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Abstract:   8 

A human arm, up to the wrist, is often modelled as a redundant 7 degree-of-freedom serial 9 

robot. Despite its inherent nonlinearity, we can perform point-to-point reaching tasks 10 

reasonably fast and with reasonable accuracy in the presence of external disturbances and 11 

noise. In this work, we take a closer look at the task space error during point-to-point reaching 12 

tasks and learning during an external force-field perturbation. From experiments and 13 

quantitative data, we confirm a  directional dependence of the peak task space error with certain 14 

directions showing larger errors than others at the start of a force-field perturbation, and the 15 

larger errors are reduced with repeated trials implying learning. The analysis of the 16 

experimental data further shows that a) the distribution of the peak error is made more uniform 17 

across directions with trials and the error magnitude and distribution approaches the value when 18 

no perturbation is applied, b) the redundancy present in the human arm is used more in the 19 

direction of the larger error, and c) homogenization of the error distribution is not seen when 20 

the reaching task is performed with the non-dominant hand. The results support the hypothesis 21 

that not only magnitude of task space error, but the directional dependence is reduced during 22 

motor learning and the workspace is homogenized possibly to increase the control efficiency 23 

and accuracy in point-to-point reaching tasks. The results also imply that redundancy in the 24 

arm is used to homogenize the workspace, and additionally since the bio-mechanically similar 25 

dominant and non-dominant arms show different behaviours, the homogenizing is actively 26 

done in the central nervous system.  27 
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Significance:   28 

The human arm is capable of executing point-to-point reaching tasks reasonably accurately and 29 

quickly everywhere in its workspace. This is despite the inherent nonlinearities in the 30 

mechanics and the sensorimotor system. In this work, we show that motor learning enables 31 

homogenization of the task space error thus overcoming the nonlinearities and leading to 32 

simpler internal models and control of the arm movement. It is shown, across subjects, that the 33 

redundancy present in the arm is used to homogenize the task space. It is further shown, across 34 

subjects, that the homogenization is not an artifact of the biomechanics of the arm and is 35 

actively performed in the central nervous system since homogenization is not seen in the non-36 

dominant hand. 37 

38 
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Introduction:  39 

Movement kinematics during reaching movements are reasonably homogenous despite the 40 

presence of inhomogeneous biomechanics. This suggests that internal models which mediate 41 

sensorimotor transformations could play a role in mitigating such inhomegenities Click or tap 42 

here to enter text. while planning and executing movements (Mussa-Ivaldi et al. 1985).  One 43 

such signature of such inhomegenieties is the observeddirection dependence of error in 44 

reaching tasks  was done by (Gordon et al. 1994).   who showd that the variability in the 45 

direction errors was larger along the axis of movement of the forearm than in the perpendicular 46 

direction, since the former requires greater forces to overcome the higher inertial load of the 47 

relatively larger shoulder movement. The dependence of task space error is also well-known 48 

in the robotics community  -- in a serial robot with rotary joints, the position and orientation of 49 

an end-effector (hand) can be related to the joint variables in terms of trigonometric functions. 50 

As a consequence, the map between the hand velocities/error and the joint rates is nonlinear 51 

and the Jacobian matrix for a serial robot is not constant (Salisbury and Craig 1982). One of 52 

the consequence is that at any location in the workspace of a serial robot, the velocity 53 

distribution is an ellipse for 2D motion (an ellipsoid for 3D motion) and at different points in 54 

the workspace, the shape and size of the velocity ellipse (ellipsoid) will vary (Ghosal and Roth 55 

1987; Salisbury and Craig 1982) .In the robotics community, the velocity at a point in the 56 

workspace is often a proxy for the task space error as higher the velocity the less is the 57 

positioning accuracy. Although not explicitly mentioned and investigated in (Singh et al. 2016), 58 

a careful look at the results clearly show that the task space error is not the same in all directions 59 

(Singh et al. 2016) In this work, we look at the direction dependence of task space error and 60 

learning along the directions of reaching tasks performed by the human arm to show how 61 

internal models learn to homogenise the output.To get a better understanding of the positioning 62 

error in arm movement and its dependence with direction, in this work we take a re-look at the 63 
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task space error in reaching tasks when the hand is subjected to a force-field perturbation. It is 64 

well-known that the magnitude of the task space error decreases and the central nervous system 65 

learns to adapt to the external force-field. In this work we go beyond and ask questions such as 66 

is there a directional dependence of error in reaching tasks when the hand motion is subjected 67 

to a force-field perturbation? Does the task space error reduction go to the level of error when 68 

there is no external force-field and finally what is the nature of the error distribution in the 69 

beginning and at the end of learning? We also ask the question if the redundancy in the human 70 

arm is used differently in the different directions and if the observed learning is actively 71 

controlled by the central nervous system. 72 
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Materials and Methods:  73 

Subjects: 74 

Twenty-two subjects (aged 22  6 years) participated in the study. The handedness of the 75 

subjects was tested by modified Edinburgh Handedness Index (Salmaso and Longoni 1985).  76 

