The Chromatin Remodeling Protein CHD-1 and the EFL-1/DPL-1 Transcription Factor Cooperatively Down Regulate CDK-2 to Control SAS-6 Levels and Centriole Number

Jyoti Iyer¹#, Lindsey Gentry², Mary Bergwell¹, Amy Smith¹, Sarah Guargliardo², Peter A. Kropp², Prabhu Sankaralingam², Yan Liu², Eric Spooner³, Bruce Bowerman⁴ and Kevin F. O'Connell²#

¹ Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104
² Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
³ Proteomics Core Facility, Whitehead Institute for Biomedical Research, Cambridge MA 02142
⁴ Institute of Molecular Biology, University of Oregon, Eugene, OR 97403

Running Title: Transcriptional regulation of cdk-2 controls centriole assembly.

Keywords: Centriole, transcriptional regulation, Cdk2, E2F, C. elegans

Corresponding authors
Abstract

Centrioles are submicron-scale, barrel-shaped organelles typically found in pairs, and play important roles in ciliogenesis and bipolar spindle assembly. In general, successful execution of centriole-dependent processes is highly reliant on the ability of the cell to stringently control centriole number. This in turn is mainly achieved through the precise duplication of centrioles during each S phase. Aberrations in centriole duplication disrupt spindle assembly and cilia based signaling and have been linked to cancer, primary microcephaly and a variety of growth disorders.

Studies aimed at understanding how centriole duplication is controlled have mainly focused on the post-translational regulation of two key components of this pathway: the master regulatory kinase ZYG-1/Plk4 and the scaffold component SAS-6. In contrast, how transcriptional control mechanisms might contribute to this process have not been well explored. Here we show that the chromatin remodeling protein CHD-1 contributes to the regulation of centriole duplication in the C. elegans embryo. Specifically, we find that loss of CHD-1 or inactivation of its ATPase activity can restore embryonic viability and centriole duplication to a strain expressing insufficient ZYG-1 activity. Interestingly, loss of CHD-1 is associated with increases in the levels of two ZYG-1-binding partners: SPD-2, the centriole receptor for ZYG-1 and SAS-6. Finally, we explore transcriptional regulatory networks governing centriole duplication and find that CHD-1 and a second transcription factor, EFL-1/DPL-1 cooperate to down regulate expression of CDK-2, which in turn promotes
SAS-6 protein levels. Disruption of this regulatory network results in the overexpression of SAS-6 and the production of extra centrioles.
Centrioles are cellular constituents that play an important role in cell reproduction, signaling and movement. To properly function, centrioles must be present in the cell at precise numbers. Errors in maintaining centriole number result in cell division defects and diseases such as cancer and microcephaly. How the cell maintains proper centriole copy number is not entirely understood. Here we show that two transcription factors, EFL-1/DPL-1 and CHD-1 cooperate to reduce expression of CDK-2, a master regulator of the cell cycle. We find that CDK-2 in turn promotes expression of SAS-6, a major building block of centrioles. When EFL-1/DPL-1 and CHD-1 are inhibited, CDK-2 is overexpressed. This leads to increased levels of SAS-6 and excess centrioles. Our work thus demonstrates a novel mechanism for controlling centriole number and is thus relevant to those human diseases caused by defects in centriole copy number control.
Introduction

Centrioles are small cylindrical-shaped protein complexes that function in a variety of important cellular processes[1]. In mitotic cells, a centriole pair recruits a proteinaceous matrix of pericentriolar material, or PCM, to form the primary microtubule-organizing center (MTOC) known as a centrosome. Centrosomes, which possess the ability to nucleate and anchor microtubules, can control cell polarity, organize the poles of the mitotic spindle, and specify the orientation of cell division. In nonmitotic cells, centrioles can serve as basal bodies to organize cilia and flagella, and thus contribute to cell motility and signaling.

One key property of centrioles that is critically important for their proper function, is numerical control[2]. That is, centrioles must be present in cells at precisely defined numbers; typically, one or two pairs depending on the cell cycle stage. Not surprisingly, defects in centriole number and structure have been linked to a growing number of human diseases. It has long been known that many cancers are associated with an excess number of centrioles, and it has recently been shown in a mice that an experimental increase in centriole number can induce tumor formation in many different tissues[3]. Other diseases linked to centriole dysfunction include primordial dwarfism and primary microcephaly [4-6]. The hallmark of primary microcephaly is a small brain size caused by a defect in expansion of neural progenitor cells in the developing neocortex. Interestingly, while microcephaly can arise as a consequence of an insufficient number of
centrioles, it can also arise due to the overproduction of centrioles[7,8], thereby illustrating the critical importance of maintaining proper centriole number during brain development.

Numerical control of centrioles relies upon a single precise duplication event that takes place during each S phase wherein a single daughter centriole is assembled at a perpendicular angle next to each pre-existing mother centriole. The core centriole assembly pathway is broadly conserved and was first elucidated in the nematode *C. elegans*. The master regulator of centriole duplication is a polo-like kinase referred to as ZYG-1 in *C. elegans*, or Plk4 in vertebrates and flies [9,10]. A key event in centriole assembly is the recruitment of ZYG-1 to the site of centriole assembly through a physical interaction with its centriole receptor SPD-2 [11]. ZYG-1 in turn recruits a complex of two proteins, SAS-5 and SAS-6 [12,13] that form the central scaffold that establishes the nine-fold radial symmetry of the centriole [14,15]. This step involves a direct physical interaction between ZYG-1 and SAS-6 [16]. Finally, the microtubule-binding protein SAS-4 is added to the outer wall where it promotes the assembly of the centriolar microtubules [12,13].

How centriole assembly is restricted to avoid an excess number of centrioles has been an active area of research. Numerous studies have demonstrated the need to control the abundance of centriole assembly factors, as experimental overexpression of ZYG-1/Plk4, SAS-5/STIL or SAS-6 results in the formation of extra centrioles [17-23]. To date, most of the mechanisms that have been described
function post-translationally to limit the levels of these factors via ubiquitin-
mediated degradation (reviewed in [24]).

However, we and others have also demonstrated that the abundance of
centriole assembly factors is regulated at a transcriptional level. In particular,
members of the E2F family of transcription factors play both positive and negative
roles in regulating centriole assembly in vertebrates and invertebrates [25-29]. The
E2F transcription factors are obligate heterodimers containing one E2F protein and
one DP protein (EFL and DPL respectively in \textit{C. elegans}) [30]. In \textit{C. elegans}, EFL-1 is
most closely related to vertebrate E2F4 and E2F5, which primarily act to repress
transcription of target genes. Together with DPL-1, the sole \textit{C. elegans} DP protein,
EFL-1 negatively regulates centriole assembly, as loss of this transcription factor
results in elevation of SAS-6 protein levels and suppression of the centriole
assembly defect in animals compromised for ZYG-1 function [27]. EFL-1/DPL-1,
however, does not act directly by negatively regulating transcription of the \textit{sas-6}
gene [27] and thus how its loss results in elevation of SAS-6 protein levels remains
an open question. While E2F-dependent pathways appear to predominate in the
transcriptional control of centriole assembly, E2F-independent pathways are likely
to exist.

CHD1 (chromodomain helicase DNA-binding protein 1) is a highly conserved
chromatin remodeler that arranges nucleosomes at regular intervals across gene
bodies in an ATP-dependent manner [31,32]. CHD1 has chiefly been implicated in
regulating transcriptional elongation [33-38] but evidence has emerged suggesting that it also plays a role in transcriptional initiation [39-41] and termination [42-44]. Outside of its known roles in regulating gene expression, CHD1 has also been shown to function in DNA repair [45], sister chromatid cohesion [46], and histone modification [35,47]. CHD1 possesses two tandem chromodomains at its N-terminus that selectively bind lysine 4-methylated histone H3 of nucleosomes within transcriptionally-active chromatin [48,47,49], a central SNF2-like ATPase/helicase domain and a C-terminal SANT/SLIDE DNA-binding domain. In humans, CHD1 functions as a tumor suppressor and is the second most frequently deleted gene in prostate cancers [50].

