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Abstract

Single cell Hi-C techniques enable one to study cell to cell variability in chromatin
interactions. However, single cell Hi-C (scHi-C) data suffer severely from sparsity, that
is, the existence of excess zeros due to insufficient sequencing depth. Complicate things
further is the fact that not all zeros are created equal, as some are due to loci truly not
interacting because of the underlying biological mechanism (structural zeros), whereas
others are indeed due to insufficient sequencing depth (sampling zeros), especially for
loci that interact infrequently. Differentiating between structural zeros and sampling
zeros is important since correct inference would improve downstream analyses such as
clustering and discovery of subtypes. Nevertheless, distinguishing between these two
types of zeros has received little attention in the single cell Hi-C literature, where the
issue of sparsity has been addressed mainly as a data quality improvement problem. To
fill this gap, in this paper, we propose HiCImpute, a Bayesian hierarchy model that goes
beyond data quality improvement by also identifying observed zeros that are in fact
structural zeros. HiCImpute takes spatial dependencies of scHi-C 2D data structure into
account while also borrowing information from similar single cells and bulk data, when
such are available. Through an extensive set of analyses of synthetic and real data, we
demonstrate the ability of HiCImpute for identifying structural zeros with high
sensitivity, and for accurate imputation of dropout values in sampling zeros.
Downstream analyses using data improved from HiCImpute yielded much more accurate
clustering of cell types compared to using observed data or data improved by several
comparison methods. Most significantly, HiCImpute-improved data has led to the
identification of subtypes within each of the excitatory neuronal cells of L4 and L5 in
the prefrontal cortex.
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Introduction 1

Understanding three-dimensional (3D) chromosome structures and chromatin 2

interactions is essential for interpreting functions of the genome because the spatial 3

organization of a genome plays an important role in gene regulation and maintenance of 4

genome stability [1]. Biochemical methods such as high-throughput chromosome 5

conformation capture coupled with next generation sequencing technology (e.g., Hi-C) 6

provide genome-wide maps of contact frequencies, a proxy for how often any given pair 7

of loci interact in the cell nucleus, the natural 3D space where the chromosomes 8

reside [2]. Bulk Hi-C is an averaged snapshot of millions of cells with limited information 9

on heterogeneity or variability between individual cells. In contrast, single-cell Hi-C 10

(scHi-C) data enable one to construct whole genome structures for single cells, ascertain 11

cell-to-cell variability, and cluster single cells. Such studies can lead to understanding of 12

cell-population compositions and heterogeneity, and has the potential to identify and 13

characterize rare cell populations or cell subtypes in a heterogeneous population [3]. 14

Sparsity is one of the major difficulties in analyzing single cell data, and it is even 15

more challenging for scHi-C data, as sparsity is an order of magnitude more severe 16

compared to most of other types of single-cell data [4]. Since Hi-C data are represented 17

as two-dimensional (2D) contact matrices, the coverage of scHi-C (0.25− 1%) is much 18

smaller than that of single cell RNA-seq (scRNA-seq, 5− 10%) [4]. A further 19

complication is that, among observed zeros in an scHi-C contact matrix, some are true 20

zeros (i.e. structural zeros - SZs) because the corresponding pairs do not interact with 21

each other at all due to the underlying biological function, whereas others are sampling 22

zeros (i.e., dropouts - DOs) as a result of low sequencing depth. Telling SZs and DOs 23

apart is important as it would improve downstream analysis such as clustering and 3D 24

structure recapitulation. For example, methods for reconstructing 3D structures have 25

included a penalty term to position two loci in the 3D space as far as possible if they do 26

not interact [5, 6]. If there is not sufficient sequencing depth, especially in single cells, 27

and if observed zeros are not correctly identified as SZs and DOs, then, applying such a 28

penalty can lead to an artificial separation of two loci that in fact have coordinated 29

effects on certain biological functions. 30

Currently, the concepts of SZs and DOs are well understood and have received 31

considerable attention in scRNA-seq research, with a number of methods developed to 32

identify SZs and impute DOs. Several of the methods, including MAGIC [7], 33

SAVER [8], scUnif [9], scImpute [10], MCImpute [11], and DrImpute [12], were 34

evaluated and compared in a recent publication [13]. In contrast, the concepts of SZs 35

and DOs have not been widely pursued in scHi-C research. In fact, although the issue of 36

sparsity has been addressed, albeit still quite limited, in the scHi-C or bulk Hi-C 37

literature, the focus has been on improving data quality, and little has been said about 38

distinguishing between SZs and DOs [14]. Nevertheless, the need for imputing the zeros 39

have been emphasized in several papers, which is treated as a necessary intermediate 40

steps in these papers to improve data quality for answering various biological questions, 41

including assessing data reproducibility, enhancing data resolution, constructing 3D 42

structure, and clustering of single cells [4, 15–18]. 43

Existing approaches for addressing sparsity to improve data quality all aim to 44

“smooth” the data by borrowing information from neighbors, and they may be classified 45

into three categories depending on the methodology used: (1) kernel smoothing, (2) 46

random walks, and (3) convolutional neural network, with representatives in all 47

categories provided in Supplementary Table S1. For kernel smoothing, the types of 48

kernels that have been used in the literature are uniform kernels or 2D Gaussian 49

kernels [16]. For example, HiCRep [15], which aims to assess the reproducibility of Hi-C 50

data, applies a uniform kernel (or referred to as 2D mean filters in that paper) by 51

replacing each entry in the 2D contact matrix with the mean count of all contacts in a 52
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neighborhood. Another method, scHiCluster [4], has proposed the use of a method in 53

its first step that may also be classified into this category: it uses a filter that is 54

equivalent to taking the average of the genomic neighbors, although the filter may also 55

incorporate different weights during imputation. While a uniform kernel (2D mean 56

filter) takes the average of the genomic neighbors with equal weights, a 2D Gaussian 57

kernel uses a weighted average of neighboring counts according to a 2D Gaussian 58

distribution: the farther away a neighbor is from the entry that is being imputed, the 59

smaller the weight. For instance, SCL [16] applies a 2D Gaussian function to impute 60

scHi-C contact matrices before inferring the 3D chromosome structure. 61

Method referred to as random walks have also been proposed as a way to smooth 62

out an observed 2D matrix for improving data quality [4, 17,19,20]. The idea of a 63

“random walk” process is to borrow information from neighbors in a fashion different 64

from the “neighborhood” idea in kernel smoothing. Any position that is on the same 65

row or column as the entry being imputed (but not necessarily has to be a neighbor) 66

will contribute to the “smoothed” count in each step of the random walk. In 67

GenomeDISCO [17], it is found that taking three steps of the random walk would lead 68

to the best results in the problems investigated therein. Another way to improve data 69

quality is through applying convolutional neural network, a deep learning method 70

commonly applied to analyzing imaging data; HiCPlus [18] and DeepHiC [21] are such 71

supervised learning techniques for improving data quality. 72

Taking on the challenging problems of separating the zeros into structural zeros and 73

sampling zeros, imputing those that are dropouts, and improving data quality more 74

generally, in this paper, we develop HiCImpute, a Bayesian hierarchical model for single 75

cell Hi-C data that borrows information from three sources (if available): neighborhood 76

of a position in the 2D matrix, similar single cells, and bulk data. Through an extensive 77

set of analyses of synthetic and real data, we evaluated the ability of HiCImpute for 78

identifying structural zeros, its accuracy for imputing dropout values, and compare the 79

performance with three existing methods for data quality improvement. We further 80

evaluate downstream analyses using data improved from HiCImpute and the other 81

methods to evaluate the improvement for cell type clustering and subtype discovery. 82

