 2005; Keifer et al., 2014; Mac Gabhann et al., 2011; Verma 383 

et al., 2010; Verma et al., 2019; Bosco et al., 2021; Xin et al., 2021). As these therapies mature, 384 

it will be important to ascertain the MuSC-specific effects of VEGFA and FLT1.   385 

  386 
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Materials and Methods 387 

Mice 388 

Flt1LoxP/LoxP were obtained from Gua-Hua Fong (Ho et al., 2012). B6.Cg-Pax7tm1(cre/ERT2)Gaka/J 389 

(Pax7+/CreERT2; JAX stock# 017763; Murphy et al., 2011), B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J 390 

(Ai9; JAX stock # 007909; Madisen et al., 2010), VEGFA+/Hyper (Vegfatm1.1Nagy/J; JAX stock# 391 

027314; Miquerol et al., 1999) and B6Ros.Cg-Dmdmdx-5cv/J (mdx5cv; JAX stock #002379; 392 

Chapman et al., 1989) were obtained from Jackson Laboratory. Kdrtm2.1Jrt/J (Flk1+/GFP) were 393 

obtained from Masatsugu Ema (Ema et al., 2006). B6.Cg-Pax7tm1(cre/ERT2)Gaka/J (Pax7+/CreERT2) 394 

mice were crossed with the B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (Ai9) to yield the 395 

Pax7+/CreERT2:R26RtdT(Pax7tdT) mice. Pax7tdT mice were bred with the VEGFA+/Hyper and 396 

Flk1+/GFP to obtain Pax7+/tdT:VEGFA+/Hyper and Pax7+/tdT:Flk1+/GFP mice. VEGFALoxP/LoxP mice 397 

obtained from Napoleone Ferrara (Gerber et al., 1999) were crossed with Pax7+/CreERT2 to yield 398 

the Pax7+/CreERT: VEGFALoxP/LoxP mice. Flt1LoxP/LoxP mice obtained from Guo-Hua Fong (Ho et al., 399 

2012) were crossed with Pax7+/CreERT2 to yield the Pax7+/CreERT:Flt1LoxP/LoxP mice. Colonies for all 400 

the mice were established in the laboratory. Cre recombination was induced using tamoxifen 401 

(Sigma-Aldrich, T5648) dosed as 75 mg/kg body weight x 3 times over one week at 3-6 weeks 402 

of age. Mice carrying the wild-type CreERT2 allele were used for control experiments. TA 403 

muscle regeneration was induced by intramuscular injection of 20 µl of 1% BaCl2 (Sigma-404 

Aldrich, 342920) or 20 µl of 10 µM Cardiotoxin (CTX) (Sigma-Aldrich, V9125). Mice used for 405 

this study is summeried in Table S2. 406 

Genotyping to detect the transgenic and mutant alleles was performed by PCR using the 407 

primers described on the web site of Jackson Laboratory shown in Table S3. All primers were 408 

synthesized as custom DNA oligos from Integrated DNA technologies (IDT). Genotyping to 409 
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detect the mutated allele of mdx5cv was performed by PCR using the primers (0981 and 0982) 410 

shown in Table S1. The PCR product DNA was digested with DraIII restriction enzyme (New 411 

England Biolabs, R3510S). Wild-type allele generated 180 bp and mutant allele generated 50 412 

and 130 bp bands. 413 

The animals were housed in an SPF environment and were monitored by the Research 414 

Animal Resources (RAR) of the University of Minnesota. All protocols were approved by the 415 

Institutional Animal Care and Usage Committee (IACUC) of the University of Minnesota and 416 

complied with the NIH guidelines for the use of animals in research. 417 

 418 

Cell isolation by FACS 419 

Pax7tdT:Flk1GFP mice were utilized for FACS-mediated MuSC and EC isolation as previously 420 

described (Asakura et al, 2002; Verma, 2018). We performed extensive validation of the 421 

fluorescent reporter mice as previously described (Figure S1A-C; Verma, 2018). Briefly, 422 

quiescnet MuSCs and ECs were isolated from the hind limb skeletal muscle of 1–2-mo-old 423 

