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Abstract

Camera images can encode large amounts of visual information of an animal

and its environment, enabling high fidelity 3D reconstruction of the animal and

its environment using computer vision methods. Most systems, both marker-

less (e.g. deep learning based) and marker-based, require multiple cameras to

track features across multiple points of view to enable such 3D reconstruction.

However, such systems can be expensive and are challenging to set up in small

animal research apparatuses.

We present an open-source, marker-based system for tracking the head of a

rodent for behavioral research that requires only a single camera with a poten-

tially wide field of view. The system features a lightweight visual target and

computer vision algorithms that together enable high-accuracy tracking of the

six-degree-of-freedom position and orientation of the animal’s head. The sys-

tem, which only requires a single camera positioned above the behavioral arena,

robustly reconstructs the pose over a wide range of head angles (360◦ in yaw,

and approximately ±120◦ in roll and pitch).

Experiments with live animals demonstrate that the system can reliably

∗Corresponding author
Email address: balazs@jhu.edu (Balazs P. Vagvolgyi)

1Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, U.S.A.
2Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, U.S.A.
3Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Balti-

more, MD, U.S.A.
4School of Biomedical Engineering, Djawad Mowafaghian Centre for Brain Health, Uni-

versity of British Columbia, BC, Canada
5Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, U.S.A.

Preprint submitted to Journal of Neuroscience Methods July 3, 2021

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458583
http://creativecommons.org/licenses/by-nc-nd/4.0/


identify rat head position and orientation. Evaluations using a commercial opti-

cal tracker device show that the system achieves accuracy that rivals commercial

multi-camera systems.

Our solution significantly improves upon existing monocular marker-based

tracking methods, both in accuracy and in allowable range of motion.

The proposed system enables the study of complex behaviors by provid-

ing robust, fine-scale measurements of rodent head motions in a wide range of

orientations.

Keywords: motion tracking, machine vision, rodent, rat, video

1. Introduction

Organismal biology often relies on measurement and characterization of an

animal’s anatomy, physiology, and behavior in the context of its external envi-

ronment. Behavior represents the sum of motoric output of the animal, gen-

erated by a combination of internal neural dynamics and responses to external5

stimuli. Behavioral experimenters try to control and measure external stimuli

presented to the animal. These measurements are typically performed at a rate

and resolution appropriate to the time constants and scale of the correspond-

ing biological variables. Movements on the scale of multiple body lengths can

be measured using a variety of techniques. GPS [1, 2] and camera tracking10

[3, 4, 5, 6, 7, 8, 9, 10] are common approaches. Some tracking techniques are

specific to peculiarities of individual species, for example acoustic triangulation

for bats and whales and localization of electric fish using a grid of electrodes

[11, 12, 13, 14, 15, 16, 17]. Fine-scale, sub-body-length movements are harder

to track and sometimes require a more invasive approach in which markers or15

mechanical sensors are placed at key locations on the animals body.

Optical marker tracking has been a mainstay of behavioral research for

decades. These systems typically use one or more cameras to capture images of

the animal and its environment and hardware that implements computer vision

algorithms to identify and track visual features on these images. Tracking can be20
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performed offline or in real time. Offline trackers often employ sophisticated al-

gorithms or less powerful processing hardware, since there are usually no major

constraints on processing time. This approach is suitable for open-loop experi-

ments, where tracking results do not affect the experiment. Real-time systems,

however, usually involve a closed-loop experimental setup where tracking results25

are used to affect the animal or its environment in the same experiment. These

tracking systems must complete their computations for each video frame prior

to acquisition of the next frame, often requiring complex tracking algorithms or

more expensive processing hardware.

1.1. Object Tracking Using Model-Based Approaches30

Until recent years, most animal tracking methods relied on model-based

computer vision approaches—a description of the appearance of image features

to be identified (the models) and algorithms that search for features resembling

these models on images. Model-based approaches are efficient and robust when

the custom-built computational model fits the appearance of the corresponding35

image feature well; however they tend to fail when the model does not accommo-

date all possible feature appearances. It is usually easier to identify rigid visual

features that look similar from every orientation. Conversely, soft or deformable

features, or features that look different depending on point of view present a

significant challenge for model-based systems.40

Due to these limitations, model-based optical trackers often rely on simple

markers that are easily identifiable instead of natural features of the environment

or the animal. Commonly used markers include light emitting diodes (LEDs),

retro-reflective spheres, high-contrast geometrical patterns and painted markers,

all of which are detectable using simple image processing and their positions45

can be measured to high precision. Markers can in some cases be omitted if the

model of the animal is simple enough (e.g. tracking position of a rodent on a

bright background [18]), but these solutions tend to be less accurate.

The most commonly used markers, LEDs and retro-reflective spheres, repre-

sent a single point in space, and due to their rotational symmetry, they enable50
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a) b)

Figure 1: Commonly used marker systems: (a) 3-LED marker used for animal tracking in 2D.

For rodents, the marker is often mounted on the back or the head of the animal. (Neuralynx

Inc., Bozeman MT USA), (b) Marker used for 3D optical tracking of a rat’s head by Vanzella

et al. [19]. The system tracks six black dots painted on a white plastic frame using a camera

looking at the animal from above at a close distance.

high accuracy position estimates from a wide range of view angles. However,

resolving the orientation of a single, rotationally symmetric marker is impossi-

ble. Therefore, more complex visual targets, or multiple markers assembled in a

known geometric configuration, are used when orientation tracking is required.

Most widely used model-based optical trackers use a combination of easily iden-55

tifiable image features to enable the calculation of orientation in addition to

position. One commonly used system for animal tracking in laboratory settings

is the multi-LED Video Tracker, where the relative position of two or three

LEDs, shown in Fig. 1a, enables the calculation of the 2D orientation estimate.

Three-dimensional tracking can be achieved in two ways: using multiple60

cameras or by using a more complex marker design with enough information

encoded in the appearance that 3D position and orientation (pose) can be re-

solved even from a single camera view. Using a single camera is experimentally

simpler but the technique is more sensitive and complicated. Monocular pose

estimation typically requires a complex marker with a known rigid geometry—65

such a marker is inherently larger than simple point markers. The marker size

is dependent on the resolution of the camera; the resolution needs to be high
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enough so that computer vision algorithms are able to resolve individual features

on the marker. Thus, higher camera resolutions allow smaller markers.

One popular class of monocular 3D optical trackers are ARTags (Augmented70

Reality Tags)—flat square shaped markers with a high-contrast pattern. The

pattern in the middle identifies the marker and specifies its orientation out of

the possible four configurations of a square. In this paper, for comparison tests,

we use ArUco [20, 21] (Fig. 12), a widely used ARTag system in robotics and

automation. While ARTag tracking is relatively robust and accurate, the plane75

of the marker must generally be facing the camera, and the range of viewing

angles from which the ARTag can be detected is limited, since the visibility of

the flat pattern diminishes when observed from a sharp angle. One common way

to circumvent the view-angle limitation is to place multiple different ARTags

on the sides of a rigid 3D object, for example multiple ARTags on each side of80

a cube [22, 23, 24], which enables the camera to see at least one marker at any

orientation. Unfortunately, these complex markers featuring multiple ARTags

are large and thus their use in animal behavioral tracking is limited.

Animal behavior researchers have developed other complex 3D marker de-

signs for specific applications. In one system designed for mouse head tracking85

[19], the marker is a small 3D printed white plastic piece with six black dots ar-

ranged in a 3D pattern (Fig. 1b). While positioning one of the dots out of plane

significantly improves 3D orientation estimation accuracy, this system still has

similar disadvantage as ARTags: because the dots are all facing the same direc-

tion, it is not possible to detect them from behind the marker or from a sharp90

angle, severely limiting the range of usable orientations. Another system devel-

oped for tracking bats in flight [25] uses a set of LEDs in a custom arrangement

that enables the reconstruction of the position and two of the three rotational

degrees-of-freedom (DoF). While this system allows tracking in a wider range of

angles, the configuration of LEDs still limits the visibility, and it is not suitable95

for applications in which all three rotational axes need to be resolved.