Results 83

Overview of HiCImpute 84

The overall goal of HiCImpute, a Bayesian hierarchical model for analyzing single cell 85

Hi-C data, is to identify structural zeros with high sensitivity and to impute dropout 86

values for the sampling zeros with great accuracy (Figure 1). The main idea relies on 87

the introduction of an indicator variable denoting structural zero or otherwise, for which 88

a statistical inference is made based on its posterior probability estimated using Markov 89

chain Monte Carlo (MCMC) samples (see Methods). We further include additional 90

information through hierarchical modeling and prior specifications by borrowing 91

information from several sources such as neighborhood, similar single cells, and bulk 92

data. A number of criteria for evaluating the performances of HiCImpute have been 93

devised (See Methods). Briefly, the criteria include the proportion of true structural 94

zeros (PTSZ) correctly identified to ascertain the power (sensitivity) for detecting true 95

structural zeros, the proportion of true dropouts (PTDO) identified to gauge the ability 96

for correct identification of dropout events (specificity), correlation (CIEZ and CIEA) 97

and absolute errors (AEOA and AEOZ) for comparing between imputed values and 98

underlying true values, and graphical tools (heatmap, ROC and AUC, SEVI and SOVI) 99

for visualization of imputation accuracy. As part of the workflow, visualization of 100

clustering and subtype discovery results will also be provided via t-SNP and K-means. 101
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Figure 1. Schematic of the HiCImpute algorithm. Each green region on the left denotes
the neighborhood. The indicator variable Sij denotes whether an observed zero at the
(i, j) position is a structural zero or not. The λk is related to the sequencing depth
of single cell k and acts as a normalizing factor. Finally, the intensity parameter µkij
is assumed to follow a common distribution across all similar single cells; shrinkage
estimation with information from neighborhoods and bulk data will be obtained, which
provides accommodations for potential overdispersion. PTSZ (proportion of true struc-
tural zeros correctly identified), PTDO (proportion of true dropouts correctly identified),
AEOA (absolute error of all observed), AEOZ (absolute error of observed zeros), CIEA
(correlation between imputed and expected for all observed), CIEZ (correlation between
imputed and expected for observed zeros), SEVI (scatterplot of expected versus im-
puted), and SOVI (scatterplot of observed versus imputed), ROC (receiver operational
characteristics), AUC (area under the curve).
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HiCImpute greatly improves data quality 102

A major goal of imputing scHi-C data is to improve data quality for downstream 103

analyses, including determination of cell identify, clustering, and subtype 104

discovery [14–17]. In addition to HiCImpute, three existing methods that have been 105

used to improve Hi-C data quality are also considered, so that their performance can be 106

investigated and compared to HiCImpute: 2D mean filter (2DMF) in HiCRep [15], 2D 107

Gaussian kernel (2DGK) in SCL [16], and random walk with 3 steps (RW3S) in 108

GenomeDISCO [17]. These three particular methods were selected for comparison 109

because of their well-characterized and known features in the statistics literature 110

(2DMF and 2DGK) or because of their frequent use in this particular type of 111

applications (RW3S). 112

We first simulated three “types” (T1, T2, T3) of single cells Hi-C data modeled after 113

three K562 single cells data publicly available [22]. In addition to considering three cell 114

types, a number of other parameters are also considered for a thorough investigation, 115

including sequencing depth (7K, 4K, 2K) and the number of cells (10, 50, 100). Details 116

of the simulation procedure is described in Methods. We first use heatmaps to visualize 117

a 2D data matrix before and after the data quality improvement for each of the 118

methods considered.It is clearly seen that for a T1 single cell at the 4K sequencing 119

depth, HiCImpute was able to denoise and recover the underlying structure well (Figure 120

2a). On the other hand, whereas 2DMF and 2DGK oversmoothed the image (the main 121

domain structures are still visible, though), RW3S completely lost the domain structure. 122

The superior performance of HiCImpute can also be seen from the scatterplots of the 123

expected versus the imputed (SEVI plots), where the imputed values are highly 124

correlated with the expected, as the point cloud is distributed tightly around a straight 125

line, including the observed zeros (Figure 2b). On the other hand, all three of the 126

comparison methods have point clouds that follow a funnel shape, indicating much 127

greater variability for larger counts; that is, the imputation becomes less accurate for 128

larger counts. The shrinkage effect is expected (i.e. the imputed values are smaller than 129

the expected counts due to smoothing), although the effect is much more pronounced 130

with the comparison methods than with HiCImpute. Considering the aggregate 131

performance for all single cells, we see that HiCImpute achieves better correlation 132

between the imputed and expected counts, either for all observed values (CIEA) or only 133

the observed zeros (CIEZ) compared to the other methods (Figure 2c). The absolute 134

error for the observed zeros (AEOZ) or for all observed (AEOA) are much smaller 135

compared to the other methods. The above observation for cell type T1 with sequencing 136

depth at 4K holds to a large extend across cell types and number of cells 137

(Supplementary Figures S1-Figures S4), although absolute errors for HiCImpute can be 138

slightly larger than the comparison methods for setting with (low) sequencing depth, at 139

2K. 140

HiCImpute is highly sensitive for identifying structural zeros 141

A novel concept being explored in this paper for scHi-C is structural zeros and our 142

ability to separate them from sampling zeros. The results discussed thus far (Figure 143

2b,c) provides some indirect assessment of the capability of HiCImpute; we now further 144

provide direct evaluation and comparison with other methods. The results using the 145

Bayes rule (Methods) show that HiCImpute has an extremely high sensitivity for 146

detecting SZs. In fact, using the criterion of the proportion of true structural zeros 147

(PTSZ) detected (i.e. the proportion of true underlying structural zeros being correctly 148

declared as SZs – sensitivity), HiCImpute reaches the proportion of greater than 0.95 149

for all the situations considered (Figure 2d and Suplementary Figure S3). For the three 150

comparison methods, an observed zero is identified as SZ if its imputed value is less 151
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Figure 2. Comparison of results from HiCImpute for data quality improvement with
2DMF, 2DGK, and RW3S for T1 cells at 4K sequencing depth. Ordering of the subfigures
is clockwise. (a) Heatmaps of the first single cell showing the observed and true (expected)
2D matrix images as well as the results from HiCImpute and three comparison methods;
(b) Scatterplots of Extected Versus Imputed (SEVI plots) for HiCImpute and the
comparison methods – the red dots represent the observed zeros, which contain both
true SZs (expected = 0) and DOs; (c) aggregate results (over single cells) based on
several evaluation criteria; (d) Proportion of true SZs correctly detection averaged over
single cells; (e) ROC curves accounting for both PTSZ and PTDO (with AUC = 0.98
compared to 0.66, 0.68, and 0.74 for 2DMF, 2DGK, and RW3S, respectively).

than 0.5. This criterion, borrowed from the existing literature on scRNA-seq [7, 11], led 152

to subpar performances: for T1 4K, less than 0.25 of the true SZs were detected. 153

Although the PTSZ may reach over 0.75 when the sequencing depth is low (e.g. T2 2K), 154

the value is typically low, at about 0.25 or less for most of the settings considered. 155