Pax7tdT:Flk1GFP mice after digestion with collagenase type II. FACS was performed on an FACS 424 

sorter (BD FACSAria) and data were analyzed using FlowJo (BD Biosciences). Sorting gates, 425 

tdTomato(+) for MuSCs and GFP(+) for ECs, were strictly defined based on control cells 426 

isolated from wild-type mice and the forward scatter and side scatter gating. Sorted cells were 427 

immediately characterized by immunostaining on slide glasses, utilzed for RNA preparation or 428 

cultured on collagen-coated plates in the myoblast growth medium as below to obtain MuSC-429 

derived myoblasts and ECs. FACS analysis was performed as previously described (Turaç et al., 430 

2013). Cells were either trypsinized (cultured cells) or a single cell suspension was obtained 431 

following enzymatic digestion as whole muscle-derived cells (Asakura, 2002). Cells were then 432 
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washed with FACS buffer (2% BSA and 1 mM EDTA in PBS) followed by live/dead staining 433 

using ZombieNIR (Biolegends, 423105). Cells were washed, then immunostained for cell 434 

surface markers. Blocking cells was performed with 1% BSA/PBS, and cells were incubated in 435 

fluorescently-conjugated antibody. FACS was performed on a Fortessa X-20 (BD Biosciences) 436 

with a 355 nm, 405 nm, 488 nm, 561 nm, and 640 nm lasers.  437 

 438 

Cell culture  439 

MuSC-derived myoblast isolation from adult mice was performed as previously described 440 

(Asakura et al, 2001; Motohashi et al., 2014). Briefly, after collagenase type II (Worthington, 441 

CLS-2) treatment, dissociated cells from mouse hindlimb muscle were incubated with anti-442 

CD31-PE (eBiosciences, 12-0311), anti-CD45-PE (eBiosciences, 30-F11), anti-Sca1-PE 443 

(eBiosciences, Dec-81) and anti-Integrin α7 (MBL International, ABIN487462), followed by 444 

anti-PE microbeads (Miltenyi Biotec, 130-048-801), and then performed LD column (Miltenyi 445 

Biotec, 130-042-901) separation. Negative cell populations will be incubated with anti-Mouse 446 

IgG beads (Miltenyi Biotec, 130-048-402), and then MS coulumn (Miltenyi Biotec, 130-042-447 

201) separation was performed to isolate Integrin α7(+) MuSCs. MuSC-derived myoblasts were 448 

maintained in culture on collagen coated plates in myoblast medium containing 20% FBS and 20 449 

ng/ml bFGF (Invitrogen, PHG0263) in HAM’s-F10 medium.  Cell cultures were maintained in a 450 

humidified incubator at 37°C with 5% CO2 and 5% O2. 4-hydroxy tamoxifen (4-OHT, Sigma-451 

Aldrich, H6278) treatment (1 µM in EtOH) was used to induce Flt1 deletion in myoblasts 452 

isolated from Flt1LoxP/LoxP:Pax7CreERT2 mice. For cell survival assay, 1 x 105 cells were allowed to 453 

adhere for one day and starved overnight in 0.1% FBS in HAM’s F10 medium. Then, cells were 454 

exposed to 1 µM EdU along with or withpout 2-100 ng/ml recombinant VEGFA (R&D Systems, 455 
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493-MV) for 8 hours before being fixed and stained by the Click-iT EdU Alexa Fluor 488 456 

Imaging Kit (Thermo Scientific, C10337). For induction of apoptosis in myoblasts, (1-2 x 105) 457 

cells were allowed to adhere to the plates for 16 hours. Thapsigargin-mediated apoptosis was 458 

induced by 1 µM of thapsigargin (Sigma-Aldrich, T9033) dissolved in EtOH with or without 459 

VEGFA, 100 ng/ml recombinant FLT1-FC (R&D Systems, 7756-FL), 1 µg/ml anti-FLT1 460 

monoclonal antibody (Angio-Proteomie, MAB7072), inhibitors of FLK1, 3 µM ZM306416 461 

(R&D Systems, 2499/1) and 10 µM of SU5402 (R&D Systems, 3300/1) and an inhibitor of 462 