None of the subjects had any neurological diseases or chronic medication issues. All the 77 

subjects were paid for participation and gave informed consents in accordance with the 78 

institutional ethics committee of the Indian Institute of Science, Bangalore. 79 

Experimental setup: 80 

All the recordings were done in a dark room with the subjects sitting on chair with backrest 81 

and their chins resting on a chin rest with head locked with head bars on both sides of their 82 

temple as shown schematically in figure 1A. They looked down on a semi-transparent mirror 83 

on which they saw the targets while they moved a robotic arm handle on a plane below the 84 

plane of the mirror -- a standard approach used to study reaching tasks (Krakauer et al. 1999; 85 

Shadmehr and Mussa-Ivaldi 1994; Shadmehr et al. 2010). The targets were presented by an 86 

inverted monitor (refresh rate 60 Hz) above the mirror setup which gave the impression that 87 

the targets appeared below the mirror while the hand could not be seen. All the experiments 88 

were performed using TEMPO/VIDEOSYNC software (Reflecting Computing, St. Louis, 89 

MO) that displayed visual stimuli, sampled and stored hand position with other behavioural 90 

parameters in real time. The hand positions and joint angles was recorded with a spatial 91 

resolution of 0.03 inches using an electromagnetic position and orientation tracking device at 92 

240 Hz (LIBERTY; Polhemus, Colchester, VT).   93 
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Experimental paradigm: 94 

In all experiment, trials are divided into three phases -- baseline trials, perturbation trials and 95 

washout trials. In the baseline portion, the robot arm was free. In the second perturbation trials, 96 

the robot applied a force perpendicular to the hand trajectory (discussed in detail below) and in 97 

the third phase, the force applied by the robot was switched off. All subjects performed ~30 98 

practice trials before performing the actual experiment. The subjects performed about 400 trials 99 

per session with a typical session lasting between 2 to 3 hours. Each trial started with the 100 

presentation of a fixation box at the centre of screen. When the robotic end-effector was on the 101 

fixation box, then the target box was displayed. The target box was displayed 15 cm away from 102 

the fixation box in any one of the 8 directions. The subject moved the robotic end-effector to 103 

the target box only after the fixation box disappeared. Till the time fixation box disappeared, 104 

subject did not move their hand. Auditory feedback (beep sound) was given when the subject 105 

performed correctly. 106 

The top of figure 1 B shows the three phases of the experiment, and the bottom figure 107 

1 C shows the measured first 5 hand trajectories in the three phases for a typical subject. Data 108 

similar to figure 1 C was acquired for all trials and across 22 subjects. Figure 1 D shows the 109 

error at the peak velocity along the trajectory in the three phases of the experiment for a typical 110 

subject. The errors are colour coded -- the blue dots, for example, shows the error when the 111 

hand moves along 0 degrees. For each subject, the arm was fitted with electromagnetic trackers 112 

which were used to measure joint rotation angles at each instance. The trackers were used to 113 

compute the four angles shown in figure 1 E. Additionally, the (x, y) location of the end-effector 114 

of the robot was also recorded. Detailed analysis of the acquired data for the 22 subjects is 115 

presented in the results section.  116 
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Force-field perturbation: 117 

During the second phase, the robot applied a lateral force. The lateral force depended on the 118 

instantaneous hand velocity as in equation (1) 119 

   -- (1) 120 

where 𝐹!, 𝐹" are the force components exerted by the robotic arm, 𝑥̇, 𝑦̇ correspond to the 121 

velocity of hand and 𝐾 denotes the force perturbation coefficient along the two directions. The 122 

force-field disturbs the hand trajectory initially and with trials, the hand trajectory tends to 123 

become straighter. 124 

Visuo-motor perturbation: 125 

During the visuomotor perturbation, the cursor movement was rotated according to equation 126 

(2), 127 

   -- (2) 128 

where 𝑃!	, 𝑃" correspond to the position of the cursor, 𝑝!	, 𝑝" correspond to the actual position 129 

of the hand and θ (45) denotes the perturbation angle about the center of workspace. This 130 

perturbation led to a trajectory error that was gradually compensated over the course of many 131 

trials and  the hand trajectory straightened. The end-point curser describing the movement was 132 

visible throughout the movement in all experiments. 133 

Kinematic model of arm: 134 

A 2𝐷 forward kinematics model of the human arm is assumed to have four joint rotations -- 135 

clavicle protraction–retraction, shoulder horizontal abduction–adduction, elbow flexion–136 
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extension and wrist medial–lateral -- denoted by θ#, θ$, θ%, 𝑎𝑛𝑑	θ& respectively (see figure 1 137 

E). The Cartesian location of the hand can be written as  138 

 139 

where the four joint rotations are as described above. It may be noted that the angles θ', i = 1, 140 

2, 3, 4 are absolute angles and hence the forward kinematic equations above are different from 141 

typical serial robot kinematic equations with relative angles. The link lengths l', i=1, 2, 3, 4 are 142 

computed from the data from the sensors placed in the arm and vary a little with different 143 

subjects.  To ensure that the l' values are valid, the (x, y) obtained from above equation is 144 

compared with the (x, y) values of the robotic arm handle and the l' values are determined such 145 

that the difference was less than 1.0% 146 

Based on the forward kinematic model, the Jacobian matrix at any joint configuration, can be 147 

obtained as 148 

  149 

where Θ is the vector (θ#, θ$, θ%, θ&)( and ci and si denote cosine and sine of angle θ' The 150 

