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・Using chronic two-photon imaging and sparse modeling, we successfully discriminated 37 

neural ensembles encoding conditioned responses (CR ensembles). 38 

・We confirmed that the CR ensembles were distinct from neurons encoding regular 39 

locomotion and emerged as a result of fear conditioning. 40 

・Enhanced coactivity and functional connectivity were specifically observed in CR 41 

ensembles as a result of fear conditioning. 42 

・Further graphical modeling revealed the signature of the construction of the conditioned 43 

stimulus-unconditioned stimulus (US) association circuit by rewiring around the US 44 
responsive pattern completion cells in an experience-dependent manner. 45 
 46 
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 47 

Abstract 48 
The prefrontal cortex regulates various emotional behaviors and memories, and prefrontal 49 
dysfunction can trigger psychiatric disorders. While untangling the internal network may 50 
provide clues to the neural architecture underlying such disorders, it is technically difficult 51 
due to the complexity and heterogeneity of the network. Here we propose an optical and 52 
computational dissection of the internal prefrontal network utilizing chronic two-photon 53 

imaging and a sparse modeling algorithm, which enabled the discrimination of newly 54 
emerged neuronal ensembles specifically encoding conditioned fear responses. Further 55 
graphical modeling revealed that neurons responding to the unconditioned stimulus during 56 

fear conditioning became a core of the ensembles with an enhanced capability for pattern 57 
completion, demonstrating activity-dependent rewiring upon the associative learning.  58 
 59 
  60 

Introduction 61 
The prefrontal cortex (PFC) is an important brain region that regulates various types of 62 

behaviors and memories: aversive and appetitive memories, decision-making, and higher-63 
order cognitive functions1-5. The importance of the PFC is evolutionarily conserved in 64 
mammals, from humans to primates to rodents4, 6-8, although the functional and anatomical 65 

analogy across species is still debated7, 9-12. Dysfunction of the PFC impairs the ability to 66 
organize positive and negative valences, and may lead to various psychiatric diseases, 67 

including depression, schizophrenia, and fear-related disorders (e.g. post-traumatic stress 68 

disorder)13-17. How the PFC can distinctively encode and regulate such diverse information, 69 

however, remains unclear. Information processing based on the neural population, including 70 
neurons with mixed selectivity, is suggested to be key for prefrontal computations18, but 71 

further studies are required to uncover the mechanism underlying the acquisition of novel 72 
emotional memories and related functions. Resolving the mechanisms underlying the 73 
implementation of newly acquired aversive memories in the internal PFC network in parallel 74 

with existing information encoders could contribute to elucidating the neural architecture 75 
involved in such psychiatric disorders.  76 
 77 

In rodents, the dorsal part of medial prefrontal cortex (dmPFC, also called prelimbic 78 
cortex) is important for the retrieval of fear memory19-24. Previous studies revealed activated 79 
individual neurons25 or enhanced synchrony of neural populations22 in the dmPFC during the 80 

conditioned response (CR, i.e. fear memory-evoked freezing behavior). Pharmacological and 81 
optogenetic silencing impair the CR19, 20, suggesting that fear memory is normally stored 82 
using the dmPFC network.  83 
 84 

Therefore, in the present study, to untangle the computational architecture in the 85 
internal prefrontal networks dealing with multiple information in parallel, we investigated 86 
how the dmPFC network newly and distinctively encodes fear memory in an experience-87 
dependent manner. Chronic two-photon neural activity imaging performed in vivo to 88 
simultaneously record neural activities from hundreds of neurons was combined with a 89 
regularization and variable selection algorithm to discriminate the neural ensembles 90 
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specifically encoding the CR in a dmPFC internal network. Using this optical and 91 
computational dissection method, we successfully identified neural ensembles encoding the 92 

CR (CR ensembles). We confirmed that the CR ensembles were distinct from neurons 93 
encoding regular locomotion and emerged as a result of fear conditioning. The CR ensembles 94 
were predictive of animal behavior during fear memory retrieval, while the predictiveness 95 
collapses during the inter-trial-interval. Both enhanced coactivity and functional connectivity 96 
also emerged specifically in the CR ensembles, suggesting the possible rewiring behind the 97 

memory consolidation. Interestingly, neurons responsive to an unconditioned stimulus (US) 98 
became predominantly involved in the CR ensemble, and further graphical modeling 99 
revealed that those neurons also became more strongly connected to the internal CR network 100 

and more predictive of the conditioned stimulus (CS). Altogether, our findings revealed that 101 
neurons responding to the US during fear conditioning became a core of the CS-US 102 
association circuit with an enhanced capability for pattern completion, encoding fear-103 
memory-driven behaviors in an experience-dependent manner in parallel with the pre-104 

existing regular locomotion network.  105 
 106 

Results 107 
To uncover the mechanisms underlying how neural populations, or ensembles, acquire and 108 
regulate specific fear memory distinctively to the other information that the mPFC processes 109 

in parallel, we developed a system to perform cued-fear conditioning and memory retrieval 110 
under a two-photon microscope to directly record the neural activities of hundreds of neurons 111 

with single-cell resolution in awake mice, and compared the neural activities of the same sets 112 

of neurons before, during, and after fear conditioning (Figs.1, 2). The mice were head-fixed 113 

under the objective, and placed on a running disk through which the mouse locomotion 114 
(whether the mouse was locomoting, stationary, or expressing a freezing response) was 115 

recorded (Fig. 1A). Tones and foot shocks were delivered as the CS and US, respectively. 116 
Two different tones were used, one was associated with the US (CS+) and the other was not 117 
(CS‒), as described in previous studies22, 26. Behavioral analyses revealed that the mice 118 

learned to decrease their locomotion specifically during the CS+, only after the fear 119 
conditioning (day [D]4) as a conditioned response (CR), but not before the fear conditioning 120 
(D3) (Fig.1B, C). In most of the analyses, the neural representation during the first three trials 121 

on D3 (D3-early [D3E]) were compared with those during the first three trials on D4 (D4E) 122 
to investigate the change before and after the fear conditioning and memory consolidation, 123 
while the data obtained during the last three trials on D3 (D3-late [D3L]) were used to assess 124 

the late conditioning phase. The data obtained during the last three trials on D4 (D4-late 125 
[D4L]) were used to assess the extinction phase22, 26, when the CS+-evoked suppression of 126 
the mouse locomotion observed during D4E was extinguished after repeated exposure to the 127 
CS+ (Fig. 1D, E). Overall, these behavioral data established that our behavioral system and 128 

the fear conditioning protocol were useful for observing a change in the neural representation 129 
after the associative memory consolidation. 130 
 131 

To monitor the neural activities in the dmPFC by two-photon microscopy, we 132 
implanted a 2-mm microprism along the midline to optically access the dmPFC region. 133 
Although the size of the prism was larger than that of prisms used in previous work27, there 134 
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was sufficient space between the bilateral dmPFC to enable the smooth insertion of the prism 135 
without injuring the prefrontal area and callosal fibers (Fig. 2A). Using a genetically encoded 136 

Ca2+ indicator, GCaMP6f, expressed by an adeno-associated virus (AAV), the activities from 137 
a wide region of the prefrontal area were visualized chronically (Supplementary Movie 1). 138 
In the present study, we focused on activities in the dmPFC area (Fig. 2B).  139 
 140 

Prior to investigating population coding in the dmPFC before and after acquisition of 141 

the fear memory, we first summarized the single-neuron responses to the CS+ and CS‒ (Figs. 142 
2C-E and S1). We found that approximately 60% of neurons exhibited a significant change 143 
in neural activity during the CS+ and/or CS‒, and approximately 20% of neurons showed 144 

significant responses to both the CS+ and CS‒. The distributions of these types of neurons 145 
were consistent throughout the learning process (Figs. 2E and S1). This type of “mixed 146 
selectivity” (responsive to variable task-relevant aspects) has been reported in the primate 147 
PFC18 as well as in the mouse caudal mPFC during a decision-making task3. The potential 148 

advantage of the mixed selectivity was proposed to enhance the number of tasks that each 149 
neural circuit, with a limited number of neurons, can handle, through high-dimensional neural 150 

representations implemented by a population of neurons18, 28. This encouraged us to further 151 
analyze the population coding for fear memory. 152 
 153 

Our goal in this study was to dissect the computational architecture composed by a 154 
neural population in the dmPFC enabling the distinctive acquisition of a novel CS-US 155 

association. For this purpose, we first extracted a group of neurons encoding the CR (CR 156 

ensemble). Unlike previous studies utilizing unsupervised learning algorithms such as 157 

Principal Component Analysis or Non-Negative Matrix Factorization, which first seek 158 
embedded structures in neural data and further test which structure is most likely to correlate 159 

with or explain target behaviors22, 29, 30, we intended to directly extract ensembles encoding 160 
the CR by a supervised and model-based machine learning algorithm, elastic net31 (Figs. 2F-161 
J, 3, and S2). The elastic net is a regularization and variable selection algorithm based on the 162 

regression model (Fig. 2G; see the Methods for details) and designed to automatically select 163 
variables31, which enabled us to systematically identify neurons encoding the target 164 
behaviors. This method allowed us to directly extract not only CR ensembles but also the 165 

neural ensembles encoding regular locomotion (RL ensemble; Fig. 2K), independently in the 166 
same mice, and to compare them and verify whether neurons in CR ensembles were unique 167 
or mostly overlapped with RL ensembles (Figs. 2F, 3).  168 