NRP1, 30 µM of EG00229 (R&D Systems, 6986/10) for 24 hours. UV light-mediated apoptosis 463 

was induced by exposing the cells to UV light in cell culture hood for 45 seconds without 464 

medium. After UV exposure, cell survival was assessed 24 hours following culture in 0.1% FBS 465 

in HAM’s F10 medium with or without VEGFA using the Crystal violet Assay Kit (Abcam, 466 

ab232855) and quantated the Crystal violet dye after solubilization by absorbance at 570 nm. To 467 

induce differentiation of myoblasts, the myoblast medium was replaced with differentiation 468 

medium that contained DMEM supplemented with 5% horse serum with or withour VEGFA or 469 

bFGF for 1 or 3 days followed by anti-sarcomeric myosin heavy chain antibody (Developmental 470 

Study Hybridoma Bank, MF-20). 471 

 472 

AKT induction 473 

The lentiviral pCCL-E4ORF1 and pCCL-myrAkt1 constructs were a kind gift from Dr. Jason 474 

Butler (Kobayashi et al., 2010). 293FT cells (Thermo Fisher Scientific, R70007) were seeded in 475 

DMEM with 10% FBS and transfected with the lentivirus vectors along with pCMV-VSV-G 476 

(Addgene, 8454), pRSV-Rev (Addgene, 12253), and pMDLg/pRRE (Addgene, 12251) using 477 

PolyJet transfection reagent (Signagen Laboratories, SL100688). The culture supernatant of the 478 
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transfected 293FT cells was added to MuSC-derived myoblast culture with 0.8 μg/ml polybrene 479 

(MilliporeSigma, H9268). pAKT1(+) cells were stainined with anti-pAKT antibody (Cell 480 

Signaling, 4060).  481 

 482 

Apoptosis assay 483 

Apoptosis was measured using measured using Annexin V-Biotin Apoptosis Detection Kit 484 

(eBioscience™, BMS500BT-100) as per the manufacture’s instruction. Streptavidin-conjugated 485 

AlexaFluro-488 was used for detection. Propidium Iodide (PI) was used in all assays except 486 

when Pax7tdT(+) cells were utilized or when ZombieNIR (Biolegends, 423105) was used. FACS 487 

was performed on a Fortessa X-20 (BD Biosciences) equipped with a 355 nm, 405 nm, 488 nm, 488 

561 nm, and 640 nm lasers. 489 

 490 

Immunostaining of cells  491 

Immunostaining for PECAM1, VE-Cadherin, VEGFA, VEGFRs was performed on collagen 492 

coated coverslips. Other immunostaining was performed on 30 mm tissue culture plates. Cells 493 

were fixed with 2% PFA for 5 minutes and immunostained as previously described (Verma et al., 494 

2010). For membrane receptor staining, cells were permeabilized with 0.01% saponin 495 

(ThermoFisher Scientific, ICN10285525) which was kept in the staining solution until the 496 

primary antibodies were washed off. At which time, 0.01% Triton-X was added to all the buffers. 497 

The antibodies used for this study are listed in Table S4.  498 

 499 

Single muscle fiber isolation and staining 500 
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Extensor digitorum longus (EDL) muscle was dissected and digested with 0.2% collagenase type 501 

I (Sigma-Aldrich, C0130) for single muscle fiber isolation as previously described (Verma et al., 502 

2010). Single muscle fibers were fixed with 2% PFA/PBS, permeabilized with 0.2% Triton-503 

X100 and counterstained with DAPI. Anti-Pax7 antibody(+) or tdTomato(+) MuSCs per single 504 

muscle fiber were counted manually.  505 

 506 

RNAscope 507 

RNAscope for Flt1 transcripts was performed as previously described (Kann and Krauss, 2019) 508 

on single muscle fibers from Pax7tdT mice using the RNAscope Probe - Mm-Flt1 (C1) (ACDBio, 509 

415541). Briefly, isolated EDL fibers are fixed in 4% PFA, washed with PBS, and dehydrated in 510 