Cartesian error (∂𝑥, ∂𝑦)( is related to the joint error as 151 

-- (3) 152 

It can be seen that the (2 × 4) Jacobian matrix depends on the 4 joint variables Θ and hence 153 

will vary at different points in the workspace. For a unit |∂Θ|, the maximum and minimum 154 

|(∂𝑥, ∂𝑦)(| are the maximum and minimum singular values of 𝐽(Θ) and they occur along the 155 

mutually orthogonal singular directions, and the unit circle |∂Θ| = 1 maps to an ellipse in the 156 

Cartesian space. If the Jacobian matrix is independent of Θ, scaling can be used to make the 157 
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minimum and maximum singular values equal and thus the error distribution can be a circle 158 

(Raibert and Craig 1981).  159 

Quantifying redundancy in the arm: 160 

In a serial robot, the motion of the end-effector |(∂𝑥, ∂𝑦)(| is not affected by joint motion ∂	Θ, 161 

then the robot is said to be redundant. In the arm model, the number of joint variables is 4 while 162 

the Cartesian motion is of dimension 2. This implies that there exists some Θ  which do not 163 

affect the Cartesian motion and there are redundant degrees of freedom in the arm. The 164 

redundancy in the arm model is quantified by 𝑁(𝐽) obtained from the null space of Jacobian 165 

matrix,  [𝐽(Θ)], as follows: 166 

The variability in the joint variable, Θ, is obtained for the baseline trials for each of the 8 167 

different directions at the maximum Cartesian velocity or at the maximum error along the 168 

trajectory. The mean joint configuration across trials, Θ, was computed also at the maximum 169 

Cartesian velocity. The joint configuration for the 𝑘th𝑡𝑟𝑖𝑎𝑙	Θ+ was subtracted from the mean 170 

to obtain the deviation, ΔΘ+ as 171 

∆	Θ	k = 	Θ − 	Θk 172 

To compute the null space of the Jacobian matrix, it is assumed that the mean Θ results in the 173 

nominal hand trajectory and a part of deviation ΔΘ+ are in the null space of [𝐽(Θ)]. The vectors 174 

in the null space of the Jacobian matrix, ξ', are obtained from 175 

[J(Θ)]ξi	 = 0, i = 1,2 176 

and the component of ΔΘ+ lying in the null space spanned by {ξ#, ξ$} are the inner products 177 

< ΔΘ+ , ξ' >, 𝑖 = 1,2. The sum of the two null space components for the 𝑘,- trial is computed 178 

as  179 
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 180 

and N(J) is defined as  181 

 182 

where n is the number of trials. 183 

Quantifying learning: 184 

One of the simplest models of learning is that of a first-order process where the error is reduced 185 

exponentially. The variation of peak error e(t) as a function of time t, can be written as  186 

𝑑𝑒
𝑑𝑡 =   − e	 × 	𝛽 187 

where β is a parameter that describes the rate of change of error and is independent of the 188 

current error. The evolution of error from the above can be written as.  189 

𝑓(𝑡) = 𝑎 expW− 𝑡X 190 

where α is the initial error and β is the learning rate.  191 

In our case, the error is the maximum deviation (perpendicular distance) of the hand from the 192 

straight line connecting the fixation box and the target box in each of the 8 directions. 193 

Additionally, instead of a continuous function of time, the error is for each trial, and we have  194 

𝑒(𝑛 + 1) = 𝑎 exp(− 	𝑛)   -- (4) 195 

where n denotes the trial number.  196 

b

b
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Markov Chain Monte Carlo Method: 197 

During the experiments, the subjects performed approximately 200 trials in the 8 directions. 198 

The error in the 8 directions is sorted into columns and on an average, there are 25 data points 199 

for each direction -- they vary between 17 and 39 dues to the random nature of the chosen 200 

target directions. A typical table of error in centimetres in each trial along each of the 8 201 

directions is shown in Table 1 for the subject whose data is shown in figure 1 D. 202 

To obtain α and β for each of the directions, we used a Markov Chain Monte Carlo 203 

(MCMC) approach (Suess and Trumbo 2010). The main motivation for using a MCMC method 204 

is that it is known to be more robust in comparison to other nonlinear curve fitting schemes. It 205 

also provides the distribution of the parameters for a chosen prior distribution -- chosen as same 206 

uniform distribution for all directions and subjects in this work-- giving a much better insight 207 

and confidence to the values obtained for α and β . The values of α and β obtained using 208 

MCMC for the subject above along direction 90 degree (column 4 in Table above) is shown in 209 

Table 2.  The values of α and β obtained using the well-known Levenberg-Marquardt (LM) 210 

nonlinear curve fitting scheme (Nocedal and Wright 2006) is also shown below for comparison, 211 

and the numbers obtained from both the methods are in good agreement. It may be mentioned 212 

that the R language was used to implement the MCMC and Levenberg-Marquardt algorithms.  213 

The Table 2 shows the values of α and β obtained using the LM and the MCMC 214 

approaches which indicate that mean values of α and β obtained are consistent. The main 215 

advantage of MCMC over LM is that we also obtain the distribution of α and β which gives a 216 

much better confidence to the obtained numbers. We have used MCMC for all 22 subjects and 217 

for all 8 directions.  218 
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 219 