 169 
We extracted CR ensembles using data obtained during the CS+ presentation of D4E 170 

(retrieval session). Because these CR ensembles were discriminated by the data and the 171 
behavioral labels during the CS+, and not by comparison between those during CS+ and 172 

those during the presentation of other stimuli, our method did not produce any bias to the 173 
CS+ in selecting CR ensemble neurons. We evaluated the fitting and decoding performance 174 
of the obtained model, and confirmed that the obtained CR ensemble was highly predictive 175 
for the CR during the retrieval session (Fig. 2H) (mean ± SE of the prediction accuracy, 176 
0.9450 ± 0.0265, n=7 mice; also shown later in Fig. 3F). As for the spatial distribution, the 177 
identified CR ensemble neurons were spatially intermingled over the field of view, as shown 178 
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in Figs. 2H and 3A.  179 
 180 

Another advantage of the elastic net, compared with the conventional sparse 181 
modeling Lasso, is that the hyper parameter “alpha” enables us to adjust the sparseness of 182 
the selected population, which is very important to avoid missing neurons encoding the target 183 
information, especially when an analyzed neural network includes strongly correlated neural 184 
pairs, which is likely the case for our data considering the results shown below, as well as 185 

previous electrophysiological observations22. When searching for the optimal alpha for each 186 
individual circuit, we intended to minimize CR-related information remaining after removing 187 
identified CR ensemble neurons (Figs. 2I, J, and S2; see also Methods). Wide range of the 188 

alpha values for each individual circuit was tested, and the decoding performance of neurons 189 
remaining after the removal of the CR ensemble neurons selected at each alpha was evaluated 190 
(Fig S2). This systematic optimization procedure revealed the general trend that a larger alpha 191 
tended to select a smaller number of CR ensemble neurons (Fig. S2B, top), and though the 192 

decoding performance of the smaller number of selected CR ensembles was very high, 193 
equivalent to that of the others (Fig. S2B, middle), the removal of such a smaller portion from 194 

the whole set of neurons was not enough to substantially diminish the information encoded 195 
by the remaining neurons (Figs. S2B, bottom, and S2D, F), suggesting that the CR was 196 
redundantly encoded in the dmPFC, while the RL was not (Fig. S3). After determining the 197 

optimal alphas for individual circuits, we observed a substantial reduction of the decodability 198 
by the neurons that remained after removing all the selected CR ensemble neurons (Figs. 2I, 199 

J, and S2). 200 

 201 

Following the optimization of the hyper parameter alpha, we evaluated the specificity 202 
and uniqueness of the extracted CR ensembles. We confirmed that most of the neurons 203 

involved in the CR ensemble were unique and did not overlap with the RL ensemble (Fig. 204 
3A, B).  205 
 206 

We then conceived the hypothesis that the unique CR ensemble might dominantly 207 
and exclusively explain the behaviors of the mice during CS +-evoked memory retrieval as 208 
an encoder of the acquired fear memory. If this is true, RL ensembles, distinct from CR 209 

ensembles (Fig. 3B), should have diminished decodability for the behavior during CS+ 210 
during fear memory retrieval. To test this possibility, we checked the decoding performance 211 
of the RL ensembles for the behaviors observed during the CS+ at each of the learning steps 212 

(Figs. 3 and S4).  The decoding performance by the RL ensembles to the RL was similar 213 
between pre- and post-memory consolidation (Fig. 3D). The decoding performance of the 214 
RL ensembles to the behaviors during CS+ presentation at D3E (before fear memory 215 
consolidation) was similar to that for the RL (Fig. 3D, E). In contrast, the decoding 216 

performance of the RL ensembles to the behaviors during the CS+ on D4E (during fear 217 
memory retrieval) was significantly reduced compared with that of D3E (Figs. 3C, E). There 218 
was a small, but not significant, change during the fear conditioning (D3E vs D3L; Fig. S4), 219 
and importantly, the reduced decodability of the behavior during CS+ at D4E (memory 220 
retrieval) was substantially recovered after the extinction training (no significant difference 221 
between D3E and D4L, and a significant difference between D4E and D4L; Figs. 3E and S4). 222 
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In contrast, the decodability of CR ensembles was specific to the CR and not applicable to 223 
the RL on D4 (Fig. 3F). These results established that the CR, or the behavior during the 224 

memory retrieval, was dominantly explained by the CR ensembles, and support the idea that 225 
the CR ensembles that we specifically extracted from all recorded neurons might be a 226 
dominant and specific group of neurons encoding the CR during memory retrieval, emerge 227 
after consolidation of the fear memory and are suppressed after extinction. 228 
 229 

In these CR ensembles, we observed a slight but significant increase in CS+ 230 
activatable neurons, but no change in CS+ inactivated neurons after fear conditioning (Fig. 231 
S5). In contrast, other cells (neurons that were not included in the CR ensembles: Non-CR 232 

ensemble [Non-CRE] neurons) exhibited no significant changes in the CS+ activated neurons, 233 
with a significant increase in CS+ inactivated neurons. Neurons in the RL ensembles did not 234 
exhibit any change in CS+ responsiveness. We detected no significant change in CS‒ 235 
responsiveness in any of the categories. These results indicated that there might be some 236 

mechanism that makes neurons involved in the CR ensembles dominantly activated by the 237 
CS+ after memory consolidation. 238 

 239 
To further evaluate and characterize the identified CR ensemble, we compared the 240 

change in the coactivity of the neural network by calculating the pairwise correlation 241 

coefficients (R)32 between pre- and post-memory consolidation. We found that, after the fear 242 
conditioning, only the positively correlated fraction was enhanced specifically within the CR 243 

ensembles, and not in the outside network (Non-CRE) (Fig. S6A). Statistical analyses 244 

demonstrated that this enhancement in positive correlation after the fear conditioning, as well 245 

as the enhanced ratio of significantly and positively correlated pairs, specifically occurred in 246 
the CR ensembles (Figs. 4A and S6A-C). Analyses based on the shuffled data, where the 247 

activity of each neuron was preserved but the temporal order was randomly shuffled neuron 248 
by neuron, revealed no significant difference between the CR ensembles and Non-CRE (Figs. 249 
4B, and S6A, C), suggesting that the enhancement of the coactivity in the real data did not 250 

derive from the enhanced neural activation. Similar results were observed in the CR 251 
ensembles excluding the RL-ensemble overlapped neurons (Fig. S6A-C). In addition, 252 
changes in the coactivity across the categories (coactivity between CR ensembles and Non-253 

CRE) were significantly smaller than those within the CR ensembles (Fig. S6C). These 254 
results led us to hypothesize that the functional connectivity within the CR ensembles was 255 
specifically enhanced as a result of the fear conditioning.  256 

 257 
To test this hypothesis, we introduced a probabilistic graphical model method, the 258 

conditional random field (CRF) model33, 34, that evaluates the conditional probability that a 259 
group of neurons fire together given that one neuron is active (Fig. 4C). Among the various 260 

mathematical algorithms used to evaluate possible functional connectivity of neural networks 261 
and ensembles, the CRF model is substantially more reliable because the results of the 262 
calculation (functional connectivity) have already been carefully evaluated by two-photon 263 
holographic optogenetics and consequential behavioral modulation33, 34. Using this method, 264 
we found that, after the fear conditioning (D4E), the functional connectivity was significantly 265 
higher in the CR ensembles (Fig. 4D). This method also allowed us to evaluate the 266 
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information coding of any arbitrary labels, e.g. CS+, and we found that the CS+ information 267 
encoded by the CR ensembles was also significantly higher than that of Non-CRE (Fig. 4E). 268 

Importantly, the neurons in the CR ensembles were discriminated by the data and the 269 
behavioral labels during the CS+, not by comparison between those during CS+ and those 270 
during the presentation of other stimuli, suggesting that our method did not produce any bias 271 
to the CS+ in selecting CR ensemble neurons. Therefore, this result indicates that the CR 272 
ensembles dominantly conveyed not only the CR information but also the CS+ information. 273 

In addition, we found that the enhancement in both the functional connectivity and 274 
information coding for CS+ derived in an experience-dependent manner after the fear 275 
conditioning, predominantly in the CR ensemble cells (Fig. 4F, G). In contrast, the changes 276 

in information coding for the CS‒ were not significantly different between the CR ensembles 277 
and the Non-CRE (Fig. 4G). These results suggest that newly emerged CR ensembles derived 278 
as a result of the rewiring of the functional connectivity, perhaps via activity-dependent 279 
modulation during the fear conditioning. This led us to search the possible existence of a 280 

signature for this plasticity in the neural activity data.  281 
 282 

Interestingly, during the fear conditioning, we observed that some of the dmPFC 283 
neurons strongly responded to the US (Fig. 5A). Statistical analyses demonstrated that 284 
neurons responsive to the US during the fear conditioning were predominantly and 285 

significantly more involved in the CR ensemble after the fear conditioning (Fig. 5B, C), 286 
suggesting that these US-responsive neurons (USR), or US-evoked inputs to the dmPFC, 287 

might modulate network connectivity within the dmPFC network and strengthen the specific 288 

connections stemming from the USR during or after the fear conditioning, perhaps leading 289 

to the formation of the CS-US association network encoding the CR as a result of the memory 290 
consolidation. 291 