Since the three comparison methods only aim for data quality improvement, not for 156

identifying structural zeros, their adaptation for this purpose with the threshold of 0.5 157

may be viewed as arbitrary. Therefore, we explore a range of threshold values and plot 158

the performance as ROC curves (Figure 2e and Supplementary Figure S4). Once again, 159

HiCImpute outperforms the other methods for this evaluation criterion. HiCImpute not 160

only has larger sensitivity for detecting SZs, but also large r specificity for detecting 161

DOs, with a much larger area under the curve (AUC). For HiCImpute, the AUC is 0.98 162

compared to 0.66, 0.68, and 0.74 for 2DMF, 2DGK, and RW3S, respectively. 163

HiCImpute identifies DOs and imputes them with high accuracy 164

Fixing the PTSZ at 0.95, we further examined and compared the performances of the 165

methods. The reason that we chose to fix the threshold at this level is akin to 166

controlling for the type II error at 0.05. Since the ability to identify SZs is critical for 167

downstream analyses such as constructing 3D structures (as a penalty may be imposed 168

based on SZs [23–25]), it is desirable to keep the proportion of failure to correctly 169

identify the underlying structural zeros at a low level (e.g. 0.05). One can see from 170

Table 1 that HiCImpute outperforms the other methods for correctly identifing the true 171
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dropouts by a large margin across all three single cell types, sequencing depth, and 172

sample sizes. For example, for T1 4K, the specificity, PTDO, for HiCImpute is at 95%; 173

in contrast, even among the best of the three methods, RW3S, at most only 44% of the 174

dropouts are correctly identified. In general, the specificity for HiCImpute is more than 175

doubling that for a comparison method when the specificity for the method is below 176

50%. The accuracy of the imputed values for the DOs and the far superior performance 177

of HiCImpute over the three smoothing methods are consistent with the plots discussed 178

earlier (Figure 2e, Supplementary Figure S4). 179

Table 1. Mean (standard error) of the proportion of true dropouts (PTDO) correctly
detected when the detection rate for the proportion of true structural zeros (PTSZ) is
set to be 0.95.

Type Sequence depth #cells HiCImpute 2DMF 2DGK RW3S
T1 7k 10 0.98 (0.01) 0.29 (0.04) 0.31 (0.04) 0.50 (0.06)

50 0.99 (0.01) 0.27 (0.05) 0.31 (0.05) 0.47 (0.07)
100 0.99 (0.01) 0.27 (0.04) 0.30 (0.05) 0.46 (0.06)

4k 10 0.95 (0.01) 0.21 (0.03) 0.24 (0.03) 0.43 (0.03)
50 0.95 (0.01) 0.18 (0.03) 0.25 (0.03) 0.44 (0.03)
100 0.95 (0.01) 0.19 (0.03) 0.26 (0.03) 0.44 (0.03)

2k 10 0.95 (0.00) 0.39 (0.02) 0.45 (0.02) 0.55 (0.02)
50 0.98 (0.00) 0.39 (0.02) 0.45 (0.02) 0.56 (0.03)
100 0.98 (0.00) 0.39 (0.02) 0.44 (0.02) 0.56 (0.03)

T2 7k 10 0.60 (0.03) 0.08 (0.03) 0.10 (0.04) 0.26 (0.06)
50 0.64 (0.04) 0.10 (0.04) 0.11 (0.04) 0.25 (0.05)
100 0.63 (0.04) 0.10 (0.03) 0.11 (0.03) 0.26 (0.05)

4k 10 0.89 (0.01) 0.30 (0.02) 0.34 (0.02) 0.63 (0.03)
50 0.88 (0.01) 0.29 (0.02) 0.33 (0.02) 0.62 (0.03)
100 0.88 (0.01) 0.29 (0.02) 0.33 (0.02) 0.62 (0.03)

2k 10 0.93 (0.00) 0.39 (0.03) 0.43 (0.03) 0.76 (0.03)
50 0.95 (0.00) 0.46 (0.02) 0.43 (0.02) 0.76 (0.02)
100 0.96 (0.00) 0.39 (0.02) 0.43 (0.02) 0.76 (0.02)

T3 7k 10 0.67 (0.02) 0.07 (0.02) 0.08 (0.02) 0.32 (0.04)
50 0.66 (0.03) 0.07 (0.02) 0.08 (0.02) 0.33 (0.05)
100 0.67 (0.03) 0.06 (0.02) 0.08 (0.02) 0.32 (0.05)

4k 10 0.91 (0.01) 0.09 (0.01) 0.10 (0.01) 0.54 (0.05)
50 0.89 (0.01) 0.10 (0.01) 0.12 (0.01) 0.53 (0.03)
100 0.89 (0.01) 0.09 (0.01) 0.12 (0.02) 0.54 (0.03)

2k 10 0.96 (0.00) 0.18 (0.02) 0.19 (0.02) 0.56 (0.03)
50 0.96 (0.00) 0.15 (0.01) 0.19 (0.01) 0.56 (0.03)
100 0.95 (0.00) 0.18 (0.01) 0.19 (0.01) 0.56 (0.03)
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Improved data lead to more accurate clustering of cells 180

We consider three real scHi-C datasets to demonstrate the improvement of cell type 181

clustering after data improvement with HiCImpute and compare with the results using 182

data improved by the three comparison methods: 2DMF, 2DGK, and WR3S. 183

The first scHi-C dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 184

GSE117874) consists of 14 GM (lymphoblastoid) and 18 PBMC (peripheral blood 185

mononuclear cells) [26]. Based on a sub-2D matrix of dimension 30× 30 on chromosome 186

1 of the 32 SCs of the observed Hi-C data and using the K-means algorithm, there was 187

one misclassification for the GM and 7 for PBMC (Table 2a). With the imputed data 188

from scHiCBayes and the same sub-2D matrix, all GM cells were correctly classified, 189

and there were only three misclassified PBMC cells, a fairly large improvement. On the 190

other hand, using imputed data by 2DMF and 2DGK do not see any improvement, 191

whereas the WR3S imputed data in fact led to more misclassifications on the GM and 192

PBMC cells than using the observed data. The scatterplot of observed versus imputed 193

(SOVI plot) shows that the imputed data from HiCImpute are highly correlated with 194

the observed, whereas the other methods see widely scattered point clouds 195

(Supplementary Figure S5) The correlation between the observed and the imouted are 196

also seen to be much higher across all cells (Supplementary Figure S6). 197

The second Hi-C dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 198

GSE80006) consists of two bulk K562 Hi-C data — one K562A (bulk A) and one 199

K562B (bulk B) — and 19 scHi-C data of K562A and 15 K562B cells [22]. However, 200

among the 34 single cells, only 10 has sequencing depth over 5K; for the remaining ones, 201

most only have sequencing depth of 1K. Using hierarchical clustering, one can see that 202

K562A and K562B cells are mixed together, and in fact, the group in the middle 203

consists of the 10 cells that have sequencing depth of at least 5000, together with the 204

two bulk data (Supplementary Figure S7). Considering only these 10 singles cells and 205

clustering them using K-means based on the observed data led to one of the two K562A 206

cells clustered with the eight K562B cells (Table 2b). On the other hand, clustering 207

using improved data from HiCImpute corrected the misclassification, resulting in perfect 208

separation of the K562A and K562B cells. In contrast, using data improved by 2DMF, 209

2DGK, or RW3S did not yield any improvement over the outcome from simply using 210

the observed data. SOVI plots and correlations between observed and imputed further 211

substantiate the superior performance of HiCImpute (Supplementary Figures S5 and 212

S6). 213

Table 2. Clustering results for three single cell Hi-C datasets before and after data
improved with four methods.

