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Abstract

A new generation of scalable single cell whole genome sequencing (scWGS) meth-
ods allows unprecedented high resolution measurement of the evolutionary dynamics
of cancer cell populations. Phylogenetic reconstruction is central to identifying sub-
populations and distinguishing the mutational processes that gave rise to them. Ex-
isting phylogenetic tree building models do not scale to the tens of thousands of high
resolution genomes achievable with current scWGS methods. We constructed a phy-
logenetic model and associated Bayesian inference procedure, sitka, specifically for
scWGS data. The method is based on a novel phylogenetic encoding of copy num-
ber (CN) data, the sitka transformation, that simplifies the site dependencies induced
by rearrangements while still forming a sound foundation to phylogenetic inference.
The sitka transformation allows us to design novel scalable Markov chain Monte Carlo
(MCMCQ) algorithms. Moreover, we introduce a novel point mutation calling method
that incorporates the CN data and the underlying phylogenetic tree to overcome the
low per-cell coverage of scWGS. We demonstrate our method on three single cell
datasets, including a novel PDX series, and analyse the topological properties of the
inferred trees. Sitka is freely available at https://github.com/UBC-Stat-ML/sitkatree.git.
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1 Introduction

A main challenge in investigating cancer evolution is the need to resolve the subpopulation
structure of a heterogeneous tumour sample. Advances in next generation scWGS have
enabled more accurate, quantitative measurements of tumours as they evolve [1, 2, 3, 4].
Phylogenetic reconstruction is central to identifying clones in longitudinal xenoengraftment
[5, 6] as well as patients [7], and has been used to approximate the rate and timing of
mutation [8] to determine the origins and clonality of metastasis [9, 10]. Single cell cancer
phylogenetics is an evolving field. Multiple approaches, spanning different study designs
and data sources are reviewed in [11]. Many phylogenetic inference methods assume point
mutations as input or a small number of leaf nodes [12, 13, 14, 15]. However, emerging
single cell platforms produce up to thousands of single cell genomes and are suitable
for determining copy number aberrations (CNA) [16, 1]. The method of [17] assumes
a tree inferred from CNA exists and incorporates it in inference of point mutation based
phylogenies. Distance based and agglomerative clustering methods such as neighbour
joining are scalable and are used to elucidate hierarchical structures over cells [18, 19].
While these are useful heuristics, they are statistically sub-optimal relative to likelihood
based methods [20].

We describe sitka, a phylogenetic model and the associated Bayesian inference proce-
dure designed specifically for inference based on CN information extracted from scWGS
data. Our method addresses two key challenges: first, each CN event typically affects a
large number of genomic sites, breaking the independence assumptions required by exist-
ing phylogenetic methods [21, 15, 13, 22]; second, while detailed modelling of dependent
evolutionary processes is in principle possible, they entail computational requirements in-
compatible with the scale of modern scWGS data [23]. To confront these two difficulties,
sitka uses a novel phylogenetic encoding of CN data, providing a statistical-computational
trade-off by simplifying the site dependencies induced by rearrangements, while still form-
ing a sound foundation to phylogenetic inference. Based on this encoding, we propose an
innovative phylogenetic tree exploration move which makes the cost of Markov chain Monte
Carlo (MCMQ) iterations bounded by O(|C| + |L|), where |C| is the number of cells and ||
is the number of loci. In contrast, existing off-the-shelf likelihood-based methods incur an
iteration cost of O(|C| | L|) [24, 13, 15]. Moreover, the novel move considers an exponential
number of neighbouring trees whereas off-the-shelf moves consider a polynomial size set
of neighbours.

We compare sitka with other tree-inference methods on three real-world datasets, includ-
ing triple negative breast cancer patient derived xenograft samples, high grade serous
ovarian primary and matched relapse samples. Since the true phylogeny is unknown, we
design a phylogenetic goodness-of-fit framework to quantitatively assess the performance
of our method and to visualize reconstruction confidence as well as violations of our as-
sumptions.

We use the sitka inferred trees to analyse the topological properties of the real-world
datasets. Finally, we introduce a model extension that enables the placement of single
nucleotide variants (SNV) with high levels of missingness on a tree inferred from the CN
data.
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2 Resulis

2.1 Sitka: scalable single cell phylogenetic tree inference

Fig. 1 shows the workflow of the sitka method. Sitka is based on a transformation of single
cell copy number matrices retaining only presence or absence of changes in copy humber
profiles between contiguous genomic bins. This transformation allows us to approximate
a complex evolutionary process (integer-valued copy numbers, prone to a high degree of
homoplasy and dense dependence structure across sites) using a probabilistic version
of a perfect phylogeny (see Supplementary Fig. 1). We leverage the special structure
created by the change point transformation to build a special purpose MCMC kernel, which
has better computational scalability per move compared to classical phylogenetic kernels
(Methods section 9.4.3).

We visualise the input data to sitka in a colour-coded matrix exemplified in Supplementary
Fig. 1-a. Each row in the matrix corresponds to an individual cell that has been sequenced
in a single-cell platform. Each column in the matrix is a locus that is represented by a bin
(a contiguous set of genomic positions). We assume that the integer copy number of each
bin has been estimated as a preprocessing step, e.g., using a hidden Markov model [16].
In Supplementary Fig. 1-a the copy number state is encoded by the colour of each entry
in the matrix.

The output of sitka includes two types of directed rooted trees. Type | is the tree used for
MCMC sampling in the inference procedure, and type Il, which is derived from type |, is
used in visualisation (Fig. 2-a-c). The set of nodes in a type | tree is given by the union of
the cells, the CN change points (markers) under study, and a root node v*. The topology
of a type | tree bears the following phylogenetic interpretation: given a cell ¢ in the tree, ¢
is hypothesized to harbour the markers in the shortest path between ¢ and the root node
v*, and only those markers. We enforce the constraint that all cells are leaf nodes, while
markers can be either internal or leaf nodes. Markers placed at the leaves are interpreted
as outliers, for example measured CN change points that are false positives.

We remove from the type | tree all marker nodes that are leaf nodes, i.e., markers that are
not present in any cells. We also collapse into a single node, the list of connected marker
nodes that have exactly one descendent (i.e., chains). Supplementary Fig. 2 shows a
small type I tree, its transformation to a type Il tree and the respective marker matrix. We
visualise the input matrix and the estimated tree simultaneously by sorting the individual
cells (rows of the matrix) such that they line up with the position of the corresponding leaves
of the tree.

Sitka uses change points as phylogenetic traits modelled using a relaxation of the perfect
phylogeny assumption. Change points arising from non-overlapping CNA events do not
break the perfect phylogeny assumption. Supplementary Fig. 3 shows examples of over-
lapping CNA events and their effect on markers. The two scenarios that can lead to the
violation of the perfect phylogeny assumption are (i) when a CNA gain event is followed
by an overlapping loss event or (ii) when a loss event is followed by an overlapping loss
event, and the second event removes either end-point of the first event. For both (i) and
(i), a violation occurs only when the second overlapping event hits the same copy as the
first event.
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Imposing a perfect phylogeny on the observed change points is restrictive, as we expect
both violations of the assumptions (e.g., due to homoplasy), and measurement noise. To
address this we use an observation model (Methods section 9.4.1) which assigns positive
probability to arbitrary deviations from the perfect phylogeny assumption, while encourag-
ing configurations where few loci and cells are involved in violations. Subsequently we
impose the perfect phylogeny assumption on a /atent maker matrix defined as follows.
Given a type | tree t, the latent marker matrix x is a deterministic function z = z(t). We
compute z : t — {0,1}*F by setting =.; = 1 if the single-cell ¢ is a descendent of the
marker node [ in tree ¢, and otherwise z.; = 0. We use y.; to refer to the observed change
point [ in individual cell ¢ (Methods section 9.4.1).