 292 
Further analyses based on the CRF modeling revealed that the USR actually became 293 

functionally more connected within the CR ensemble than non-US responsive neurons, while 294 

these differences were not observed in Non-CRE (Fig. 5D). This higher connectivity was a 295 
result of the fear conditioning (Fig. 5E). The information coding for the CS+ was also 296 
significantly higher in the USR, specifically in the CR ensembles (Fig. 5F). According to a 297 

previous study, higher functional connectivity and higher decoding performance of sensory 298 
stimuli are typical features of pattern completion cells whose activation could efficiently 299 
enhance the entire ensemble activity for a specific sensory stimulus and promote the 300 

stimulus-associated behaviors of mice33. Therefore, considering our results altogether, it is 301 
suggested that the USR were predominantly integrated into the CR ensembles as a result of 302 
the fear conditioning, maybe by some activity-dependent modulation like Hebbian plasticity 303 
(i.e. fire together, wire together), and the eventual functional connectivity stemming from 304 

these USR may have a key role in regulating memory retrieval by enabling the specific 305 
association between the US-information network and the CS+ network.     306 
 307 

Discussion 308 
How the PFC encodes and regulates variable memories and cognitive functions is a long-309 
standing question. In the present study, we tackled this question using an optical and 310 
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computational dissection method. A model-based machine-learning algorithm enabled us to 311 
untangle the internal prefrontal network and to identify neural ensembles encoding the CR 312 

ensemble distinctively from the RL ensemble. Further graphical modeling revealed how 313 
those specific circuits were newly constructed, and suggested a possible activity-dependent 314 
circuit modulation mechanism associating the US-network with the CS+-network in an 315 
experience-dependent manner to encode the CR, a fear memory-guided behavior. This 316 
emergence of the novel memory circuit was successfully detected by chronic cellular 317 

recording from the same set of hundreds of neurons in each awake mouse during fear 318 
conditioning and retrieval/extinction tasks. 319 
 320 

More than 60 years ago, Hebb proposed that repeated coactivation of a group of 321 
neurons might create a memory trace through the enhancement of synaptic connections35. 322 
Our findings indicated that neurons strongly responding to the US during the fear 323 
conditioning became more dominantly involved in the CR ensembles after the memory 324 

consolidation. Also, within the CR ensembles, the USR became more densely connected to 325 
the other neurons, as the network hub, and more linked to the CS+. These results suggest that 326 

Hebbian plasticity might underlie the rewiring of the prefrontal memory structure, enabling 327 
the emergence of a strong link between the US signaling pathway and the CS+ signaling 328 
pathway. 329 

 330 
CR information was redundantly encoded in the dmPFC. The advantage of the 331 

redundancy is not clear, but because fear memory is critical for animal survival, it is possible 332 

that the redundant coding for the fear memory is not inefficient at all, but rather evolutionarily 333 

crucial. On the other hand, the redundancy can also be considered inefficient in terms of the 334 
short-term cost. Because the dmPFC is known to be involved in long-term memory20, 36, it 335 

would be interesting to investigate whether the redundantly encoded information for the CR 336 
is maintained or diminishes. Also, the memory is not stored solely in the dmPFC, but brain-337 
wide networks process memory20, 36, 37. This redundancy might be related to the brain-wide 338 

regulation of memory, which could be studied by labeling the downstream or upstream 339 
structures for additional anatomical dissection using virus-based anterograde or retrograde 340 
fluorescent labeling techniques simultaneously with GCaMP6f imaging in dmPFC.  341 

 342 
As we have successfully dissected the specific neural ensembles encoding the CR as 343 

well as more detailed structure of the CR ensemble, testing the causality of the identified 344 

structure to behavior by holographic optogenetics33 could be intriguing. On the other hand, 345 
we found that the dmPFC also usually responds to auditory signals (Fig. 2C-E, S1) and 346 
encodes RL (Fig. 3). Because enhancing the sensory coding can boost performance in a 347 
decision-making task as shown by activation of the primary visual cortex33, further 348 

mathematical dissection and additional anatomical dissection as discussed in the preceding 349 
paragraph would be the next step to more precisely find the “memory”-corresponding 350 
structure in experiments using holographic optogenetics. 351 
 352 
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 379 

Methods 380 
 381 
Animals. All animal experiments were carried out in accordance with the Institutional 382 

Guidance on Animal Experimentation and with permission from the Animal Experiment 383 
Committee of Osaka University (authorization number: 3348), or in accordance with 384 
National Institutes of Health guidelines and approved by the National Institute for 385 

Physiological Sciences Animal Care and Use Committee (approval number 18A102). Male 386 
C57BL/6 or PV-Cre mice (Jax: 008069) mice housed under a 12-h light/dark cycle with free 387 
access to food and water were used for all experiments. Behavioral experiments were 388 

performed during the dark cycle (i.e. when mice were normally awake) using single-housed 389 
mice. Mice at 4–6 months of age were used for the behavioral and imaging experiments.   390 
 391 
Virus injection. To express GCaMP6f, a genetically encoded calcium indicator to monitor 392 

the neural activity, we used a gene expression system based on the AAV vector. Viruses were 393 
injected into mice at postnatal day (P) 50-120 for in vivo experiments, at least 1 month before 394 
the microprism implantation, which was followed by the in vivo experiments 1–3 months 395 
after the implantation. Injection procedures were performed as described previously32, with 396 
some modifications. During surgery, the mice were anesthetized with isoflurane (initially 2% 397 
[partial pressure in air] and then reduced to 1%). A small circle (~1 mm in diameter) of the 398 
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skull was thinned over the left mPFC using a dental drill to mark the site for a small 399 
craniotomy. AAV1/CamKII.GCaMP6f was obtained from the University of Pennsylvania 400 

Vector Core, and injected into the left mPFC (slightly away from the imaging target area to 401 
avoid damaging the field of view) at three sites (depth 1.0, 1.5, and 2.0 mm from the pial 402 
surface, volume 375 nl/site) to cover the dorsal mPFC, over a 5-min period at each depth 403 
using a UMP3 microsyringe pump (World Precision Instruments). The X-Y coordinates for 404 
the injection site was usually 0.5 mm lateral to the midline and 2.0 mm rostral to bregma, but 405 

if large blood vessels obstructed the position, we shifted the insertion site slightly to avoid 406 
the vessels. The beveled side of the injection needle was faced to the midline so that the 407 
needle could be smoothly inserted and the virus would cover the surface layers of the mPFC. 408 

We designed our injection protocol (especially the volume and depth) carefully to widely 409 
cover the mPFC areas, while the anatomical coordinates of the field of view for the two-410 
photon imaging were precisely targeted using the position of the pial surface and the sinus, 411 
which were usually visible through the imaging window prepared as shown below, as a guide 412 

(the field of view ranged from a depth of ~0.9-1.9 mm and centered at a depth of ~1.1-1.5 413 
mm from the pial surface and the sinus). 414 

 415 
In vivo two-photon imaging.  In vivo two-photon imaging was performed as described 416 
previously27, 32, with modifications to pair with our new experimental system. At 1–3 months 417 

after the virus injection, the mice were anesthetized with isoflurane (initially 2% [partial 418 
pressure in air] and reduced to 1%). A titanium head plate described in a previous paper by 419 

Goldy et al.38 was selected for the present study to minimize the area laying over the ear and 420 

to minimize the blockage of auditory input through the ear. The head plate was attached to 421 

the skull with dental cement. For the subsequent microprism implantation, a square cranial 422 
window (~2.3 x 2.3 mm) was carefully made with minimal bleeding above the right mPFC, 423 

the hemisphere opposite to the virus injection site. An implantable microprism assembly27, 424 
comprising a 2-mm right angle glass microprism (TS N-BK7, 2mm AL+MgF2, Edmund) 425 
bonded to a 2x2 mm square cover glass (No.1; Matsunami) for the middle position and a 4x4 426 

or 3x4 mm glass window at the surface position of the imaging window, was prepared and 427 
inserted into the subdural space within the fissure along the midline as described previously27 428 
to avoid harming any nerves surrounding the mPFC network in both hemispheres, allowing 429 

for visualization of the left mPFC, which was previously injected with the GCaMP6f virus, 430 
through the imaging window. The area directly beneath the microprism was compressed but 431 
remained intact. This insertion procedure sometimes caused a small amount of bleeding that 432 

covered the imaging site, but even in that case, the imaging window became clear after 433 
waiting at least a month before performing the experiments. As reported before27, the mice 434 
recovered quickly and displayed no gross impairments or behavioral differences compared 435 
with non-implanted mice, enabling chronic imaging of the dmPFC in behaving mice. 436 