Dataset type K-means Observed HiCImpute 2DMF 2DGK RW3S
(a) GSE117874 GM C1 13 14 13 13 11

C2 1 0 1 1 3
PBMC C1 7 3 7 7 8

C2 11 15 11 11 10
(b) GSE80006 K562A C1 1 2 1 1 1

C2 1 0 1 1 1
K562B C1 0 0 0 0 0

C2 8 8 8 8 8
(c) scm3C-seq L4 C1 76 131 77 77 76

C2 55 0 54 54 55
L5 C1 105 0 105 104 105

C2 75 180 75 76 75
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The third scHi-C dataset (https://github.com/dixonla b/scm3C-seq) consists of 214

prefrontal cortex cells of subtypes L4 (131 cells) and L5 (180 cells) [27]. It is known that 215

there are 14 cell subtypes of the prefrontal cortex cells, including eight neuronal 216

subtypes that were all clustered together based on the observed scHi-C data [27]. 217

Among them are L4 and L5, two excitatory neuronal subtypes known to be located on 218

different cortical layers. Our K-means analysis based on the observed L4 and L5 scHi-C 219

data shows that these two subtypes are indeed mixed together (Table 2c), echoing the 220

earlier finding [27]. Although the problem is much more challenging compared to the 221

first two datasets given its size and the extremely mixed clustering results based on the 222

observed data, using data improved by HiCImpute led to perfect separation of the two 223

subtypes; whereas none of the data improved using the comparison methods yielded any 224

improvement. SOVI plots of the observed versus the imputed values and the 225

correlations across all cells painted the same picture as for the other two datasets on the 226

superiority of scHi-C over the other methods (Supplementary Figures S5). 227

Figure 3. Comparison of results from HiCImpute, 2DMF, 2DGK, and RW3S via
t-SNE visualization and clustering with K-means. (a) Plots of total within-cluster sum
of squares versus number of clusters for K-means analysis; (b) t-SNE visualiation and
K-means clustering boundaries based on observed data; (c) Same as (b) but based on
HiCImpute-improved data; (d) Same as (b) but based on 2DMF, 2DGK, or RW3S-
improved data.
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Discovery of subtypes of L4 and L5 228

Cell to cell variability is a driving force behind the developments of single cell 229

technologies [28]. Based on single cell RNA-seq data, subtypes of L4 and L5 have been 230

discovered. For example, two L4 subtypes, Exc L4-5 FEZF2 SCN4B and Exc L4-6 231

FEZF2 IL26, were found to be highly distinctive as they occupied separate branches of 232

a dendrogram [29]. On the other hand, the L4–IT–VISp–Rspo1 cells were shown to 233

exhibit heterogeneity along the first principal component of scRNA-seq data [30]. 234

Similarly, two subtypes of L5, Exc L5-6 THEMIS C1QL3 and L5-6 THEMIS DCSTAMP, 235

were also found to be on two separate branches of a dendrogram [29], while there was 236

also research that further classified L5 cells into L5a and L5b subtypes [30]. Other 237

works have also found subclusters of excitatory neurons including L4 and L5 [31–33]. 238

Inspired by the ample evidence in the literature that subtypes of L4 and L5 exist, we 239

visualized the observed data and those improved by HiCImpute, 2DMF, 2DGK, and 240

RW3S using t-SNE and then clustered using K-means. Based on the within-cluster sum 241

of squares and visually inspecting the number of clusters where the “elbow” is identified 242

(Figure 3a), we see that there are two clusters for the observed data (Figure 3b) and 243

those improved with 2DMF, 2DGK, or RW3S (Figure 3d). On the other hand, for the 244

data improved with HiCImpute, the plot clearly shows the existence of four clusters 245

(Figure 3c). In fact, these four clusters are very well separated, with two of them 246

consisting of purely L4 cells and two L5 cells. Using the adjusted rand index (ARI) [34], 247

we further investigate the optimal number of clusters and the performance of clustering 248

for the observed data and improved data with HiCImpute and the other methods. 249

Based on the results (Supplementary Table S2), it is without a doubt that HiCImpute 250

improves over the observed data and outperform the other methods. Most importantly, 251

using data improved with HiCImpute, two subtypes each for L4 and L5 emerge, 252

consistent with results in the literature. On the other hand, none of the data improved 253

with the other methods led to the discovery of any subtypes for L4 or L5. 254

Visualization by a 2-way clustering heatmap using normalized and log-transformed 255

HiCImpute-improved data for the 500 positions (on the 2D matrix) with the highest 256

variation across all cells further substantiates the 3D structural differences between each 257

of the two subtypes of L4 and L5 (Figure 4a), where the L4 cells were clustered into two 258

subgroups, and the same for the L5 cells. Several genes that were found to be 259

differentially expressed among subgroups of L4 and L5 in the literature [29] were also 260

marked on the heatmap, where it can be seen that there are differential interaction 261

intensities among the subtypes. To further elucidate the potential correspondence 262

between differential gene expression and differential 3D interaction intensities among 263

the subtypes of L4 or among those of L5, we combined all cells from each of the 264

subtypes into four mega 2D matrices (L4T1, L4T2, L5T1, L5T2) and normalized them 265

to the same total count and scaled them to be a value between 0 and 1. These 2D 266

matrices displayed as heatmaps exhibit regions having differential interaction intensities. 267

Zooming in on the region chr20:35,000,000-55,000,000, we can see that L5T1 has 268

relatively lower intensities compared to its L5T2 counterparts, and furthermore, the 269

latter appears to have some subtle domain structures that are missing in the former 270

(Figure 4b). Interestingly, when we reproduce the mean RNAseq data in the same 271

region for two subtypes discussed in the literature [29] as tracks in the UCSC genome 272

browser (https://human-mtg-rna-hub.s3-us-west- 273

2.amazonaws.com/HumanMTGRNAHub.html), the differences in the gene expression 274

patterns are obviously (Figure 4c). Examples of other regions where there appear to be 275

a correspondence between 3D structure differences and gene expression differences 276

among subtypes of L4 or L5 are also provided (Supplementary Figure S8-Figure S10). 277
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Figure 4. Correspondence between differential 3D structures and differential gene
expressions among further subtypes. (a) Heatmap of 500 positions in the 2D interaction
matrix with the largest variation among the cells (each row is a position and each
column is a cell), with a 2-way clustering outcome placing the L4 cells into the two
purple groups and the L5 cells into the two orange groups, and genes showing differential
expression [29]indicated on the right edge of the heatmap; (b) Mega 2D matrices of
normalized and scaled interaction intensities displayed as heatmaps, with the left for
L5T1 and right for L5T2; (c) Mean gene expression for two L5 subtypes described in
the literature [29].