Synthetic experiments show that sitka’s performance degrades gracefully in the face of
some of the key types of expected violation of the perfect phylogeny assumption (Fig. 3-
a,b, Methods section 9.5).

2.2 Performance of sitka relative to alternative approaches

We compare the performance of sitka to alternative approaches on three scWGS datasets
introduced here (Fig. 2-a-c). The first dataset, SA535, is generated for this project and
contains 679 cells from three passages of a triple negative breast cancer (TNBC) patient
derived xenograft sample. Passages X1, X5, and X8 had 62, 369, and 231 cells post quality
filtering (Methods section 9.1) respectively. We also include 17 mostly diploid control cells.
These cells are combined to generate the input to the analysis pipeline (Supplementary
Fig. 6). The second dataset, labelled OV A, consists of cells from three samples taken
from a patient with high grade serous (HGS) ovarian cancer. The first sample, S A1090,
was from an ascites pre-treatment, while S A922 was from an ascites post-treatment. The
third sample, S A921, was taken from the ovary. See Supplementary Fig. 7 for the tree and
the CNA profile heatmap for this dataset. The final dataset, SA501 [25], is another TNBC
xenograft tumour from 6 untreated passages, namely X2, X5, X6, X8, X11, and X15. After
filtering, 515, 236, 328, 189, 836, and 308 cells remain in each passage respectively (for
a total of 2,412 cells, see Supplementary Fig. 8). Table 1 shows the attrition after each
step of filtering cells per passage in each dataset.

To evaluate inferred trees from sitka and other tree reconstruction methods, we use a good-
ness of fit performance metric, which compares the compatibility of observed CN change
points with a given phylogeny using Youden’s J index (Methods section 9.6, Fig. 2-d). Sitka
has the highest Youden’s index across all three datasets. UPGMA and WPGMA perform simi-
larly on SA501 and S A535. UPGMA performs slightly better than WPGMA on the OV A dataset.
HDBSCAN has a close but slightly smaller Youden’s index than UPGMA over the SA535 and
OV A datasets, but performs marginally better on SA501. NJ trails WPGMA on SA501 and
the OV A datasets, and has the lowest Youden’s index on SA535. MrBayes performs well
on the smallest dataset, S A535, with MrBayes—np2 and MrBayes-np8 performing similar to
WPGMA, and MrBayesWithBinaryInput having achieved the second highest Youden’s in-
dex. Onthe OV A data, MrBayesWithBinaryInput and MrBayes-np2 trail behind NJ, while
MrBayes—np2 has the lowest Youden’s index among all methods on all datasets. Similar
to the OV A case, MrBayesWithBinaryInput and MrBayes-np2 trail behind NJ over the
S A501 dataset. Following [25], we run MrBayes for 10,000,000 generations. MrBayes—np8
had completed only 278,000 iterations running on SA501 after several days. The results
in this comparison suggest that sitka performs better than the baseline methods. Running
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sitka on the real-world datasets took on average 22.3, 46.6, and 12.9 hours for the OV A,
SA501, and S A535 datasets respectively, on a Linux workstation with 72 Intel Xeon Plat-
inum 8272CL 2.60GHz CPU processors and 144 GB of memory. We complement these
benchmarking results with experiments on synthetic data where sitka is also the highest
performing method based on metrics measuring phylogenetic tree distance.

2.3 Single cell resolution phylogenetic inference in PDX

Here we analyse the foregoing three multi-sample datasets. To visualise the tree inference
results we arrange the inferred consensus tree ¢ (Methods section 9.4.5) and the cell-by-
locus CN matrix side by side where the rows of the matrix correspond to the position of
individual cells on the tree and the markers are arranged by their genomic position (Fig. 1-
h). Fig. 2-a-c shows examples of the multi-channel visualisation where each marker is
represented by a tuple of three different data-types or channels, namely: (i) the latent
markers induced by the consensus tree, z(t); (ii) the matrix of marginal posterior probability
that cell ¢ is a descendent of marker [, computed via the average m (Fig. 1-g, Methods
section 9.4.5); and (iii) the sitka transformed input data y. ;.

We use this view to assess potential discrepancies between the input data and the inferred
tree. In most cells and loci (as quantified in Supplementary Fig. 9.6), the observed data
is in close agreement with the inferred tree. In the following we provide some examples
of disagreements. Consider first the ChrX in the OV2295 dataset (Fig. 2-a). ChrX has a
long orange band (inferred marker in channel (i)) not matched by a black band (observed
marker in channel (iii)) suggesting that a perfect phylogeny violation has occurred. The
pattern in this marker is consistent with the presence of an ancestral event followed by a
deletion. In Fig. 2-b, a set of diploid cells are attached to the root of the tree. These are
control cells included in the experiment and correspond to a region in the bottom of the
matrix with no inferred markers (orange bands) and almost no observed markers (black
bands). In this dataset, there are change points where the observed marker has a high
density (black band), but the tree is reconstructed with the marker absent (no matching
orange band). Examples can be found in Chr1, Chr7 and Chr16. One possible explanation
could be that the end-points of each event were detected as slightly shifted across cells.
For instance, in Supplementary Fig. 8 there are two loci with an amplification (CN state
equal to three) in Chr1p where cells that harbour a mutation in the first locus appear not to
have a mutation in the second locus, suggesting that the same event was called in the first
locus in some cells, and in the second locus in others. An alternative hypothesis is that
the cells in this dataset have a mutator phenotype that promotes CN mutations in these
loci.

Supplementary Fig. 9 shows the distribution of mismatch rates for each dataset, de-
fined as the fraction of times that the observed and inferred markers do not match,
ie., %Zcecl[yql # z.;] for 1 € L (corresponding to the black and orange bands in
Fig. 2-a). In OV2295, 41 markers (11%) have a mismatch rate of over 50%, where
marker chr15_67000001_67500000 has the highest mismatch rate at 70%. In SA501,
30 markers (11%) have a mismatch rate of over 50%, 13 of which (5%) have a mis-
match rate of over 75%. SA535 has the lowest maximum mismatch rate at 49% (marker
15_72000001_72500000).
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2.4 Placement of SNVs using the CNA inferred tree

To determine the presence or absence of SNVs in cells using data with high levels of
missingness, we develop an extension of sitka, the sitka-snv model. Given single cell level
variant read counts, the model incorporates CN data to place SNVs on the sitka-inferred
phylogenetic tree. This backbone CN tree, provides a principled way to pool statistical
strength across groups of single cells sequenced at low coverage, including data from the
DLP+ platform [16]. The output of the sitka-snv model is an extended tree that has marker
nodes that comprise SNVs in addition to the original CNAs.