View-angle limitations are very common in optical tracking due to marker

occlusions. Like ARTags, markers are often designed as one-sided, to prevent
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individual features on the marker from occluding one another. There exists a

need for robust 3D tracking without these limitations, for example in tracking100

the head of a rodent. Rodent behaviors often involves a significant amount

of head movement—scanning from side to side to evaluate the environment

[26, 27, 28], making up and down motions to evaluate distance via parallax

[29], and grooming where the head goes through a generally stereotypical set

of movements as the animal cleans itself [30]. The most obvious solution to105

track these large ranges of head orientations is to use a multi-camera system.

Commercially available multi-camera systems are expensive and often designed

to measure motion on the scale of human kinematics. Cheaper, open-source

implementations are often complicated to set up due to the need for camera

extrinsic calibrations, camera sensor synchronization, increased computational110

requirements, and constraints in camera placement. In addition, installing mul-

tiple cameras with unobstructed views of the animal might restrict placement of

other measurement and control apparatuses such as environment manipulation

effectors, electrophysiological recording systems, or imaging equipment.

Avoiding a multi-camera solution requires a non-planar marker design that115

is small and detectable from most orientations, and a corresponding tracking

algorithm that can handle the situation when only a subset of the marker’s

features is visible due to occlusions. Faessler et al. [31] developed a marker-

based tracker that uses 4–5 infrared (IR) LEDs mounted on the body of a flying

drone in a configuration that enables at least four LEDs to be visible from an120

extended range of orientations. As the LEDs all look identical from the camera’s

perspective and some of them may be occluded, the correspondence between

the LEDs and the observed dots on the image need to be determined before

performing 3D pose estimation using the Perspective-n-Point (PnP) algorithm.

They use a brute force combinatorial method to find this correspondence. Their125

algorithm, in theory, is able to accommodate a more than five LEDs which

would in increase the range of supported orientations; however the exponentially

increasing combinatorial complexity of the correspondence problem makes it

infeasible to increase the number of LEDs significantly and still expect real-
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time operation.130

1.2. Object Tracking Using Deep Learning

About a decade ago, the price-performance ratio of computational hardware

reached a critical level that enabled researchers to turn to complex machine

learning (ML) methods for feature detection and tracking. Today, Convolu-

tional Neural Networks of enormous complexity simulated on Graphics Pro-135

cessing Units (GPUs) are capable of identifying image features with complex

appearances. In such a system the model is encoded in the weights between mil-

lions of simulated neurons. As building such complex models ‘by hand’ is virtu-

ally impossible, these weights are typically calculated by using backpropagation

during a supervised learning phase in which training data samples demonstrate140

the desired mapping between inputs and outputs. Once trained, the network

can perform inference, which is to take input data, process it through its neu-

rons and provide outputs with—hopefully—expected results. These ML-based

approaches are usually called Deep Learning (DL) methods due to the large

number (depth) of computational layers. DL-based methods have been tremen-145

dously successful over the past few years to track both human [32, 33] and

other animal [9] behavior. These methods dramatically cut down the number of

training data frames required by transferring learning from a previously trained

network to a new network [34].

While DL-based methods excel at recognizing features in images of real-150

world objects, current networks also face some challenges. Networks are only

as good as their training data. In order to recognize a complex model, the

training data needs to contain a balanced set of images representing diverse

appearances. Animal behavioral training data may not contain some rarely

observed configurations. The ground truth used to train neural networks is155

selected and often manually labeled by human experimenters—this leads to

biases and inaccuracies in the training data. These 2D inaccuracies are often

amplified when these positions are used in 3D pose estimation.

Vision-based 3D orientation estimation also poses challenges to DL-based
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approaches, due in large part to the topologically nontrivial nature of the space160

of 3D rotations, making, for example, Euler angles unsuitable near singularities

[35]. Smooth, one-to-one representations as 3D submanifolds of 5D and 6D Eu-

clidean space are more suitable for machine learning methods, but the accuracy

of these systems is still significantly lower than marker-based methods [36, 37].

Hence, instead of directly estimating an object’s orientation using DL, most165

existing solutions use the neural network only for detecting features in 2D, and

then employ classical methods to calculate the 3D pose from the positions of

localized features. If the 3D geometry of the detected features is known, pose

estimation is possible using a single camera (as in our method). However, if

the feature geometry is not known, images from multiple cameras are required.170

Features are chosen to be camera-invariant, and thus the same network can be

trained using frames from multiple cameras [38].

With the rising prominence of DeepLabCut for markerless tracking of labo-

ratory animal features [9] such multi-camera 3D pose estimation systems based

on DeepLabCut have been introduced [8, 38]. DeepLabCut-based systems can175

also be used to track features in real time [39, 40, 41], although processing speeds

are severely limited by image resolution. While these algorithms can run using

a CPU alone, their performance is degraded by up to 100 fold [38], rendering

them too slow for real-time use.

In comparison to these methods, our requirements were to develop a precise180

monocular 3D pose tracker that does not require expensive GPU processing,

can work at high frame rates and image resolutions, works for a wide range of

viewing angles, and can incorporate a marker constellation with a large number

of features.

1.3. Accurate, Robust, and Efficient Monocular 3D Tracking185

Model-based systems can provide extremely accurate tracking by employ-

ing markers, while DL-based approaches are capable of directly tracking ani-

mal body parts with reasonable accuracy at the price of more costly hardware

requirements, although real-time implementation has been achieved [39]. DL-
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based systems can provide sufficient accuracy and extraordinary tracking ro-190

bustness for 2D tracking. However, for 3D tracking these systems might not be

the best choice due to their potentially limited accuracy. This is particularly

true for monocular systems where sub-pixel accurate feature detection accuracy

is vital for accurate model-based orientation recovery, as discussed below. While

the detection of simple markers can be done to a very high precision using sim-195

ple image processing methods, the same cannot be said of animal body part

detection accuracy using DL-methods.

Monocular 3D pose estimation is extremely sensitive to observation errors,

especially when a limited number of features are available [42]. Such is the case

when the target is small and can only accommodate a small number of identifi-200

able features (this is certainly true when tracking small animals). In this work,

we present a monocular 3D tracking system for small animal tracking that con-

sists of a compact, lightweight visual target comprising a set of retro-reflective

markers, a camera equipped with a ring-light, and a personal computer. The

proposed system enables high-accuracy 3D tracking over a significantly wider205

range of view angles than other single camera systems in the literature. Marker

localization is performed using model-based image processing methods and 3D

pose estimation is done using a PnP algorithm [43, 44, 45].

1.4. Contributions

The primary contributions of the system presented in this paper are (1) the210

custom visual target design which enables the calculation of pose estimate from

almost any orientation and (2) a computer vision algorithm that is capable of

solving the difficult correspondence problem between markers and observations

in real time. These two components—marker design and vision algorithm—were

designed in concert.215

The reliability of the proposed system was evaluated based on several hours

of rat head tracking experiments. We validated its accuracy using a commercial

wide-baseline multi-camera optical tracker, and compared its performance to

the ArUco ARTag tracking solution. Finally, we demonstrated the use of the
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tracking system during neurophysiological recordings.220

1.5. Terminology

We use the following terminologies to refer to objects that are handled by

the tracking system:

Marker: Retroreflective sphere or hemisphere that appears as a bright spot

on the image of the camera when illuminated by a strong ring light mounted on225

the camera’s lens.

Visual target/Target: Complex 3D object that is not rotationally sym-

metric. Our visual target comprises an assembly of markers mounted on a

lightweight plastic frame that is sufficient to enable the unique determination

of the pose of the target as it is tracked by a monocular tracking system.230

Observation: Small bright spot detected on the camera’s image repre-

senting a marker candidate. This spot might represent an image artifact (for

example lens flare) or the reflection of a small glossy object other than a marker.