Discussion 278

This paper introduces the concept of structural zeros in the context of 3D contacts, and 279

explores the ability of HiCImpute for separating structural zeros from sampling zeros 280

and the accuracy of imputing the dropouts. From both simulation and real data studies, 281

we can see that HiCImpute has great ability of identifying structural zeros, and 282

outperforms existing methods for its accuracy of imputing the contact counts of 283

dropouts based on multiple criteria. This conclusion is based on outcomes from 284

considering a number of factors, including the number of cells, sequencing depth, 285

multiple cell types, and whether bulk data are available. The improved data from 286

HiCImpute has greatly impacted downstream analysis. From the examples of clustering 287

GM and PBMC cells, K562 cells, and prefrontal cortex cells, we have seen that data 288

improved with HiCImpute led to more accurate clustering judging from known cell 289

types. What is most exciting is the ability of HiCImpute for producing improved data 290

that can lead to not only the separation of L4 and L5 of the prefrontal cortex cells, but 291

also the discovery of two subtypes, each within L4 and L5, for the first time using 292

scHi-C data. Given that the existence of further subtypes within each of these two 293

excitatory neuronal subtypes has been documented in the literature using scRNA-seq 294

data [29–33,35], and given that our own analysis has found regions where there are 295

differential expression and differential interactions between further subtypes, our results 296

may be viewed as evidence for the potential of establishing the correspondence between 297

scHi-C and scRNA and elucidating the ability of scHi-C data, when appropriately 298

enhanced, for investigating cell-to-cell variability and uncovering hidden subpopulations 299

and substructures. 300

The more accurate results do not come without a greater cost in computational time, 301
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though. Our scHi-C method is implemented in C++ for computational efficiency since 302

the algorithm based on Markov chain Monte Carlo is computationally intensive. The 303

computational time for HiCImpute was in hours with hundred of cells for the L4/L5 304

prefrontal cortex data, compared to minutes with the other methods (Supplementary 305

Table S3). Nevertheless, considering the time needed for collecting the samples and 306

generating the data, this price to pay is completely justifiable, especially since biological 307

insights are gained with the improved data from HiCImpute compared to the 308

alternatives in the literature. Hours of computational time for the “truth” to be 309

revealed is certainly worth the wait and the cost compared to the “truth” continued to 310

be hidden. Nevertheless, effort will continue to be made to further improve the 311

computational efficiency. 312

Methods 313

Bayesian Hierarchy Model 314

Suppose we have contact matrices for K Single Cells (SCs) and a bulk Hi-C dataset 315

that is related to these SCs. Let Yijk and Y bij represent the observed interaction 316

frequencies between loci i and j (i < j) for SC k, k = 1, · · · ,K, and the bulk data, 317

respectively. Among those observed 0’s, some are true 0s (i.e. structural zeros, SZs) 318

since the two loci never interact with each other in this particular cell; whereas others 319

are sampling zeros (i,e. dropouts, DOs) since they interact infrequently and thus 320

dropout from the sample as their interaction is not observed due to insufficient 321

sequencing depth. This zero-inflated problem is complicated since not all zeros are 322

created equal, and our goal is to make statistical inferences to tease out those that are 323

SZs from those that are DOs, and to imopute the values for the DOs. 324

Since Yijk is a count, its distribution can be reasonably modeled by a Poisson 325

distribution, with additional hierarchical modeling to address potential overdispersion, 326

leading to equivalency with a negative binomial model. Let Tk =
∑
i<j Yijk denote the 327

sequencing depth of SC k, and let µkij be the parameter representing the intensity of SC 328

k if the SC is depth-normalized to a desired sequencing depth T , which may be the 329

maximum sequencing depth among the SCs, that is, T = max{Tk, k = 1, · · · ,K}, or 330

may simply be an intended sequencing-depth level appropriate for downstream analysis, 331

say 300,000, the level of the best K562 scHi-C data [22] . Then λk = Tk/T is the 332

proportionate sequencing depth of SC k relative to the intended one. 333

To distinguish the SZs from the DOs, we define an indicator variable Sij , which 334

equals to 1 if loci i and j do not interact, otherwise it is 0. That is, Sij ∼ Bernoulli(πij), 335

where πij is the probability that pair i and j do not interact. Yijk therefore follows a 336

mixture of a point-mass distribution at 0 and a Poisson distribution with mixing 337

proportions πij and 1− πij , respectively. Hence, 338

Yijk | I(Yijk > 0 or Sij = 0) ∼ Poisson(λkµkij), where I(·) is the usual indicator 339

function, and λkµkij is the intensity parameter for the non-normalized observed counts. 340

We further let πij follow a Beta distribution and its mean is governed by the observed 341

proportion of zeros across the SCs in that position. The idea is that if there is a large 342

proportion of zeros at that position, it is more likely to be an SZ. 343

We allow for cell-to-cell variability by setting up an additional hierarchy to model 344

µkij as follows: µkij ∼ Normal+(µij , σ
2
ij), where Normal+ is a truncated normal 345

distribution on positive numbers, σ2
ij is taken to be the standard deviation of nonzero 346

counts in a neighborhood centered at (i, j), and µij is further assumed to follow a 347

Gamma distribution whose mean borrows information from both the bulk Hi-C and the 348

neighborhood data across similar SCs. Specifically, let Y
(nSC)
ij =

∑
k Yijk/

∑
k λk, 349

which is the weighted average of the “normalized” (to sequencing depth T ) contacts 350
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between i and j over the SCs with the weight proportional to the sequencing depth of 351

each SC. Similarly, we let T b =
∑
i<j Y

b
ij and Y

(nB)
ij = TY bij/T

b be the sequencing 352

depth of the bulk data and the count of the bulk data “normalized” to sequencing depth 353

T , respectively. Then the mean of the Gamma distribution is set to be 354(∑
(i,j)∈Ω2

Y
(nB)
ij /||Ω2||)

)(∑
(i,j)∈Ω1

Y
(nSC)
ij /(||Ω1||Ȳ (nSC))

)
, where Ω1,Ω2 are the 355

neighborhoods for the SCs and the bulk data, respectively, || · || is the cardinality of the 356

neighborhood and Ȳ (nSC) is the average of the Y
(nSC)
ij over the SCs. Under this setting, 357

we note that information from the SCs plays a modifying role by providing a weight 358

factor to the information from the bulk data: if the average count in the neighborhood 359

of the SCs is larger than the average count over the entire matrix, then the mean 360

neighborhood count of the bulk data will be boosted otherwise it will be shrunk. 361

Throughout all the data analysis, the neighborhood is taken to be the two immediate 362

neighbors (if available) in all directions of a lattice (Figure 1). 363

Details on the prior specifications, the posterior distributions, Markov chain Monte 364

Carlo (MCMC) sampling schemes, and convergence diagnostics are provided in the 365

Supplementary Materials. Using samples generated by MCMC from the posterior 366

distribution of π for a particular pair that have an observed zero count in an SC, we can 367

make inference about whether the zero is a SZ or a DO. A natural decision based on the 368

Bayes rule is to declare a zero for an SC to be a SZ if the corresponding π is estimated 369

by the posterior sample mean to be greater than 0.5. However, to compare between 370

HiCImpute and existing methods, as described in more details in the evaluation criteria 371

below, we also set different thresholds to obtain an ROC curve. 372

For comparison with 2DMF, 2DGK, and RW3S in terms of PTSZ, we follow the 373

recommendation in the scRNA-seq literature by labelling an observed zero to be a 374

structural zero if the imputed count is less than 0.5 for each of the comparison 375

methods [11]. We also vary the threshold to obtain an ROC curve separately for each of 376

the three methods. 377

Performance evaluation criteria 378

To evaluate the performance of HiCImpute and to compare with other data quality 379

improvement methods, including 2DMF, 2DGK, and RW3S, we consider the following 380

novel criteria in addition to standard measures and plots, including the heatmap and 381

t-SNE visualization tools [36], receiver operating characteristic (ROC) curves and area 382

under the curve (AUC), K-means clustering algorithm, and the adjusted rand index for 383

evaluating clustering results. 384

• PTSZ: Proportion of true structural zeros correctly identified. This is defined as 385

the proportion of underlying structural zeros that are correctly identified as such 386

by a method. Being able to separate structural zeros from sampling zeros is 387

important for downstream analyses, especially for single cell classification to 388

reveal cell sub-populations. 389

• PTDO: Proportion of true dropouts correctly identified. This is defined as the 390

proportion of underlying sampling zeros (due to insufficient sequencing depth) 391

that are correctly identified as such by a method. Similarly, being able to 392

correctly identify dropouts is also critical for a number of downstream analyses. 393