Figure 1: Experiment setup and design: (A) Subjects made point-to-point reaching movements 220 

using robotic arm. (B) Subjects made point-to-point reaching movements to visual targets in 1 221 

out of 8 directions 15 cm away from the central start point in each trial. Experiments were 222 

divided into three epochs -- a pre-adaptation, an adaptation to an external novel force field and 223 

post-adaptation epochs (left, centre and right panels). (C) First five trials of pre-adaptation, 224 

force field adaptation, and post-adaptation trials from a subject showing baseline variability, 225 

adaptation, and washout effects. (D) Error at peak velocity in pre-adaptation, adaptation, and 226 

post-adaptation showing the progression of adaptation for a subject. Errors in each of the eight 227 

directions are color-coded. Fitted exponential (black line) significantly accounts for most of 228 

the progression of errors across trials during adaptation. (E) Arm model and tracker positions 229 

to measure joint rotation angles.  230 
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Results:  231 

We trained 12 subjects to learn point-to-point reaching movements using their dominant hand, 232 

along 8 directions, in a force-field which was set using the force-field perturbation equation 233 

(1). In this experiment the perturbation was proportional to the velocity of the hand but 234 

perpendicular to the hand movement direction. We used an experimental setup shown in figure 235 

1  A.The data for the three phases – a pre-adaptation baseline period, followed by a force field 236 

perturbation (dynamic perturbation) and finally a post-adaptation phase when the perturbation 237 

was removed – figure 1 B for a representtaive subject. The data consists of the location of the 238 

end point and joint angles while subjects reached/pointed to the target during the three phases. 239 

Figure 1 C shows the trajectories for the first five trials in the three phases for the 240 

representative subject. The peak error was calculated as the perpendicular distance of the hand 241 

trajectory at peak velocity from the straight line joining the central fixation box to the target 242 

location. Overall, the pattern of trajectories are consistent with previous work showing that 243 

while typical movements follow a straight trajectory in the baseline condition, they show strong 244 

curved trajectories in the presence of a force-field. The curved trajectories gradually become 245 

straighter with practice over the course of about two hundred trials with the error decreasing as 246 

shown in figure 1 D. In addition, as a consequence of motor learning, subjects showed a 247 

washout effect (post adaptation) where errors in trajectory inverts in direction when the learned 248 

force field is turned off in the post adaptation period. This washout error converges to baseline 249 

levels. 250 

We assume that learning is a first-order process where the error is reduced exponentially, 251 

and the variation of peak error is as shown in equation (4). To compute the learning in force--252 

field perturbation trials, the errors were fitted with an exponential fit using the Levenberg-253 

Marquardt algorithm,  and for the representative subject β = 	0.0064	 ± 0.0006 Std. error, 𝑡	 =254 
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	11.51	and 𝑃𝑟	(	> 	 |	𝑡	|	) 	< 	2𝑒 − 16 and 𝑎	 = 	6.41	 ± 0.292 cm Std. error, 𝑡	 = 	21.92 and 255 

𝑃𝑟	(	>	|𝑡	|	) < 	2𝑒 − 16(see Figure 1D). 256 

To obtain a more geometric view, we plot the mean error and variation in the baseline, 257 

first 5 trials and last 5 trials under force-filed perturbation in the 8 directions. An ellipse is fitted 258 

(motivated by the velocity distribution at a point seen in a robot -- (see text after equation (3)) 259 

with the mean error in the 8 directions for each of the three data sets. The mean error is denoted 260 

by a “circle” and the “line” through the “circle” denote the variation with trials. Figure 2 A 261 

shows the error distribution along 8 directions for the representative subject data shown in 262 

figure 1. The size of the error ellipse decreases from the first 5 to the last 5 trials -- the errors 263 

are large when the lateral force is applied and as the trials progress, the error decreases, 264 

indicating that the subject learns to adapt to the external lateral force.  It can be observed that 265 

the error ellipse in the baseline (when no external force is applied) is the smallest.  266 

Figure 2 B and C shows the bar plot of the ratio of the major to the minor axis and the 267 

area of the ellipse for all the subjects. The ratio is large in the first 5 trials and the ratio in the 268 

last 5 trials approaches the value in the baseline. The mean ratio in baseline period (mean = 269 

1.93 ± 0.55) was significantly less than the mean ratio at the starting of perturbation (mean = 270 

2.91 ± 0.67) (figure 2 B; p = 1.44e-4, t (11) = 5.67). There was also significant difference in 271 

the mean ratio between the starting of perturbation and end of perturbation (figure 2 B; mean 272 

= 2.07 ±	0.50; p = 0.002, t (11) = 4.16). Figure 2 D shows the evolution of the error ellipse 273 

with trails for subject.  274 

We also computed the area of the ellipse, which is a proxy for overall learning rate, 275 

across directions. The area in the baseline period (mean = 6.44 ± 2.68) was significantly less 276 

than the mean area at the starting of perturbation (mean = 102.23 ± 42.02) (figure 2 C; p = 277 

8.25e-06, t (11) = 7.80). There was good difference in the mean ellipse area between the starting 278 
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of perturbation and the end of perturbation (figure 2 C; mean = 30.02 ± 22.68; p = 1.82e-06, t 279 