Several lines of evidence suggest that CHD1 might be involved in regulating centriole duplication and/or function. Firstly, CHD1 localizes to the promoters of centrosome genes in mouse and human embryonic stem cells [51,52]. Secondly, CHD1 physically associates with the *Xenopus* ZYG-1 ortholog [53], and finally, *chd1-null* flies have spindle and astral microtubule defects [54]. Here we investigate a role for the *C. elegans* CHD1 protein (CHD-1) in regulating centriole duplication and find that complete loss of CHD-1 or inactivation of its ATPase activity, partially suppresses both the embryonic lethality and centriole duplication defects caused by a hypomorphic *zyg-1* mutation. Loss of CHD-1 is also associated with an increase in the levels of the ZYG-1-binding proteins SPD-2 and SAS-6, likely providing a mechanism for suppression. We present evidence that CHD-1 does not regulate transcription of the *sas-6* gene, but rather negatively regulates CDK-2, which in turn
promotes SAS-6 protein levels. We also find that EFL-1/DPL-1 acts in parallel to
CHD-1 to downregulate CDK-2, and that the combined loss of both factors leads to
further elevation of SAS-6 levels and the appearance of extra centrosomes and
multipolar spindles. Our results thus reveal how two transcriptional regulatory
pathways are integrated with a CDK-2-dependent mechanism that post-
translationally controls SAS-6 expression and centriole number.
Results

Loss of CHD-1 partially restores centriole duplication in a zyg-1 hypomorphic mutant

The existing literature in frogs, flies, mice and humans collectively suggests that CHD-1 plays a role in regulating centriole duplication. Therefore, we first set out to determine if CHD-1 is essential for regulating centriole number by obtaining an existing chd-1 partial deletion allele from the Caenorhabditis Genetics Center (CGC). The chd-1(ok2798) allele deletes the C-terminal 197 amino acids encompassing the helicase and DNA-binding domains (Figure 1A), and thus most likely represents a strong loss of function, if not a molecular null. Animals homozygous for the chd-1(ok2798) allele are viable, fertile and lack any obvious morphologic or behavioral defects. Further, nearly all progeny produced by homozygous mutant mothers are viable (98.5 % viable n=12 hermaphrodites, 3291 embryos). This is in contrast to all known mutations that block centriole duplication; in such cases, mutants exhibit a maternal-effect embryonic lethal phenotype and/or a sterile uncoordinated phenotype due to cell division failures in the embryonic or postembryonic tissues respectively [55]. The absence of embryonic lethal and sterile phenotypes indicates that CHD-1 is non-essential in worms, and thus, is not required for centriole duplication.

While our results show that CHD-1 is not a key component of the centriole duplication pathway, it still might play an accessory role. To investigate this, we
asked if the loss of CHD-1 could modify the phenotype of a zyg-1(it25) mutant. The zyg-1(it25) allele is a hypomorphic missense mutation that confers a temperature-sensitive block to centriole assembly in early embryos; as a result, at the restrictive temperature of 24°C, 100 percent of the embryos die. To determine if CHD-1 plays a role in centriole duplication, we first monitored the embryonic viability of zyg-1(it25) mutants and chd-1(ok2798); zyg-1(it25) double mutants grown at the semi-restrictive temperature of 23.5°C. At this temperature, zyg-1(it25) mutants exhibited a very low level of embryonic viability (Figure 1B). In contrast, about half of the progeny of the chd-1(ok2798); zyg-1(it25) double mutants were viable. These data indicate a potential role for CHD-1 in regulating centriole duplication. We then analyzed centriole duplication in the zyg-1(it25) single and chd-1(ok2798); zyg-1(it25) double mutants by DIC live imaging. Although all centrioles failed to duplicate in zyg-1(it25) single mutants (n=12 centrosomes), centrioles duplicated 64% of the time in the chd-1(ok2798); zyg-1(it25) double mutants (n=14 centrosomes). Thus, loss of CHD-1 activity is able to partially restore proper centriole duplication in a ZYG-1-deficient strain.

While the chd-1(ok2798) deletion is almost certainly a null allele, it still retains the N-terminal chromodomains. To unambiguously establish the null phenotype and to investigate CHD-1 function further, we created two knock out alleles using CRISPR-Cas9 genome editing. We first replaced the chd-1 open reading frame with superfolder GFP (sfGFP), allowing us to both verify the complete loss-of-function phenotype and to determine the tissue-specific expression pattern
of CHD-1. We refer to this allele as chd-1(bs122). Western blotting of chd-1(bs122) worm extracts with an anti-GFP antibody detected a single band close to 30 kDa, the approximate molecular weight of sfGFP, indicating that the 5’ and 3’ flanking regions of chd-1 are sufficient to drive sfGFP expression (Figure 1C). The second allele, chd-1(bs185), deletes nearly the entire chd-1 ORF, leaving a sequence that encodes just the first nine and last two amino acids; this allele was used in imaging experiments where the GFP produced by the chd-1(bs122) allele would have complicated image analysis. Like chd-1(ok2798) animals, chd-1(bs122) animals are fertile and wild-type in appearance. Further, they do not exhibit embryonic lethality when grown over a range of temperatures (Figure S1A). Surprisingly however, chd-1(bs122) animals exhibit a cold-sensitive reduction in brood size (Figure S1B). At 25°C, both wild-type and chd-1(bs122) animals produce on average approximately 300 offspring. However, at 20°C where wild-type animals produce an average of 310 offspring, chd-1(bs122) animals produce only an average of 255. This difference is exacerbated at 16°C where wild-type hermaphrodites produce an average of 303 offspring and chd-1(bs122) hermaphrodites produce only an average of 195. Thus CHD-1 is required for normal fecundity at low temperatures.

We next tested how a complete loss of chd-1 affects the embryonic lethality and centrosome duplication defects of a zyg-1(it25) mutant. When introduced into a zyg-1(it25) strain, the chd-1(bs122) allele suppressed the embryonic lethality observed at semipermissive temperature (Figure 1D); while zyg-1(it25) single mutants produce on average only three percent viable offspring, an average of 70
percent of the offspring of chd-1(bs122); zyg-1(it25) double mutants survive. To
monitor centriole duplication, we performed time-lapse spinning disk confocal
imaging of embryos produced by zyg-1(it25) and chd-1(bs185); zyg-1(it25)
hermaphrodites expressing sfGFP::histone and SPD-2::mCherry (Figure 1D and 1E).
While all centrioles (n=34) failed to duplicate in zyg-1(it25) single mutant embryos,
27 percent of the centrioles (n=55) duplicated in chd-1(bs185); zyg-1(it25) double
mutant embryos. Thus, a complete loss of CHD-1 partially suppresses both the
embryonic lethality and centriole duplication defects of the zyg-1(it25) mutant,
indicating that the presence of CHD-1 somehow normally inhibits the ability of
centrioles to duplicate.

**CHD-1 is a broadly expressed nuclear protein that is down-regulated in
oocytes and embryos**

To gain insight into how CHD-1 might regulate centriole duplication, we
sought to determine its expression pattern and subcellular distribution. We first
analyzed chd-1(bs122) worms, where sfGFP expression is entirely controlled by the
chd-1 cis-acting elements (promoter and 3’ utr). We observed broad expression
throughout worms including in the germ line and somatic tissues (Figure 2B, top
panel). The broad expression pattern in worms is consistent with that of the human
ortholog which was found to be expressed in many different tissues [38].
Interestingly, while sfGFP was evenly diffuse in somatic cells and the distal germ
line, it concentrated strongly in the nuclei of oocytes and early embryonic cells.
While we do not currently understand why sfGFP concentrates in these specific
nuclei, our results clearly show that the *cht-1* gene is broadly expressed in the worm.

We next fused sfGFP to the 3’ end of the endogenous *cht-1* orf using CRISPR-Cas9 genome editing (Figure 2A). This allele which we named *cht-1(bs125)* expressed a single protein of the expected size on immunoblots, although the band intensity is very dim suggesting that CHD-1 is a low abundance protein (Figure 2C).

To determine if CHD-1::sfGFP was functional, we crossed this allele into the *zyg-1(it25)* background and monitored embryonic viability. If the sfGFP tag interferes with the function of CHD-1, we would expect that *cht-1(bs125)* would behave as a loss-of-function allele and suppress the embryonic lethality of the *zyg-1(it25)* mutant. However, this was not the case, as *cht-1(bs125); zyg-1(it25)* animals exhibited low levels of embryonic viability (Figure 2D) that were comparable to those of the *zyg-1(it25)* single mutant (Figure 1B). We imaged CHD-1::sfGFP worms and found that CHD-1::sfGFP was enriched in nuclei throughout the worm (Figure 2B, bottom panel). This included all germ-line nuclei and many somatic cells such as the intestinal cells and cells of the pharynx and somatic gonad. At a subcellular level, the only structure in which we detected CHD-1 enrichment was the nucleus. Importantly, we did not detect localization to centrosomes. While CHD-1::sfGFP expression was detected in oocyte nuclei, the levels were lower than other germ-line nuclei. Interestingly, we could not detect expression in early embryos (Figure 2B, bottom panel), suggesting that CHD-1 does not directly regulate centriole
duplication in the embryo but instead may function in the maternal germ line to control gene expression.