• SEVI: Scatterplot of expected versus imputed. This serves as a visualization tool 394

to directly assess whether dropouts are correctly recovered and accurately 395

imputed for simulated data where the ground truth is known. 396

• SOVI: Scatterplot of observed versus imputed – applicable to real data for 397

non-zero observed counts. This serves as a visualization tool to indirectly assess 398
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whether the imputed values are sensible for the observed zeros by looking at the 399

performance for observed non-zeros. For real data, whether an observed zero is a 400

SZ or DO is unknown, and if it is a DO, the underlying expected non-zero value is 401

also unknown. Nevertheless, the imputed values for the non-zero observed counts 402

should not deviate wildly from the observed values even though some level of 403

“smoothing” is applied. 404

• AEOA: Absolute errors for all observed data. This is defined as the absolute 405

difference between the imputed and the expected for all observed data. This 406

measure is to gage how well the imputed values can approximate its underlying 407

true values. 408

• AEOZ: Absolute errors for observed zeros. Unlike AEOA that considers all 409

observed, this measure only considers observed zeros. This measure provides a 410

more focused evaluation on correct identification of structural zeros and the 411

accuracy of the imputing dropout values. 412

Simulation studies and settings 413

To evaluate HiCImpute and compared with the three data quality improvement 414

methods in the literature, we carried out an extensive simulation study for a total of 415

over one hundred settings, including three types of single cells (T1, T2, T3, mimicking 416

three K562 cells [22]), three sequencing depth in a 61× 61 contact matrix on a segment 417

of chromosome 19 (7k, 4k, and 2k), 3 sample sizes (10, 50, 100, representing the number 418

of single cells), and 4 settings of SZs and DOs. The following describes the detailed 419

simulation procedure to generate single cell data for each of the settings as well as bulk 420

data. 421

• Step 1. Calculate the 3D distance matrix d where 422

dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 at each pair of loci (i, j), i < j, where 423

(xi, yi, zi) represents the 3D coordinates for locus i of the 3D structure. For each 424

of the three cells, its 3D structure was constructed using SIMBA3D [25] based on 425

a K562 scHi-C data [22]. 426

• Step 2. Use the following formula to generate the λ matrix following the
literature [37]:

log(λij) = α0 + α1 log dij + βl log(xl,ixl,j) + βg log(xg,ixg,j) + βmlog(xm,ixm,j),

where α1 is set to -1 to follow the typical biophysical model, α0 is the scale 427

parameter, and set to be 5.7, 6.3, and 6.8 for the three cell types, respectively. On 428

the other hand, xl,i, xg,i, and xm,i are covariates generated from uniform 429

distributions to mimic fragment length, GC content, and mappability score, 430

respectively, and their coefficients, the β’s, are all set to be 0.9. 431

• Step 3. Find the lower γ% quantile of the λij as the threshold, for those λij < 432

threshold, randomly select half of them to be candidates for structural zeros. 433

Among these candidates, randomly select η% of them and set their new λij value 434

to be zero. These are the SZs across all SCs. In our simulation, we consider 435

γ = 10%, 20% and η = 80%, 50%, leading to 4 combinations. In the results 436

presented in this paper, we only show those for γ = 10% and η = 20%. Note that 437

the results for the other three combinations led to the same conclusions 438

qualitatively. 439
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• Step 4. For the remaining (1− η%), they are randomly set to be SZ or not with 440

equal probabilities when we simulate the contact count matrix for each single cell. 441

For a particular single cell, the new λij value is set to be zero if a position is 442

selected to be SZ; otherwise, the λij value is left unchanged in the original λ 443

matrix. This leads to be a λ∗ matrix for a specific single cell. Therefore, the SZs 444

among the (1− η%) positions vary from SC to SC. 445

• Step 5. Simulate a 2D contact matrix for a SC using the λ∗ matrix; the contact 446

count at each position is generated based on a Poisson distribution with the 447

corresponding value in the λ∗ matrix as the intensity parameter. Note that the 448

count is set to zero (SZ) if the corresponding value in the λ∗ matrix is zero. Also 449

note that a zero may still result even if the corresponding value is not zero, and 450

these are DOs. This completes the simulation of one SC; the SZs and DOs vary 451

from SC to SC. 452

• Repeat steps 4 and 5 for as many time as needed to obtain the desired number of 453

SCs (sample size). We consider three sample sizes: 10, 50, and 100 SCs. 454

Finally, we created bulk data by combining the 2D contact matrices from 540 SCs 455

equally divided among the three cell types (180 for each type). 456

Data Availability 457

The three real datasets analyzed are available at 458

https://github.com/Queen0044/scHiC data. The HiCImpute R package, together with 459

the simulated data used in this study, are available on Github: 460

https://github.com/Queen0044/HiCImpute.git. 461
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Supporting Information 667

Markov chain Monte Carlo Procedure 668

In the following, we provide the prior specifications, the posterior distributions, the 669

Markov chain Monte Carlo (MCMC) sampling schemes, and convergence diagnostics. 670

The notations are the same as those in the main paper and may not be reintroduced. 671

To distinguish the SZs from the DOs, we define an indicator variable Sij , which 672

equals to 1 if loci i and j do not interact; otherwise, it is 0. That is, 673

Sij ∼ Bernoulli(πij), where πij is the probability that pair i and j do not interact. This 674

probability, πij , is assumed to follow a Beta distribution with parameters aβij and bβij , 675

and aβij is further assumed to be uniformly distributed on (1,1000) to account for a large 676

range of possible shapes. The mean of the Beta distribution,
aβij

aβij+b
β
ij

, is governed by the 677

proportion of observed zeros at (i, j), denoted as p̂ij . Specifically, we define δij to be a 678

uniformly distributed variable that centers at p̂ij with radius ε1 (default is set to be 679

0.5), and we let logit(
aβij

aβij+b
β
ij

) follow a Normal distribution with mean and standard 680

deviation being logit(δij) and σδ, respectively. That is, if we observe a large proportion 681

of zeros for pair i and j, then it is more likely, a priori, that the pair is a structural zero. 682

We allow for cell-to-cell variability by setting up an additional hierarchy to model 683

µkij as follows: µkij ∼ Normal+(µij , σ
2
ij), where Normal+ is a truncated normal 684

distribution on positive numbers, σ2
ij is taken to be the standard deviation of nonzero 685

counts in a neighborhood centered at (i, j), and µij is further assumed to follow a 686

Gamma distribution with shape and scale parameters being αij and βij , respectively. 687

Its mean, αijβij , borrows information from both the bulk Hi-C and the neighborhood 688

data across similar SCs, as already described in the main text. Further, αij is assumed 689

to follow a Uniform distribution on (1,1000) to allow for a wide variety of shapes for the 690

distribution. 691

To make inferences about the parameters, we devise a Markov chain Monte Carlo 692

(MCMC) sampling procedure as follows. We first write the posterior distribution of Θ 693

(a vector containing all parameters, including πij ’s and µkij ’s, the main parameters of 694

interest, as well as nuisance parameters): 695
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P (Θ|s, y) ∝ P (y|s,Θ)× P (s|Θ)× P (Θ)

∝
∏

(i,j,k):yijk>0

(λkµkij)
yijke−λ

kµkij

yijk!