The SNVs are added to the existing CNA-based tree with the computational complexity
of O(|C| + |L|) per SNV. Fig. 3-c shows the result of SNV placement with the number
of variant reads in SA535, corresponding to the tree shown in Fig. 2-c. Supplementary
Figs. 17, 18, and 19 show the number of variant reads and the matching SNV call proba-
bilities for the SA535, OV A and SA501 datasets respectively. Sitka and sitka-snv provide
a comprehensive genomic analysis tool for large scale low-coverage scWGS.

3 Discussion

In this work we use data in which the genome of the single cells CNA profiles are partitioned
into bins of a fixed size (500Kb), each assigned a constant integer CN state. The relatively
large size is due to the low coverage inherent to the scWGS platform, but it implies that the
same bin may harbour multiple CNA events. Biological processes that result in complex
DNA rearrangements could further increase the probability of having two hits in one bin [26,
27]. Such multiple hits can violate the perfect phylogeny assumptions. This highlights
the importance of our goodness-of-fit and visualisation methods as they can detect such
violations.

Structural variations such as chromothripsis, that affect multiple segments of the genome
at the same time, make it difficult to determine the rate of CNA events and suggest that
CNA events may not be suitable molecular clocks to estimate branch lengths. One pos-
sible remedy is to first infer the tree topology via markers based on CNA events and then
conditioned on this topology, add SNVs to the tree. The number of SNVs on each edge of
the tree may be used to inform branch lengths.

Our preprocessing pipeline excludes multiple cells from the analysis (see Table 1). We filter
out a fraction of cells to remove contaminated cells, either doublets or mouse cells, cells
with too many erroneous sequencing artefacts, and cycling cells. Removing a portion of the
sequenced cells will decrease the statistical power to determine the subclonal structure of
the population—an important application of this work—, and may bias the sampling against
clones that have a higher division rate. We expect this will be an intrinsic limitation to any
scWGS phylogenetic methods and this motivates the design of improved classification
methods detecting cell cycling from genomic and imaging data.

Evaluating the performance of a phylogenetic reconstruction method on real-world
datasets is difficult, mainly due to a lack of ground truth. One promising area of research is
the use of CRISPR-Cas9 based lineage tracing [6]. In absence of ground truth data, we de-
veloped a goodness-of-fit framework that to our knowledge enables a first of a kind bench-
marking of phylogenetic inference methods over real-world scWGS CNA datasets.
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Phylogenetic tree reconstruction is a principled way to identify subpopulations in a hetero-
geneous single-cell population. This in turn enables the use of population genetics models
that track the abundance of subpopulations over multiple timepoints [5] and to make infer-
ences about the evolutionary forces acting on each clone. Further study with timeseries
modelling will provide insight into therapeutic strategies promoting early intervention, drug
combinations and evolution-aware approaches to clinical management.
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9 Methods

9.1 Pre-processing

The raw data contain cells that are either contaminated (e.g., contains biological material
from mice) or have undesired sequencing artefacts. These include cells that were captured
for DNA sequencing when undergoing mitosis. Since the sitka model does not account for
such phenomena, the filtering is an important step. Supplementary Fig. 15 shows the
steps taken from pulling the raw data to the CNA integer matrix ready for sitka transfor-
mation (details in the Supplementary Information). Briefly, we remove control cells, cells
with highly-noisy CN calls, and cells that have very few mapped reads. We also remove
copy number bins that lie in difficult to sequence regions of the genome (bins with low-
mappability). Finally, we drop cells that, based on their CNA profile, are suspected to be
cycling cells.

9.2 The sitka transformation

To obtain the C' x Lyuarkers Phylogenetic markers matrix y that comprises the input to the
sitka model, we apply a lossy transformation to the C' x Lgj,s CNA matrix a that involves
computing the change in copy number state between two consecutive bins. Supplemen-
tary Fig. 1 shows a small CNA matrix and its corresponding transformation into the marker
matrix. For brevity, in what follows we assume that only one chromosome is used, so that
Lgins = L and Lyarkers = Liins — 1. In practice, we use all available chromosomes, and
Lyarkers = Liins — Ncne Where Ngy, denotes the total number of chromosomes used.

Given a filtered cell-by-locus matrix a, we sort bins by their genomic position. Then in each
chromosome, we compute markers as the binarised difference between consecutive bins.
In other words, y = (y.,) and !’ € {1,...,L — 1}, and

Yel! = 1 (‘ac,l’ - ac,l’-l—l‘ > 0) ’ (1)

where 1(x) is the indicator function.

9.3 Fixing jitter and selection of phylogenetic markers

The copy numbers available to us in this work are estimated independently for each cell.
This is one reason why the start position (bin) of the same CN change event may be
slightly different across cells, generating some jitter. We address this by enumerating
each change point column in order of decreasing density (where the density of column [ is
given by > .~ v.1/|C|) and merging the column with its £ = 2 immediate neighbours (see
Algorithm 1 for details). An example of the result of the jitter correction heuristic is shown
in Fig. 1 panel ¢. To speed-up computation, only a subset of markers present in at least
a minimum number of cells are chosen for phylogenetic inference. That is, we removed
columns [ in y with relative density > . v.:/|C| less than a threshold, set to 5%. Larger
values of this threshold may lead to less resolved clades in the inferred tree.
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Algorithm 1 JitterFix

1: procedure JITTER-FIX(y, k)
2: column-queue <+ OrderByDensityDecreasing(y)
columns-visited + {}
for column-index c¢ in column-queue do
neighbours «+ neighbours (¢, y, k)
for column-index n in neighbours do > The function neighbours is defined as the &k columns to the
left and & to the right of ¢ (when applicable)
if n ¢ columns-visited then
Y1:C,c < Y1:C,c \% Yi1:Cc,n
Y1:Cyn 0
columns-visited < columns-visited U n

_&_k
- o ©®xN

return y

9.4 The sitka model
9.4.1 Model description

The sitka model starts with the perfect phylogeny assumption for the latent variables z.;
but allows deviation from it via allowing noisy observations y.;. In a perfect phylogeny
model, each phylogenetic trait arises only once on the rooted tree topology and all cells
descending from that position will inherit that trait and no deletions are allowed.

Let C' and L denote the disjoint sets of cells and loci respectively.

We posit an observation probability model p(y|x, 6), where 6§ are model parameters de-
scribed shortly, and both 2 and y are cell by locus matrices, the former being latent (derived
from the unobserved tree via = = x(t)), while the latter is the matrix obtained from the sitka
transformation. To model errors in copy number calls as well as perfect phylogeny viola-
tions, we introduce false positive and negative rate parameters 7 < (0,1) and »™ € (0,1)
respectively, and an error matrix

FFP FN 1—rFP rFP
e 7 =
rFN 1— N>

FP  FN PPN
D (yc,l|xc,la ro,r ) = eic,l,zlc,l’
from which we set:

p(yle,0) = [T T p (vedlwers 55 ©). 750 )

leL ceC

We define two type of models, differing in the choice of functions r(’;l(-) and dimension-
ality of #: one based on global error parameters, and one based on locus-specific error
parameters.

izati _ _ (pFN_FN iti

For the global parameterization, 6 = fgiobal = (rgiobar "giobar)> @Nd the false positive and
i i i FP _ ,FP FN _ FN

false negative functions are given by r¢; (6giobal) = 7giobar @Nd ¢ (Fgiobal) = T'giobal-

For the locus-specific error model, we set the error rates to be locus-dependent: 6 =
(PP N N N, eFP(0) = rfP and rEN(6) = N, With this extra flexibil-

ity, the model can discount the effect of a trait violating the perfect phylogeny assumption,
by setting high error rates for the trait’s locus.
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The two parameterizations are compared in the Supplementary Information. We use the
global parameterization by default unless mentioned otherwise.