100% methanol. Subsequently, fibers are rehydrated in a stepwise gradient of decreasing 511 

methanol concentrations in PBS/0.1% Tween-20. Fibers are treated with a proteinase for 10 512 

minutes, followed by hybridization, amplification, and fluorophore conjugation steps.  513 

 514 

Histology 515 

The mouse tibialis anterior (TA) muscle was used for all histological analysis. Tissues were 516 

frozen fresh using LiN2 chilled isopentane and stored at -80ºC. Eight μm thick transverse 517 

cryosections were used for all histological analysis. Hematoxylin & Eosin (HE) staining were 518 

performed as previously described (Verma et al., 2010). Sirius red (Direct Red 80, Sigma-519 

Aldrich, 365548) staining was performed for muscle sections for fibrosis as previously described 520 

(Shimizu-Motohashi et al., 2015). Muscle sections were stained in Oil Red O solution (Sigma-521 

Aldrich, O1391-250ML) as previously described (Wang et al., 2017). Microscopic images were 522 

captured by a DP-1 digital camera attached to BX51 fluorescence microscope with 10x or 40× 523 
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UPlanFLN objectives with cellSens Entry 1.11 (all from Olympus). Photoshop (Adobe) and Fiji 524 

(NIH) were used for image processing and manually enumerating the fiber diameter (Schindelin 525 

et al., 2012).  526 

 527 

Grip strength test 528 

Forelimb grip strength test was performed following a previously published procedure (Aartsma-529 

Rus and van Putten, 2014). Briefly, mice were gently pulled by the tail after fore limb-grasping a 530 

metal bar attached to a force transducer (Grip Strength Meter, Columbus Instruments, 1027CSM-531 

D52). Grip strength tests were performed by the same blinded examiner. Five consecutive grip 532 

strength tests were recorded, and then mice were returned to the cage for a resting period of 20 533 

minutes. Then, three series of pulls were performed each followed by 20 min resting period. The 534 

average of the three highest values out of the 15 values collected was normalized to the body 535 

weight for comparison. 536 

 537 

Muscle perfusion 538 

RBC flux was evaluated using the moorLabTM laser Doppler flow meter as previously described 539 

(Verma, 2010) with the MP7a probe that allows for collecting light from a deeper tissue level 540 

than standard probes according to the manufacturer’s instructions (Moor Instruments). The fur 541 

from the right hind leg was removed using a chemical depilatory. Readings were taken using the 542 

probe from at least 10 different spots on the TA muscle. The AU was determined as the average 543 

AU value during a plateau phase of each measurement.  544 

 545 

RNA and genomic DNA isolation and qPCR 546 
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Cultured cells were washed with ice cold PBS and lysed on the place with TrizolTM. RNA was 547 

isolated using the DirectZolTM RNA Microprep Kit (Zymo Research, R2062) with on-column 548 

DNase digestion followed by cDNA synthesis using the Transcriptor First Strand cDNA 549 

synthesis kit (Roche Molecular Diagnostics, 04379012001) using random primers. Genomic 550 

DNA for genotyping was isolated from mouse tail snips with lysis buffer containing Proteinase 551 

K (Sigma-Aldrich, P2308).  qPCR was performed using GoTaq qPCR Master Mix (Promega, 552 

A6002). The input RNA amount was normalized across all samples and 18S rRNA or HtatsF1 553 

was used for normalization of qPCR across samples. Primer sequences are listed in Table S3. All 554 

primers were synthesized as custom DNA oligos from Integrated DNA technologies (IDT). 555 

 556 

Single cell RNAsequencing and analysis 557 

Cells for single cell RNAseq were obtained from hind limb muscles of 2-3 moth-old 558 

Pax7tdT:Flk1GFP mice following enzymatic digestion as previously described (Liu et al., 2015). 559 

Dead cells were excluded from the analysis using ZombieNIR (Biolegends, 423105). 560 