2. Materials and Methods

The hardware components of the proposed tracking system consist of a235

marker, a camera, a ring light mounted on the camera, and a computer. During

operation, the computer captures images from the camera, processes them, and

generates the 3D position and 3D orientation of the marker for each video frame

with respect to a specified reference frame. The system can also process video

recordings offline.240

2.1. Design Considerations

Our goal was to develop an affordable wide-angle 3D tracking solution for

small animal research that can be deployed with minimal effort on hardware

commonly available in behavioral laboratories. Experiments often involve the

construction of a test environment in which animals are placed, and the environ-245

ment may need to be equipped with sensors and actuators. Electrophysiological

or imaging equipment may also need to be deployed. Multi-camera tracking
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systems are expensive, require complex calibration and setup process, and need

to share space with other, often bulky, equipment.

In order to enable 3D pose reconstruction from a single camera view, we250

designed a visual target that enables visibility from a wide range of perspectives

and a corresponding software system that is able to identify its unique pose.

The visual target is lightweight and small in order to prevent it from interfering

with behavior but also strong enough to maintain structural integrity despite

any impacts that it might sustain during behavior. For our purposes, it ac-255

commodates electrophysiology equipment when mounted on the head of a rat.

For affordability and ease-of-manufacture, the visual target can be manufac-

tured with a 3D printer based on open source 3D designs; the designs are also

easily customizable for different scales or to accommodate different equipment,

viewing angles, etc.260

The system uses IR illumination, leaving the experimenter the freedom to

employ whatever visible lighting condition is required for the purpose of the

experiment. We also required that the tracking algorithm be able to fall back

to 2D tracking when there is not enough information on the image to resolve

accurate 3D pose, as could happen for example in behaviors such as grooming265

that introduce partial occlusions of the visual target.

Our system operates in real time at a high frame rate on a personal computer

equipped with a mainstream, 6-8 core CPU. It uses an open-source GNU/Linux

operating system and our own custom, open-source tracking software. System

calibration and setup software enables end-users to build and run the system270

without further assistance. Finally, the system can store its results in an acces-

sible, open-source format, communicate with other equipment involved in the

experiment, and synchronize the tracking results with the rest of the apparatus.

2.2. Visual Target

Our custom visual target enables tracking in a wide range of orientations, yet275

its small size and lightweight construction allow it to be mounted on small ani-

mals (Fig. 2). The target structure is modularized with an external framework
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Figure 2: Visual target design. (a-c) Orthographic renderings of the target’s CAD model.

The visual target measures 54 x 54 x 39mm and weights 3.5 g. It features 16 spherical or

hemispherical retroreflective markers. (d) Close-up photo showing the retroreflective markers

mounted on the target’s clear plastic frame that houses the NeuraLynx FreeLynx wireless

acquisition device (purple) and battery (copper). (e) Illustration of the target mounted on

the head of a rat. (f) The markers are arranged in a configuration that enables full 3D (i.e.

6 degree-of-freedom position and orientation) tracking, enabling full 360◦ rotation around the

nominal z-axis, and up to approximately ±120◦ range around the nominal x and y axes. This

allows an animal to fully explore an environment with substantial fore–aft (“pitching”) and

side-to-side (“rolling”) of the head, without losing 3D reconstruction.
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for the optical markers, which then mates with adapters specific to different

electrophysiology headstages. Adapters have been designed to house the Neu-

raLynx (Neuralynx, Bozeman, MT) Quickclip headstage, the FreeLynx wireless280

acquisition system, and the SpikeGadgets (Spikegadgets, San Francisco, CA)

HH128 headstage. The external framework has an opening on the top to enable

FreeLynx battery replacement without disassembly. The target consists of a

3D printed plastic ‘globe’ (with a diameter of 54mm and a height of 39mm)

that has 16 sockets on its surface for holding retroreflective markers. Three285

of the markers are spheres of 7.9mm diameter (size A) and the other 13 are

hemispheres with a diameter of 3mm (size B). Having retroreflective markers in

two different sizes facilitate more efficient 3D pose estimation. The visual target

weighs 3 g without and 3.5 g with the markers. The 3D printable CAD model of

the target and instructions for assembly will be made publicly available online.290

The locations of the 16 retroreflective markers have been optimized so that

at least six are always visible from any direction within the range of supported

orientations, and that the geometrical configurations of visible markers are al-

ways unique. This enables a suitable algorithm to calculate the rotation of the

target corresponding to any supported physical orientation.295

In reference to the coordinate frame depicted in Fig. 2, the visual target

can be observed so long as the z-axis is rotated no more than 120◦ relative to

the line of sight from the camera, i.e. the z-axis can cover more than an entire

hemisphere. This range is typically sufficient to track the head of a small animal

during a foraging and other behaviors where the animal is generally oriented300

upright.

2.3. Tracking Method

The tracking algorithm was designed to track the visual target by first lo-

cating the bright spots representing reflective markers on camera images (ob-

servations) and then resolving the observation-marker correspondence and the305

3D pose of the target in a combined optimization framework. The target’s 16

markers were arranged in a geometry such that the projection of those markers
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is unique from any point of view; therefore, the tracking algorithm will find a

single unique solution for any given pose of the visual target.

The method consists of three main steps: marker detection on video frames,310

spatiotemporal tracking of the target, and localization of the visual target by

solving the correspondence problem (Figs. 3, 4). An optional initialization step

– anchor set optimization – increases reliability by automatically finding the

strongest visual features available on the target and optimizing the localization

process for the detection of those features. The prerequisites of accurate and315

robust tracking are camera intrinsic calibration and proper camera exposure

and focus, which are described in detail in the System Calibration and Setup2.5

subsection.

2.3.1. Marker Detection

Tracking the visual target on any given frame starts with simple image pro-320

cessing steps to locate a cluster of small bright spots on the image.

First, the region-of-interest (ROI), defined by a bounding rectangle on the

input video frame, is dewarped to eliminate radial distortion. The dewarping

process requires camera intrinsic parameters determined during offline camera

calibration. The ROI covers the area where the visual target is expected to325

appear on the image. Initially, the ROI covers the the entire image, but after

the first successful detection of the target, the ROI is narrowed down to a

small neighborhood of the target’s image position. The position of the ROI

on new video frames is predicted based on the recent velocity of the target. If

the tracker fails to locate the target, the ROI is gradually expanded until the330

target is located or eventually the ROI encompasses the entire image. When

the target is successfully localized again, the ROI shrinks again to the narrow

neighborhood around the target.

The target appears in the ROI as a cluster of small bright spots. While

most spots represent individual markers, some might be bright or shiny objects335

that are not part of the target. The marker detection algorithm identifies small

bright spots by matching template images to the ROI. The number of templates
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Figure 3: Illustration of the processing steps of the 3D tracking method: (1) Finding the

region-of-interest (ROI) on the grayscale image using connected component analysis and clus-

tering, then dewarping the ROI to eliminate local camera distortions; (2) Sub-pixel-accurate

estimation of marker positions and recognition of marker sizes; (3) Attempting to find marker

correspondence by matching new marker detections to marker positions predicted from past

trajectory (spatiotemporal tracking); (4) Performing combinatorial correspondence matching

when spatiotemporal tracking (step 3) fails to determine correspondence; (5) Calculating final

3D pose from correspondences.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458583
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm overview

Detailed flow chart

Cropping
to ROI

Dewarping

Converting to 
Grayscale

Template 
Matching

Nearest Neighbor 
Correspondence

3D Pose 
Estimation

3D Pose 
Estimation

Loop over all permutations of 
marker observations

Projection of
Entire Geometry

( )N4

Loop over anchor sets

Projection of
Entire Geometry

Count Good 
Matches

Count good 
matches

Input Image

No
Success?Success?

No

More 
options?