In both the global and locus-specific parameterizations, we need to construct a prior dis-
tribution p(#) over the error parameters. Using a uniform prior distribution with support on
[0, 1] can lead to pathological cases as shown in Supplementary Fig. 4. To avoid that, we
use the following prior distributions on the two types of error:

7P ~ Uniform (0,rﬁ> ,

7N ~ Uniform <O,rﬁ> .

We use rFP = 1/10 and +FN = 1/2 as default in our experiments.
Next, we describe the prior p(¢) on phylogenies using a two-step generative process:

Sampling a mutation tree: let V™ = LU{v*} denote a vertex set composed of one vertex
for each of the |L| loci plus one artificial root node v*. The artificial root node induces
an implicit notion of direction on the edges, viewing them as pointing away from v*.
Let 7™ denote the set of trees t™ spanning V™. The interpretation of t™ is as follows:
there is a directed path from vertex/locus [ to I’ in t™ if and only if the trait indexed by
[ is hypothesized to have emerged in a cell which is ancestral to the cell in which [’
emerged. Pick one element t™ € 7M.

Sampling cell assignments: assign each cell to a vertex in ™. The interpretation of
assigning cell ¢ to locus [ is that among the traits under study, ¢ is hypothesized to
possess only the traits visited by the shortest path from v* to [ in ¢,,. If a cell ¢ is
assigned to v*, the interpretation is that ¢ is hypothesized to possess none of the
traits under study.

The number of possible trees obtained from this two-step sampling process is:
I TI=IT"{f:C— LU{v"}}|
= (IL|+ 1)IFHD=2(| ) 4 1)
= (|L| + 1)|L\+|C|—1’

where we use Cayley’s formula to compute |7™|. Hence the uniform prior probability mass
function over the possible outputs of this two-step sampling process is given by:

1t € T|
PO = (2[5 DyEe

where T is the set of all perfect phylogenetic trees that result from the two step generative
process described above. This simple prior has a useful property: if a collection of say
two splits are supported by m, and my traits, then the prior probability for an additional
trait to support the first versus second split is proportional to (m; + 1, my + 1). Therefore,
there is a “rich gets richer” behaviour built-in into the prior, which is viewed as useful in
many Bayesian non-parametric models. Of course, more complicated priors over 7 could
be easily incorporated as the complexity of inference typically comes from the likelihood
rather than the prior. Simulation from the prior can be performed using Wilson’s algorithm
[28], followed by independent categorical sampling to simulate the cell assignments.
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9.4.2 Inference

The posterior distribution,

7 (t,0) o< p(t)p(0)p(ylz(t),0),
is approximated using MCMC. Two MCMC moves are used, described in the next two
sections. The posterior distribution is summarized using a Bayes estimator described in
Section 9.4.5. The model is implemented in the Blang probabilistic programming language
[29].

9.4.3 MCMC tree exploration move

Sitka uses a tree sampling move to efficiently explore, at each MCMC iteration, the pos-
terior distribution in a large neighbourhood of a given tree. Given a tree ¢ and locus I,
we define a neighbourhood N'(t) ¢ T by removing [ from ¢, and considering all possible
ways to reattach [ and hence defining a neighbourhood of phylogenetic trees (we also im-
plemented a separate move reattaching cell nodes instead of locus nodes, its derivation
follows similar lines as the move described in this section). The process of removing [ is
called an edge-contraction (removing an edge after connecting its two end-points) while
the process of adding back a locus is called an edge-insertion. An edge insertion can be
described as follows:

1. Pick a non-cell vertex v, i.e. an element from the set R = {v*} U L\{l} where v* is
the root node.

2. Pick any subset of v’s descendent subtrees and disconnect them from v.

3. Add a new node [ under v and move the selected nodes from step 2 above and attach
them to [.

Fig. 1-f (right) shows an example of an edge-insertion. A locus named chr15_5950
coloured red, has three children at MCMC iteration 100. This corresponds to node v in the
above description. In step 2 of the edge insertion process, two of its children, namely cells
RCO07C and RC05C4 are chosen and disconnected from v. They are then inserted under
locus chr1_4900, corresponding to I, which becomes a child of locus chr15_5950.

In the following, we derive the probability distributions to be used in steps 1 and 2 above
that lead to a Gibbs sampling algorithm (i.e. an MCMC move with no rejection step). The
Gibbs sampler first selects a locus [ from a fixed distribution (a tuning parameter), which
we take for simplicity as being uniform over the |L| loci.

After having sampled [, we partition N ’(t\l) into blocks corresponding to the choice of node
v made in Step 1, N'(t;) = U,N)(t\;). The Gibbs conditional probabilities required in step
1 above are of the form:

Po=
v bl
ZﬁeRPT)

where:

Pv = Z p(t)p(y]a:(t), 0)7 (2)

teNL (ty;)
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and t,; denotes the tree obtained after performing an edge contraction, where the con-
tracted edge is between | and the parent node of . To compute p, efficiently, we start with
the following likelihood recursion for all vertex v in t,;. First, for all vertices ¢ corresponding
toacelland b € {0, 1}, define:

P2 =p (yeu|b,0) .

Next, we perform the following bottom-up recursion for all subtrees of ¢;: for all v € R,

b€ {0,1},
= I[ 2

v’ echildren(v)
where children(v) denotes the list of children of vertex v.

We can now return to the problem of computing p,. First, observe that the sum in Equa-
tion (2) can be re-indexed by a bit vector b = (b1,be,...,bx), b,y € {0,1} of length equal
to k£ = |children(v)|. Each bit b,~ is equal to one if children v" is to be moved into a child
of v/ (refer to Supplementary Fig. 5), and zero if it is to stay as a child of v. For each
possible assignment, we obtain a tree t € N}j(t\l), and its probability can be decomposed
into factors corresponding to cells that are descendant of v (denoted C,, solid red thick line
under the tree of Supplementary Fig. 5-B) and those that are not (denoted C\,, dashed
green thick line under the tree of Supplementary Fig. 5-B).

The product of the likelihood factors corresponding to cells that are not descendants of v
(“outside product”) does not depend on the choice of the bit vector. This outside product
can be obtained as follows: o
0 Dy
I »e=

0"
CEC\U Py

Note that this assumes p? > 0. As a workaround to cases where there are structural
zeros, we recommend injecting small numerical values if p0 = 0 (we used 10~° in our
implementation).