(11) = 9.13). However, the area of the ellipse is larger in the last 5 trials as compared to the 280 

baseline in all the 12 subjects. The area of the ellipse gradually decreases with practice over 281 

the course of about two hundred trials as shown in figure 2 F. 282 

Overall, the main findings are that the maximum error due to the external force-field is 283 

very large when it is applied and due to learning the error decreases with trials. This can be 284 

seen from the straightening of the curved trajectories as shown in figure 1 D for a subject and 285 

quantitatively in the plot of area of the ellipse for 12 subjects shown in figure 2 D.  Secondly, 286 

as shown in figure 2 E, the ratio of the major to minor axis of the ellipse decreases with trials 287 

and the error distribution tends to become circular -- it is not a perfect circle which would imply 288 

a ratio of 1.0. The learning results shown by the 12 subjects is not only in terms of reduction 289 

of error magnitude but also making the error distribution more uniform -- this is termed as 290 

homogenization of the task space error distribution. 291 
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 292 

Figure 2: Homogenization of workspace in the dominant arm: (A) Representative subject 293 

directional error ellipse for the baseline (black), starting of perturbation (red) and end of 294 

perturbation (blue). (B) Comparison of directional error ellipse eccentricity in baseline (black), 295 

starting of perturbation (red) and end of perturbation (blue) reveal higher eccentricity in the 296 

starting of perturbation. (C) Comparison of directional error ellipse area in baseline (black), 297 

starting of perturbation (red) and end of perturbation (blue) reveal higher area in the starting of 298 

perturbation. (D) Representative subject directional error ellipse progression towards a more 299 

circular ellipse. The ratio gradually decreases with practice over the course of about two 300 

hundred trials (E) Regression across subjects showing the progression of change in ellipse 301 

eccentricity indicative of homogenization of error distribution. (F) Regression across subjects 302 

showing the progression of change in ellipse area indicative of learning.  303 
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Active learning of a force-field perturbation: 304 

Differences in the ratio of the major to minor axis may reflect a difference in the intrinsic 305 

biomechanics of the human arm. In contrast, differences in the ratio may also reflect the effect 306 

of neural control that assists in homogenizing the workspace of the human arm. To assess this, 307 

we tested and compared the ratio of the major to minor axis of the ellipse across direction in 308 

dominant and non-dominant hand in 10 subjects, thereby normalizing any differences in the 309 

biomechanics. 310 

Similar to the dominant hand, the figure 3 A shows the measured maximum peak error 311 

in the baseline where no perturbation is applied, in the first 5 and last 5 trials with force-field 312 

perturbation in each of the 8 directions with the non-dominant hand for a typical subject. Again, 313 

the mean error is denoted by a “circle” and the “line” through the “circle” denote the variation 314 

with trials. We fit ellipses through the mean error along the 8 directions. This is shown in figure 315 

3 A for the baseline, the first 5 and the last 5 trials. It can be seen that as trials progress the ratio 316 

of major to minor axis in non-dominant hand do not decrease as seen in the dominant hand (see 317 

figure 2 E). The mean ratio in the baseline period (mean = 1.63 ± 0.41) was significantly less 318 

than the mean ratio at the starting of perturbation (mean = 2.15 ± 0.50) (see figure 3 C; p = 319 

0.03, t (9) = 2.53). There was no difference in the mean ratio between the starting of 320 

perturbation and end of perturbation (see figure 3 C; mean = 2.16 ± 0.81; p = 0.97, t (9) = 321 

0.03). 322 

The mean ellipse area in baseline period (mean = 7.19 ± 2.66) was significantly less 323 

than the mean ellipse area at the starting of perturbation (mean = 89.94 ±	29.43) (see figure 3 324 

D; p = 5.83e-06, t (9) = 9.43). There was significant difference in the mean direction ellipse 325 

area between the starting of perturbation and end of perturbation (see figure 3 D; mean = 37.07 326 
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± 27.90; p = 1.39e-04, t (9) = 6.31). The ellipse area gradually become smaller with practice 327 

over the course of about two hundred trials which implies some learning is taking place. 328 

Taken together these findings indicates that the difference in ratio of the major to the 329 

minor axis between the dominant and non-dominant hand or the capability of homogenization 330 

of the error distribution maybe a consequence of the different mechanisms in the dominant 331 

hand and non-dominant hand -- most likely due to active neural control.  332 

 333 

Figure 3: Homogenization of workspace in non-dominant arm: (A) Representative subject 334 

directional error ellipse for the baseline (black), starting of perturbation (red) and end of 335 

perturbation (blue). (B) Representative subject directional error ellipse progression. (C) 336 

Comparison of directional error ellipse eccentricity in baseline (black), starting of perturbation 337 

(red) and end of perturbation (blue) reveal higher eccentricity in the starting of perturbation. 338 

(D) Comparison of directional error ellipse area in baseline (black), starting of perturbation 339 

(red) and end of perturbation (blue) reveal higher area in the starting of perturbation. 340 
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Maximum error, learning rate and redundancy along directions: 341 

As mentioned earlier, the learning rate β and the maximum error α see equation (4) for all the 342 

200 trials (along all directions taken together) for a particular subject was 6.40 and 0.006. 343 

Similar results were obtained for all the 12 subjects. To investigate the variation of α and β 344 

along each direction, the force-field perturbation trail data are sorted along the 8 directions. 345 