 437 
The activity of dorsal mPFC neurons was recorded by imaging fluorescence changes 438 

with a FVMPE-RS two-photon microscope (Olympus) and a Mai Tai DeepSee Ti:sapphire 439 
laser (Spectra-Physics) at 920 nm, through a 4x dry objective, 0.28 N.A. (Olympus) or a 16x 440 
water immersion objective, 0.80 N.A. (Nikon). Mean (±SE) frame rate was 8.96 ± 0.87 441 
(frames/s). GCaMP6f signals were detected via the band-pass emission filter (495-540nm). 442 
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As the GCaMP6f was expressed under the regulation of the CaMKII promoter39, 40, all of the 443 
recording targets were assumed to be excitatory neurons41. Scanning and image acquisition 444 

were controlled by FV30S-SW image acquisition and processing software (Olympus). To 445 
smoothly set the mice below the objective lens for the imaging, light and minimal-duration 446 
isoflurane (2.0% for less than 2-3 min) anesthesia was used, and behavioral and imaging 447 
experiments were started 5 min after the mice awoke and began locomoting on the running 448 
disk, which was visually confirmed via the video camera (VLG-02, Baumer) under infrared 449 

light-emitting diode illumination (850nm: LDL-130X15IR2-850, CCS Inc.). To detect neural 450 
activity from the same set of neurons in each mouse over multiple days, the depth from the 451 
surface of the brain (dmPFC area) and configuration of blood vessels and basal GCaMP6f 452 

signals in each field of view were recorded and referenced as described previously42. 453 
 454 

Fear conditioning, memory retrieval, and extinction under the microscope. 455 
The experiments were designed according to previous studies, with some modification to 456 

optimize conditions for the two-photon microscope system21, 22, 26. The heads of the mice 457 
were fixed under the objective lens for two-photon imaging, allowing them to run freely on 458 

the running disk placed below them, and locomotion and the freezing response were 459 
measured by the rotation of the running disk, as previously described43.  Experiments were 460 
performed in a completely dark environment to protect the detector (photo multiplier tube) 461 

for the two-photon imaging from the room light. We prepared two different types of running 462 
disks to establish two different contexts, as used in conventional fear conditioning 463 

experiments for head-unfixed mice21, 22, 26. Disk A was made of light-colored plastic with 464 

ridges from the center to the rim that the mice could grip to allow them to easily rotate (and 465 

walk on) the disk43. Disk A was used for habituation (D1 and D2) and for retrieval and 466 
extinction (D4). Disk B was built for the fear conditioning (D3), and comprised a grid made 467 

of stainless steel bars (Fig. 1A), which was attached to a foot shock generator (SGA-2010, 468 
O’HARA & CO., LTD) via an electrical slip ring so that electrical current to this running disk 469 
for the foot shock (US) could be stably delivered to the mouse irrespective of whether the 470 

running disk was rotating. The behavioral sessions on each day began only after the mouse 471 
was constantly locomoting for more than 5 min. The running disks and the surrounding area 472 
(inside the cage for the microscope) were cleaned with 70% ethanol before and after each 473 

experiment. To score freezing behavior, the speed of the mouse locomotion was measured by 474 
the rotation speed of the running disk43, and mice were considered to be stationary (during 475 
no CS presentation) or freezing (during CS+/retrieval) if no movement was detected for at 476 

least 1 s. On D1 and D2, the mice underwent an adaptation session with disk A for an hour 477 
each day, to familiarize them with the novel environment. On D3, the mice underwent a 478 
habituation session in context B, in which they received four presentations of the CS− and 479 
CS+ alternately (total CS duration, 30 s for each trial; consisting of 50-ms pips at 1 Hz 480 

repeated 30 times; pip frequency, 7.5 kHz or white-noise, respectively, 80-dB sound pressure 481 
level (60-dB basal room noise produced by the air conditioning system, and 20-dB for the 482 
CS)). The habituation session was immediately followed by discriminative fear 483 
conditioning21, 22, 26 on the same day by pairing the CS+ with a US (1-s foot shock, 7 CS+–484 
US pairings).The intensity of the foot shock was usually 0.05~0.1 mA, but when mice 485 
showed no responses at all, which was probably caused by that a part of the running disk 486 
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became dirty or wet by mice and the foot shock might be suppressed by this during the 487 
experiment, an intensity of 0.25~0.45 mA was used. The onset of the US coincided with the 488 

onset of the last sound pip of each 30-s CS trial. The CS−and the CS+ trials were performed 489 
alternately (inter-trial intervals, 50–150 s). On D4, conditioned mice underwent a retrieval 490 
session followed by an extinction session on disk A during which they received 4 491 
presentations of the CS– and 12 presentations of the CS+. During the experiment (D1-4), the 492 
mouse was continuously encouraged to locomote by administering a 4-ul drop of saccharin 493 

water per 100 cm of locomoting, provided through a spout placed near their mouth42 so that 494 
the freezing response could be discriminably detected as decreased locomotion (Fig. 1). The 495 
mice were not water-deprived. The locomotion speed and timings of the tones and the foot 496 

shock were synchronously recorded with image acquisition (GCaMP6f imaging in dmPFC) 497 
using NI software (Labview; National Instruments) and NI-DAQ (National Instruments). The 498 
results shown in Fig.1 show that this protocol led to the mice successfully learning the CS+-499 
US association, and show a reduction in locomotion in response to the CS+, but not the CS‒, 500 

and not before but only after the fear conditioning session, enabling us to observe changes in 501 
neural representations in the dmPFC as a result of the fear conditioning.  502 

 503 
Imaging data analyses and statistics. The raw images of the GCaMP6f signals in the 504 
dmPFC were processed to correct for brain motion artifacts using the enhanced correlation 505 

coefficient image alignment algorithm44. To apply the same regions of interest (ROIs) for 506 
analyzing the images obtained across multiple days, the movies from the same mouse were 507 

precisely aligned with each other using the same enhanced correlation coefficient algorithm 508 

as above, while, for a local shift (shift of a few pixels in a small number of neurons among 509 

all recorded cells), the corresponding ROIs were manually adjusted.  510 
 511 

The ROIs for the detection of neural activity were automatically selected using a 512 
constrained nonnegative matrix factorization algorithm in MATLAB as described 513 

previously45, with some manual adjustment. Further steps to process the GCaMP6f signals 514 

for measurements of the signal change (F/F) of each neuron were performed as described 515 
previously32, 46; although the same constrained nonnegative matrix factorization package for 516 
ROI detection also provides an option for signal processing that was not sufficiently 517 
optimized to analyze our data, which were obtained over several days with more than 30,000 518 
frames each day. Fluctuations in the background fluorescence, which contains synchronous 519 

fractions across nearby neurons45, 46, was subtracted before calculating the F/F of GCaMP6f 520 

signals as described previously32. Briefly, a ring-shaped “background ROI” was created for 521 
each ROI 2–5 pixels away from the border of each neuronal ROI to a width of 30–35 pixels, 522 

and the size was adjusted to contain at least 20 pixels in each background ROI after 523 
completing the following steps. From the background ROI, we removed the pixels that 524 
belonged to any neuronal ROIs, and the ROIs that contained artificially added pixels (black 525 
pixels added at the edge of the image due to the motion correction procedure) at any time-526 
point. We then removed the pixels that, at some time-point(s), showed signals exceeding that 527 

of the neuronal ROI by two standard deviations of the difference between each background 528 
ROI pixel time series and the neuronal ROI time series. The resulting background ROI 529 
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signals were averaged at each time-point, and a moving average of the time series was 530 
calculated. Using the moving average instead of the raw background ROI signal was helpful 531 

to minimize the production of an artificially large increase or decrease at each time-point due 532 
to the subtraction, which could have altered the analyses of the timing of neural activations. 533 
Pixels within each neuronal ROI were also averaged to give a single time course, and then 534 

the background ROI signal was subtracted. Then, the F/F of GCaMP6f signals of all 535 
neurons in each circuit was calculated. For most of the analyses and comparisons of the 536 

results from multiple mice, the F/F data were further z-normalized within each experiment 537 
(same mouse, same day) as described previously21, 26. On the other hand, particularly for the 538 
CRF modeling used to evaluate the functional network connectivity, the spike probabilities 539 

were inferred from the F/F as an alternative estimate of neuronal activation using a 540 

constrained sparse nonnegative calcium deconvolution method45. We used the code 541 
“constrained_foopsi.m”45, and the parameters used in the calculation were not manually 542 
selected but estimated from the data by the code. After inference of the spike probability and 543 
further thresholding by two standard deviations, the obtained binominal data were further 544 

binned (bin size: 1 s). Importantly, the results obtained by CRF modeling were consistent 545 

with the results of the coactivity analyses based on the F/F (and z-normalized F/F) (Fig.4), 546 

providing substantial support that the analyses based on both estimates complemented each 547 
other for the data analyzed in the present study. While neurons for the analyses were initially 548 

automatically detected, neurons responding to noisy signals with no apparent calcium 549 
transient at any time during the experimental days were identified by visual inspection and 550 
excluded from further analysis. 551 