For the cells under v, we now have to take into account whether they are selected under
the newly introduced locus or not. More precisely, for each of the children vy, vs, ... v,
we have to take into account the value of the bit vector b = (b1, o, ..., b;). The sum over
possible assignments written naively has a number of terms which is exponential in &, but
can be rewritten into a product over k factors:

1 1 k k

ST e =30 S IR = T + v

teNL () €€Cv bi1=0  by=01i=1 i=1

Putting it all together, we obtain for some constants K; independent of v:

po=K1 > plylz(t),0)

teNL (ty)

=K Y, HHp(yc,z/

teN} (t\l) 'eL ceC

7o (1), 75 (0), 7N (0))
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— k| T e (werlecar@rB@ @) | Y TTp (vedea®.r i ©),150)

UVeLl'#lceC tEN},(t\l) ceC

k1K >[I o (seddwesd), 0,75 ))

teNL(ty,) c€C

= K1 K> Z Hpgc’l(t)

teN] (ty;) c€C

= KK, Z H piﬂc,z(t) H pgc,z(t)

tEN{’, (t\l) ceCly CEC\U
i (t e (t
= K1 K> H peet Z Hpg )
ceC\, teNL (t\l) ceCy

0
=K K, (Z;;}O*> Z H pic’l(t)

v teN? (t\l) ceCly

0 k
p*
= Ko | =5 | T] 00, + 1)
Po )y
k
Hi:1(p2i +p11,i)

9

= K1KyK3

Putting these together we can compute the probabilities required in step 1 above:

~ Pv
b yumys @)
Z%R P
(Hviechildren(u) (pgi +pqui> )
»)
(4)

0 L1
vaechndren(ﬁ) (Pv/_ ﬂ’v/.)
(2 7

iR 7

Once v is sampled, we choose a subset of its children to move to v' by sampling & inde-
pendent Bernoulli random variables with the i-th one having bias

Po,
Py, + 1,
and selecting children with corresponding Bernoulli realisations of 1.
9.4.4 MCMC parameter exploration move
To resample the parameters 6 we condition on the tree ¢, and hence on the hidden state

matrix z, and update 0 in a Metropolis-within-Gibbs framework. There are two different
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samplers depending on whether the global or locus-specific parameterization is used. We
start with describing the former.

We compute two sufficient statistics from the matrix x (i) the number of false positive in-

stances, nP, and (ii) the number of false negative instances, nN,

WP = PP () = 375 Afrer = 0,yer = 1

ceC leL

nN=nMN(@) =3 Y e =1,y = 0.

ceC leL

Based on these cached statistics, we obtain:
FP

P(y|z, Oglobal) o <TFP>nFP <TFN>HFN <1 — TFP)HN_RFN (1 — TFN>nP_n , (5)

where the the number of positive n” and negative »nN instances in the data can be pre-

computed,
n” =" 1y = 1]

ceC leL
nN = |C||L| —nP.

Based on the above expression, which can be evaluated in O(1) once the statistics are
computed, we then use a slice sampling algorithm to update the parameters [30].

The sampler for the locus-specific parameterization is very similar. The main difference is
that we compute the statistics for each locus i:

P =nfP(z) = Z ze; = 0,90 = 1]

ceC

PN = ) = 3 1foes = Ly =0
ceC
nf = Z 1[yc,l =1]

ceC
N P
n; = [C|—mn
FN P__FP

FP FN N__ _
o)~ 1 (%) (7)) (1) T

l

Then a slice sampling move is applied to each locus-specific parameter.

9.4.5 Posterior summarization

Here we approximate the Bayes estimator by minimising the Bayes risk:

argmin, . Z /L(t,t’)rr(t, de), (6)

t'eT
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using the L1 metric on the matrices of induced indicators z(¢) as the loss function:

ZZ“%Z _xclt/)|

leL ceC

It is useful to define the marginal indicators m.; that can be conceptualised as the posterior
probability of cell ¢ to have trait I:

mcl—Z/ xe (t) = 1m(t, db).

teT

Using the MCMC samples t!,¢2,...,t", we obtain a Monte Carlo approximation:

mcl Nz$cl _>mcl7

with probability one.

Fig. 1-g shows an example of the matrix m each element of which is one of the approxi-
mated m.; . We can now write the objective function of Equation (6) via the above marginal
indicators:

Z/ (t,t')m(t, dO) Z/ZZ!J:CZ — @ (t)|m(t, df)

t'eT t'eT leL ceC

_ZZZ/!%I — e ()| (t, d6)

leL ceCteT

= Z Z {mcl xcl )) + (1 — mcyl)xc,l(t)}

leL ceC

— Z Z {@ei(t) — 2me e ()} + constant. (7)

leL ceC

We use a greedy algorithm to approximately minimize Equation (7). We start with a star
tree with leaves C rooted at v* and add loci from L one by one from a locus queue sorted
by priority score. The priority score of each locus [ is computed as

. q(t)
riority(l) = max ———>———
p y( ) t/ENl(t Zt”ENl t) q( )

where

= H H QC,l(xc,l)

ceCleL(x)

QC,l(wc,l) = 2mc,lxc,l — Tl

The quantities in the priority queue can be computed as in Section 9.4.3. We take the
result of the minimization of the Bayes risk as the consensus tree.
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9.4.6 Consensus tree and CNA heatmap visualisation

To visualize the consensus tree, we collapse the chains (sequence of loci having only one
child) as well as remove the subtrees containing no cells. We align the leaves of the tree
which correspond to cells after collapsing to the rows of a cell-locus matrix.

9.5 Synthetic experiments
9.5.1 Benchmarking

To assess the performance of sitka against alternative approaches, we ran inference on 72
simulated datasets of varying characteristics. We will refer to this set of datasets as S72;
its simulation procedure is described in Section 9.5.3. For each dataset in S72, we scored
each method by computing the Robinson-Foulds (RF) [31] distance between the simulated
tree and the inferred tree. The scores were normalized within each dataset by dividing
each method’s score by the worst performing method’s score.

We compared sitka against the following baseline methods: UPGMA, WPGMA, NJ, HDBSCAN,
and balanced and ordinary least-squares minimum-evolution methods (BME, OME respec-
tively) of [32]. We also report the score of a uniformly random bifurcating tree, Uni form,
to help interpret the absolute scores. Each method was given raw data from S72, as well
as input identical to that of sitka, i.e., filtered binary marker data. Sitka’s inference settings
are summarized in Supplementary Table 2.

Baseline methods performed significantly worse with sitka’s input and are thus omitted from
the following summary. Sitka’s normalized RF score (0.62 + 0.06) dominated all baseline
methods, the next best performer was BME (0.90 + 0.08). Sitka ranked first in all 72 but one
set of data, where it ranked 6 for one dataset of size 500 x 800. Summing each method’s
rank over all datasets, sitka scored a total rank of 77, while BME scored 193.5 (lower is
better). These results are summarized in Supplementary Fig. 12.

9.5.2 Exploratory experiments within sitka

To explore the effectiveness of global versus local (locus-specific) parameterization (Sec-
tion 9.4.1), and the posterior summarization method (Section 9.4.5), we ran inference on 10
datasets. We will refer to this set of datasets as S10; its simulation procedure is described
in Section 9.5.3. Inference settings are summarized in Supplementary Table 2.

RF distances from the best-possible tree were computed as a metric. The best-possible
tree is defined as the perfect phylogenetic tree constructed from the noiseless synthetic,
unviolated cell-locus matrix data. For a baseline to compare the greedy estimator (GE) of
Section 9.4.5 with, consider the trace search estimator (TSE). The TSE is defined as a
tree in the sampler trace that minimizes the sample L1 distance (Section 9.4.5).