This is shown for a typical representative subject is shown in Table 1-- the variation from 25 346 

trials along each direction is due to the random nature of the target presented. To obtain α and 347 

β in each of the 8 directions, we used the robust MCMC algorithm. The mean α and β values 348 

across 12 subjects is shown in figure 4 A and C and obtained values in Tables 3 and 4 (in Table 349 

3 and 4, the values of α and β for subject 9 is not considered in the analysis since the results 350 

obtained from MCMC and LM differ significantly.), respectively. Figure 4 of B and D shown 351 

the bar plots of α and β across subjects.  There is statistical difference in α value in each of the 352 

directions (F (7,79) = 5.54, p = 3.24e-5, see figure 4 C) indicative that some directions have 353 

higher initial errors. Furthermore, there is a clear statistical difference in learning rate   along 354 

90° and 225° (F (7,78) = 3.11, p = 0.006, see figure 4 D). These are also very close to the major 355 

and minor axis of the ellipse of error distribution.  356 
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 357 

Figure 4: Learning is greater for more difficult directions leading to homogenization. Difficult 358 

direction in adaptation: (A) Intercept mean ± se across subjects showing the ratio of the major 359 

to minor axis of the ellipse indicative of some direction has higher initial errors. (B) 360 

Comparison of intercept in different directional. (C) learning rate mean ± se across subjects 361 

showing the learning rate in different directions. (D) Comparison of learning rate in different 362 

directions. 363 

 364 

As mentioned earlier, the human hand is known to be redundant. In the model shown in section 365 

material, a four degree-of-freedom model was assumed for the human hand performing planar 366 

point-to-point reaching motions and hence, the human hand is assumed to possess two 367 

redundant degrees of freedom. In order to test whether redundancy could aid in homogenization 368 

of error distribution due to a force-field perturbation, we computed the null space of the 369 

Jacobian N(J), representing the use of the redundancy in the four degree-of-freedom arm 370 
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model. Figure 5 shows a bar plot of N(J) for the dominant and non-dominant hand for all 371 

subjects in the baseline period.  Consistent with our hypothesis, N(J) was lesser along the minor 372 

axis (mean = 0.06 ± 0.05) compared to the major axis (mean = 0.11 ± 0.07, p = 0.006, t (9) = 373 

3.49,) for the dominant hand. For the non-dominant hand, there was no difference in N(J) 374 

values along the major and minor axis.  375 

We have earlier observed that during learning homogenization of the error takes place, 376 

i.e., the ratio of the major to minor axis of the direction error ellipse decreases with trials. Taken 377 

together we can suggest that redundancy may also play a role in making error distribution more 378 

uniform, i.e., use of redundancy leads to homogenization of error distribution in point-to-point 379 

reaching tasks.     380 

 381 

Figure 5: Null-space variability in the major axis and minor axis in direction ellipse. (A) 382 

Comparison of dominant hand null-space variability along major axis(red), and minor axis 383 

(blue). (B) Comparison of non-dominant hand null-space variability along major axis(red), and 384 

minor axis (blue).  385 
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Learning of a visuo-motor perturbation: 386 

To test whether homogenization is a property related specifically to learning of the newly 387 

imposed biomechanics or is a more general feature of motor learning we next examined 10 388 

subjects while they learnt point-to-point reaching movements with the visuo-motor 389 

perturbation, equation (2), along 8 directions, where in each case, the cursor was rotated by 45∘ 390 

from the hand trajectory. Similar to the dominant hand, figure 6 A shows the measured 391 

maximum peak error in the baseline where no perturbation is applied, in the first 5 and last 5 392 

trials with visuo-motor perturbation in each of the 8 directions with the dominant hand for a 393 

typical subject. Again, the mean error is denoted by a “circle” and the “line” through the 394 

“circle” denote the variation with trials. We fit ellipses through the mean error along the 8 395 

directions. This is shown in figure 6 A for the baseline, the first 5 and the last 5 trials. Unlike 396 

in the dynamics condition, as trials progress the ratio of major to minor axis in visuo-motor 397 

perturbation and did decrease for the dominant hand (see figure 2 E). The mean ratio in the 398 

baseline period (mean = 2.41 ± 0.71) was different than mean ratio at the starting of 399 

perturbation (mean = 1.59 ± 0.29) (see figure 6 C; p = 0.018, t (9) = 2.88). There was also no 400 

difference in the mean ratio between the starting of perturbation and end of perturbation (see 401 

figure 6 C; mean = 1.89 ± 0.55; p = 0.18, t (9) = 1.46).  402 

The mean ellipse area in baseline period (mean = 6.06 ±1.95) was significantly less 403 

than the mean ellipse area at the starting of perturbation (mean = 46.15 ± 25.44) (see figure 6 404 

D; p = 0.001, t (9) = 4.76). There was, however, a significant difference in the mean direction 405 

ellipse area between the starting of perturbation and end of perturbation (see figure 6 D; mean 406 