The helicase activity of CHD-1 is required for regulation of centriole duplication

Next, we sought to determine the molecular mechanism by which CHD-1 regulates centriole duplication. Since *Xenopus* CHD-1 has been reported to physically interact with the frog ZYG-1 homolog [53], we used Immunoprecipitation (IP) followed by mass spectrometry to determine if such an interaction exists in worms. Although we identified several proteins that were specifically enriched in the CHD-1 immunoprecipitate (Table S1), including the putative worm ortholog of CNBP, an RNA Pol II regulator, we were unable to identify an interaction between CHD-1 and any of the known centriole assembly factors including ZYG-1. These results suggest that CHD-1 regulates centriole duplication through a more indirect mechanism.

The best characterized function of CHD-1 is that of a chromatin remodeling protein. Therefore, we wondered whether CHD-1 could affect centriole duplication by modulating gene expression. As a means to address this question, we sought to engineer an ATPase-inactive version of CHD-1, since the ability of CHD-1 to remodel chromatin is ATP dependent [56]. As the crystal structure of *C. elegans* CHD-1 is not available, we predicted *C. elegans* CHD-1 structure using Swiss Model and aligned it to the available crystal structure of yeast CHD-1 [57]. From this alignment we
identified residue D538 of worm CHD-1 as corresponding to aspartate 513 within
the Walker B motif of yeast CHD1 (Figure 2E). This residue is critical for activation
of the helicase ATPase [57]. We then used CRISPR-Cas9 genome editing to create
the chd-1(bs123) allele, which encodes CHD-1(D538N)::sfGFP (Figure 2A). To
determine if the ATPase activity of CHD-1 is important for its function in centriole
duplication, we created a chd-1(bs123); zyg-1(it25) double mutant. Significantly, we
found that expression of the ATPase inactive CHD-1 mutant suppressed the
embryonic lethal phenotype of zyg-1(it25) mutants, indicating that the ATPase
activity of CHD-1 is important for its role in regulating centriole duplication (Figure
2D). The ability of the chd-1(bs123) mutation to suppress zyg-1(it25) was not due to
altered expression of the ATPase-inactive form of CHD-1::GFP as quantitative
western blotting indicated that CHD-1(D538N)::sfGFP and CHD-1::sfGFP are
expressed at similar levels (Figure 2C). Suppression was also not the result of mis-
localization of CHD1(D538N)::sfGFP, as the CHD-1(D538N)::sfGFP protein exhibited
a similar localization pattern to that of wild-type CHD-1::sfGFP (Figure S2).
Collectively, these data indicate that CHD-1 ATPase activity is specifically required
for its role in regulating centriole duplication, suggesting that CHD-1 most likely
functions to regulate transcription.

Loss of CHD-1 results in the upregulation of SAS-6 and SPD-2 protein levels
One mechanism through which loss of CHD-1 activity might suppress the zyg-
1(it25) centriole duplication defect could involve upregulation of centriole assembly
factors, as we previously showed that zyg-1(it25) strains expressing elevated levels
of ZYG-1 itself, or SAS-6 are able to duplicate their centrioles [27,58]. We therefore sought to determine if the levels of ZYG-1, SPD-2, SAS-5 or SAS-6 were altered in worms carrying the chd-1(bs122) null allele. As ZYG-1 is difficult to detect on immunoblots, we used quantitative fluorescence to measure ZYG-1 levels at centrioles in wild-type and chd-1(bs122) mutants; for this we employed an epitope tagged version of the endogenous zyg-1 gene (spot::zyg-1). As shown in Figure S3A, the level of ZYG-1 at the centrosome was slightly but significantly elevated in the chd-1(bs122) mutant relative to the wild type. While overexpression of zyg-1 could certainly contribute to the chd-1-mediated suppression of zyg-1(it25), the magnitude of this effect suggested that another mechanism was primarily responsible for suppression. We therefore measured the levels of the other centriole assembly factors by quantitative immunoblotting and surprisingly found that SAS-5 protein levels are reduced in chd-1(bs122) mutant relative to the wild type (Figure S3B). While unexpected, this result rules out the possibility that the suppression observed upon loss of CHD-1 is due to overexpression of SAS-5. Finally, we analyzed SPD-2 and SAS-6 and found that the levels of both proteins are elevated in chd-1(bs122) worms (Figure 3A and 3B). SPD-2 was found to be elevated almost two-fold in the absence of CHD-1, while SAS-6 was elevated approximately three-fold (Figure 3C). We also found that SPD-2 levels were unaffected in the chd-1(bs125[chod-1::sfGFP]) strain consistent with our finding that CHD-1::sfGFP is functional (Figure 3A). Thus, the two known ZYG-1-binding proteins, SPD-2 and SAS-6, are expressed at higher levels in chd-1 null mutants.
The level of SPD-2 at centrosomes is elevated in the absence of CHD-1

To confirm and extend these results we sought to examine the levels of SAS-6 and SPD-2 at centrosomes in control and chd-1(bs122) embryos. We first examined endogenous SAS-6 by immunofluorescence in an isogenic pair of wild-type and chd-1(bs122) strains carrying a spot-tagged version of sas-6. As shown in figure S4, we detected a slight increase in the average intensity of SPOT::SAS-6 at centrosomes in the chd-1(bs122) mutant relative to controls. However, this increase did not prove to be significant, indicating that the increase in overall levels of SAS-6 in the chd-1(bs122) mutant does not necessarily translate into higher levels of SAS-6 at the centrosome.

For measuring SPD-2 levels at the centrosome, we initially employed a gfp::spd-2 transgene driven by the pie-1 promoter and 3′utr. Contrary to our expectations, we found that GFP::SPD-2 fluorescence intensity at the centrosome was strongly reduced in chd-1(bs122) homozygotes compared to their heterozygous siblings (Figure 3D). In fact, most (58%, n=52) of the chd-1(bs122) embryos lacked detectable GFP::SPD-2 expression. When these same embryos were analyzed by quantitative immunoblotting, we found a reduction in the level of GFP::SPD-2 protein and a corresponding increase in the level of endogenous SPD-2 (Figure 3E). We suspect two independent mechanisms that regulate SPD-2 expression account for this result. First, CHD-1 likely inhibits SPD-2 expression directly or indirectly through the 5′- and/or 3′-flanking regions of the spd-2 gene. Since these elements are absent in the gfp::spd-2 transgene, loss of CHD-1 would not be expected to elevate GFP::SPD-2 expression. Second, as shown by Decker et al., [59], C. elegans
embryos possess a homeostatic mechanism that helps maintain SPD-2 levels within a specified range. Thus, we envision that loss of CHD-1 relieves an inhibitory mechanism that operates through the spd-2 flanking regions resulting in over-expression of the endogenous gene. In response to increased SPD-2, the homeostatic control mechanism attempts to decrease overall SPD-2 levels. This set of events would result in a net increase of endogenous SPD-2 and a net decrease of GFP::SPD-2 in the chd-1(bs122) strain. To test this idea, we analyzed the levels of a spd-2::mcherry transgene in control and chd-1(bs122) embryos; in contrast to the gfp::spd-2 transgene, expression of the spd-2::mcherry transgene is driven by the endogenous spd-2 flanking regions. As shown in Figure 3F, the response of this transgene to the absence of CHD-1, was distinctly different from the pie-1-driven construct; relative to controls, SPD-2::mCherry fluorescence at the centrosome is elevated in chd-1(bs122) embryos. We conclude that CHD-1 inhibits expression of SPD-2 in a manner that is dependent on the spd-2 promoter and/or 3’ utr.

Conversely, our results also demonstrate that homeostatic control of SPD-2 is independent of the 5’- and 3’-flanking regions.

CHD-1 does not regulate sas-6 or spd-2 transcript levels.