Yes

Fail

Good

1

2

3
4

5

Yes

No

5

Image Capture
Spatio-Temporal 

Tracking
Finding 

Correspondence

3D Pose Estimation

success success

failed failed
Marker

Detection

1 2 3 4

5

Fail

Good

Figure 4: Processing steps of the proposed 3D tracking method: (1) Image capture and

dewarping of region-of-interest (ROI); (2) Marker detection; (3) Attempting to find marker

correspondences using spatiotemporal tracking; (4) Combinatorial correspondence matching

when spatiotemporal tracking has failed; (5) Calculating the 3D pose from marker positions

and correspondences. Top: Overview of processing steps; Bottom: Flow chart illustrating

sub-processing steps and the combinatorial phase.
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is determined by how many unique sizes of markers are used in the visual target.

The templates are 2D Gaussian functions generated to match the expected size

of markers. The results of template matching are evaluated using normalized340

cross correlation (NCC), which is relatively insensitive to brightness and con-

trast variations. Bright spots that are dissimilar to the 2D Gaussian profile are

discarded by template matching. Additional filtering steps eliminate markers

that are outside a specified intensity range.

Once the initial collection of candidate markers is identified, the detection345

algorithm uses a clustering method to locate a single tight cluster among them.

Candidates outside of the cluster are discarded as they are unlikely to be part

of the target. Positions of spots are so far defined as pixel locations, which are

only rough estimates of their actual positions. For sub-pixel accurate positions,

the algorithm resamples the image of each candidate at 4x resolution using a350

2D 4-lobed Lanczos kernel [46], and re-runs NCC-based template matching with

4x larger 2D Gaussian templates. The resulting matches on the oversampled

image represent 0.25 pixel accuracy on the original image. Due to image noise

and limited image resolution, resampling at even higher resolution does not seem

to result in higher position accuracy.355

2.3.2. Monocular Pose Estimation and the Correspondence Problem

The 3D pose of a 3D point cloud can be unambiguously calculated from its

2D projection if there are at least four non-co-linear points in the point cloud

and the correspondence between the projections and the 3D points is known [47].

The quality of the resulting pose estimate can be measured by using the the360

estimated pose to reproject the point cloud onto the image plane and measuring

the distance (reprojection error) between the reprojected point coordinates and

the original projections.

If the correspondence between projections and the points is not known, an

algorithm may generate a list of potential correspondences and test them by365

measuring the reprojection error. However, the process of perspective projec-

tion from 3D to 2D reduces the dimensionality of the data and enables config-
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urations where multiple different 3D point clouds projected from different 3D

poses yield identical or very similar 2D projections. The chances of this am-

biguity is particularly high when there are only four points in the point cloud,370

in which case it is likely that there are multiple potential correspondences with

low reprojection error, making it impossible to find the correct correspondence.

Increasing the number of points to five in the point cloud can eliminate or dras-

tically reduce the chances of multiple correspondences with low reprojection

error if the 3D configuration of the points is chosen suitably, for example by375

avoiding symmetries.

In our system we set the minimum number of matched markers to six in

order to minimize the chance of ambiguous correspondences, and markers on the

visual target were mounted in a geometrical configuration that reduces potential

ambiguities.380

2.3.3. Solving the Correspondence Problem

The marker detection method provides a list of marker observations without

further hints on their correspondence to physical markers. When the appearance

of markers are indistinguishable from each other, correspondence between the

detected spots on images and the points in the point cloud can be established

in multiple ways. The number of possible correspondences is characterized by

the permutation Pd
m, with

Pd
m =

!
d

m

"
=

d

(d−m)!
(1)

where m is the number of markers in the optical target and d is the number

of detected spots on the image, i.e. the observations. Pd
m is relatively low if

there are few markers and few observations but increases faster than exponen-

tially when the number of markers and observations grow. For instance, for 10385

observations and 6 markers (a common use case), the number of possible cor-

respondences is 151, 200—a brute force method would struggle to process these

correspondences in real time at a high frame rate.

Knowing the 3D geometry of the markers and the optical properties of the
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camera can be used to decrease the number of possible correspondences. We390

implemented three improvements for reducing combinatorial complexity: (1) we

evaluate all possible correspondences only for 4 special markers (termed anchors)

and rely on the known geometry of the remaining markers to select the correct

correspondence, (2) we use markers of multiple sizes, which enables the marker

detector to separate observations into multiple groups, and (3) we introduce395

simple geometrical constraints on how the markers are expected to be projected

onto images, enabling fast filtering of invalid configurations.

Anchors: Introducing anchors reduces the number of comparisons in our

example by a factor of 30, from 151, 200 to 5, 040 (m = 4 in Equation 1). There

are ≥ 6 markers visible from any orientation, and at any particular orientation400

4 of the visible markers are designated as an anchor set. To find the correct cor-

respondence between markers and observations, the algorithm first calculates—

for each possible anchor correspondence—the 3D pose of the target (using the

Perspective-n-Point (PnP) algorithm), which then enables the prediction of the

positions for the remaining visible non-anchor markers. The predicted marker405

positions are matched with the observations on the image using the nearest

neighbor method under the 2D Euclidean distance metric. The configuration

with the highest number of non-anchor markers that match the observations is

then selected as the correct correspondence. Once the correspondence for all

the matching observations is established, the 3D pose is refined by another run410

of the PnP algorithm using all the matched observations that results in a more

accurate measurement than the initial estimate based on only 4 anchors.

While using anchors reduces the combinatorial complexity significantly, the

selection of these 4 anchors limits the range of directions from which the target

can be tracked. Our target has 16 markers with 6 guaranteed to be visible from415

any particular direction—therefore an anchor set will only be detectable when

the target is oriented such that all the anchors in the set are visible. To solve

this, the tracking method uses multiple anchor sets, each representing a limited

range of orientations from which the target is observed. The combination of all

anchor sets completely cover the supported range of orientations. With this, the420
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maximum number of comparisons is reduced to naP
d
4, where na is the number

of anchor sets.

We sort the list of anchor sets between frames to reduce the actual number of

correspondence comparisons even further. The tracker performs correspondence

comparisons sequentially from the list of na anchor sets. Once an anchor set425

is found, the tracker tries that anchor set first for consecutive video frames.

When the orientation of the target changes so much that the initial anchor

set is not fully visible anymore, the method will sequentially proceed through

the list. The list of anchor sets is periodically re-sorted in descending order of

utilization. The search thus starts with the most likely-to-succeed anchor sets,430

based on recent usage statistics.

Different size markers: The method supports visual targets featuring

multiple marker sizes. During the marker detection phase, bright spots are

classified to one of the size classes based on their matches to the different size 2D

Gaussian kernels. In the correspondence phase, each marker is only matched to435

observations in its own size class, thereby reducing the number of correspondence

comparisons by a significant amount. For instance, with 2 types of markers

(large and small), 2 large and 8 small marker observations, and one anchor set

featuring 1 large and 3 small markers, the number of comparisons is P8
3 ×P2

1 =

672. If marker sizes are ignored, the number of comparisons is P10
4 = 5040.440

Filtering configurations: This improvement takes advantage of the prop-

erties of perspective projection to eliminate certain anchor observation configu-

rations from correspondence comparison. When four 3D points that define the

corners of a polygon are projected using perspective projection to a 2D surface,

certain properties are preserved such as convexity and whether the points of445

a convex quadrilateral are defined in clockwise or counterclockwise direction.

Testing these properties of a four sided polygon in 2D is simple and efficient.

The tracker algorithm requires that anchor sets be defined as sets of 4 anchors

that are approximately on the same plane, that they define a convex shape on

their plane and that the corners are defined in clockwise order when observed450

from the visible side. When these requirements are met, the camera projection
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of the visible anchor sets also describe a convex 2D polygon with its corners

defined in clockwise order. In the correspondence comparison the algorithm

checks if any given set of 4 observations that are to be matched with 4 anchors

meet these requirements before attempting to perform pose estimation. Config-455

urations not meeting the criteria are discarded, which cuts the number of fully

evaluated configurations by a factor of 36
25 · 24

4 = 8.64, as the probability of four

randomly picked points on a rectangular plane to form a convex polygon is 25
36

[48], and 4
24 ordered sequences of four such points are clockwise.