TdTomato(+) and GFP(+) cells were sorted individually and then 20% of GFP(+) cells were 561 

spiked into 80% tdTomato(+). We loaded ~5,000 cells into 1 channel of the Chromium system 562 

for each of these samples and prepared libraries according to the manufacturer’s protocol using 563 

version 2.0 chemistry (10x Genomics). Following capture and lysis, we synthesized cDNA and 564 

amplified for 12 cycles as per the manufacturer’s protocol (10x Genomics). The amplified cDNA 565 

was used to construct Illumina sequencing libraries that were each sequenced with ~300K 566 

read/cell on one lane of an Illumina HiSeq 2500 machine. We used Cell Ranger 3.1 (10X 567 

Genomics) to process raw sequencing data. For A custom genome was constructed to include 568 

eGFP-SV40, tdTomato-WPRE-BGHPolyA and Pax7-IRES-CreERT2 transgenes. Detailed step-569 
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by-step instructions can be found at https://github.com/verma014/10XCustomRef. We carried 570 

out analyses of the filtered data using Seurat suite version 3.0 (Stuart et al., 2019) in R studio 571 

(RStudio Team, 2020). For cell imputation, we utilized ALRA through the Seurat wrapper with 572 

default settings(Linderman et al., 2018). Additional scRNAseq datasets were obtained from GEO 573 

and analyzed using the same method as listed above. A myogenic score was calculated based on 574 

the expression of Myog, Pax7, Myod1 and Myf5. Step-by-step instructions for the analysis can be 575 

found on https://github.com/verma014/10XCustomRef. 576 

 577 

Background Subtraction  578 

10x Genomics scRNAseq platform uses many more droplets than cells and so following a run, 579 

there are many droplets that do not have cells. These droplets still get sequenced with some of 580 

the RNA that is in the solution. This floating RNA can be used to estimate the "background" in 581 

each droplet. A better description of this can be found by the developers of 'SoupX' (Young and 582 

Behjati, 2020). Since Cdh5 expression has previously been verified in MuSCs using RNAscope, 583 

we were able to use it as a positive control to remove the background or "soup" from our data. If 584 

Cdh5 is absent from MuSC, we know that the background subtraction was too aggressive and 585 

that subtracting the Soup is not reliable in our case. In addition, we know certain genes that are 586 

considered to be specific for MuSCs, muscle ECs or muscle fibers based on the bulk RNAseq 587 

(Verma et al., 2018). The top 5 genes that are specific to these population (and also detected by 588 

10x) were selected and used to show the background in our data set was 14.40% and 13.89% for 589 

the D0 and D3 dataset, respectively. The step-by-step instructions can be found on 590 

https://github.com/verma014/10XCustomRef.  591 

 592 
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Bulk RNAseq and Microarray Analysis  593 

FASTQ files were downloaded from SRA using SRA-toolkit. Sequences were trimmed using 594 

trimmomatic to remove adapter contamination and low-quality reads. Trimmed sequences were 595 

mapped to mouse mm10 using Hisat2 (Pertea et al., 2016). Transcript assembly was performed 596 

using StringTie (Pertea et al., 2016). Cell type specificity was determined as previously 597 

described (Verma et al., 2018).  Microarray analysis was performed using the Affymetrix 598 

Transcriptome Analysis Console (TAC). Samples in each experiment were RNA normalized and 599 

the expression was acquired using the Affeymetrix Expression analysis console with gene level 600 

expression. Heatmaps were generated in Prism 9 (Graphpad, La Jolla, CA). The code for 601 

generating each graph is listed in the following table, along with the link to the data in tabular 602 

format.  603 

 604 

Quantification and Statistical Analysis 605 

Statistical analysis was performed using Prism 9 (Graphpad, La Jolla, CA) or RStudio (RStudio 606 

Team, 2020). For comparison between two groups, an unpaired T-test was used. For comparison 607 

between multiple groups, a one-way ANOVA was used with multiple comparisons to the control. 608 

Distributions were compared using a chi-squared test. Graphing of the data was performed using 609 

Prism 9. Vector diagrams were modified using Graphic (Autodesk). All values are means ±SEM 610 

unless noted otherwise. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 611 

 612 

Data and Software Availability 613 

All the data was obtained from NCBI GEO. Microarrays of mouse MuSCs were obtained from 614 