So far, our work shows that SAS-6 and SPD-2 proteins are significantly upregulated in the absence of CHD-1. To determine if CHD-1 controls the abundance of sas-6 or spd-2 transcript levels, and to determine what other genes might be regulated by CHD-1, we performed RNA-Seq on whole adult worms. Consistent with studies in yeast [60,61], we found that in C. elegans only a few genes
were strongly affected by loss of CHD-1; specifically, expression of just 11 genes differed by two-fold or more between *chd-1(bs122)* and wild-type worms (Figure 4A), but none of the genes in this set are known to function in centriole assembly. We therefore further analyzed this data set by assigning a p value of less than 0.05 as a cut off and found that the transcript levels of approximately 2200 genes were weakly altered in the mutant (Tables S2 and S3). Surprisingly, none of the genes encoding centriole duplication factors were among this group. To confirm our RNA-Seq results, we used qRT-PCR to compare the levels of *sas-6* and *spd-2* transcripts in wild-type and *chd-1(bs122)* worms. Consistent with our RNA-Seq results, qRT-PCR analysis revealed that loss of CHD-1 did not affect the transcript levels of either gene (Figure 4B). Together, our data indicate that CHD-1 does not regulate expression of *spd-2, sas-6*, or any other known core centriole assembly factor at the level of transcription or message stability.

CHD-1 and EFL-1/DPL-1 function independently to control SAS-6 abundance and centriole number

As shown in a prior study, overexpression of SPD-2 is not sufficient to suppress *zyg-1(it25)* embryonic lethality [58]. We thus reasoned that the elevated level of SAS-6 observed in *chd-1* mutants is primarily responsible for rescue of the *zyg-1(it25)* centriole duplication defect. This idea is consistent with our prior work demonstrating that loss of the heterodimeric transcription factor EFL-1/DPL-1 results in the upregulation of SAS-6 protein levels and suppression of *zyg-1(it25)* [27]. Interestingly, our prior work also showed that EFL-1/DPL-1, like CHD-1, does
not repress SAS-6 expression by regulating \textit{sas-6} transcript levels. We thus wondered if CHD-1 and EFL-1/DPL-1 function in the same pathway to regulate SAS-6 and centriole duplication. If so, the effect of knocking out both transcription factors should not be greater than the effect of knocking out either factor individually. Therefore, we asked if depleting DPL-1 would enhance suppression of the embryonic lethal phenotype in a \textit{chd-1(bs122); zyg-1(it25)} strain. We performed this assay at 24\textdegree{} where \textit{chd-1(bs122)} suppression was relatively weak, so that any enhancement of suppression could be easily detected. As shown in Figure 5A, under our conditions, RNAi of \textit{dpl-1} in either a wild-type or \textit{zyg-1(it25)} mutant background did not alter the level of embryonic viability relative to RNAi of the nonessential gene \textit{smd-1}, which served as a negative control. Since, it has previously been established that loss of DPL-1 significantly decreases embryonic viability in wild-type worms [36,44] and increases embryonic viability in \textit{zyg-1(it25)} worms [29,34], the lack of an effect in either genetic background indicates that RNAi-based depletion of DPL-1, as employed here, is weak. Despite this, when \textit{chd-1(bs122); zyg-1(it25)} worms were treated with \textit{dpl-1(RNAi)}, they exhibited a significant boost in embryonic viability compared to controls (52\% vs 6\% respectively; Figure 5A). Thus, loss of EFL-1/DPL-1 enhances the ability of a \textit{chd-1} null allele to suppress \textit{zyg-1(it25)}, arguing that these two factors likely function independently to control centriole duplication.

Our results show that loss of either CHD-1 or EFL-1/DPL-1 leads to increased levels of SAS-6. Since our genetic analysis suggests that these factors function in
different pathways, we hypothesized that loss of both factors would lead to an even higher level of SAS-6 that could result in centriole amplification as seen when SAS-6 is overexpressed in other systems[20,21,62]. To address this possibility, we investigated if chd-1 and dpl-1 genetically interact in an otherwise wild-type background. As shown in Figure 5B, RNAi-based depletion of DPL-1 in a wild-type background had no effect on embryonic viability (compare smd-1(RNAi) vs dpl-1(RNAi)). However, in a chd-1(bs122) background, dpl-1(RNAi) led to a dramatic decrease in embryonic viability with about half of the embryos failing to hatch (compare chd-1; smd-1(RNAi) to chd-1; dpl-1(RNAi)). Thus, chd-1 and dpl-1 genetically interact.

As mentioned above, dpl-1(RNAi) is inefficient. Thus, we wondered if a stronger genetic interaction might be identified using a loss-of-function allele of dpl-1. The dpl-1(bs21) allele identified in our genetic screen is a nonsense mutation (Q521X) that results in truncation of the last 196 amino acid residues while leaving the DNA-binding and heterodimerization domains intact. The dpl-1(bs21) allele behaves as a hypomorph and confers a partial embryonic lethal phenotype [63,27]. Using CRISPR-Cas9 genome editing we recreated this allele which we named dpl-1(bs169). We then quantified the effect of this allele on embryonic viability either alone or in the presence of the chd-1(bs122) allele over a range of temperatures (Figure 5C). Surprisingly we found that dpl-1(bs169) confers a cold-sensitive embryonic lethal phenotype. Hermaphrodites, carrying the dpl-1(bs169) mutation exhibit relatively high embryonic viability (66%) at 25° but progressively lower
embryonic viability as the temperature is decreased (46% at 20°, 25% at 16°, and 8% at 12.5°). Strikingly, hermaphrodites carrying both the chd-1(bs122) and dpl-1(bs169) alleles consistently display lower embryonic viability than the dpl-1(bs169) single mutants at all temperatures tested (22% at 25°, 14% at 20°, 3% at 16°, and 0% at 12.5°). The increased embryonic lethality observed in the double mutant is not due to an additive effect, as the chd-1(bs122) allele does not produce an embryonic lethal phenotype on its own at any of the temperatures tested. Thus, the loss of CHD-1 enhances the embryonic lethal phenotype of a dpl-1 loss-of-function allele, suggesting that overexpression of SAS-6 is toxic.

Previously, we have shown that a small percentage of embryos produced from dpl-1(bs21) hermaphrodites possess extra centrosomes [27]. This analysis however was performed at elevated temperature where the dpl-1(bs21) allele is still relatively active. Thus, we sought to determine how loss of either EFL-1/DPL-1 alone or the combined loss of both CHD-1 and EFL-1/DPL-1 affects centriole duplication under the most restrictive of conditions. Single and double mutants were grown at 12.5° and embryos immunostained with antibodies to alpha-tubulin and the centrosome marker CeGrip1 (aka GIP-1) [64]. As shown in Figure 5D, among the offspring of both dpl-1(bs169) single mutants and chd-1(bs122); dpl-1(bs169) double mutants, we observed embryos with supernumerary centrosomes. Although cytokinesis defects are a known source of extra centrosomes, such a defect does not appear to account for the emergence of extra centrosomes in these mutants. Cytokinesis failure invariably gives rise to an even number of centrosomes whereas...
we observed numerous cases of cells with an odd number of centrosomes (Figure 5D). Furthermore, we did not observe other hallmarks of cytokinesis failure such as binucleate cells. Thus, the extra centrosomes most likely arise through an overproduction mechanism (e.g. overduplication or de novo assembly of centrioles).

Analysis of the cellular distribution and frequency of extra centrosomes among the single and double mutant embryos revealed additional details of this defect (Table 1). First, no extra centrosomes were observed at the one-cell stage in either single or double mutants. As the zygote's centrioles are of paternal origin, such a defect at this stage of development would indicate a defect in the male germ line. Thus, the absence of such defects suggests that loss of EFL-1/DPL-1 alone or both CHD-1 and EFL-1/DPL-1 selectively affects maternal control of centriole assembly. Second, the $chd-1(bs122)$ null allele strongly enhances the extra-centrosome defect of the $dpl-1(bs169)$ mutant; only two out of 120 cells from young (two-six-cell stage) $dpl-1(bs169)$ embryos possessed one or more extra centrosomes while 22 out of 125 cells from similarly staged $chd-1(bs122); dpl-1(bs169)$ embryos exhibited this defect. The difference is highly significant ($p<0.0001$) indicating that loss of $chd-1$ strongly enhances the centrosome amplification defect of the $dpl-1$ mutant.
Table 1: Loss of *chd-1* enhances the multipolar spindle defect of the *dpl-1(bs169)* mutation

<table>
<thead>
<tr>
<th>Genotype</th>
<th>dpl-1(bs169)</th>
<th>chd-1(bs122); dpl-1(bs169)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total embryos scored</td>
<td>64</td>
<td>70</td>
</tr>
<tr>
<td>Total one-cell embryos scored</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Multipolar one-cell embryos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total 2-6 cell stage embryos scored</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>Multipolar 2-6-cell stage embryos</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Total cells of 2-6 cell stage embryos</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Multipolar cells of 2-6 cell stage embryos*</td>
<td>2</td>
<td>22</td>
</tr>
</tbody>
</table>

* Chi-squared analysis, p=0.000027

CHD-1 and EFL-1/DPL-1 independently down-regulate CDK-2 activity to control SAS-6 abundance.