The GE outperformed the TSE under both models. This suggests the proposed GE can,
informally, harness more information from the posterior and more accurately summarize a
posterior to arrive at a consensus tree than, say, a search over the posterior under some
criterion. Under the TSE, the global model (0.44 + 0.09) outperformed the local model
(0.71 + 0.06). This observation suggests that the local parameterization has a strong in-
fluence on the trace (in tree space) of our sampler, as the TSE is essentially a search
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over the posterior sample. Under the GE, the global model (0.31 + 0.07) and local model
(0.30 4+ 0.07) performed evenly well. This observation suggests that the choice of param-
eterization does not heavily influence the information contained in the marginal posterior
over trees. Ultimately this experiment suggests that the GE summarizes the marginal pos-
terior sufficiently well such that the global model, the simpler model of the two, suffices
for reconstructing phylogenies and should be the preferred model. A summarizing plot is
shown in Supplementary Fig. 13.

In our final synthetic experiment, we aimed to study the effects of perfect phylogeny as-
sumption violations on the reconstruction of trees, and attempted to draw connections to
real world data. The two violations considered are infinite sites and loss violations, de-
scribed in Section 9.5.3. Inference was performed on 130 datasets (5130). Inference set-
tings are summarized in Supplementary Table 2, and the simulation procedure for S130
is described in Section 9.5.3.

The experiment results are summarized in Fig. 3-a. Holding one violation rate fixed at
zero and varying the other, we observed linear effects for both types of violations. The
results suggest sitka is more robust to infinite sites violations, with estimated effects to be
0.31 £ 0.07, which is much less than loss violations (0.47 & 0.07). When varied together,
the linear effects were estimated to be 0.25 £ 0.04,0.38 & 0.04 respectively. In an attempt
to draw connections to real datasets, we estimated both violation rates of real data to be
less than 0.25 (the estimation procedure is described below; Fig. 3-b). These observations
suggest sitka should perform reasonably well for the real datasets considered in this study,
with RF distances in the vicinity of (0.2,0.3).

The violation rate estimation procedure was performed post-inference, and can be de-
scribed as follows. Given the inferred tree and its corresponding marker matrix = (as in
Section 9.4.1), and the sitka-transformed marker matrix y (as in Section 9.2), define the
difference matrix z := v —y, i.e., z has entries z; ; = x; ; —y; ;. Next, define 2 oss With entries
2595 == 1(z;; > 0), and similarly zjg with entries z}> := 1(z; ; < 0). Given an integer-valued
threshold ¢, > 0, we say a column or trait / in z, (for v € {Loss, IS}) has a violation if there
exists an island of size at least as large as ¢,. An island in column [ is defined to be

any sequence of row indices i,i +1,...,i +ssuch that 2, = z¢,,, = -~~~ =z, ., =1
and z;_,,z2{ .., are, not necessarily the same, 0 or undefined. Finally, the proportion of

columns with a given type of violation, loss or infinite sites, is taken to be the violation rate
estimate. The intuition behind this estimation procedure is to identify the proportion of loci
where the inferred tree (or its marker matrix) is in contradiction with observations.

9.5.3 Data simulation

Datasets in S72 were generated in two steps: (i) simulate a cell tree and its corresponding
CNA data, and (i) inject noise into the CNA data from step one.

In the first step we used the simulator of [33] to generate trees along with CNAs, where
leaf nodes represent observed cells and internal nodes represent latent ancestral cells,
i.e., unobserved cells. An edge in the tree represents an ancestral relationship between
the respective cells.

The simulator of [33] itself consists of two parts, which we briefly describe as follows.
First, the simulator samples a tree based on a generalization of the Blum-Frangois Beta-
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splitting model [34, 35], which is inspired by the Beta-splitting model of [36]. The Beta-
splitting model is particularly well-suited for generating a wide range of topologies, varying
from balanced to imbalanced tree structures. Second, given a tree, CNAs are simulated
on the edges of the tree where the number and size of CNAs are drawn from Poisson
and exponential distributions respectively. The simulator also accounts for clonal whole
chromosome amplification events, motivated by punctuated evolution models [37].

The second step of our synthetic data simulation process, independent of [33], injects
noise into a cell by locus input CNA matrix y, and outputs a noisy matrix of the same size.
Three types of noise were employed, namely, uniform noise, jitter noise, and a doubling
noise.

The uniform noise is parameterized by false positive (FPR) and false negative (FNR)
rate parameters. For each element of the input matrix y;;, add an integer N;; ~
Binomial(y;;, FNR) or subtract an integer M;; ~ Binomial(1, FPR).

The doubling noise is parameterized by a probability pq: for each row of the CNA matrix
y, draw a factor K where K — 1 ~ Binomial(1, pq), which is then multiplied to the row of
the CNA matrix as noise. This procedure effectively, on average, doubles the copy number
values for pq proportion of cells in the sample.

The jitter noise is parameterized by a probability p;. First, map the CNA matrix to its marker
matrix. Then for each marker, the locus corresponding to the marker is randomly duplicated
to the previous bin(s), or the next bin(s). The number of bins J to be overwritten — zero,
one, or two — is drawn from a Binomial(2, p;) distribution.

Datasets in S72 were of sizes {500, 1000, 1500, 2000, 2500, 3000} cells by (approximately)
{400, 600, 800} markers. For each combination of sizes, we generated four datasets based
on different random seeds to make a total of 6 x 3 x 4 = 72 datasets. The approximate
number of markers is the target number of markers after correcting for jitter and filtering.
Supplementary Fig. 11 shows the CNA profiles of a subset of simulated data.

To describe the simulation parameters used for S72, we follow the terminologies and no-
tation used in [33]. For generating trees, the « and 3 values parameterize the generalized
Beta-splitting model. We drew «, 5 from a uniform distribution on the interval (-1, 10). For
generating CNA data, the mean number of CNA to be added to a branch in the tree was
chosen to generate data with approximately the number of desired markers post filtering
and jitter-fixing. The multiplier of the mean CNA on the root was set to 8, the whole am-
plification rate (rate of an allele chosen to be amplified) was set to 0.5. The remaining
parameters used default settings. See [33] for a more thorough description of parame-
ters.

For injecting noise, we drew the uniform noise parameters FPR and FNR from uniform
distributions on the intervals (0.001,0.01), (0.01,0.03) respectively. The doubling noise pa-
rameter pq was drawn from a Uniform(0.03, 0.07) distribution. The jitter noise parameter p;
was drawn from a Uniform(0.3,0.7) distribution.

Datasets in S10 and 5130 were also generated in two steps: (i) simulate a cell tree and its
corresponding binary marker data satisfying perfect phylogeny assumptions, and (ii) inject
noise and/or violations into the the binary marker data from step one.
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In the first step, a tree is generated via Kingman’s coalescent [38]." Briefly, we sample
a coalescent tree for the set of cells C by uniformly selecting pairs of cells ¢;,c; € C to
coalesce backwards in time. The waiting time, or the branch length, between each event
is exponentially distributed. Conditionally on the coalescent tree and given a set of loci L,
we simulate a |C| x |L| marker matrix y. Every entry y; ; is initialized to 0. Then for each
column [, we select a subset of cells C’ from C' to set y;; to 1, for all i € C’. The subset
of cells is sampled by choosing a branch on the tree with probability proportional to the
branch length, and selecting all cells descendant from the selected branch. In essence,
we are simulating the number of events via a Poisson process, and directly mapping these
events to the cell-locus marker matrix. The above concludes the data generation procedure
satisfying perfect phylogeny assumptions.