2.3.4. Spatiotemporal Tracking460

The correspondence phase is capable of determining the pose of the optical

target on individual frames without having any knowledge of the pose of the

target on preceding video frames. In behavioral tracking, the pose of the target

can be expected to correlate with its pose on preceding frames. If the frame

rate is adequately high compared to the rate of motion of the target, the pose465

changes between consecutive video frames can be estimated using spatiotem-

poral tracking techniques. The tracking method assumes that the position and

orientation of the target changes smoothly in time and therefore their values can

be predicted with reasonable accuracy at least one frame time ahead. When the

tracker was able to successfully determine the pose of the target for at least two470

consecutive frames, it calculates the angular and translational velocities of the

target based on these frames and predicts the pose for the next video frame

by assuming constant velocity. When the next video frame arrives, it detects

the positions of bright spots on the image in the neighborhood of the predicted

position, and matches the observations to the predicted marker positions using475

the nearest neighbor method. Once a correspondence is established, it is tested

for validity using the PnP algorithm. If the resulting 3D pose is near the pre-

dicted pose, the new pose is accepted and the tracker skips the time-consuming

correspondence computations.
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2.3.5. Anchor Set Optimization480

The selection of suitable anchor sets is essential for efficient tracking. An-

chor sets form the foundation of an efficient combinatorial solution to the point

correspondence problem. The tracking algorithm requires enough anchor sets

to cover all supported orientations, but using too many anchor sets slows down

processing. Finding the right balance between the number of anchor sets and the485

anchor configurations inside those anchor sets is required for efficient tracking.

There are billions of possible anchor set configurations that cover the desired

orientations but only a few of these configurations combine robust tracking

with a low number of anchor sets. Initially, we selected the list of anchor sets

manually by visually inspecting the target from every orientation and taking490

notes of suitable looking anchor sets. The process worked reasonably well but

in our evaluations we failed to achieve better than 90% detection success rate.

To overcome this, we developed an algorithm to optimize the set of anchor

sets for a given optical target. The algorithm has three main steps: simulation,

optimization, and minimization.495

Simulation: The algorithm first generates a large number (by default

10,000) of random projections of the optical target with uniform distribution in

a specified range of orientations. To sample orientations uniformly, we ignored

the symmetry around the optical axis of the camera, which allowed us to sample

uniformly over a simple sphere. In each simulated view, the algorithm iterates500

through all possible permutations of four detected markers and selects the ones

that satisfy the requirements (convexity, vertices defined in clockwise order) for

anchor sets and contain at least two different types (sizes) of markers. The

anchor sets are hashed in a 32-bit unsigned integer. Anchor sets are considered

identical by the hash function if they are cyclic permutations (for example 3-505

12-14-7 and 7-3-12-14 are identical). For each view, the algorithm saves the list

of anchor-set-hash values, that represent the anchor set candidates visible from

the view.

Optimization: The algorithm selects a few robustly detectable anchor sets
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Figure 5: Illustration of the anchor set optimization algorithm. (a) Anchor set candidates

(labeled A-D) and views (labeled 1-6) are calculated by simulating allowed view angles. The

real-world graph for our visual target is significantly larger than this illustration, containing

10,000 simulated views and ∼3,000 anchor set candidates. (b) The first step of the anchor set

optimization method uses the minimum spanning tree (MST) algorithm to find the best anchor

sets that cover the entire range of supported orientations. This solution is not necessarily

unique and may have redundancies, therefore a second processing step (not shown here) is

required to minimize the number of anchor sets.

from the candidates identified by simulation that, taken together, cover the510

entire range of supported orientations.

The optimization algorithm is formulated as a minimum spanning tree prob-

lem. The anchor set candidates, their simulated views, and their relationships

are represented in a weighted graph as shown in Fig. 5a. Anchor sets are rep-

resented by nodes and labeled by their hash values (nodes labeled A-D in the515

figure). Simulated views are also represented by nodes and labeled by numbers

(1–number of views). Edges between anchor sets and nodes represent the visi-

bility of anchor sets from simulated views. An edge between an anchor set and

a view is weighted by the reciprocal of the number of views visible from the

anchor set. If the anchor set has N views associated with it, then the edges520

connecting views to it will all be weighted 1/N . There is one additional root

node (labeled X in the figure), that is connected to every anchor set by an edge

with a weight of zero.

The minimum spanning tree (MST) of this graph has some useful properties

(Fig. 5b). The MST will have exactly one edge connecting each view to one of525
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the anchor sets. For each view the MST will keep only the edge that connects

it to the anchor set that has the most associated views. By minimizing the sum

of weights of the edges in the spanning tree, the MST will favor a configuration

where the views are connected to highly visible anchor sets, while anchor sets

with lower visibility tend not to be connected to any views.530

The result of this optimization is the list of anchor sets that are connected

to at least one view. For our target, the optimization selects 16-18 anchor sets

out of the several thousands. The variability in the number of anchor sets is due

to the stochastic nature of the simulation. In our experiments the optimized

anchor sets provide highly robust operation that reduces failure rates by a factor535

of ∼20x compared to manually selected anchor sets.

Minimization: This step is optional, as it reduces complexity and achieves

higher frame rate at the potential expense of slightly degraded tracking relia-

bility. Running the tracker with minimization enabled is designated as FAST

mode. While the anchor sets selected by the MST are highly robust due to540

their high visibility, the number of selected anchor sets is not minimal. The

MST has multiple solutions that result in the same minimum weight and the

solver selects one unspecified instance of them. However some of the solutions

would be preferred over others in our application, as we also aim to reduce the

number of selected anchors to improve combinatorial performance.545

The ultimate minimal solution requires an additional step of post processing,

and it reduces the number of anchors to 9 (for our specific target), approximately

half the size of the simple MST solution. This minimal solution is also guar-

anteed to cover all simulated views and prioritize high visibility anchor sets;

however, it will have fewer redundancies (overlaps between regions covered by550

anchor sets), and therefore it will be somewhat less robust than the simple MST

solution.

The minimization algorithm first sorts the anchor sets in descending order

based on how many views they are associated with. Starting from the anchor

sets with the lowest visibility, it then examines each one if they are redundant.555

An anchor set is redundant if all of the views to which it is associated can
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be accessed through other selected anchor sets. Each anchor set that is found

redundant is removed from the list of selected anchor sets.

2.4. Software and System Architecture

2.4.1. Online Processing560

The tracking system runs on Ubuntu Linux and uses the Robot Operat-

ing System (ROS) software framework. ROS is an open source software that

features robust support for a wide range of cameras, data recording and play-

back capabilities, and provides means for communication with other software

components of the experimental apparatus.565

Using ROS enabled us to make live tracking results accessible by external

software in a flexible way. Researchers intending to integrate the tracker func-

tionality into their closed-loop experiments only need to implement a small ROS

software interface between their own code and the tracker. For this software in-

terface, ROS supports C++, Python, and Matlab implementations. ROS also570

has the convenient capability to make the interface work locally (i.e. between

software programs running on the same computer) and remotely (i.e. track-

ing software running on a separate computer, accessible through local network).

While our tracker code was designed to run best on Linux, the external software

interfacing with it can run on Linux, Windows, or MacOS [49].575

2.4.2. Data Recording and Offline Processing

ROS has built-in data recording and playback functionality. ROS bag files

are universal containers for storing one or more simultaneous timestamped ROS

data streams, including video data and tracking results. Video data recorded

into bag files can be processed offline by the tracker and the software makes sure580

that video timestamps are carried over to the corresponding tracking results.