∏
(i,j,k):yijk=0

[
e−λ

kµkij

]1−sij
×
∏
i,j

[πij ]
1{sij=1} [1− πij ]1{sij=0}

×
∏
ij

∏
k

φ(
µkij−µij
σµ

)

σµ[1− Φ(−µij/σµ)]

×
∏
i,j

(πij)
atij−1(1− πij)b

t
ij−1

Γ(atij + btij)

Γ(atij)Γ(btij)

×
∏
i,j

1

1000− 1
1{1≤atij≤1000}

×
∏
i,j

exp{− 1

2σ2
δ

(logit(
aij

aij + bij
)− logit(δij))2} 1

aij
aij+bij

(1− aij
aij+bij

)

×
∏
i,j

1

min{p̂+ ε1, 1} −max{p̂− ε1, 0}
1{max{p̂−ε1,0}≤δij≤min{p̂+ε1,1}}

×
∏
i,j

1

Γ(αtij)(β
t
ij)

αtij
µ
αtij−1

ij e−µij/β
t
ij

×
∏
i,j

1

1000− 1
1{1≤αtij≤1000}

×
∏
i,j

1

(Bij + ε2)−max{0, Bij − ε2}
1{max{0,Bij−ε2}≤αijβij≤Bij+ε2}

To sample from the posterior distributions of the parameters in Θ, we use 696

Metropolis-Hastings algorithms, and in particular the Gibbs sampler whenever the 697

conditional distribution of a parameter is of a commonly known one. In the following, 698

we briefly describe the updating schemes. We first note that Θ−g denote the subvector 699

of Θ that includes all the parameters except g. 700

• Update αtij : 701

Using the current αtij , sample a candidate αt∗ij from the proposal distribution
Jαij (α

t∗
ij |αtij), a Uniform(1, 1000) distribution, and calculate the ratio of the

densities,

r =
p(αt∗ij |y,Θ−αtij )
p(αtij |y,Θ−αtij )

where

p(αt∗ij |y,Θ−αtij ) ∝
1

Γ(αtij)(β
t
ij)

αtij
µ
αtij−1

ij e−µij/βij1{0≤αij≤1000}1{max{0,Bij−ε2}≤αijβij≤Bij+ε2}

Accept αt∗ij with probability min(r, 1). 702

• Update βij : 703

Sample µij from a Uniform(max{0, Bij − ε2}, Bij + ε2) distribution, and solve for 704

βij using αijβij = µij . 705

22/38

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458575doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458575
http://creativecommons.org/licenses/by-nd/4.0/


• Update µij : 706

Using the current µtij , sample a candidate µt∗ij from the proposal distribution
Jµij (µ

t∗
ij |µtij), a Normal+(µtij , 0.5) distribution, and calculate the ratio of the

densities,

r =
p(µt∗ij |y,Θ−µtij )
p(µtij |y,Θ−µtij )

where

p(µij |y,Θ−µtij ) ∝ µ
αij−1
ij e−µij/βij

100∏
k=1

φ(µkij − µij)/σµ)

σµ[1− Φ(−µij/σµ)]
,

and φ,Φ are the pdf and cdf of the standard normal distribution, respectively. 707

Accept µt∗ij with probability min(r, 1). 708

• Update µkij(k = 1, 2, · · · , 100): 709

Using the current µkij , sample a candidate µk∗ij from the proposal distribution

Jµkij (µ
k∗
ij |µkij), a Normal+(µkij , 0.5) distribution, and calculate the ratio of the

densities,

r =
p(µk∗ij |y,Θ−µkij )
p(µkij |y,Θ−µkij )

,

where

p(µij |y,Θ−µkij ) ∝
[
(µkij)

yijke−λ
kµkij

]1yijk>0

×
[
e−λ

kµkij

]1sij=01yijk=0

φ(
µkij − µij

σµ
)

and φ is the pdf of the standard normal distribution. Accept µk∗ij with probability 710

min(r, 1). 711

• Update aij 712

Using the current aij , sample a candidate at∗ij from the proposal distribution
Jaij (a

t∗
ij |aij), Uniform(1, 1000), and calculate the ratio of the densities,

r =
p(at∗ij |y,Θ−aij )
p(aij |y,Θ−aij )

where

p(at∗ij |y,Θ−aij ) ∝ π
aij−1
ij (1− πij)bij−1 Γ(aij + bij)

Γ(aij)
1{0 ≤aij≤A1}

and 713

exp{ 1

2σ2
δ

(logit(
aij

aij + bij
)− logit(δij))2} 1

aβij
aij+bij

(1− aij

aβij+bij
)
.

Accept at∗ij with probability min(r, 1). 714

• Update δij : 715

Using the current δij , sample a candidate δt∗ij from the proposal distribution
Jδij (δ

t∗
ij |δij), a uniform(max{0, p̂ij − ε1},min{p̂ij + ε1}) distribution, and

calculate the ratio of the densities,

r =
p(δt∗ij |y,Θ−δij )
p(δij |y,Θ−δij )
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where

p(logit(δij)|B,S) ∝ exp{− 1

2σ2
δ

(logit(
aij

aij + bij
)−logit(δij))2}1{max{p̂−ε1,0}≤δij≤min{p̂+ε1,1}}.

Accept δt∗ij with probability min(r, 1). 716

• Update bij : 717

Solve for bij , using logit(
aij

aij+bij
) = logit(δij). 718

• Update πij 719

Sample πt+1
ij from Beta(1{sij=1} + aij ,1{sij=0} + bij) because

p(πij |B,S) ∝ π
1{sij=1}+aij−1

ij (1− πij)1{sij=0}+bij−1.

• Update sij 720

Sample st+1
ij from Bernoulli(

πij

πij+(1−πij)e
−

∑
k:yijk=0 λ

kµk
ij

) because

p(sij |B,S) ∝ [πij ]
sij [1− πij ]1−sij [e

−
∑
k:yijk=0 λ

kµkij ]1−sij .

Convergence diagnostics. Trace plot, density plot, and cumulative mean plot 721

were drawn to assess the performance of MCMC. An example cumulative mean plots for 722

several parameters are provided to show that the chains converged property with stable 723

estimates of the parameter values (Supplementary Figure S11). We also consider the 724

Gelman–Rubin diagnostic by analyzing the difference between multiple Markov 725

chains [38,46]. Starting from different points, the three chains converged ultimately, and 726

the scale reduction factors are all less than 1.1 for all the settings considered, indicating 727

convergence. As an example, we show the trace plots and density plots for several 728

parameters for the dataset with 10 single cells from T1 at 7K sequencing depth, which 729

shows that the three chains are well mixed, consistent with the conclusion from 730

considering the reduction factors (Figure S12). As a further evidence that our MCMC 731

algorithm works well, we also provide an example to show that the autocorrelations for 732

multiple parameters decay at a reasonable rate, as one would expect for a well-mixing 733

chain (Figure S12). 734

Table S1. Partial list of existing methods for Hi-C data quality improvement.