= 13.73 ± 11.52; p = 2.06e-4, t (9) = 5.98). The ellipse area gradually become smaller with 407 

practice over the course of about two hundred trials as shown in figure 6 D which implies 408 
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learning. occurs in the absence of homogenization of the error distribution in the visuo-motor 409 

perturbation condition. 410 

 411 

Figure 6: Learning in the absence of homogenization of workspace during visuomotor 412 

adaptation: (A) Representative subject directional error ellipse for the baseline (black), starting 413 

of perturbation (red) and end of perturbation (blue). (B) Representative subject directional error 414 

ellipse progression. (C) Comparison of directional error ellipse ratio in baseline (black), 415 

starting of perturbation (red) and end of perturbation (blue) reveal a higher ratio in the starting 416 

of perturbation. (D) Comparison of directional error ellipse area in baseline (black), starting of 417 

perturbation (red) and end of perturbation (blue) reveal a larger area in the starting of 418 

perturbation indicating learning 419 
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Discussion: 421 

In this study, we have presented variation in task space error along directions in point-to-point 422 

reaching tasks. We demonstrated that the motor learning is homogenizing the workspace of the 423 

human arm possibly to increase the efficiency and accuracy.  In addition, our results also 424 

showed a significantly larger use of redundancy along the directions with more error (or major 425 

axis) versus the direction with less errors (or the minor axis) of error ellipse. The data revealed 426 

novel direction specificity of motor learning not reported earlier to the best of our knowledge. 427 

What is more significant is the observation that this anisotropy in errors distribution is reduced 428 

with trials and the error distribution becomes more circular. This work also indicates that the 429 

redundancy in the arm is used to homogenize the error distribution. Although not known where 430 

in the central nervous system the resolution of redundancy is performed and how, this works 431 

provides a possible reason on how the redundancy in the arm is used for reaching tasks. 432 

 433 

Homogenization and Linearization of Control: 434 

In control theory, it is well known that it is significantly easier to design controllers for a linear 435 

system to achieve a desired accuracy. More specifically, for a robot to follow a desired path 436 

with desired accuracy, extensive effort has gone into designing controllers starting from the 437 

simplest proportional, integral and derivative (PID) to sophisticated model-based control 438 

(Craig 2004). A robot can be considered to be linear up to first order if the Jacobian matrix 439 

relating the end-point velocity to the joint rates is constant and for such a Jacobian matrix, the 440 

error distribution is circular or isotropic. From control theory, it has been argued that such a 441 

“linear” robot would be easier to control and would achieve better accuracy -- such robots 442 

containing only sliding joints and with no rotary joints was attempted in the earlier days of 443 

robotics but was given up due to the issues in friction at the sliding joints. This work indicates 444 

that the learning leads to approximate homogenization of the error distribution, i.e., makes the 445 
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arm more ``linear’’ even though it contains rotary joints which makes the Jacobian matrix a 446 

function of the location and inherently nonlinear. A possible consequence of homogenization 447 

of the error distribution would be that the overhead on the central nervous system in terms of 448 

control during reaching tasks is reduced.   449 

 450 

Homogenization and Biomechanics: 451 

Our results indicate that some directions appear to be easier to learn and some are more 452 

difficult. In Howard et al. 2013 (see also Singh et al. 2016), error plots in 8 directions indicate 453 

some dependence on direction but this is not brought out clearly. In this work, we can clearly 454 

see that the errors are significantly larger in direction of the major axis and significantly smaller 455 

in the direction of the minor axis -- the mean (across subjects) major axis is observed to be 456 

around 111.68°, and the minor axis is around 201.68°. It is known from biomechanics of human 457 

arm (or dynamics of serial robots) that the inertia of the arm (as seen from shoulder) and the 458 

effort required is largest when the arm is moving in the direction of the major axis and likewise 459 

the inertia seen, and the effort required is smaller when the arm is moving along the minor axis 460 

and a mechanistic view of more/less error along direction of more/less effort is consistent with 461 

this observation. 462 

The task space positioning error for a robot, in the presence of external disturbances 463 

and noise, is also related to the stiffness (or impedance) of the robotic arm. The impedance of 464 

the robot arm is typically determined by the control scheme (Hogan 1984; Raibert and Craig 465 

1981) and controller gains, and the larger the stiffness the less is the positioning error. In 466 

reaching tasks by human arms, position control involves increase in limb impedance (Franklin 467 

et al. 2007; Wong et al. 2009). In (Wong et al. 2009), the authors claim that the limb stiffness 468 

is modulated to achieve accuracy requirement in the absence of destabilizing force, and they 469 

observe a modest increase in limb stiffness perpendicular to the direction of motion when more 470 
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accuracy is required while moving along a narrow track. In (Franklin et al. 2007) the authors 471 

state that the end-point stiffness, primarily due to the co-activation of bi-articular muscles, 472 

approximately aligns with the direction of instability in the environment with the stiffness 473 

ellipse rotating to align with the direction of instability. In this work, we proceed further and 474 

show that learning results in homogenization, possibly through changes in the stiffness 475 

properties as well as changes in the internal model of the arm. 476 

 477 

Homogenization is controlled by the CNS: 478 

A second major observation in this study is that bio-mechanically similar dominant and non-479 

dominant arms showed different homogenizing behaviours. Both the dominant and the non-480 

dominant hand shows directional dependency of error and both show that the size of the error 481 

ellipse decreases with trials. This indicates that learning is present in both arms. However, the 482 

homogenization  of error distribution is not seen in the non-dominant hand and this indicates 483 

that homogenizing is being actively done by the central nervous system -- the homogenizing 484 

of the workspace seen in the dominant hand provides a natural explanation of why learning 485 

might be more potent in the dominant hand and reaffirms the belief that homogenizing not only 486 

reflects the bio-mechanical characteristics of the arm but may reflect active control from brain 487 

or the central nervous system. In a related set of experiments with visuo-motor rotation, all 488 

directions show the same error distribution (see figure 4). This is consistent with our study as 489 

learning a visuo-motor rotation involves learning of an internal kinematic model and unlikely 490 

requires the homogenization since the inhomogeneities are relate to dynamics.  491 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458189doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458189
http://creativecommons.org/licenses/by/4.0/