Recent work has shown that EFL-1/DPL-1 down regulates transcription of the *cdk-2* gene in the *C. elegans* germ line [65]. CDK-2 is required for centriole duplication in vertebrates [66-68,26] and has recently been shown to protect the SAS-6 binding partner STIL/SAS-5 from degradation mediated by the SCF^{F^{TrCP}E3} ubiquitin ligase [69]. Therefore, we wondered if CDK-2 might be the relevant target of EFL-1/DPL-1 and possibly CHD-1 as well. Consistent with such a mechanism, we found that *cdk-2* transcripts are upregulated in the *chd-1(bs122)* mutant relative to the control strain (Figure 4B). Thus, both CHD-1 and EFL-1/DPL-1 independently
down regulate cdk-2 expression. We also noticed that cki-2, a CDK-2 inhibitor whose down regulation has been reported to result in the presence of supernumerary centrosomes [70], was among the set of genes weakly down regulated in the chd-1 deletion strain (Supplementary Table S2). However, qRT-PCR analysis revealed that the level of cki-2 transcripts is unaffected by the chd-1(bs122) mutation (Figure 4B). In summary, our data suggest a model whereby the loss of either transcriptional regulator results in elevated levels of CDK-2 activity, which in turn, acts post-transcriptionally to promote SAS-6 expression.

We set out to test our hypothesis by determining if CDK-2 was required for suppression of the embryonic lethality of a zyg-1(it25) mutant by loss of either EFL-1/DPL-1 or CHD-1. As demonstrated above, zyg-1(it25) animals grown at the nonpermissive temperature of 24°C do not produce any viable progeny (Figure 5A, zyg-1(it25); smd-1(RNAi)). In contrast, zyg-1(it25) dpl-1(bs169) double mutants grown under identical conditions produce approximately 80% viable offspring (Figure 6A), demonstrating the ability of the dpl-1(bs21) mutation to robustly suppress the lethality of the zyg-1(it25) allele. Strikingly, when the double mutant was treated with cdk-2(RNAi) there was almost a complete loss of viability among the offspring of the zyg-1(it25) dpl-1(bs169) double mutants. Importantly, depletion of cdk-2 only mildly affected embryonic viability in wild-type animals, indicating that the nearly complete loss of viability observed in zyg-1(it25) dpl-1(bs169) animals exposed to cdk-2(RNAi) was due to a loss of suppression rather than disruption of an essential CDK-2-dependent function. We performed the same
experiment with the chd-1(bs122); zyg-1(it25) double mutant and found that at the semipermissive temperature of 23.5°C, chd-1(bs122)-mediated suppression of zyg-1(it25) was also reduced upon cdk-2(RNAi) (Figure 6B). However, CDK-2 depletion only partially eliminated suppression by the chd-1(bs122) allele, suggesting that CHD-1 might regulate centriole duplication through additional mechanisms that do not involve CDK-2.

We next used quantitative western blotting to determine if CDK-2 controls the level of SAS-6. For these experiments, we employed the auxin inducible degradation system [71] to robustly deplete CDK-2. We therefore constructed a strain harboring an endogenous cdk-2 gene tagged with the auxin-inducible degron (AID) and carrying a transgene that expresses the substrate recognition component TIR1 in the germ line. This strain was grown in the absence and presence of 1 mM auxin. As shown in Figures 6C and 6D, upon treatment with auxin SAS-6 dropped to an undetectable level, consistent with a role for CDK-2 in promoting SAS-6 protein levels.

In summary, our work strongly supports a model (Figure 6E) whereby CHD-1 and EFL-1/DPL-1 function in the maternal C. elegans germ line to negatively regulate expression of CDK-2 at the mRNA level. In turn, CDK-2 promotes expression of SAS-6, and when overexpressed can drive the formation of extra centrioles and multipolar spindles.

Discussion
The cyclin-dependent kinase CDK-2 and members of the E2F family of transcriptional activators have long been known to regulate centriole number in dividing vertebrate cells. In both *Xenopus* eggs and mammalian somatic cells, inhibition of CDK-2 complexed with either cyclin A or cyclin E blocks centriole assembly [66-68,26]. In contrast, E2F members can play either positive or negative roles in centriole biogenesis. DP1, E2F2 and E2F3 have been shown to promote centriole duplication in Chinese hamster ovary cells [26], while loss of E2F3 results in centriole amplification in mouse embryonic fibroblasts [29]. While these pioneering studies hinted that E2F proteins might exert control over centriole assembly by regulating CDK-2 activity, they did not provide definitive proof for such a model. Further, beyond establishing an essential role for CDK-2 in centriole assembly, this early work did not define its mechanism of action.

Our work builds upon these earlier studies by identifying two parallel transcriptional control pathways—one E2F-dependent and one E2F-independent—that converge upon CDK-2 to limit expression of SAS-6 and ensure a precise doubling of centrioles in the *C. elegans* embryo. As shown by Furuta et al., EFL-1/DPL-1 directly down regulates transcription of CDK-2 [65]. Likewise, we find that CHD-1 represses expression of CDK-2, although it is not yet clear if it does so through a direct or indirect mechanism. Nevertheless, our work shows that the two transcriptional regulators fine tune the level of CDK-2 which in turn regulates the
abundance of the centriole scaffold protein SAS-6 to ensure centriole number is properly maintained.

While EFL-1/DPL-1 and CHD-1 both regulate SAS-6 levels, the two pathways differ in two respects. First, the EFL-1/DPL-1-dependent pathway clearly plays the predominant role in regulating centriole assembly. As our data shows, a hypomorphic
\textit{dpl-1} allele more strongly suppresses the centriole duplication defect of \textit{zyg-1(it25)} mutants than a complete deletion of \textit{chd-1}. Further, \textit{dpl-1} mutant embryos possess extra centrosomes whereas \textit{chd-1} null embryos do not. A second distinction between the two pathways is the degree to which they depend on CDK-2 for regulating centriole duplication. Upon \textit{cdk-2(RNAi)}, \textit{zyg-1(it25); dpl-1(bs169)} hermaphrodites produce very few viable offspring, indicating that regulation of centriole duplication by EFL-1/DPL-1 is mostly if not entirely dependent on CDK-2 activity. In contrast, a substantial fraction of the offspring of \textit{chd-1(bs122); zyg-1(it25)} hermaphrodites subjected to \textit{cdk-2(RNAi)} remain viable, suggesting that CHD-1 also regulates centriole duplication in a CDK-2-independent manner.

One exciting possibility is that CHD-1 also functions to regulate centriole assembly outside of its role as a chromatin regulator. Hatch et al., [53] reported a physical interaction between Chd1 and PLK4 in Xenopus. While we were unable to establish such in interaction in \textit{C. elegans}, we could have missed this if it were a transient interaction or if it only occurred in a specific subset of cells. Intriguingly, there is a precedent for a transcriptional regulator playing a direct role in centriole
In multiciliated cells, E2F4, the ortholog of EFL-1, promotes expression of centriole assembly genes before being translocated to the cytoplasm where it forms apical aggregates containing SAS-6 and deup1, a component of ring-shaped protein complexes called deuterosomes that serve as sites of centriole assembly [28]. Remarkably, mutations that block nuclear export of E2F4 allow transcriptional activation of centriole genes but block deuterosome assembly and centriole amplification [28].

Our finding that disruption of both EFL-1/DPL-1 and CHD-1 function leads to elevated SAS-6 levels and the frequent appearance of supernumerary centrosomes, once again highlights how numerical control depends upon the abundance of core centriole assembly factors. Prior work has shown that regulated proteolysis plays a critical role by controlling the levels of ZYG-1/Plk;4, SAS-5/STIL and SAS-6 [69, 7, 17, 72-78, 62]. The basic theme that arises from these studies is that degradation is mediated by an E3 ubiquitin ligase (either SCF or the APC/C), and that temporal control is achieved by regulating substrate recognition through cell-cycle-stage-dependent phosphorylation of either the target protein itself or of the E3 ligase. It therefore seems likely that CDK-2 functions in a similar capacity to control the levels of STIL in vertebrates and SAS-6 in worms. However, in both cases the substrate phosphorylated by CDK-2 remains to be identified.