 552 

For the statistical analysis, we used MATLAB (MathWorks, Natick, MA). The 553 
Wilcoxon signed rank tests for paired comparisons or the Wilcoxon rank sum test (equivalent 554 
to Mann-Whitney U test) for unpaired comparisons was used to determine statistical 555 

significance (P < 0.05) unless otherwise indicated. Two-tailed tests were selected for all 556 
statistical analyses. All p-values less than 0.0001 are described as “P<0.0001” (or ****). 557 

Graphs were produced by MATLAB (MathWorks) or Excel (Microsoft). When comparing 558 

two groups (e.g. D3 vs D4) consisting of the results of multiple mice, in addition to the 559 
analyses using original data (e.g. N=7 vs N=7 [D3 vs D4]), we performed bootstrap 560 

resampling to more systematically estimate representative values (e.g. mean or median) of 561 
each mouse or each group where the number of recorded neurons in each field view varied. 562 

When statistically comparing original data (e.g. comparing D3 vs D4), we used a paired 563 
permutation test that does not require any assumptions regarding the data distribution, though 564 
the p-values obtained by this method and the evaluated statistical significance were very 565 

similar to those obtained by the paired t-test in almost all cases. For the analyses based on 566 
bootstrap resampling followed by statistical comparison, random resampling (with accepting 567 
overlapped sampling) from each mouse was performed in total with the same number as that 568 
of the original data of each mouse for each resampling round, and the means (e.g. of 7 mice 569 
each day) and the means of the difference or ratio (e.g. difference between D3 vs D4 averaged 570 

over mice) were calculated. This was repeated 2000 times to derive the distribution (of 2000 571 
bootstrap replications) for each estimate, and the statistical significance was evaluated based 572 
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on the 95% confidence interval.  573 
 574 

In the present study, to compare changes in neural responses and ensemble 575 
representations before and after the fear memory consolidation without any bias, we did not 576 
exclude neurons that showed no response to the CS on D4 from the analyses, which was done 577 
in some previous experiments (e.g. Herry et al., 200826). Neurons for the analyses were 578 
automatically selected based on the neural responses, as described above, and all neurons 579 

that exhibited clear activity during at least one of the experimental days were included for 580 
the analyses irrespective of whether it was during the CS presentation or only during no CS 581 
presentation, considering the previous work suggesting that not only the neurons that 582 

typically respond to the CS, but also other types of neurons (including those of mixed 583 
selectivity)  are important for population coding in the prefrontal network18.   584 

 585 
The significance of CS-induced neural responses was determined according to 586 

previous studies21, 26. Signals during CS presentation were normalized to baseline activity 587 
using a z-score transformation, as described previously21, 26. The CS-induced neural activity 588 

for each stimulus was then calculated as the mean of the activity during ~1 s from each 589 
stimulus onset (depending on the imaging frame rates, we set the number of frames to be 590 
used for this calculation so that sampling duration was closer to 1 s but the frames that 591 

overlapped with the next stimulus onset was excluded). The last sound pip of each 30-s CS 592 
trial was also excluded from this analysis because, during fear conditioning, the last sound 593 

pip of the CS+ overlapped with the US (we excluded the last pip data not only for analysis 594 

of CS+-evoked responses during fear conditioning but for all data analyses on both D3 and 595 

D4, for both CS+ and CS‒). They were averaged over blocks of 3 CS trials consisting of 87 596 
individual sound pips in total, for D3E (first three trials during the fear conditioning session), 597 

D3L (last three trials during fear conditioning on D3), D4E (first three trials on D4, as 598 
responses during fear memory retrieval), and D4L (last three trials only for CS+ on D4 as 599 
responses during extinction), respectively, or used to statistically test whether the responses 600 

of each neuron were significantly different from zero (baseline) and to define CS-activated / 601 
-inactivated neurons.  602 
 603 

To define US responsive neurons, because the number of US were limited (7 stimuli 604 
in total for each mouse), the mean z-score of each neuron for 1.5 s from the US onset was 605 
calculated, and US responsive neurons were defined as neurons with responses of one 606 

standard deviation or larger. The number of USR was very limited (zero or only a few for 607 
some of the mice), and therefore all the analyses shown in Fig. 5 were performed with pooled 608 
data from all mice (N=7 mice).  609 
 610 

To evaluate the coactivation of neural activity in the dmPFC network, we calculated 611 
cell-to-cell pair-wise correlations within each ensemble using Pearson’s correlation 612 

coefficient, from the GCaMP6f signals (z-normalized F/F) of two cells over the duration of 613 

the CS+ presentation, as described before32. The calculated correlation coefficients (R) were 614 
statistically analyzed. As a complementary analysis, we also used the inferred spike 615 
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probability to analyze the functional connectivity, as explained in the section describing the 616 
CRF model, which revealed consistent results as shown in the results section. We further 617 

performed analyses based on surrogate datasets, as described in previous studies32, 47. For this, 618 
the total activity of each neuron was preserved, but only the timing was shuffled randomly 619 
within each neuron, followed by calculation of the correlation coefficients of shuffled data. 620 

 621 

Extraction of neuronal ensembles. To directly differentiate neural populations (ensembles) 622 

encoding the CR (i.e. suppressed locomotion triggered by CS+ during the memory retrieval) 623 

and those encoding RL (i.e. stationary or locomotive state during no CS presentation), we 624 

used the elastic net31, a regularization and variable selection algorithm that enabled us to 625 

systematically extract neurons encoding respective target behaviors. For this, we used the 626 

“lassoglm” function of MATLAB R2019b. Because this method allowed us to identify 627 

different ensembles for different behaviors independently from the same mice, we used this 628 

to verify whether neurons in CR ensembles were unique or mostly overlapped with RL 629 

ensembles (Figs. 2F and 3). Compared with the conventional sparse modeling method called 630 

Lasso (least absolute shrinkage and selection operator), the advantage of the elastic net is that 631 

the hyper parameter “alpha” additively enables the adjustment of the size of selected neurons 632 

depending on the data; when the analyzed data include strongly correlated pairs, which 633 

appeared to be the case for our data as shown in Figs. 4 and S6, conventional Lasso removes 634 

redundant predictors and selects only one or a part of such a synchronous population, but in 635 

the elastic net, lowering the alpha value increases their inclusion, which is helpful toward 636 

preventing missing encoder neurons.   637 

 638 

 When extracting the CR ensemble, we used data only during the CS+ presentation of 639 

D4E (retrieval session) and identified neurons informative for distinguishing whether 640 

animals exhibited freezing behavior or were locomoting during the CS+ so that the auditory 641 

information of the CS was not considered for identifying the ensemble neurons. While mice 642 

exhibited the CR as suppressed locomotion during the fear memory retrieval session (Fig. 1), 643 

they also showed more or less locomotion intermittently, and both labels (freezing and 644 

locomotive) are required to perform the regression based on the elastic net (Fig. 2G); only 645 

the data containing at least 10% of each label (freezing and locomotive) were used to 646 

discriminate ensembles in the present study. On the other hand, for extracting the RL 647 

ensemble, we used data only during the no-CS presentation (for D3 and D4). 648 

Learning the elastic net is formulated as follows.  649 

, 650 

where  651 
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 652 
and N is the number of observations; yi is the behavior (freezing/stationary y_i=1 or 653 

locomotive y_i =0) at observation i; xi is data (neuronal activity), a vector of p values at 654 

observation i;  is a positive regularization parameter; parameters β0 and β are a scalar 655 

variable and a p-dimensional vector, respectively. As  increases, the number of nonzero 656 

components of β decreases. The elastic net is a hybrid of ridge regression and lasso 657 

regularization: when alpha (α) = 1, elastic net is the same as lasso, while, as α shrinks toward 658 

0, elastic net approaches ridge regression. For other values of alpha (α), the penalty term 659 

Pα(β) interpolates between the L1 norm of β and the squared L2 norm of β. Lasso is sensitive 660 

to correlations between variables and can choose one if there are two highly correlated and 661 

useful variables, whereas elastic net is more likely to select both useful variables, which leads 662 

to more stable variable selection. The tuning parameter  controls the overall strength of the 663 

penalty. βj is the coefficient for the corresponding neuron j estimated by this model. Because 664 

this method is designed to sparsely leave the coefficients βj for the respective neurons, we 665 

could identify neurons with a non-zero coefficient as ones of substantial decodability (i.e. 666 

ensemble neurons). The lambda value with minimum expected deviance, as calculated during 667 

cross-validation, was selectively used to define these beta coefficients for each dataset. To 668 

avoid an imbalance of the number of original labels for respective states (e.g. freezing or 669 

locomotive for CR ensembles) for the training, the same number of data points from 670 

respective states were randomly selected to prepare the training data despite an overlap, a 671 

total of 900 samples for each, and used to produce the model. We found that the eventual 672 

model and non-zero-coefficient neurons slightly varied trial by trial. To accurately define 673 

each ensemble, we repeatedly performed this procedure (random sampling and modeling) 674 