Method Goal Hi-C Type Category Ref.
HiCRep Reproducibility bulk Kernel smootthing [15]
SCL 3D Structure single cells Kernel smoothing [16]
scHiCluster Clustering single cells Kernel smoothing [4]
scHiCluster Clustering single cells Random walk [4]
GenomeDISCO Reproducibility bulk Random walk [17]
SnapHi-C Chromatin contacts single cells Random Walk [20]
HiCPlus Data Resolution bulk Neural network [18]
DeepHiC Data Resolution bulk Neural network [21]
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Table S2. K-means clustering results of L4 and L5 cells based on t-SNE embeded data.
We considered 2-6 clusters for HiCImpute-improved data and 2-4 clusters for the rest
since the results did not indicate any need for a greater number of clusters.

(a) Observed (a). ARI=-
0.003.

cell type 1 2
L4 76 55
L5 105 75

(b) Observed (b). ARI=0.027.

cell type 1 2 3
L4 54 22 55
L5 41 64 75

(c) Observed (c). ARI=0.031.

cell type 1 2 3 4
L4 42 12 22 55
L5 22 51 32 75

(d) 2DMF (a). ARI=-0.003.

cell type 1 2
L4 77 54
L5 105 75

(e) 2DMF (b). ARI=-0.003.

cell type 1 2 3
L4 38 54 39
L5 47 74 59

(f) 2DMF (c). ARI=0.003.

cell type 1 2 3 4
L4 24 30 54 23
L5 25 32 74 49

(g) 2DGK (a). ARI=-0.003.

cell type 1 2
L4 77 54
L5 104 76

(h) 2DGK (b). ARI=-0.003.

cell type 1 2 3
L4 54 36 41
L5 76 47 57

(i) 2DGK (c). ARI=-0.004.

cell type 1 2 3 4
L4 36 41 31 23
L5 47 57 46 30

(j) RW3S (a). ARI=-0.003.

cell type 1 2
L4 76 55
L5 105 75

(k) RW3S (b). ARI=-0.004.

cell type 1 2 3
L4 37 39 55
L5 51 54 75

(l) RW3S (c). ARI=-0.004.

cell type 1 2 3 4
L4 29 26 39 37
L5 37 38 54 51

(m) HiCImpute (a). ARI=-
0.002.

cell type 1 2
L4 76 55
L5 106 74

(n) HiCImpute (b). ARI=-0.002.

cell type 1 2 3
L4 55 0 76
L5 74 106 0

(o) HiCImpute (d). ARI=0.506.

cell type 1 2 3 4
L4 0 55 76 0
L5 74 0 0 106

(p) HiCImpute (d). ARI=0.392.

cell type 1 2 3 4 5
L4 0 55 0 0 76
L5 53 0 53 74 0

(q) HiCImpute (e). ARI=0.336.

cell type 1 2 3 4 5 6
L4 55 32 0 44 0 0
L5 0 0 74 0 53 53
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Table S3. Computation time comparison of packages on three real datasets.

HiCImpute 2DMF 2DGK RW3S
GSE117874 6min 0.8s 1.5s 0.1s
GSE80006 2.5h 19s 15s 4s
scm3C-seq 17.3h 5min 4min 2min

26/38

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458575doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458575
http://creativecommons.org/licenses/by-nd/4.0/


Figure S1. Heatmap showing the observed and true (expected) 2D matrix images as
well as the results from HiCImpute, 2DMF, 2DGK, and RW3S for T1 (a), T2 (b), and
T3 (c) cells at 7K (top ), 4K (middle) and 2K (bottom) sequencing depth.
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Figure S2. Scatterplots of Extected Versus Imputed (SEVI plots) for HiCImpute,
2DMF, 2DGK, and RW3S for T1 (a), T2 (b), and T3 (c) cells at 7K (top), 4K (middle)
and 2K (bottom) sequencing depth – the red dots represent the observed zeros, which
contain both true SZs and DOs.
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Figure S3. Aggregate results (over single cells) based on several evaluation criteria for
T1 (a), T2 (b), and T3 (c) cells at 7K (top ), 4K (middle) and 2K (bottom) sequencing
depth.
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Figure S4. ROC curves accounting for both specificity and sensitivity of HiCImpute,
2DMF, 2DGK, and RW3S for T1 (row1), T2 (row2), and T3 (row 3) cells at 7K (column1),
4K (column2) and 2K (column 3) sequencing depth.
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(a)

(b)

(c)

Figure S5. Scatterplots of observed versus imputed (SOVI plots) from HiCImpute,
2DMF, 2DGK, and RW3S. (a) GM (top row) and PMBC (bottom row); (b) K562A
(top) and K562B (bottom); (c) L4 (top) and L5 (bottom).
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Figure S6. Boxplot of correlations between the observed and imputed from four
methods for three datasets: GSE117874 (left), GSE80006 (middle), and scm3C-seq
(right).
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Figure S7. Dendrograms of 34 observed K562 single cells Hi-C data and two bulk
datasets. The dendrogram was generated using the “complete” method.
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Figure S8. (a) Heatmaps of merged L4 subtype1 (left) and subtype2 (right) on chr8:127,000,000-
147,000,000. (b) The mean RNAseq on chr8:127,000,000-147,000,000. The RNAseq plot is available in
https://human-mtg-rna-hub.s3-us-west-2.amazonaws.com/HumanMTGRNAHub.html [29].

Figure S9. (a) Heatmaps of merged L4 subtype1 (left) and subtype2 (right) on chr11:105,000,000-
125,000,000. (b) The mean RNAseq on chr11:105,000,000-125,000,000. The RNAseq plot is available in
https://human-mtg-rna-hub.s3-us-west-2.amazonaws.com/HumanMTGRNAHub.html [29].

Figure S10. (a) Heatmap of merged L5 subtype1 (left) and subtype2 (right) on chr18:1,000,000-
15,000,000. (b) The mean RNAseq on chr18:1,000,000-15,000,000. The RNAseq plot is available in
https://human-mtg-rna-hub.s3-us-west-2.amazonaws.com/HumanMTGRNAHub.html [29].
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Figure S11. Cumulative mean plots of parameters a (a), α (b), µ (c) and π (d) at 3
positions of a dataset with 10 T1 cells at sequence depth 7k. Recall that a is the shape
parameter of the Beta distribution that is the prior of πij ; α is the shape parameter
of Gamma distribution, which is the prior of µij ; µ is the mean of µkij ; and π is the
probability that the pair is a structural zero.
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Figure S12. Trace plots of three chains starting from different points and the density
of the parameters in the first chain for several parameters.
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Figure S13. Autocorrelation plots for 6 parameters at position (i, j) = (40, 42) for the
simulated dataset with 10 T1 cells at 7K sequencing depth: µ is the overall expectation
for all single cells, and µ1 and µ2 are the realizations in the first and second single cell,
respectively.

Table S4. Potential scale reduction factors of 10 simulated T1 cells in sequence depth
of 7k.

Parameters Point estimate Upper bound of C.I.

α 1.00 1.00

µ 1.02 1.01

a 1.00 1.00

π 1.00 1.00
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Table S5. Raftery disgnosis of 10 T1 K562 simulated data, depth=7k, niter=30000

parameter M (Burn-in) N (Total) Nmin (Lower bound) I (Dependence factor)
α 39 42400 3746 11.30
µγ 2 3710 3746 0.99
β 2 3940 3746 1.05
µ 13 14054 3746 3.75
a 19 20429 3746 5.45
δ 38 40470 3746 10.80
b 15 18498 3746 4.94
π 39 43485 3746 11.60
s 4 60828 3746 16.20
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