The question of CDK-2 action notwithstanding, our work, together with that of Arquint et al. 2018 [69], shows that in both worms and humans, CDK-2 regulates
centriole assembly by controlling the abundance of centriole scaffold components.

In human cells, CDK-2 stabilizes STIL/SAS-5, a binding partner of SAS-6, by blocking degradation via the E3 ubiquitin ligase SCF$^{\beta TrCP}$. In worms, the target of CDK-2 is SAS-6, suggesting an evolutionary divergence of the underlying mechanism.

However, the extent to which the mechanisms operating in humans and worms differ is not yet clear. For instance, in humans, SAS-6 levels are also controlled by SCF$^{\beta TrCP}$, but whether CDK-2 also regulates SAS-6 abundance has not been investigated. Conversely in worms, SCF$^{\beta TrCP}$ has been shown to regulate centriole duplication by controlling ZYG-1 levels at the centriole [79], but whether SCF$^{\beta TrCP}$ also regulates SAS-6 is an open question. Thus, it remains possible that the CDK-2-dependent pathways operating in vertebrates and worms are not all that different.

Over the past two decades research has uncovered a strong link between centriole amplification and human diseases including cancer and primary microcephaly. Interestingly E2F proteins have been implicated in both diseases [80,81], although in neither disease has a link between loss of E2F activity and centriole amplification been established. Our work showing that a loss of EFL-1/DPL-1, or the combined loss of EFL-1/DPL-1 and CHD-1 leads to the presence of extra centrosomes in the *C. elegans* embryo is thus relevant to understanding how these diseases might arise in response to a loss of numerical control.

Materials and Methods
Worm strains and maintenance

Worms were maintained on MYOB agar plates seeded with *E. coli* OP50 at 20°C according to standard protocols [82]. Strains used in this study are described in Table S4.

CRISPR-Cas9 Genome editing

CRISPR-Cas9 genome editing was performed by microinjection of *in-vitro* assembled ribonucleoprotein complexes essentially as previously described [83,84]. Screening utilized the co-CRISPR strategy [85]. The crRNAs were purchased from Dharmacon, Inc. (Lafayette, CO) and primers and oligonucleotide repair templates were purchased from Integrated DNA technologies (Coralville, IA). Cas9 protein was purified according to the protocol by Paix et al, 2015 [84]. The crRNA and repair template sequences for all the strains generated by CRISPR-Cas9 editing in this study are provided in Table S5.

Embryonic viability assays and brood counts

For most measurements of embryonic viability, including all embryonic lethality suppression assays, L3-L4 larvae were picked individually to 35 mm MYOB agar plates at the indicated temperature and allowed to lay eggs for 1 day (20°C, 25°C), 2 days (16°C) or 3 days (12.5°C). The adult worms were removed, and the plates were incubated at the same temperature for an additional period of time equal to the egg-laying period. The number of dead and live progeny were then manually counted. For brood size measurements, L4 larvae were picked.
individually to 35 mm MYOB agar plates. These plates were incubated at the indicated temperature and the adult transferred to a fresh plate every 24 hr until egg laying ceased. Live and dead progeny were counted on each plate 1 day (20°C, 25°C) or 2 days (16°C) after removing the adult.

RNAi

RNAi was administered by feeding as described previously [86]. In brief, animals at the L1 or L4 stage were transferred to a lawn of dsRNA-expressing bacteria that had been grown on MYOB plates supplemented with 50-100 μg/ml carbenicillin, with or without 25 μg/ml tetracycline and 1-2 mM IPTG (Isopropyl β-d-1-thiogalactopyranoside). Plates were then incubated at the specified temperature. RNAi against the nonessential smd-1 gene served as a negative control.

Fixed and live imaging

Immunofluorescence microscopy was essentially performed as previously described [87]. The mouse monoclonal anti-alpha-tubulin antibody DM1A (Sigma-Aldrich, St. Louis, MO) and the rabbit anti-CeGrip1 antibody [64] were used at a dilution of 1:1000. Alexa 568 anti-mouse and Alexa 488 anti-rabbit secondary antibodies (Thermo Fisher Scientific, Waltham, MA) were used at a 1:1000 dilution. For detection of the SPOT tag, we used the SPOT-Label Alexa-Fluor 568 nanobody (Chromotek, Planegg-Martinsried, Germany) at a 1:1000 dilution. For time-lapse imaging of embryos, worms were grown at the indicated temperature and embryos dissected and mounted as described [87].
Spinning disk confocal microscopy of fixed specimens and whole live worms was performed using a Nikon Eclipse Ti2 microscope equipped with a Plan Apo 60X 1.2 N.A. water immersion lens, a CSU-X1 confocal scanning unit (Yokogawa Electric Corporation, Tokyo Japan), and a Prime 95B CMOS camera (Teledyne Photometrics, Tucson, AZ). Excitation light was generated using 405 nm, 488 nm, and 561 nm solid state lasers housed in an LU-NV laser unit. NIS-Elements software (Nikon Instruments, Inc, Tokyo, Japan) was used for image acquisition.

Time-lapse spinning disk confocal imaging of live specimens was performed on a Nikon TE2000U inverted microscope equipped with a Plan Apo 60X 1.4 N.A. oil immersion lens, a Thermo Plate heating/cooling stage (Tokai Hit, Japan), a CSU10 confocal scanning unit (Yokogawa Electric Corporation, Tokyo, Japan) and a C9100-13 EM-CCD camera. (Hamamatsu Photonics, Shizuoka, Japan). Excitation light was generated using 405 nm, 491 nm, and 561 nm solid state lasers controlled via a LMM5 laser launch (Spectral Applied Research, Ontario, Canada) and fed through a Borealis beam conditioning unit (Spectral Applied Research, Ontario, Canada). Images were acquired using MetaMorph software (Molecular Devices San Jose, CA). Image processing was performed with either NIS-Elements software (Nikon Instruments, Inc, Tokyo, Japan) or Fiji.

Immunoprecipitation-Mass Spectrometry

Whole worm extracts were prepared as described previously [88]. Eight milligrams of either chd-1(bs122) (control) or chd-1(bs125) (CHD-1::sfGFP) whole worm extracts and 80 microliters of GFP-Trap Magnetic Agarose beads (Chromotek)
were used for each IP. The IPs were performed at 4°C for 3 hours, washed twice with GFP-trap wash buffer (10 mM Tris-Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA), and suspended in 100 microliters of 1XTBS (50 mM Tris-Cl, pH 7.6, 150 mM NaCl). For mass spec, the samples were resuspended in a Tris/Urea buffer, reduced, alkylated and digested with trypsin at 37°C overnight. This solution was subjected to solid phase extraction to concentrate the peptides and remove unwanted reagents followed by injection onto a Waters NanoAcquity HPLC equipped with a self-packed Aeris 3 μm C18 analytical column 0.075 mm by 20 cm, (Phenomenex, Torrance, CA). Peptides were eluted using standard reverse-phase gradients. The effluent from the column was analyzed using a Thermo Orbitrap Elite mass spectrometer (nanospray configuration) operated in a data dependent manner for 120 minutes. The resulting fragmentation spectra were correlated against the known database using PEAKS Studio 8.5 (Bioinfomatic Solutions, Ontario, Canada) Scaffold Q+S (Proteome Software Inc., Portland, OR) was used to provide consensus reports for the identified proteins.

Auxin treatment

To deplete CDK-2, we employed the auxin-inducible degradation system [71]. Worms were grown on standard MYOB plates until they reached the L3 stage, at which point they were transferred to MYOB plates supplemented with 1mM indole-3-acetic acid (Alfa Aesar, Haverhill, MA) and seeded with *E. coli* OP50. Worms were grown for two days at 20°C before being processed for quantitative immunoblotting.
Quantitative immunoblotting

Samples for quantitative immunoblots were prepared from either whole worm lysates or worm extracts. For whole worm lysates, 100 gravid adults were washed twice with 1 ml of M9 buffer (22 mM KH$_2$PO$_4$, 22 mM Na$_2$HPO$_4$, 85 mM NaCl, 1 mM MgSO$_4$), resuspended in 40 µl of either NuPAGE LDS Sample Buffer (Invitrogen, Waltham, MA) or 4X Laemmli buffer (Bio-Rad Laboratories, Inc. Hercules, CA) and boiled at 95°C for 10 minutes. The lysates were stored at -30°C prior to gel electrophoresis. For worm extracts, worms were grown on eight 100 mm MYOB agar plates until the bacteria was exhausted. The starved L1 larvae were washed off the plates, transferred to 500 ml of liquid S-media containing E.coli NA22, and grown at 20°C until they reached adulthood. Gravid worms were collected, and extracts prepared as described [88]. The concentrations of the extracts were determined using the Bio-Rad Protein assay kit (Bio-Rad Laboratories Inc. Hercules, CA). The extracts were then aliquoted into individual tubes, flash frozen in liquid nitrogen, and stored at -80°C.