100 times to obtain the distribution of each beta value. Gaussian fitting was performed to 675 

define the centroid and the 95% confidence interval of each distribution of each beta, and 676 

then the 95% confidence interval was used to determine whether or not they were 677 

significantly different from zero (enabling us to maintain sparsity), with the centroid being 678 

used to define the final beta values of non-zero coefficient neurons to build the model. To 679 

evaluate the fitting and decoding performance of the obtained model, the prediction accuracy 680 

and the area under the curve (AUC) of receiver operating characteristic curve (ROC) were 681 

calculated, respectively, revealing that those scores were very similar and highly correlated 682 

with each other (Fig. S4).  683 

 684 

Based on the above-described procedure, we next optimized the alpha values. Ideally, 685 

if all the informative neurons can be extracted into the selected CR ensembles, the remaining 686 

neurons should have poor decoding performance. According to this idea, to optimize the 687 
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alpha value, after building a model at each alpha for each mouse (“AUC original” in Fig. 688 

S2A), we compared the difference in decoding performance between “AUC CRE-rem” and 689 

“AUC nonCRE-rem” (Figs. 2I and S2A). AUC CRE-rem is the AUC value calculated by an 690 

elastic net model built with the neurons, excluding the original CR ensemble neurons. On the 691 

other hand, AUC nonCRE-rem is the AUC value calculated by the neurons, excluding 692 

neurons other than original CR ensemble neurons, randomly selected, and the number of 693 

excluded neurons was the same as the number of original CR ensemble neurons (so that the 694 

number of neurons used to calculate AUC nonCRE-rem were set to be the same as that used 695 

for AUC CRE-rem calculation). The “AUC difference” (Fig. S2A) between those two values 696 

was calculated to estimate the degree of remaining information, and in principle, we defined 697 

the best alpha based on the maximum AUC difference for each mouse independently. In 698 

addition, for further statistical evaluation to define the optimal alpha as explained below, we 699 

repeated these procedures 10 times for both “AUC CRE-rem” and “AUC nonCRE-rem”.  700 

 701 

As shown in Fig. S2B, although the decoding performance of the original CR 702 

ensembles (i.e. AUC original in Fig. S2A) was not affected by the alpha (Fig. S2B, middle), 703 

the size of the CR ensemble was affected, and a smaller alpha generally resulted in a larger 704 

number of selected neurons for each CR ensemble (Fig. S2B, top), suggesting that the CR 705 

information might be redundantly encoded in the dmPFC as discussed in detail later. On the 706 

other hand, the influence of the alpha on the AUC difference was more complicated. As 707 

explained above, we defined the best alpha based on the maximum AUC difference for each 708 

mouse independently, but in some exceptional cases as shown in Fig. S2D (mouse #3), when 709 

the other alpha(s) showed a AUC difference(s) not significantly far from the maximum AUC 710 

difference, the alpha of the smallest of the ensembles among those alphas, i.e. largest alpha 711 

among them, was selected to avoid unnecessarily including additional neurons that did not 712 

improve the AUC difference (e.g. in mouse #3, alpha = 0.1, 0.05, 0.01 showed similar AUC 713 

differences and there was no statistically significant difference between them [Wilcoxon rank 714 

sum test, alpha of maximum AUC difference vs the other alpha, n=10 estimates for each 715 

calculated as explained above], so in this case, the largest alpha 0.1 among those three was 716 

selected to define the CR ensemble for this mouse). 717 

 718 

 These results revealed two important points. First, searching around the alpha value 719 

may be important in some cases. Considering this, we also searched alphas in the case of RL 720 

ensembles (Fig. S3), and found that there was no difference among the various alphas, for 721 

the RL ensembles, even if we tested an additional number of reference frames (means of the 722 

neural activities over the past or future several frames were used as neural activity data to 723 

predict a single label at each single time-point, which showed no significant difference from 724 

each other, evaluated by the Friedman test, a non-parametric statistical test similar to the 725 

parametric one-way repeated measures ANOVA). Therefore, in the present study, we fixed 726 
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the alpha to define RL ensembles at 0.75 for most of the analyses, except for the data in Figs. 727 

S3 and S4, where we evaluated the influence of the alpha for RL ensembles.  728 

 729 

Second, fear memory triggering the CR might be redundantly encoded in the dmPFC. 730 

As discussed above, although decoding performance of the original CR ensembles was not 731 

affected by the alpha (Fig. S2B, middle), the size of the CR ensemble was affected, and a 732 

smaller alpha generally resulted in a larger number of selected neurons for each CR ensemble 733 

(Fig. S2B, top). In addition, when the alpha was fixed at alpha (A) =0.9 (a larger alpha (than 734 

0.9) did not work for some circuits in our data), while the uniqueness of the CR ensembles 735 

was maintained and the ratio of the CR ensemble neurons overlapping with RL ensembles 736 

was 26.84% (Fig. S2E), which was very similar to the case of alpha-optimized CR ensembles 737 

(Fig. 3), the size of this CR ensemble (A=0.9) was two times smaller than that of the alpha-738 

optimized CR ensembles (Fig. S2F). Importantly, 97.82% of the neurons selected at A=0.9 739 

were also selected in the alpha-optimized CR ensembles (Fig. S2F), suggesting that the 740 

neurons selected at the largest alpha might be more reliable and robust for the decoding 741 

among all the informative neurons. In addition, even after the removal of such “core” neurons, 742 

the remaining neurons also possessed information for the CR (Fig. S2B, D), indicating that 743 

the CR information was redundantly encoded in the dmPFC. Because this redundancy was 744 

specific to the CR ensemble and not observed in the RL ensemble, it would be interesting to 745 

investigate possible changes in this redundancy when the memory is recalled as a long-term 746 

memory (e.g. 30 days after the memory consolidation).  747 

 748 

 To evaluate the dominance of the CR ensembles vs the RL ensembles, we applied the 749 

CR decoder to predict the RL, and vice versa (Figs. 3 and S4).    750 

 751 

CRF models to evaluate functional connectivity. To evaluate the functional connectivity 752 

between neurons in the recorded network and the pattern completion capability of each 753 

neuron, we used conditional random fields (CRFs) as described previously33, which models 754 

the conditional probability distribution of a given neuronal ensemble firing together. We used 755 

CRFs to capture the contribution of specific neurons to the overall network activity defined 756 

by population vectors belonging to a given neuronal ensemble. We generated a graphical 757 

model in which each node represents a neuron in a given ensemble and edges represent the 758 

dependencies between neurons. For training, 80% of the recorded data randomly selected 759 

from all time frames was used, and for cross-validation, the remaining 20% was used. For 760 

this analysis, binned neural activity data (1 s) were used. The model parameters were 761 

determined by the local maximum of the likelihood function in the parameter space. We 762 

constructed a CRF model in two steps: (1) structure learning, and (2) parameter learning. For 763 

the structure learning, we generated a graph structure using ℓ1-regularized neighborhood-764 

based logistic regression34. Here λs is a regularization parameter that controls the sparsity (or 765 

conversely, the density) of the constructed graph structure, leaving only relevant functional 766 
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connectivity, including both coactive and suppressive relationships. A previous study showed 767 

that this number of connections was enhanced as a result of optogenetic rewiring of the local 768 

network34, demonstrating the reliability of the functional connectivity estimated by CRFs 769 

models. Therefore, we also calculated the ratio of these remaining connections per all the 770 

possible connections for each neuron as a “functional connectivity” score for each node, after 771 

carefully screening the optimal λs value by maximizing the log-likelihood of the observations 772 

at the following parameter learning step. When comparing the connectivity between different 773 

ensembles (e.g. within-CR-ensemble vs within-Non-CRE) or different cell types (e.g. USR 774 

vs non-US responsive neurons), we first calculated a whole network connectivity without 775 

separating the ensembles, and further separated them into different categories. To measure 776 

which neurons were the most informative for a given stimulus (CS+ or CS‒), we computed 777 

the standard ROC, taking as ground truth the timing of a particular CS. The AUC from the 778 

ROC curve that represents the performance of each neuron was calculated to compare the 779 

encoded information in different ensembles, different neuron types, and different days (e.g. 780 

before vs after the fear memory consolidation). As was recently demonstrated 33, high ranks 781 

for this value indicate high potential to recall the neural and cognitive representation of a 782 

given stimulus.  783 
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Figure Legends 891 

 892 

Fig. 1. Cued fear conditioning during two-photon microscopy. (A) Schematic diagram 893 
showing the system used to perform the cued-fear conditioning and memory retrieval under 894 

a two-photon microscope. (B) (top) Experimental protocol. CS, conditioned stimulus; US, 895 
unconditioned stimulus; FC, fear conditioning. (bottom) An example of the changes in 896 
locomotion over time of a mouse on day (D) 4 (first four trials). (C-E) Fear conditioning 897 
under the microscope produced CS+-specific memory consolidation. Comparisons of the 898 
locomotor speed between before the tone onset and during the tone presentation are shown 899 

in (C-D). Before the fear conditioning (on D3), the mice (N = 23) exhibited no significant 900 
change in locomotion during the CS+ and CS- presentations (C, left, and D). After the fear 901 
conditioning (i.e. during fear retrieval; the first four trials on D4), however, the CS+ 902 

suppressed locomotion as a CR, while the CS- induced no significant change (C, right, and 903 