2.4.3. Time Synchronization

Data records transmitted through ROS topics are always timestamped by

the publishing node. Timestamps are defined in Coordinated Universal Time
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Figure 6: Tracking software architecture: The ROS software framework provides standard-

ized inter-process communication channels (i.e. topics) between software components (ROS

nodes). (1) Video capture from the camera is handled by the Camera Capture node, that

publishes video frames in an image topic. (2) The Tracking Software node receives the video

by subscribing to the image topic, processes video frames (i.e. detects the visual target on

images), then publishes the tracking results on a topic and the 3D pose of the target in a

special kind of topic (ROS tf) for visualization purposes. (3) Rviz is a visualization tool

built into ROS that is capable of visualizing 3D coordinate frames published in the ROS tf

topic. (4) Timestamped tracking results are recorded into ROS bag files by the ROS Bag

Writer node. (5) An optional Closed-Loop Interface node may subscribe to tracking results

and transmit them to an External Control Software. This node may be located on a separate

computer connected to the tracking computer.
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(UTC). In the case of image topics containing live video, the timestamps as-585

signed to video frames are generated by the camera capture node at acquisition

time. For data in other topics, it is the responsibility of the original publisher to

generate accurate timestamps. Topics that include data that was not published

by the original source but contain secondary, processed data typically inherit the

timestamp of the original data source. In the case of the tracking software, the590

timestamp of a tracking result will inherit the value of the original timestamp

of the video frame to which it belongs.

If the tracking software is used in an apparatus that has multiple types

of computing hardware, each with a separate clock, the clocks between the

computers need to be synchronized before running the tracking software. For595

synchronizing the clocks between multiple computers, we recommend configur-

ing the operating system of each computer for automatic synchronization to the

same time server using the Network Time Protocol (NTP) or Precision Time

Protocol (PTP).

Another option is available when working with a neural recording system,600

which generally is able to accurately timestamp TTL pulses. The tracking

computer is equipped with a DAQ and set to generate a randomized TTL pulse

train (mean 10 s between pulses, 1 s pulse duration) that is fed into the digital

inputs of the neural data acquisition system. The paired timestamps of these

pulses are then used post-hoc to synchronize the neural and experimental data605

streams using the Needleman-Wunsch algorithm [50, 51].

2.4.4. Hardware Requirements

The current version of the software was designed for the Ubuntu Linux 18.04

(or newer) 64-bit operating system and a compatible computer. The tracking

software is capable of using up to 8 threads for processing; therefore a CPU610

with at least 8 CPU cores is required for best performance. The frame rate of

tracking is variable, as different tracking modes have different computational

complexities. The lowest frame rates are expected at the worst case scenarios

when the tracker fails to resolve marker correspondence. To improve frame rate
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in these situations, a CPU with an operating frequency of 3GHz or better is615

recommended.

The resolution and frame rate of the camera significantly affect the reliability

of tracking. Image resolution needs to be high enough that small markers in

the visual target appear at least 4 pixels in diameter. For tracking the rapid

motions of a small rodent, a camera with a frame rate of at least 45 fps (frames620

per second) is recommended.

2.4.5. Access to the Software

The tracking software will be made publicly available on GitHub for free

under the MIT License [52]. The software package includes a user’s manual and

3D printable CAD drawings of the visual target with assembly instructions.625

2.5. System Calibration and Setup

2.5.1. Camera Optical Calibration

Before accurate geometric measurements can be made based on observations

of the visual target on the camera image, the exact optical properties of the

camera and its lens need to be measured and stored in a configuration file. These630

properties are described by two sets of intrinsic parameters. The raw intrinsic

parameters contain the focal length, the position of the optical center, and the

five parameters of radial distortion, all of which need to be measured by an offline

camera calibration method. The undistorted intrinsic parameters contain the

desired focal length and optical center position, which define the geometry of the635

undistorted image that the tracking software can use for processing. The two

sets of parameters together enable the mapping of each raw image pixel onto an

image with perfect perspective projection that is required for easy geometrical

calculations.

There are several free and commercial camera calibration tools available,640

most of which can be used for determining the required raw intrinsic parameters,

such as the Camera Calibration Toolbox for Matlab [53].
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2.5.2. Setup of Illumination and Camera Exposure

The tracker software is designed to localize small bright spots on the camera

image. The retroreflective markers on the target appear as bright spots as long645

as the illumination is appropriate and the exposure parameters are correctly

set for the camera. In order to minimize the brightness of other objects and

the environment in the field of view, the intensity of illumination from the ring

light mounted around the lens needs to be high enough so that the brightness of

the markers appear significantly brighter than other features. Other reflective650

objects and light sources in the view may interfere with tracking performance

and must be removed from the environment.

Camera exposure needs to be set to manual mode and the shutter speed

needs to be increased until the bright spots representing the markers stop being

saturated. Saturation is characterized by a flat white appearance; therefore, the655

shutter speed needs to be increased until the spots appear to have a spherical

brightness profile with darker shades around the edges and a bright peak in the

middle. Shorter exposure times (faster shutter speeds) also reduce motion blur

in the images, which may significantly improve tracking reliability. We have

found that, for our application, good tracking performance requires that the660

exposure time be under 2ms.

2.5.3. Setup of Visual Target and Scene Geometry

The visual target is defined as a point cloud in 3D space with each marker

represented by a point. The description of each point includes its 3D coordinate,

size class and visibility angle. The coordinates can be obtained from the CAD665

model of the target or estimated from multiple 2D images through image pro-

cessing methods such as bundle adjustment. In our visual target, two different

sizes of markers are used. The visibility angle specifies the range of angles from

which the marker is visible. The small marker types on the visual target are

hemispherical therefore their view angle is more limited than the large markers670

which are spheres.

Users may want to capture 3D tracking results with respect to a reference
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frame that is different from the camera’s coordinate frame. For example a

particular point and orientation in the animal’s test environment may be used

to define the reference frame. To facilitate this, the tracking software allows the675

user to specify the position and orientation of an optional reference frame in the

configuration file.

2.5.4. Animal Experiments

We performed behavioral and neurophysiological recordings using LongEvans

rats (Envigo Harlan). All animal care and housing procedures complied with680

National Institutes of Health guidelines and followed protocols approved by the

Institutional Animal Care and Use Committee at Johns Hopkins University.

3. Results

We performed both accuracy and reliability evaluation of the proposed track-

ing solution. For verifying accuracy, we compared our 3D tracker’s results to685

that of a surgical-grade commercial optical tracking solution. Reliability was

evaluated by mounting the visual target on a rat’s head, tracking the animal

while it was roaming in an open arena, and analyzing the recorded tracking re-

sults. We also compared tracking performance to another open-source monoc-

ular 3D pose tracking method that uses ARTags. The Near IR camera used690

for evaluating our tracking system’s accuracy and reliability is a Grasshopper3

USB3 (GS3-U3-41C6NIR-C, Flir Systems Inc., OR, USA) with a resolution of

2048 x 2048 driven at the framerate of 45 frames per second.

3.1. Evaluation of Accuracy

Measuring the real-world accuracy of an optical tracking system is difficult695

and sometimes impossible, which is why it is rarely done in research publica-

tions. The difficulty lies in the generation of accurate ground truth. For getting

ground truth, the motion of the object or animal would either need to be si-

multaneously tracked by other, more accurate means, or the motion would need

to be generated by the experimenter, for example by moving the object with a700
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robot along a known trajectory. We found it most practical in our setting to

benchmark our system against a commercial tracking system with well known

tracking performance.