SDS-PAGE gel electrophoresis was performed using 12 to 16 µl of lysate or 50 µg of extract per lane. Samples prepared in NuPAGE LDS Sample Buffer were resolved on a Novex 4-12% Bis-Tris precast gels (Invitrogen, Waltham, MA) and blotted to nitrocellulose using the iBlot semi-dry transfer system (Invitrogen, Waltham, MA) according to the manufacturer’s instructions. Samples prepared in 4X Laemmli buffer were run on a 4-20% Mini-protean TGX precast gel (Bio-Rad Laboratories, Hercules, CA) and transferred to nitrocellulose using the Trans-Blot
Turbo Transfer System (Bio-Rad Laboratories) according to the manufacturer's instructions. The membranes were blocked with Odyssey blocking buffer (LiCOR Biosciences, Lincoln, NE) and probed with a 1:1000 dilution of the following antibodies: anti-SPD-2 [41], anti-SAS-6 [29], anti-GFP (Roche, Indianapolis, IN), and anti-alpha-tubulin DM1A (Sigma-Aldrich, Inc). Anti-mouse 680 and anti-Rabbit 800IRDye secondary antibodies (LiCOR Biosciences, Lincoln, NE) were used at a 1:14,000 dilution. Membranes were imaged using the Odyssey Clx imaging system (LiCOR Biosciences, Lincoln, NE). Quantitation of band intensities was performed using Fiji software [52] and normalized to the internal loading control.

RNA-Seq

RNA samples (four biological replicates per genotype) were prepared from N2 and chd-1(bs122) adult worms as described below for qRT-PCR. RNA quality was determined using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). All RNA samples had an RNA integrity number (RIN) greater than or equal to 9.5. Libraries were constructed using the NEB Next Ultra II RNA library prep for illumina per the manufacturer's protocol (New England Biolabs Inc., Ipswitch, MA), and library concentrations measured using the 2100 Bioanalyzer. Libraries were pooled and sequenced on a HiSeq 2500 Sequencing System (Illumina, San Diego, CA), generating an average of 22 million reads for the N2 library (range 17-28 M reads) and an average of 23 million reads for the chd-1(bs122) library (range 21-26 M reads). FASTQ files were aligned to ce10 genome using BBMAP, Version 36.02. Gene count table, differential gene expression analysis and PCA analysis were performed using
the Genomatix Genome Analyzer (GGA)

[qhttps://www.genomatix.de/solutions/genomatix-genome-analyzer.html].

qRT-PCR

Approximately 300 day-one adult (72 hours after plating as L1) animals were collected for RNA extraction by washing three times with M9 prior to suspension in 1mL Trizol Reagent (ThermoFisher Scientific #15596026). Nucleic acids were isolated via chloroform extraction and RNA was isolated with the Qiagen RNEasy Mini (Qiagen #74104) including on-column DNase I digestion. RNA was assessed for purity and concentration with a NanoDrop Lite. cDNA synthesis was performed with the iScript cDNA Synthesis Kit (Bio-Rad #1708891). qRT-PCR was performed with SYBR Select Master Mix (ThermoFisher #4472908) on a Bio-Rad CFX384 Touch Real-Time PCR Detection System (Bio-Rad # 1855485). Six biological replicates of each genotype were run in triplicate for each gene. Fold change was determined by the ΔΔct method with Δct compared to act-1. A list of primer sequences used for qRT-PCR can be found in Table S6.

Protein structure prediction and alignment

The protein structure of *C. elegans* CHD-1 was predicted using SWISS-MODEL [89-91]. Alignment of the predicted *C. elegans* and known yeast CHD-1 (PDB ID: 3MWY) [57] structures was performed using PyMOL software (The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.).
Statistics and scatter plots

Statistical analysis and the generation of scatter plots were generated using Prism 8.3 (GraphPad Software, San Diego, CA). Differences in gene expression were assessed as parallel t-tests with a Holm-Sidak correction for multiple comparisons using the GraphPad Prism 8 platform.

Acknowledgements

We would like to thank Tony Hyman for generously providing the anti-CeGrip1 antibody, Yumi Kim for providing the cdk-2::aid::3xflag strain, and Jennifer Patterson-West for assisting with analysis of protein structure. Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440), and by the National BioResource Project (Japan). This research was supported by the Intramural Research Program of the NIH, The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

doi:10.1016/j.devcel.2013.03.011

eexpression of STIL controls centriole number in human cells. J Cell Sci 125 (Pt

doi:10.1038/ncb1320

protein family required for centrosome duplication in C. elegans and in human cells.
Nat Cell Biol 7 (2):115-125. doi:10.1038/ncb1220

proteins in vivo induces centriole overduplication and de novo formation. Curr Biol

544172-8.00011-6

Figure Legends

Figure 1. Deletion of the *chd-1* gene partially rescues the embryonic lethality and centrosome duplication defect of the *zyg-1(it25)* mutant. (A) Schematic of the wild-type CHD-1 protein and protein products of alleles used in this study. (B) Suppression of embryonic lethality of *zyg-1(it25)* mutants by the original allele *chd-1(ok2798).* Each data point represents the percentage of viable progeny from a single hermaphrodite. Bars indicate mean and standard deviation. ***p < 0.0001 as calculated by Chi squared analysis. (C) An immunoblot showing that the *chd-1(bs122)* allele drives expression of GFP. (D) The *chd-1(bs122)* allele partially suppresses the embryonic lethality of the *zyg-1(it25)* mutant. Each data point represents the percentage of viable progeny from a single hermaphrodite. Bars indicate mean and standard deviation. ***p < 0.0001 as calculated by Chi squared analysis. (E) Loss of CHD-1 partially suppresses the centrosome duplication defect of the *zyg-1(it25)* mutant. The graph depicts the number of centrosome duplication failures or successes as determined by live cell imaging of *zyg-1(it25)* and *chd-1(bs185); zyg-1(it25)* embryos expressing GFP::histone and SPD-2::mCherry. **p < 0.001 as calculated by Fisher’s Exact Test. (F) Frames from select time-lapse imaging data sets of *zyg-1(it25)* and *chd-1(bs185); zyg-1(it25)* embryos expressing GFP::Histone and SPD-2::mCherry. Arrowheads indicate centrosomes. Scale bar = 10 \(\mu \text{m}. \)
Figure 2. The *chd-1* gene is broadly transcribed in *C. elegans*, but its protein product is down-regulated in the proximal germ line and early embryo. (A) Schematic of the protein products of the wild-type *chd-1* gene and two gfp-tagged alleles. The *chd-1(bs125)* allele encodes a wild-type CHD-1 protein C-terminally tagged with GFP. The *chd-1(bs123)* allele is identical to *chd-1(bs125)* except that it possesses a missense mutation in the helicase domain. (B) Images of hermaphrodites expressing GFP (top) and CHD-1::GFP (bottom) driven by the 5’ and 3’ *chd-1* flanking regions. Both GFP and CHD-1::GFP are broadly expressed in the soma and germ line but unlike GFP, CHD-1::GFP is concentrated in nuclei throughout all tissues except those of the proximal germ line and early embryo. The distal germ line (d), proximal germ line (p), and early embryos (e) are indicated. Insets show enlarged view of these tissues. (C) Immunoblot probed with an anti-GFP antibody showing that the wild-type and mutant CHD-1::GFP proteins are expressed at about the same level. (D) CHD-1::GFP but not CHD-1(D538N) is functional. The *chd-1(bs125)* and *chd-1(bs123)* alleles were tested for suppression of the *zyg-1(it25)* embryonic lethal phenotype. Unlike the null *chd-1(bs122)* allele, the *chd-1(bs125)* allele fails to suppress *zyg-1(it25)*, demonstrating that CHD-1::GFP is functional. The *chd-1(bs123)* allele suppresses *zyg-1(it25)* indicating that helicase activity is essential for regulating centriole duplication. ***p < 0.0001 as calculated by an unpaired t test with Welch’s correction. (E) Super imposition of the predicted structure of *C. elegans* CHD-1 protein (green) with that of the *S. cerevisiae* Chd1 protein (gray, accession 3MWY). The inset shows an enlargement focusing on the region proximal to aspartate 513 of yeast Chd1 (blue) aligned with aspartate 538 of worm CHD-1 (orange).
Figure 3. Loss of CHD-1 results in over-expression of SPD-2 and SAS-6. (A) Quantitative immunoblot comparing SPD-2 levels in wild-type and \textit{chd-1} mutants. Note the nearly two-fold increase in the \textit{chd-1(bs122)} deletion strains as compared to the wild-type strain. (B) Quantitative immunoblot comparing SAS-6 levels in control (\textit{chd-1(bs122)/+} heterozygotes) and \textit{chd-1(bs122)} homozygotes. (C) Quantitation of SPD-2 and SAS-6 levels as determined by immunoblotting. (D) Quantitative fluorescence microscopy of a \textit{gfp::spd-2} transgene in \textit{chd-1(bs122)} heterozygous (control) and homozygous embryos. As shown in the schematic, the transgene is expressed under control of the \textit{pie-1} promoter and 3’ utr and its expression is negatively affected by loss of CHD-1. Representative images (left, scale bar = 10 μm) and quantitation (right) are shown. Each dot represents a single centrosome. Bars indicate mean and standard deviation. ***p<0.0001, unpaired t test with Welch’s correction. (E) Quantitative immunoblot of endogenous SPD-2 and GFP::SPD-2 levels in \textit{chd-1(bs122)} heterozygotes and homozygotes. Note that endogenous SPD-2 is elevated almost two-fold in the \textit{chd-1(bs122)} homozygotes relative to heterozygous siblings, while the level of GFP::SPD-2 is lower. (F) Quantitative fluorescence microscopy of a \textit{spd-2::mCherry} transgene in heterozygous and homozygous embryos. As shown in the schematic, the transgene is expressed under control of the native \textit{spd-2} promoter and 3’ utr, and its expression is positively affected by loss of CHD-1. Representative images (left, scale bar = 10 μm) and quantitation (right) are shown. Each dot represents a single centrosome. Bars indicate mean and standard deviation. *p<0.05, unpaired t test with Welch’s correction.
Figure 4. cdk-2 transcript levels are elevated in chd-1(bs122) mutants. (A) List of genes whose mRNA levels are affected by two-fold or greater by loss of CHD-1 as determined by RNA-Seq. (B) Results of qRT-PCR of adult wild-type and chd-1(bs122) worms showing relative transcript levels. ***p<0.0001, t-test with a Holm-Sidak correction.