D). After repeated presentations of the CS+ (fear extinction; 5th-12th trials on D4), the CS+-904 
evoked CR became smaller until no significant change in locomotion was observed upon 905 

CS+ presentation (D). (E) Statistical comparison among responses to the CS- and those to 906 
the CS+ at each testing phase on D4 during the tone presentation revealed that locomotion 907 
during CS+ was significantly lower only during trials 1–4 on D4, and not after repeated 908 

presentations to the CS+ (5th-12th trials). Note that locomotion during pre-tone-onset 909 
(before) was not significantly different between the CS- and CS+ conditions. *p<0.05; 910 

**p<0.01; n.s., not significant by Wilcoxon signed-rank test (the Friedman test followed by 911 

post-hoc multiple comparisons revealed similar results for panel E). Error bars, s.e.m.  912 

 913 

Fig. 2. Extraction of neural ensembles encoding conditioned responses. (A) Microprism 914 
implantation along the midline for optical access to the mPFC without cutting nerves. (B) In 915 
vivo two-photon microscopy to detect single-cell neural activity visualized by GCaMP6f, 916 

chronically (day [D] 3 and D4) from the same set of neurons observed through the prism. 917 

Scale bar, 250 m. (C) Summary of neural responses during the retrieval session (D4-early 918 

[D4E], mean of three trials) to the CS+ or CS-. Mean of neural responses in each category 919 
(significantly activated [bright red or blue], inactivated [dark red or blue], and others [dark 920 
gray]), as well as the mean of all cells (light gray) are plotted. (D) Scatter plot showing 921 

responses of individual neurons to the CS+ and CS- in an example mouse during D4E. Each 922 
dot represents the mean response of each neuron. Blue, red, and green colors indicate that 923 
cells had a significant response as described in the panel. These features for all the mice are 924 
summarized in panel E. (E) Summary of response profiles at each phase (D3E, D3-late [D3L], 925 

and D4E, respectively; N=7 chronically recorded mice). (F) Mice exhibited low locomotion 926 
rates during the CS+ as a CR, or during the inter-trial interval as a regular stationary state. 927 
To investigate the specificity of the neural ensembles encoding the CR, we also 928 
independently determined the ensembles encoding regular locomotion (RL) for the 929 
comparison. (G) Schematic diagram showing how we extracted the CR ensembles. See the 930 
Methods for details. (H) An example of the CR ensemble and encoded neural representation 931 
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of the behavior. (top) Extracted neurons are drawn with a bold margin, and the mean activity 932 
during CR (freezing) is shown in color. (bottom) Time course changes of neural 933 

representation encoded by the CR ensemble (same ensemble shown in the top panel). Black 934 
dots on the top of the graph and pink color in the graph indicate the timing of the actual CR, 935 
while the blue line shows information (i.e. “y” in panel G) decoded by this CR ensemble. 936 
The plots show a part of the whole length of the data, and overall decoding accuracy was 937 
97.36% in this example. TP, time points (i.e. image frames). (I) We optimized the parameter 938 

“alpha” by calculating the decoding performance of the remaining neurons after removing 939 
the CR ensemble extracted by each alpha (CRE-removed), and comparing its decoding 940 
performance with the control (Non-CRE removed: decoding performance after non-CR-941 

ensemble [Non-CRE] neurons were removed). An example of this comparison is shown in J, 942 
and more details are shown in Fig. S2. (J) Comparison of the decoding performance between 943 
CRE-removed and Non-CRE removed, revealing the poor neural information in the Non-944 
CRE removed. This is the result from the same mouse shown in panel H. (K) Schematic 945 

diagram showing how we extracted the RL ensembles.  946 

 947 

Fig. 3. Emergence of unique CR ensembles after fear conditioning. (A) An example Venn 948 
diagram and an example spatial map showing the overlap between CR ensemble neurons and 949 

RL ensemble neurons in an example mouse. (B) Summary of the overlap between the CR 950 
ensemble neurons and RL ensemble neurons of all mice (N=7, n=1165 neurons). (C-E) 951 

Decoding locomotion during RL (inter-trial interval) or CS+ by RL ensembles. (C) In an 952 

example mouse, an RL ensemble (RLE) that showed high accuracy for decoding performance 953 

to predict RL (top) also showed high decoding performance in predicting locomotion during 954 
CS+ at day 3-early (D3E), but the performance dropped when it was applied to the prediction 955 

of locomotion during CS+ at D4E. (D) Original decoding performance of the RL ensembles 956 
(i.e. predictability for RL) were not significantly different between D3 and D4. (E) (left) 957 
Decoding performance of RL ensembles to locomotion during CS+ at D4E (i.e. during fear 958 

retrieval) was significantly lower than that for D3E (i.e. early fear conditioning phase). (right) 959 
The change in decoding performance was statistically evaluated. Decoding performance was 960 

not significantly different between D3E and D3-late (D3L), or between D3E and D4L. (F) 961 
Decoding locomotion during CS+ by CR ensembles. Decoding performance was 962 
significantly decreased when the CR ensembles were applied to predict RL. Within D3, 963 

N=10; D3 vs D4 and within D4, N=7 pairs. A non-paired comparison (Wilcoxon rank sum 964 
test) was performed for panel D, while for the other comparisons in E and F, a paired 965 
permutation test was performed. For the decoding performance, we plotted the accuracy 966 
scores, while the AUC was very similar as shown in Fig. S4. **p<0.01; n.s., not significant. 967 

Red bars, median; box in panel E (left) indicates 25th and 75th percentiles.   968 

 969 

Fig. 4. Enhanced coactivity, functional connectivity, and CS+ encoding in CR ensemble 970 
neurons after fear conditioning. (A) Summary of changes in the correlation coefficients (R) 971 
of all chronically observed networks (N=7 mice). R differences (day 4-early [D4E] minus 972 
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D3E) are plotted as a result of bootstrap resampling (2000 times) performed to systematically 973 
compare all the raw R data of whole mice, for CR ensemble neurons (CRE) or for those other 974 

than CR ensemble neurons (Non-CRE). Because the change in R between D3E and D4E was 975 
observed only for positive correlations specifically in CRE as shown in Fig. S6, we 976 
statistically tested changes in the mean, and the 85th and 50th percentiles (as well as the 90th 977 
and 80th percentiles in Fig. S6), and the ratio of pairs with a significantly high correlation 978 
(RSHC). The asterisk or n.s. beside each column indicates the result of the statistical 979 

comparison between D3E and D4E, whereas an asterisk or n.s. at the top of each panel shows 980 
the result of the comparison between CRE and Non-CRE. (B) Statistical comparisons similar 981 
to panel A, but using shuffled data. (C) Functional connectivity between neurons in an 982 

example circuit. Among all the possible connections for all pairs of neurons, the CRF model 983 
enables the estimation of functional connections, as well as the dependencies of connected 984 
pairs. In this panel, the top 50% edge potentials were visualized. (D) During D4E, the 985 
functional connectivity within CRE was significantly higher than that of Non-CRE. (E) 986 

During D4E, the mean of cellular predictability for CS+ in CRE was also significantly higher 987 
than that in Non-CRE. (F) Change in functional connectivity within CRE of an example 988 

circuit. This is the same as the circuit shown in C, but only the connectivity of the CRE 989 
neurons marked by the red ellipses were analyzed. Left panel shows the change in the 990 
connectivity between D3E and D4E, while the right panel shows the change in the ratio of 991 

functional connectivity per all possible connections for individual nodes (i.e. individual 992 
neurons). (G) Summary of changes in functional connectivity and cellular decoding 993 

performance for CS+ and CS- of all observed networks (N=7 mice). As in panels A and B, 994 

differences (D4E minus D3E) of these scores are plotted as a result of bootstrap resampling 995 

(2000 times) to compare CRE and Non-CRE, or CRE-noRLE (CRE neurons excluding those 996 
overlapping with RL ensemble neurons) and Non-CRE. A paired permutation test was used 997 

for the statistics in D and E. The Wilcoxon signed-rank test was used for the statistics in F. 998 
The data obtained by bootstrap resampling were statistically analyzed as described in the 999 
Methods. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; n.s., not significant. Red bars, 1000 

median; gray boxes in panels A, B, F, G indicate 25th and 75th percentiles.  1001 