GSE3483 (Fukada et al., 2007). scRNAseq of MuSCs and muscle ECs was performed in this 615 
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study (GSE129057). scRNAseq of whole muscle was obtained from GSE143437 (De Micheli et 616 

al., 2020). Bulk RNAseq of MuSCs, ECs and single muscle fibers was obtained from 617 

GSE108739 (Verma et al., 2018) and GSE64379 (Ryall et al., 2015). Bulk RNAseq of TU-618 

tagged RNA of MuSCs was obtianed from GSE97399 (van Velthoven et al., 2017). Bulk 619 

RNAseq of fixed and unfixed MuSCs was obtained from GSE113631 (Yue et al., 2020). 620 

Exercise, ALS, DMD, BMD, FSHD GSE3307, Early DMD GSE465, mdx GSE466, GRMD 621 

GSE69040, Satellite cells GSE15155. All arrays were normalized to their respective controls. All 622 

arrays and RNAseq data are listed in Supplemental Table 1 (Table S1). 623 
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Figure Legends 973 

 974 

Figure 1. EC gene signal including VEGF receptor genes in MuSCs. 975 

A) Experimental schema for bulk and single cell sequencing from the 976 

Pax7CreERT2:R26RtdT:Flk1GFP mice. Bulk sequencing performed on MuSCs, ECs and 977 

single muscle fibers (SMFs) from uninjured muscle. FACS sorted MuSCs and ECs from 978 

uninjured and regenerating TA muscle (3 days following CTX) were run separately on 979 

the 10X single cell platform and aggregated. 980 

B) Bulk RNAseq showing EC signature in MuSCs. Subset dividing genes that are 981 

commonly used to delineate cell identity for MuSCs, ECs and SMFs. Last column shows 982 

genes that define macrophages (Mφ), which should not be highly expressed in any on our 983 

cell types. Red dots indicate MuSCs, green dots indicate ECs and blue dots indicate 984 

SMFs.  985 

C) UMAP from aggregated single cell RNAseq shows expression of different phases of 986 

MuSCs (quiescent MuSCs, activated MuSCs and myoblasts), ECs (tip ECs and ECs) and 987 

from likely contaminant cells such as macrophages (Mφ) and smooth muscle cells 988 

(SMC).  989 

D) UMAP from aggregated data visualized by sample day showing MuSCs segregated by 990 

the sample day but overlap in the EC population. Red dots indicate intact (day 0) and 991 

blue dots indicate 3 days following CTX. 992 

E) Expression of quality control genes such as eGFP, tdTomato, CreERT2 and EC genes 993 

such as Cdh5, Kdr and Flt1.  994 
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F) Genome browser tracks of whole muscle and TU-tagged MuSC nascent RNA 995 

(GSE97399, van Velthoven et al., 2017). Kdr and Pecam1 expression can be found in the 996 

MuSC fraction. As control, Myh1 is highly expressed in the whole muscle preparation but 997 

largely absent in the MuSC fraction. Sdc4 and Calcr are highly expressed in MuSC and 998 

less so in the whole muscle fraction.  999 

G) qPCR for Kdr, Flt1, Nrp1 and Nrp2 in EC lines (B.end3 and C166), muscle cell line 1000 

(C2C12) and MuSC-derived myoblasts in growth and differentiation medium (DM) 1001 

shows low level expression of VEGFRs and VEGF co-receptors. 1002 

H) RNAScope of Flt1 on freshly isolated single muscle fibers from Pax7tdT mice shows Flt1 1003 

expression (green) and tdTomato (red) in MuSCs. Nuclei were counterstained with DAPI 1004 

(blue). Scale bar indicates 5 µm. 1005 

I) Immunostaining for PECAM1, VE-cadherin (VE-Cad), VEGFA co-receptors (NRP1 and 1006 

NRP2) and VEGFA receptors (FLT1 and FLK1) in B.End3 EC cell line and MuSC-1007 

derived myoblasts (MB). Nuclei were counterstained with DAPI (blue). Scale bar 1008 

indicates 20 µm. 1009 

 1010 

Figure 2. VEGFA-FLT1-AKT1 axis controls apoptosis in MuSC in vitro. 1011 

A) Immunostaining for VEGFA (green) in MuSC-derived myoblasts. Nuclei were 1012 

counterstained with DAPI (blue). Scale bar indicates 20 µm. 1013 

B) Experimental scheme for assessing apoptosis following thapsigargin induction in 1014 

myoblast culture. 1015 
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C) Decreased cell survival in myoblast in vitro as VEGFA is blocked using FLT1-FC (a 1016 