Figure 5. CHD-1 and DPL-1 cooperate to control SAS-6 levels and proper centriole number. (A) Suppression of the embryonic lethal phenotype of zyg-1(it25) at 24°C in the presence of the chd-1(bs122) allele and/or dpl-1(RNAi). Wild-type alleles are indicated by a plus sign while mutant alleles are indicated by either it25 or a minus sign. Each data point represents the percentage of viable progeny from a single hermaphrodite. Bars indicate mean and standard deviation. Note that the level of suppression observed in presence of both chd-1(bs122) and dpl-1(RNAi) is greater than the expected level of suppression if the effects of chd-1(bs122) and dpl-1(RNAi) were additive. (B) The simultaneous depletion of CHD-1 and DPL-1 results in embryonic lethality. dpl-1(RNAi) or control RNAi (smd-1) were performed in a wild-type or chd-1(bs122) background. Specifically, the combination of chd-1(bs122) and dpl-1(RNAi) led to embryonic lethality. Bars indicate mean and standard deviation. (C). The chd-1(bs122) deletion allele enhances the embryonic lethality of dpl-1(bs169). Embryonic viability was measured at the indicated temperatures in chd-1(bs122), dpl-1(bs169), and chd-1(bs122); dpl-1(bs169) strains. While the chd-1(bs122) strain was fully viable at all temperatures, the dpl-1(bs169) and chd-1(bs122); dpl-1(bs169) strains displayed embryonic lethality that became progressively more severe as the temperature was reduced. At all temperatures tested, the chd-1(bs122); dpl-1(bs169) double mutant exhibited a more...
severe phenotype than the $dpl-1(bs169)$ single mutant. Bars indicate mean and standard deviation. (E) The $dpl-1(bs169)$ and $chd-1(bs122); dpl-1(bs169)$ embryos grown at 12.5° were immunostained for alpha-tubulin (red), CeGrip-1 (green) and DNA (blue). Images show two-cell stage embryos harboring extra centrosomes. Scare bar = 10 µm.

Figure 6. CDK-2 is required for $dpl-1$ and $chd-1$-mediated suppression of $zyg-1$. (A) Percent embryonic lethality among the progeny of wild-type and $zyg-1(it25) dpl-1(bs21)$ strains following $smd-1$ (control) and $cdk-2$ RNAi. The progeny of wild-type animals subjected to $cdk-2(RNAi)$ exhibit a small reduction in viability. In contrast, viability among the progeny of $zyg-1(it25) dpl-1(bs21)$ animals subjected to $cdk-2(RNAi)$ is almost completely lost, indicating that CDK-2 plays an important role in $dpl-1$-mediated suppression. *** p<0.0001, two-tailed t test with Welch’s correction. (B) Percent embryonic lethality in wild-type and $chd-1(bs122); zyg-1(it25)$ strains following $smd-1$ (control) and $cdk-2$ RNAi. The progeny of wild-type animals subjected to $cdk-2(RNAi)$ exhibit a small but insignificant reduction in viability. In contrast, viability among the progeny of $zyg-1(it25) dpl-1(bs21)$ animals subjected to $cdk-2(RNAi)$ is significantly reduced, indicating that CDK-2 plays an important role in $chd-1$-mediated suppression. ** p<0.001, ns= not significant, two-tailed t test with Welch’s correction. (C) Immunoblot of whole $cdk-2::aid; TIR-1::mRuby$ worms probed for SAS-6 and α-tubulin. The SAS-6 band is identified by its size (56 kDa) and its reduction in intensity upon $sas-6(RNAi)$. $smd-1(RNAi)$serves as a negative control. The presence or absence of auxin in the growth media is indicated. (D) Quantitation of immunoblots of $cdk-2::aid; TIR-1::mRuby$ worms probed for SAS-6. (E) Model of regulatory scheme. In germ
nuclei, EFL-1/DPL-1 and CHD-1 independently down regulate expression of the \textit{cdk-2} gene. CDK-2 protein in turn promotes the expression of SAS-6. Under normal conditions, this pathway ensures that oocytes, and ultimately embryos, inherit the proper amount of SAS-6 to support centriole duplication during the embryonic cell divisions.
Figure 1
Figure 2
Figure 3
Genes strongly affected by loss of CHD-1

<table>
<thead>
<tr>
<th>Gene</th>
<th>Log₂ (Fold Change)</th>
<th>Expression Ratio (chd-1(Δ)/wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>clec-47</td>
<td>1.427</td>
<td>2.7</td>
</tr>
<tr>
<td>pgp-7</td>
<td>1.356</td>
<td>2.6</td>
</tr>
<tr>
<td>pgp-6</td>
<td>1.223</td>
<td>2.3</td>
</tr>
<tr>
<td>sodh-1</td>
<td>1.103</td>
<td>2.1</td>
</tr>
<tr>
<td>gst-4</td>
<td>1.084</td>
<td>2.1</td>
</tr>
<tr>
<td>C26H9A.2</td>
<td>1.038</td>
<td>2.1</td>
</tr>
<tr>
<td>gtl-1</td>
<td>1.038</td>
<td>2.1</td>
</tr>
<tr>
<td>K10C2.3</td>
<td>1.003</td>
<td>2.0</td>
</tr>
<tr>
<td>plk-3</td>
<td>-2.155</td>
<td>0.25</td>
</tr>
<tr>
<td>fbxo-192</td>
<td>-1.933</td>
<td>0.26</td>
</tr>
<tr>
<td>sax-2</td>
<td>-1.362</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Figure 4

The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.

This preprint has been posted September 3, 2021. doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.02.458660
Figure 5