 1002 

Fig. 5. US responsive neurons were, by definition, pattern completion cells in the CR 1003 
ensemble networks. (A) A part of the recorded neurons in the dmPFC showed increased 1004 

activity upon US presentation on day 3 (D3) during fear conditioning. Mean activity over 7 1005 
trials of all (top) or US-responsive (middle) neurons, and the mean ± s.e.m. of respective 1006 
categories (bottom) are plotted. Green dotted line indicates the onset of the US, and yellow 1007 
bar indicates the 1-s duration of the US presentation. (B) Summary of US responses of CR 1008 

ensemble neurons (CRE) and others (Non-CRE). All individual neurons for the respective 1009 
categories are plotted. (C) Neurons responding to the US on D3 were dominantly involved 1010 
in the CRE on D4 after the fear conditioning. The difference between CRE vs Non-CRE, as 1011 
well as CRE-noRLE vs Non-CRE, was statistically evaluated. (D) Comparison of functional 1012 
connectivity between US responsive neurons (USR) and others (nonUSR). In the CRE 1013 
network, USR became more connected within the network than nonUSR, while there was no 1014 
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significant difference between USR and nonUSR outside of the CRE (Non-CRE). (E) The 1015 
higher connectivity of USR on D4 was experience-dependent. Functional connectivity of 1016 

USR on D4 was significantly higher in CRE, while there was no significant difference 1017 
between them in Non-CRE. (F) USR in the CRE exhibited significantly higher decoding 1018 
performance of CS+ than nonUSR, which was not the case in Non-CRE. Because the number 1019 
of USR was limited (only 5.63% under the present definition), the analyses shown in this 1020 
figure were performed with data pooled together from all mice (N=7 mice). Fisher's exact 1021 

test was used for the statistics in C, a non-paired comparison (Wilcoxon rank sum test) was 1022 
used in D and F, and the Wilcoxon signed-rank test was used in E. *p<0.05; **p<0.01; n.s., 1023 
not significant. Red bars, median; gray boxes in panels D-F indicate 25 and 75 percentiles. 1024 

 1025 
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Fig. S1. Summary of responses to CS+ and CS- of individual neurons on day (D) 3 and D4.

To consider possible temporal changes in responses to the CSs before and after the fear
conditioning, only results from mice in which neural activities were successfully recorded on both
D3 and D4, from the same sets of neurons, were analyzed. (A) Mean activity over 3 CS trials, or
over 87 onsets of 50-ms tone pulses during the 3 trials (D3-early[D3E]/D3-late [D3L] or D4E/D4L,
respectively) for all individual neurons is plotted separately (n=1165). (B) Mean (± s.e.m.) CS
responses of each category, at each temporal phase (D3E/D3L, D4E/D4L), are plotted separately.
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Fig. S2. Optimization process of the size of CR ensembles by adjusting alpha values for the
elastic net, which also revealed the redundant coding feature.

(A) The AUC of the ROC was calculated to evaluate the decoding performance, and to optimize the
alpha value, after building a model at each alpha for each mouse (AUC original), we compared the
difference in decoding performances between “AUC CRE-rem” and “AUC nonCRE-rem”. AUC
CRE-rem is the AUC value calculated by an elastic net model built with the neurons excluding
original CR ensemble neurons. AUC nonCRE-rem is the AUC value calculated by the neurons
excluding neurons other than original CR ensemble neurons. The “AUC difference” between those
two values was further calculated, and in principle, we defined the best alpha based on the
maximum AUC difference for each mouse independently (see more details in the Methods and
panel D). (B) Summary and raw data for ratio of neurons identified as CR ensemble (per whole
neurons of each circuit) (top), AUC original (middle), and AUC difference (bottom), at each alpha.
(C) Pearson’s correlation was used to calculate the r and p values, revealing that the ratio of neurons
identified as CR ensembles (per whole neurons) and the AUC difference were not significantly
correlated (n=63 samples [7 mice x 9 alphas] were analyzed to determine the possible relationship).
(D) Examples showing how to determine the optimal alpha values for respective circuits (mice). In
principle, we defined the best alpha based on the maximum AUC difference for each mouse
independently, but in some examples as in mouse #3, several alphas revealed statistically
insignificant results among the AUC differences. In this case, the largest alpha among those with
the same AUC difference was selected. See more details in the Methods. (E) When alpha was fixed
at alpha(A)=0.9, the ratio of the CR ensemble neurons that overlapped with RL ensembles was
26.84%, similar to the case of an optimized alpha as shown in Fig. 3. (F) The size of this CR
ensemble (A=0.9) was two times smaller than that of the alpha-optimized CR ensembles. 97.82% of
the neurons identified at A=0.9 were also selected in the alpha-optimized CR ensembles, suggesting
that the neurons selected at the largest alpha 0.9 might be more reliable and robust for the decoding
among all the informative neurons in the dmPFC. In addition, even after the removal of such “core”
neurons, the remaining neurons also possessed information for the CR (as shown in B and D),
indicating that the CR information was redundantly encoded in the dmPFC. Error bars, s.e.m.
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Fig. S3. RL ensembles were not affected by the alpha of the elastic net.

Because optimization of the alpha (hyper parameter for elastic net) was necessary to discriminate
CR ensembles (Fig. S2), we also investigated the relationship between the alpha and AUC
difference for RL ensembles. In addition to various alpha values, we tested various numbers of
reference frames (means of the neural activities over several past or future frames were used as
neural activity data to predict a single label at each time-point) to determine the potential difference
in the decoding performance. We found no significant differences, however, among the various
alphas, or among the different numbers of reference frames, which were evaluated by the Friedman
test. Analyses shown in Fig. S4 also showed a similar independency of alpha values in the decoding
performance of the RL ensembles. According to these results, we decided to fix the alpha at 0.75 to
model RL ensembles, and to fix number of reference frames to one. Red bars, median; the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively; whiskers extend to the
most extreme data points not considered outliers (outliers were calculated by the “boxplot” function
of MATLAB R2014a).
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Fig. S4. Summary of state-dependent change in decoding performance of RL ensembles to
predict behaviors during the CS+.

To evaluate the decoding performance, we calculated the accuracy and AUC (of the ROC) as
described in the Methods. We fixed the alpha for the RL ensembles at 0.75 because there was no
difference among the various alphas in any estimates, as shown here and in Fig. S3. For the selected
results of alpha=0.75, the data of individual circuits are also shown in the left middle panel, as in
Fig. 3E. P values at each alpha (calculated by paired permutation test) are also summarized in the
table.
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Fig. S5. Summary of response profiles of each ensemble to CS+ and CS- on day (D) 3 and D4.

(A) Different from Fig. S1, the mean activity over 3 CS trials, or over 87 onsets of 50-ms tone
pulses during the 3 trials (D3-early [D3E] or D4E, respectively) in all individual neurons identified
as CR ensemble neurons are plotted, indicating the enhanced responses at D4E compared with D3E.
(B) Pie charts summarizing changes in CS responses. In CR ensembles neurons, CS+ activated
neurons were slightly but significantly increased, while no change was observed for other features.
On the other hand, in non-CRE neurons, only CS-inactivated neurons were significantly increased.
(C) Mean CS responses (± s.e.m.) of each category in either CRE or non-CRE, at each temporal
phase (D3E, D4E), are plotted separately. (D) Selected features in C were re-plotted as stacked bar
graphs. A chi-square test was performed for the statistics in B and D. *p<0.05; **p<0.01; n.s., not
significant.
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Fig. S6. Change in coactivity specifically observed in CR ensembles after fear conditioning.

(A) Cumulative curves were drawn for the data pooled by random resampling from all mice (2000
datapoints from each mouse, a total of 14,000 datapoints from 7 mice) to visualize the change in
coactivity within CR ensemble neurons (CRE), CRE neurons without overlap with RL ensembles
(CRE-noRLE), and neurons other than CRE (Non-CRE). The results of the statistical comparison
between day 3-early (D3E) and D4E using a two-sample Kolmogorov-Smirnov test are shown in
the respective panels. Dotted lines show the results of shuffled data (no statistically significant
difference in all cases). (B) Comparison between D3E and D4E for coactivity-related values was
performed with the original data. In addition to the systematic analyses based on the boot strap
resampling as shown in panel C and in Fig. 4A-B, tests based on the raw data (i.e. representative
values from the individual circuits shown here) also revealed a significant enhancement of the
coactivity specifically in CRE, even though the number of the samples is limited (N=7). This also
demonstrated that the results shown by the bootstrap resampling did not derive from artificially
enhanced marginal differences. (C) Detailed analyses of the change in coactivity in dmPFC circuits
after the fear conditioning (i.e. D3E vs D4E). To evaluate the enhancement of positive correlation,
we calculated the 90th, 85th, 80th, and 50th percentiles, mean, and ratio of pairs of the significantly
high correlation (RSHC) for each category. Some of the top two rows overlapped with the results
shown in Fig. 4A-B, but here we additionally revealed results for within-CRE vs between-
CRE&nonCRE (coactivity between CRE and Non-CRE), suggesting that enhanced coactivity
within the CRE after the fear conditioning was specific. Results of CRE-noRLE were also
consistent with those of CRE. A paired permutation test was used for the statistics in B. The data
obtained by bootstrap resampling in C were statistically analyzed as described in the Methods.
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; n.s., not significant. Red bars, median; gray boxes
in panel C indicate the 25th and 75th percentiles.
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Supplementary Movie 1.

An example of GCaMP6f signals in a field of view. DF/F is shown in red, over a background of the
averaged-image shown in gray.
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