VEFGA trap) following thapsigargin induction. This phenotype is partially rescued with 1017 

exogenous VEGFA (50 ng/ml).  1018 

D) Graphical representation of the VEGF pathway inhibitors used in panel E. 1019 

E) Following thapsigargin induction, apoptotic and necrotic cells are increased with 1020 

inhibition of FLT1 via FLT1-FC or anti-FLT1 antibody (anti-FLT1 mAb) but not FLK1 1021 

(SU5402 and ZM306416) or NRP1-FLK1 inhibition (EG00229) following exogenous 1022 

VEGFA (50 ng/ml).  1023 

F) 4-OHT induced deletion of Flt1 in Pax7+/CreER:Flt1Loxp/Loxp myoblasts is sufficient to 1024 

reduce cell survival in myoblast without induction of apoptosis. 1025 

G) Cell survival is decreased in vitro in myoblast with thapsigargin induction following 4-1026 

OHT mediated deletion of Flt1 in Pax7+/CreER:Flt1Loxp/Loxp myoblast that is not rescued by 1027 

exogenous VEGFA. Blue indicates MuSC-Flt1+/+, red indicates MuSC-Flt1+/+ with 50 1028 

ng/ml VEGFA, green indicates MuSC-Flt1Δ/Δ and purple indicates MuSC-Flt1Δ/Δ with 50 1029 

ng/ml VEGFA. 1030 

H) Representative images of pAKT (red) in myoblast stained by MyoD (green) in MuSC-1031 

Flt1+/+ and MuSC-Flt1Δ/Δ myoblasts induced with exogenous VEGFA. Nuclei were 1032 

counterstained with DAPI (blue). Scale bar indicates 50 µm. 1033 

I) Quantification of pAKT in myoblasts stained by MyoD in MuSC-Flt1+/+ and MuSC-1034 

Flt1Δ/Δ myoblast induced w/wo exogenous VEGFA. VEGFA induction increases pAKT 1035 

in MuSC-Flt1+/+ myoblasts but this response is lost in MuSC-Flt1Δ/Δ myoblasts. 1036 
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J) Annexin V quantification of myoblasts transfected with myr-AKT and E4ORF1 to 1037 

activate AKT1 showed increased cell survival of myoblasts following thapsigargin 1038 

induction. 1039 

K) Representative model for VEGFA-FLT1-AKT axis-mediated MuSC survival. 1040 

 1041 

Figure 3. MuSC-derived VEGFA and Flt1 requires proper skeletal muscle. 1042 

A) Experimental schema detailing the experiments performed in this figure. The 1043 

Pax7+/CreER:R26RtdT:VEGFA+/Hyper (VEGFA+/Hyper) Pax7+/CreER:R26RtdT:VEGFALoxp/Loxp 1044 

for MuSC-VEGFAΔ/Δ and Pax7tdT:Flt1Loxp/Loxp for MuSC-Flt1Δ/Δ lines were pulsed with 1045 

tamoxifen (TMX) prior to investigation. 1046 

B) Representative H&E-stained images for intact and on 14-day post injury TA muscle from 1047 

MuSC-VEGFA+/Hyper, MuSC-Flt1Δ/Δ and MuSC-VEGFAΔ/Δ mice and their representative 1048 

controls. Scale bar indicates 50 µm. 1049 

C) Annexin V staining show less necrotic cells in MuSC from VEGFA+/Hyper mice compared 1050 

with the control one day following injury. 1051 

D) Quantification of MuSCs from single muscle fibers show increased MuSCs in 1052 

VEGFA+/Hyper EDL muscle compared with the control mice at base line and 14 days post 1053 

injury.  1054 

E) Fiber size distribution and F) mean feret’s diameter of uninjured and regenerating muscle 1055 