The accuracy of the tracking system was measured by comparing its track-

ing results to pose data acquired by a Polaris P4 commercial optical tracker705

(Northern Digital Inc. (NDI), Ontario, Canada). The P4’s average accuracy

is better than 0.25mm (<0.5mm in 95% confidence interval) [54], making it

suitable for collecting ground truth data. The experimental setup is illustrated

in Fig. 7. For the evaluation, the camera for our tracking system was mounted

facing down, ∼200 cm from the visual target which was moved around by an op-710

erator along a random trajectory. Attached to the same visual target were three

large retroreflective markers (NDI Spheres), that were simultaneously tracked

by the Polaris optical tracker, placed at ∼120 cm from the visual target, looking

at the scene at a ∼45◦angle compared to the angle of our camera. After data

capture, we registered the two datasets to each other (aligned the 3D positions715

and orientations), then compared the positions and orientations calculated by

our tracker to the ground truth captured by the Polaris. The measured tracking

errors are visualized in Fig. 8, and Table 1 (non-scaled) breaks down errors by

coordinate axes. We found that the average position error is highest in the Z

(vertical) direction (9.75mm) and lowest in the XY plane (4.84mm).720

In the camera’s coordinate frame, the Z coordinate can be interpreted as

distance from the camera. The bulk of the position error is concentrated along

the Z axis, which is due to relying on a single camera to resolve the visual

target’s distance. The mean orientation error in full 3D rotation space was

measured at 1.96◦.725

During our analysis we noticed that the target trajectory calculated by the

our tracker was scaled ∼2% larger than the trajectory provided by the Polaris.

This consistent discrepancy is likely due to inaccuracy in camera intrinsic cal-

ibration. Using a camera focal length for 3D pose estimation estimate that is

2% off the actual value would result in the same trajectory scale difference.730

After correcting for the 2% scale factor difference, the accuracy of the tracker
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Figure 7: The accuracy of the proposed 3D tracker was measured using a surgical-grade,

high-precision, wide-baseline (stereo) optical tracker (NDI’s Polaris P4). Bottom: The visual

target (marked green) was rigidly mounted on a triangular frame that featured three large

NDI retroreflective markers (marked red) in its corners. Top: During the evaluation, the

P4 was tracking the locations of the three large marker from the side, while our monocular

tracking system was tracking our visual target using the camera mounted above, at a distance

of ∼2m from the target. The target was moved by hand in a random trajectory (dashed white

line) while making sure that all three large markers were always visible to the P4. Tracking

data was recorded into a ROS bag file from both the Polaris and our tracker.
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Table 1: Tracking accuracy compared to Polaris P4 optical tracker.

Unit
Non-Scaled Scaled

Mean StDev Mean StDev

Position error (XYZ) [mm] 10.90 7.96 10.16 7.73

Position error (XY) [mm] 4.84 2.51 3.30 2.20

Position error (Z) [mm] 9.75 7.55 9.60 7.41

Orientation error [deg] 1.96 1.56 1.96 1.56

improved from 10.9mm to 10.16mm (Table 1-scaled).

The focal length—and other parameters—calculated during camera calibra-

tion are estimates, typically characterized by mean and variance. For 3D pose

estimation the mean values are typically used; however, the mean only represents735

the best estimate within a range. Camera calibration uncertainties, manifest

as high variance estimates, can be mitigated in a number of ways, such as in-

creasing the number of calibration images or using larger calibration objects.

Fortunately, an overall 2% uniform scaling of animal head trajectories would not

likely change our overall interpretations of the types of behavioral data we are740

investigating, but this sensitivity to camera intrinsic calibration accuracy does

highlight a disadvantage of monocular 3D tracking compared to multi-camera

tracking methods.

3.2. Evaluation of Reliability Using Freely Behaving Animal

For determining the reliability of the proposed 3D tracker, we performed a745

series of laboratory experiments tracking the head of a rat moving freely in an

open arena within the field of view of the camera at a distance of ∼210 cm, as

shown in Fig. 9. Videos were captured at 45 frames per second (fps) from the

camera. We processed the video recordings with two different tracker configura-

tions: one with anchor sets optimized empirically by an operator and one with750

automatic anchor set optimization. Both results are shown in Table 2.

In the 2.5 hours long evaluation session, the tracker successfully tracked the

3D pose of the rat’s head on 99.4% of the video frames when automatic anchor
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Figure 8: The position and orientation accuracy of the 3D tracker was measured with the help

of a high precision wide-baseline commercial tracker (Polaris P4). The accuracy of ground-

truth recorded by the P4 is known to be better than 0.25mm. As the spatial relationship

between the P4 and our camera was not known, the two trajectories recorded by the P4 and

our tracker had to be registered to each other, which then enabled the calculation of errors.

Top-middle: The position errors along the plane parallel to the image plane (XY) were lower

than the errors measured along the camera axis (Z), which is expected due to the difficulty

of accurately resolving distance from a single camera view. Bottom: Mean orientation error

was around 2◦.
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Table 2: Failure statistics of 3D tracking during reliability testing. The visual target is

mounted on the head of a free roaming rat inside a 1.6m by 1.6m size rectangular arena.

Failure rates are specified (in frame count and percentage of all frames) for both manually

selected anchor sets (N=9) and computationally optimized anchor sets (N=9).

Failure rate

Duration Manual Optimized

[min] [frm cnt] [frm cnt] [%] [frm cnt] [%]

Run 1 44.48 116,836 7,966 6.82 635 0.54

Run 2 31.13 79,992 5,972 7.47 482 0.60

Run 3 22.12 58,852 3,878 6.59 177 0.30

Run 4 50.12 126,408 20,131 15.93 866 0.69

Total 147.85 382,088 37,947 9.93 2160 0.57

set optimization was enabled. This compares to the 90.1% 3D tracking success

rate when the anchor sets were manually optimized by an experienced operator.755

Fig. 10 shows the trajectory of the visual target mounted on the head of the

animal during the 2.5 hour run time of the experiment with automatic anchor

set optimization enabled. The spatial distribution of target locations where the

tracker failed to provide 3D pose estimates appears to be sparse and uniform

in the central part of the arena, but the density of failed detections is higher760

in or near corners. In the corners, the animals tended to rear up, groom, or

otherwise occlude the view of the target from the camera, which resulted in

fewer observations and valid anchor sets.

The videos were processed offline with simulated playback of the recordings

at the original 45 fps. Average offline processing speed of the tracker was 44.4 fps765

with a minimum framerate of 10.0 fps. The lowest framerates are experienced

immediately after a rapid change of orientation of the visual target that may

force the tracker to evaluate a high number of anchor sets for correspondence

matching. The evaluation was performed Apple MacBook Pro 16” equipped

with a 2.3 GHz 8-core mobile Intel i9 CPU, running the Ubuntu 18.04 64-bit770

operating system on a virtual machine.
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Figure 9: Reliability testing of the 3D tracking system was performed with a live rat subject.

The visual target was mounted on the head on the animal. The rat was freely roaming in a

1.6m by 1.6m size arena that was placed under the camera at a distance of 2.2m. In four

recording sessions a total of ∼2.5 hours of data was recorded.

3.3. Comparison to ArUco Tracker

We compared the performance of a popular monocular 3D tracker solution to

our system. ArUco is an ARTag-based tracker that is widely used in augmented

reality, robotics, and scientific experiments. An ArUco marker is shown in775

Fig. 12. In order to provide a fair comparison to our tracker, we printed an

ArUco marker of the same size, 54mm by 54mm, as the our visual target and

tracked it with the same camera that we used for the evaluation of our tracking

system.

During testing, we managed to successfully track the marker with ArUco up780

to ∼1.5m distance from the camera. When we moved the marker any farther,

the tracker failed to provide any position or orientation estimate. Furthermore,

even when the marker was closer than 1.5m to the camera, ArUco only managed

to locate it in an approximately ±70◦ range of angles relative to the front view.

When the marker appeared at a sharper angle (> 70◦), the detection rate quickly785

plummeted and detection failed completely at around 75◦, which is consistent

with results in other published literature [55].

Compared to ArUco, in our evaluations our proposed tracking solution had

a success rate of 99.43% at 2.1m distance from the camera and a range of
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Figure 10: During reliability testing the rat was freely exploring a 1.6m by 1.6m size arena.