In the second step of S10’s simulator, we injected artificial noise by introducing standard
false positive and negative values into y. This concludes S10’s simulator. The simulator
for S130 has an additional sampling step for controlling the degree of perfect phylogeny
violations. We considered two types of violations: (i) the loss of markers along a tree’s
branches, and (ii) the violation of the infinite sites (IS) assumption, that is, the occurrence
of multiple distinct events in the same locus.

The procedure for simulating loss of marker events can be described as follows. First,
randomly select a locus [, then identify the most recent common ancestor a for the set of
cells {i : y;; = 1}. Given a, sample a cell d descendant of a (including a). Finally, the loss
event is simulated by reverting y; ; to 0, for all < descendant of, and including, d.

IS model violations were simulated as follows. Uniformly sample a pair of loci (j, k), and
merge y. ;, y. » into one column, yielding a cell-locus matrix of size one less than the original
size. However, to maintain control over |L|, datasets in S130 were simulated with |L| + Nig
loci such that after simulating IS violations, we recover a matrix of size |C| x |L|, where N\g
is the number of IS violations.

The total number of loss and infinite sites violation events (N qss, Nig) were drawn from
binomial distributions with probability p| oss, P15 respectively (and size |L|). As a final step,
false positives and negatives were artificially injected.

For both S10 and S130, datasets of size |C| x |L| = 500 x 100 with FNR and FPR both
set to 0.002 were generated. For S130, the unordered pair (pLoss, P1s) Were set to values in
{(0,0),(0.1,0.1),...,(0.4,0.4)} U {(0,0.1),(0,0.2), (0,0.3),(0,0.4) }. For each configuration
of simulation parameters, 10 different seeds were used to generate a total of 10 and 130
datasets for S10 and S130 respectively.

9.6 Goodness-of-fit

To evaluate the goodness-of-fit of inferred trees on real data, we suggest a test comparing
the posterior distribution over entries of the matrix 2 with the data y.

Consider an inferred tree, 7 and the corresponding genotype matrix ¢ = g(7). We set
g(1) = z(7) for trees inferred from sitka. For trees inferred from the baseline methods, we
define g(7) as z(7) except that g : 7 — {0,1}°*V where U the set of internal nodes of 7
(Methods section 9.4.1). In general the inferred trees from the baseline methods do not

"We used the R packages [39, 40] for simulation.
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have named internal nodes, nor do they have the same number of internal nodes as the
number of loci L. Therefore we do not know which locus in the inferred tree 7 corresponds
to which locus in the matrix y. We note that this is not the case with trees inferred from sitka
where the internal nodes of the tree correspond to the columns of the induced genotype
matrix g. As a result, for methods other than sitka, for each column in the input data
matrix, we pick a clade in 7 that has the highest prediction accuracy for the entries in that
column.

For each method, we report Youden’s J index [41] which is equal to the sum of the sensitiv-
ity and specificity minus 1. We now define a binary classification counts matrix function ,
i.e., a function which, for two vectors w and z of length C, forms the confusion matrix:

hij(w,2) = > 1(we=1)1 (2 = j).

ceC

For example hqo(w, z) would count the number of times both elements of w and =z were
equal to zero (or true negative). We define accuracy for a given confusion matrix o com-
puted from the A map above as:

00,0 + 01,1
acc(o) == =——.
Zi,j 04,5
We further define sensitivity and specificity as
e 01,1
sensitivity(o0) : = —————,
y(e) 01,1 + 010
- 00,0
specificity(o) :== ————,
P y(o) 500 + 001

youden(o) := sensitivity (o) + specificity (o) — 1.

For a given tree T and its corresponding matrix ¢ we compute the Youden’s score as fol-
lows:

1. for all locus [ iny, o = argmax, i ecolumns(g) acc(oy),

2. or = Zl’e,columns(g) or
3. youden_ := youden(o;).

That is for each locus in y, we take the clade that among all possible clades in 7 maximizes
the accuracy in predicting which cells are present in the i-th column of y. We then sum over
all these scores to compute a confusion matrix for = and use this agglomerative matrix to
compute the Youden’s score for the tree. We use the delta method to calculate confidence
intervals. Fig. 2-d shows the Youden’s score and its 95% confidence interval for sitka and
6 baseline methods on 3 different real-world datasets. Sitka has a higher score than all
competing methods.

9.7 Application: assignment of single nucleotide variants

Here we posit an observation probability model for adding single nucleotide variant (SNV)
data to an existing phylogenetic tree.
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For locus I in cell ¢, let y5)"" = (dc, vei, ce) denote the observed SNV data where the
total number of reads, the number of reads with a variant allele, and the corresponding
copy number are indicated by d..;, v.;, and c.; respectively.

We use 231" to denote an indicator variable taking the value one if and only if an an-
cestor of cell ¢ harboured a single nucleotide alteration event at locus [. This variable is
unobserved and the focus of inference in this section. As in the sitka model, we assume a
perfect phylogeny structure on these indicator variables, and add an error model to relate
xffw to the observed data while allowing violations of the perfect phylogeny assumption
and measurement noise. In the context of single nucleotide data, this is similar to [12]. The
parameters of the error model are denoted 6°NV = (epp,epn), Where epp and epy are
false positive rate and false negative rates, respectively. Define:

yAS:{VV’xSNV7 HSNV)

qz’l = p( c c,l = p(VC,l‘dC,b CC,la xfjvv = b7 9SNV)7 (8)

where d.; and c.; are given inputs. The likelihood probability of cell node c is denoted by
q’;, where b € {0,1}. For b = 1, ¢?, reflects the likelihood of cell ¢ being mutated at locus /;
and for b = 0, qg,l reflects the likelihood of cell ¢ not being mutated at locus I. For d.; = 0,
we set ¢°; = 0.5.

The probability ¢, is obtained by marginalizing a mixture of binomial distributions depend-
ing on all possiblve genotype states of locus [ at cell c. Given the copy number c.;, the
possible genotype states are G = {A... A, AA...B,A...BB,...,B... B}, where each
element has a length equal to ¢.;. For example, the genotype AAB refers to a genotype
with one variant allele B and two reference alleles A. For each genotype state g;, where ¢
indexes the elements of G, the mean parameter of the corresponding binomial distribution
is denoted by ¢! ;:

. i(ff)’a 1 < B(g:) < ces
52,1 = 1 —e€Fp, B(gi) = Ce, (9)
€EFP, otherwise,

where B(g;) represents the number of variant alleles of genotype g;. Therefore, for b =

L,
qg,l = p(Vey|de, CCJ,xijV =1, HSNV) (10)
Ce,l
= p(g)[E5 (1 = o)t e 1
i=1

+ GFN[E;CI’é(l — er)dC’lfyc’l].

The value of p(g;) equals 1*;% and epy represents the error due to mutation loss or tree
errors. '

If the mutation status of cell ¢ at locus [ is a wildtype (i.e., mutation is not present), then
the possible genotype states should not have any variant allele. The only possible geno-
type state is {4 ... A}. The mean parameter of the binomial distribution equals exp (false
positive rate). Therefore,

qg,l :p(Vc7l|dc,lacc,lax§§VV = 0,€Fp). (12)
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With the proposed probability model for SNVs, we can incorporate both SNV data and
CNA data to infer the underlying tree phylogeny in the sitka model. Therefore,

ple.0) =TI I p@SH=SN 0N TI p@SY 122NV, 05V, (18)

ceCleLona leLsnv

where C' and L are the disjoint set of cells and loci, respectively. In this section, the loci set
L includes both CNA and SNV traits.