14 days post injury from VEGFA+/Hyper and control mice show no difference at baseline 1056 

but an increase in fiber diameter following injury.  1057 

G) Annexin V staining show increased dead cells in MuSCs from MuSC-VEGFAΔ/Δ mice 1058 

one day following CTX compared with the control MuSC-VEGFA+/+ mice. 1059 
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H) Quantification of MuSCs from single muscle fiber at base line and 14 days post injury.  1060 

I) Fiber size distribution and J) mean feret’s diameter of uninjured and regenerating muscle 1061 

14 days post injury from MuSC-VEGFAΔ/Δ and MuSC-VEGFA+/+ mice show no 1062 

difference at baseline but a decrease in fiber diameter following injury.  1063 

K) Annexin V staining show increased apoptosis in MuSCs from MuSC-Flt1Δ/Δ mice one 1064 

day following injury compared with the control MuSC-Flt1+/+ mice. 1065 

L) Quantification of MuSCs from single muscle fiber show decreased MuSCs in MuSC-1066 

Flt1Δ/Δ EDL muscle at base line and 14 days post injury compared with the control 1067 

MuSC-Flt1+/+ mice. 1068 

M) Fiber size distribution and N) mean feret’s diameter of uninjured and regenerating muscle 1069 

from MuSC-Flt1Δ/Δ and compared with the control MuSC-Flt1+/+ mice show no 1070 

difference at baseline but a decrease in fiber diameter following injury.  1071 

 1072 

Figure 4. VEGFA-FLT1 pathway in MuSCs regulates muscle pathology in DMD model 1073 

mice. 1074 

A) Experimental schema detailing the experiments performed in this figure. The 1075 

mdx:Pax7tdT:Flt1Loxp/Loxp was pulsed with tamoxifen (TMX) to generate mdx:MuSC-1076 

Flt1Δ/Δ mice prior to investigation. mdx:VEGFA+/Hyper mouse line was used without any 1077 

induction. 1078 

B) Representative H&E and Sirus red stain from mdx:MuSC-Flt1+/+ and mdx:MuSC-Flt1Δ/Δ 1079 

mouse TA muscle at 3 months of age. Scale bar indicates 50 µm. 1080 

C) Smaller average fiber size in mdx:MuSC-Flt1Δ/Δ compared with the control mdx:MuSC-1081 

Flt1+/+ mouse TA muscle.  1082 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.08.28.458037doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.28.458037


 51 

D) Increased fibrotic area in mdx:MuSC-Flt1Δ/Δ compared with the control mdx:MuSC-1083 

Flt1+/+ mouse TA muscle.  1084 

E) Decreased muscle perfusion in mdx:MuSC-Flt1Δ/Δ compared with the control mdx:MuSC-1085 

Flt1+/+ mouse TA muscle.  1086 

F) Decreased grip strength normalized to body weight in mdx:MuSC-Flt1Δ/Δ compared with 1087 

the control mdx:MuSC-Flt1+/+ mouse TA muscle at both 3 and 12 months of age.  1088 

G) Representative H&E and Sirus red stain from mdx:VEGFA+/Hyper and mdx:VEGFA+/+ 1089 

mouse TA muscle at 3 months from TA muscle (top four panels) and diaphragm muscle 1090 

(bottom four panels). 1091 

H) Increased average fiber size in mdx:VEGFA+/Hyper compared with the control 1092 

mdx:VEGFA+/+ mouse TA and diaphragm (DM) muscle. Scale bar indicates 50 µm. 1093 

I) Decreased fibrosis in mdx:VEGFA+/Hyper compared with the control mdx:VEGFA+/+ 1094 

mouse TA muscle.  1095 

J) Decreased fibrosis in mdx:VEGFA+/Hyper compared with the control mdx:VEGFA+/+ 1096 

mouse diaphragm (DM) muscle. 1097 

K) Muscle perfusion is increased in mdx:VEGFA+/Hyper compared with the control 1098 

mdx:VEGFA+/+ mouse TA muscle. 1099 

L) Grip strength normalized to body weight is increased in mdx:VEGFA+/Hyper compared 1100 

with the control mdx:VEGFA+/+ mice. 1101 
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