28 | P a g e  
 

Homogenization by feedback control internal models: 492 

As mentioned previously, movements associated with larger inertia will have greater muscle 493 

loads and as a consequence of signal dependent noise will generated larger errors. In this 494 

context, it is interesting that the distribution of errors in the baseline condition is low and 495 

homogenous despite inhomogeneous biomechanics. Such uniformity is likely to be a 496 

consequence   of kinematic feedback controllers that ensure of uniform endpoint control, as 497 

well as internal models that ensure homogeneity even during the early feedforward driven 498 

aspect of the trajectory. This suggests that in the baseline the brain (CNS) uses a well learnt 499 

sensorimotor mappings that get transiently inactivated, exposing the underlying 500 

inhomogeneous biomechanics. Although, we do not propose a mechanism on how feedback 501 

gains and internal models are relearnt following the perturbation, our results suggest that a form 502 

of learning that is sensitive not just to the magnitude of the errors as a consequence first order 503 

learning, but of the learning rates themselves that are sensitive to the direction of movement 504 

that helps homogenise errors. We suggest that such directional specific learning linearizes 505 

responses and facilitates generalization beyond the region of training One important issue is 506 

direction generalization function – this refers to the movement direction that displays the 507 

maximum degree of adaptation after learning with the degree of adaptation falling off with 508 

adjacent movements. Donchin et al. (2003) argue from experiments conducted during reaching 509 

tasks, subjected to a force-field disturbance, that the generalization is bi-modal, perhaps 510 

reflecting basis elements that encode direction bi-modally. This work also does not discuss the 511 

direction dependence of positioning error in reaching tasks. In this work, our results indicate 512 

that the generalization is not bi-modal -- the distribution of error is best approximated by an 513 

ellipse with some direction showing large error and some direction showing less error across 514 

subjects.  515 
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Homogenization, redundancy, and learning: 516 

In previous work we showed through first and second order correlations of null space 517 

variability--a proxy for joint redundancy--a possible role for joint redundancy in motor learning 518 

of dynamics and kinematics. Here, we extended this correlation to study the directional 519 

dependency of redundancy and its possible impact on motor learning. In congruence and 520 

extension with our previous study, we observed that the redundancy exhibited a directional 521 

axis that aligned with the learning axis, which could also explain the observed homogenization. 522 

Furthermore, this redundancy axis was only observed for the dominant arm and not seen in the 523 

non-dominant arm which suggests that this alignment maybe causal in nature. In contrast to 524 

the learning of dynamics, kinematic perturbations did not produce inhomogeneities in errors 525 

for redundancy to exploit. Taken together, we speculate that a greater redundancy may allow 526 

better learning by increasing available options, contributing to homogenising errors across 527 

directions.   528 

529 
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Conclusions: 530 

This paper deals with motor learning in point-to-point reaching tasks performed by a human 531 

arm. Experiments conducted with adult subjects show that maximum error along the trajectory, 532 

when the arm is perturbed by a lateral force, decreases with practice and approaches the 533 

situation when no lateral force is applied. In this paper, we investigate the error in the 8 different 534 

directions in which the reaching task was carried out. The error distribution along the 8 535 

directions is fitted with an ellipse and it is observed that, across subjects, a direction between 536 

90 and 135 degrees has the largest error while a direction between 180 and 225 degrees shows 537 

the least error. As the trial progresses and learning takes place, the magnitude of the error along 538 

all directions reduce to a value close to the baseline trials where no lateral force is applied. 539 

Moreover, it is observed that the eccentricity of the error ellipse reduces, and the error 540 

distribution becomes more circular. These two observations indicate that the learning leads to 541 

homogenization of the trajectory error. Similar experiments done with the non-dominant and 542 

bio-mechanically similar arm, show that while there is learning (error magnitude decreasing 543 

with trials), the eccentricity of the error ellipse does not reduce. This leads us to the conclusion 544 

that the homogenization is a consequence of active neural control. Furthermore, analysis 545 

suggest that the redundancy in the arm is used to make the error in different directions more 546 

uniform and is thus a possible use of the redundancy in all human arms.  547 

A typical anthropomorphic robot is known to have a nonuniform (ellipse) error 548 

distribution at different locations in its workspace and in a redundant robot, the redundancy 549 

can be used to make the error distribution uniform (circular) in all directions at a location. 550 

Uniform error distribution is also seen in a linear system which is known to be more easily 551 

controllable. The homogenization result and its analogy with a mechanical robot suggests that 552 

the redundancy is used to make the human arm more linear which in turn make it easier for the 553 

central nervous system to control. More work is required to obtain a better understanding where 554 
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the redundancy in human arm is processed and how the redundancy in the actuation system, 555 

namely muscles, are resolved. 556 

 557 
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