The figure illustrates the trajectory of the rat’s head during the 2.5 hours of recordings. Small

green dots represent the positions of the rat’s head on 379,928 video frames when the tracker

succeeded in accurately calculating the 3D pose of the target. 2160 large black dots (size

exaggerated for visibility) show the positions of the target when it was partially visible but

the tracker was unable to determine its 3D pose. In these failure cases the tracker provides

a position estimate based on the 2D position of the cluster of bright dots near the region of

interest.

Figure 11: ArUco marker that was used to test the efficacy of the ArUco monocular optical

tracker solution. The marker is printed on a sheet of paper and then fixed on a hard flat

surface.
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Figure 12: Application to place- and head-direction cell tuning. Examples of simultaneously

recorded place and head direction cells from a single session of a rat running on a circular

track. (A) Four example place cells. The annulus represents the circular track and color

indicates occupancy-corrected firing rate in Hz (color bar indicates scale). (B) Polar plots of

three head direction cells (red, blue, and yellow); radius represents occupancy corrected firing

rate in Hz, and angle represents allocentric heading direction of the animal. The top plot

shows the directional tuning when the animal is stationary and bottom plot shows tuning

when running.

supported orientations of up to ±120◦.790

3.4. Application: Head Tracking during Hippocampal Recordings

To demonstrate the applicability of our tracking system in neurophysiological

research, we performed chronic neural recordings from laboratory rats as they

circumnavigated a circular environment. The neural recordings were performed

using multi-tetrode hyperdrives [56]. While the complete set of recordings and795

experimental findings will be reported elsewhere, here we present examples that

illustrate the applicability of the tracking system. Fig. ?? shows the spatially

selective neural activity of typical head direction cells and place cells collected

using the tracking system. The sharp spatially selective tuning of place cells

(with respect to position) and head direction cells (with respect to head ori-800

entation) provide demonstrative evidence of the utility of our pose estimation

system for neurophysiological applications.
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3.5. Application: Real-Time VR Manipulations

The application that initially motivated the development of our tracking

system was its use in tracking the position and orientation of a rat while it805

circumnavigates a custom virtual reality (VR) Dome apparatus [51, 56]. The

VR Dome—like many VR systems—requires an accurate estimate of the pose of

the head, based on which manipulations of the visual scene can be performed. In

our previously published experiments [56], the animal was harnessed to a radial

boom arm that was connected to a centralized optical encoder to measure the810

angular position of the animal. On the basis of this, the visual scene could be

adjusted. A major goal in developing the head tracking system was to overcome

the need for the restraining harness, allowing free movement of the animal.

However, the VR Dome imposes strict geometric constraints on camera-based

tracking system. For example, the video images must be acquired from directly815

overhead, ∼1m above the table on which the animal navigates. Moreover,

the design of the Dome precludes the use of commercial systems that typically

employ multiple cameras that record images from different perspectives (wide

baseline). For details, see [51].

We successfully performed a set of experiments in 5 rats in which we changed820

the visual scene in response to the optically tracked position of the rat, while

recording the activity of place cells. As discussed in [51], the switch to optical

tracking reduced training time while maintaining the behavioral parameters

observed during harnessed running. In addition, optical tracking provided us

with the 3D orientation of the head of the animal, which are being analyzed for825

publication. The camera was capable of capturing 2048 × 2048 pixel frames at

90 fps, and the tracker was able to keep up with this frame rate up to 81 frames

/ sec (12 ms image processing pipeline). Ultimately, we chose 45 fps for the

experiment as a balance between tracking reliability and data size. We tested

the feedback latency of the apparatus (latency between movement of the rat and830

corresponding movement of the visual cues) with encoder-tracked and optical-

tracked positions. The latency—including image capture, the entire tracking

pipeline described above, and movement of the cues—was approximately 100−
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110 ms for frame rates between 30− 90 fps [51].

4. Discussion835

We developed an open-source, monocular (single-camera) optical tracking

system for animal research that consists of a small, compact, and lightweight

visual target and software capable of tracking the target at a high frame rate in

real time based on camera images. Our solution improves upon the state of the

art by providing accurate 3D pose (position and orientation) at a wider range840

of orientations than other tracking systems. Performance evaluations using

synthetic tests and laboratory rats demonstrated high accuracy and reliability.

The use of a single camera and 3D printable visual target keeps setup simple and

inexpensive, while maintaining flexibility for users to adapt the visual target for

other applications with minimal effort.845

In our extensive testing—benchmarking against a commercial system and

several live animal experiments—our marker-based 3D tracking system proved

to be more accurate, more robust, and effective over a larger range of angles than

other state-of-the-art monocular tracking solutions. A significant advantage of

the proposed solution is the extended range of trackable angles of the marker.850

Most other marker-based systems rely on markers that are only visible from

a single side of the marker (visibility < 90◦), but our tracker is able to track

its visual target in a significantly wider range of angles, up to ±120◦. This

extended range enables the tracking of a larger variety of animal behavior than

before.855

The physical setup of the system is straightforward as it only requires a

computer, single camera, a ring light, and the visual target that is mounted on

the subject. The tracking software runs on Ubuntu Linux and uses the Robot

Operating System (ROS) software framework to communicate with external

applications. For data recording, playback, and visualization, ROS provides a860

set of convenient software tools that enable simple integration and debugging.

Accurate, real time, monocular pose estimation allows an experimenter to
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perform experiments where the specific pose of the animal can be used in closed-

loop to control behavioral parameters. As an example, these features are critical

in a VR experiment where the rendered visual scene has to accurately reflect the865

quickly changing position and gaze direction of an animal, and the visual scene

has to be generated and displayed with low latency and without jumps that

would degrade the immersive experience. While markerless tracking methods

exist, we believe the substantially improved reliability and accuracy of marker

tracking is necessary in such sensitive applications. Being monocular and high-870

resolution, our tracking algorithm can be implemented with minimal overhead

in large-scale experiments that include other bulkier recording equipment. The

algorithm can also be scaled to detect multiple targets with different marker con-

figurations in the same camera frame, allowing for tracking of multiple features

or social interactions.875

Historically, neurophysiological recordings of cells such as place cells, head

direction cells, grid cells, object cells, and other cell types in the rodent hip-

pocampal formation have relied on video tracking systems. These systems typ-

ically calculate x-y position coordinates and head direction angles in the hori-

zontal plane from the video image representing the orthographic projection of880

2 or more sets of LEDs on the animals head onto the 2D camera sensor array.

This technique has been sufficient for answering many of the basic questions

about these cells, but increasingly sophisticated knowledge about the system

(e.g., the 3D nature of head direction encoding [25]) and behavior require a

finer-scale measurement of 3D pose. For example, animals exhibit a behavior885

called vicarious trial and error (VTE) at choice points on a maze, in which

they move their heads back and forth in the directions of the two behavioral

choices as they deliberate which way to proceed [57]. During VTE behavior,

place cells transiently represent nonlocal trajectories down the different choice

paths that correlate with the animals head direction. Traditional head tracking890

is sufficient to investigate this phenomenon on a 2D maze, but is not adequate

to investigate behaviors in which the animals choices are between two paths that

differ in the z axis (i.e., when the corresponding VTE behaviors are related to
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changes in head pitch rather than yaw). Another example of complex behavior

is called head scanning, in which rodents pause and move their head back and895

forth to take in information about the external world during exploration [28].

Traditional, 2D head tracking techniques provide limited information to distin-

guish this type of head movement from the VTE behaviors displayed at choice

points and other types of head movements that occur during behaviors such as

grooming, object exploration, and rearing. Techniques such as those described900

here (perhaps in conjunction with other 3D sensors such as accelerometers) can

provide a much richer trove of data that can be used to automatically charac-

terize different aspects of complex behaviors, and thereby allow greater insight

into the neurophysiological correlates of complex behavior and cognition.
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