Assume now that we seek to add one locus to an existing tree. We proceed similarly to
Section 9.4.3. Equation (4) can be rewritten in the following form:

[T O0,+,)
v, €children(v)

79
Pv = I (79‘+71.) ; (14)
; children () Vi v
2 verR 0

where 7%, for b € {0,1} is:

» | pb, iflrepresents a CNA loci,
Mo = q¢, ifl represents a SNV loci.

Forv e R = {v*}|JL\{l}, and b € {0,1} , the value of ¢ is

o= I o (15)

v’ echildren(v)

For the cell nodes that are the leaves of the tree ¢, = ¢}

9.7.1 Detection of SNVs for individual cells

Given a fixed CNA tree (denoted by t) and the read counts data (y*V" denoted by y for
simplicity), here the goal is to calculate the posterior distribution of zSNV the mutation
status of locus [ at cell ¢, which we denote by z; for simplicity.

The joint probability distribution of z.;, y and ¢ can be written as:

p@en,yt) = Y > plrest,y) (16)

veER Y eN](t\1)

= 3 Y sl ), (17)

VER Y ENL(£\I)

where R is the set of all loci nodes in the tree (including the root) excluding locus I. The
joint probability distribution is calculated as

p(‘rc,l = 17ya Z Z y|t (18)

vEP(c,t) t/ eNL(t\D)
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The set P(c,t) denotes all nodes on the shortest path from cell ¢ to the root of the tree
(including the root and excluding the cell ¢ node). An example of the path on an imaginary
tree is depicted in Supplementary Fig. 14. The nodes coloured in green belong to P(c, t).
Therefore, the posterior probability distribution of z.; = 1 yields

p(acql = 1‘y’t) — p(xc,zl)(z 1)7y7t) _ EUEP c,t) Zt’e(j:;ﬂ t)\l (y|t) ( ) (19)

Rewriting Equation (19) assuming uniform probability distribution for p(¢’) yields:

p(xc,l = Hyv Z Z y|t

veP(c,t) ! eNE(t\D)

= > > 11 I rwerlt),

vEP(c,t) 'eNL(t\) VEL '€C

= > > I I ewerlt) IT plyealt).

vEP(c,t) t/ eENL(E\D) l’ LcdeC m'eC
V2l

=K1 > Y I pwedt),

veP(c,t) ' eNE(t\I) ¢ €C

Z Z H p(@/c’,l’t/) H p(yc’,l’t/>7

vEP(ct) ' eNL(t\I) ' €C\, €Ly

where N denotes the set of all trait nodes, C denotes the set of all cell nodes, C, denotes
the cells that are a descendant of node v, and C\, denotes the cells that are a not de-
scendant of node v. The product of the likelihood contributions for non-descendant nodes
can be calculated by taking the product of ¢ for all cells, divided by the ones that are
descendant of v:

II & -

c EC\U

Therefore:

plwes =1y, t) < K1 Y q” > 1 pwe ). (20)

vEP(c,t) q” t'eNL(t\l) ¢'€Cy

The likelihood contribution of descendant cells can be re-indexed by a binary vector b =
(b1,ba,...,bx), where b; € {0,1}, and b; = 1 if the child v is to be moved into a child of the
node [. The value of k denotes the number of children of v. The i*th child of v which is
on the path from node v to cell c is called v}. This implies b~ = 1 (See Supplementary
Fig. 14). Therefore:

t/E/\/l (t\l) ceCy b1=0 b2=0 bi—1=0b;41=0 bk=0

(21)

Il x>
Q

K
<L

24


https://doi.org/10.1101/2020.05.06.058180

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.058180; this version posted September 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Rewriting Equation (20) using Equation (21) yields:

0 11 1 1 1k
plaes = 1)y, 1) K LR D DI S N B | 5

70
vep(c,t) qv b1=0b2=0 b271:0 bz+1 0 bk:0 ’L:])_k
i
q k
=K q”o qoe | [ (a0, + 42,)
v =1
vEP(c,t) iZ;éi*
qq) z 1 qvl + qvl)q1
vEP(c,t) v (qv*—i_qv*) v
q k
= K14° Z Yir H (a5, +a,)- (22)

’UGP(C,t) QU (QU * + q’L} * 2:1

9.8 Computational complexity of the SNV calling algorithm

The computational complexity of Equation (22) is O(|C| - |L|) with |C| the number of cells
and |L| the number of loci. In order to reduce the complexity of calculating p(z.; = 1|y, t)
for each locus and cell, P’'(c, t) is defined to denote the nodes sitting on the path from root
to cell ¢, excluding the root node and including the cell ¢ node. Then,

k
i=1
Therefore,
0% b & 4 parent(v)
0 Vi 0 parent(v
K].qfu* Z ( + H (:IUZ +q’U Kqu* Z ( O_;_} 1) 0 .
veP(cyt) Qo G, q”z i=1 vEP (c,t) 9o T Qo Yparent(v)

Calculating p(z.; = 1|y, t) with a recursive approach reduces the complexity from O(|C||L|)
O(|C| + |L|), where as in the last section L is the union of SNV and CNA loci.
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List of Figures

Figure 1. Workflow of sitka. (a) Sitka takes copy number calls data from a heterogeneous
single-cell population. The cells (rows of the copy number matrix) are randomly sorted. (b)
A lossy binary transformation is applied to obtain markers data. (Methods section 9.2 and
Supplementary Fig. 1). Note that each single-cell is now represented by the presence
or absence of CN changes between consecutive bins. (¢) The boundary conditions are
smoothed to account for cell-specific marker miss-alignment. (Methods section 9.3) to
correct for this marker misalignment. Note how the columns in the inset in panel-c are
less noisy than their counterpart in panel-b. (d) A subset of markers present in at least
5 percent of the cells are chosen for input to the tree inference algorithm. (e) An MCMC
algorithm efficiently explores the tree space. (f) An example of an edge-insertion. (g) The
indicator matrix of all post-bun-in MCMC trees are averaged to generate a matrix indicating
the posterior probability of a cell being attached to a marker (Methods section 9.4.5). (h)
The copy number data in (a) is sorted according to the inferred consensus tree, shown on
the left of the matrix. (i) The inset shows the tuple of marker columns in the context of
the copy number calls, namely inf. (inferred markers, i.e., latent state z;), post. (posterior
probability of the latent state x.;), and obs. (observed markers), interlaced with the CN
columns (similar to Supplementary Fig. 1). The results are from the SA535 dataset, a
triple negative breast cancer patient derived xenograft sample (Methods section 2.2).
Figure 2. Results over real-datasets and benchmarking against baseline methods. (a),
(b), and (c) show the consensus tree and marker-space matrix for the OV A, SA501, and
S A535 datasets respectively. (d) Comparison to baseline methods.

Figure 3. Synthetic experiments and an application to point mutation placement. (a) RF
distance of Bayes tree estimate to the best-possible tree. The first plot holds p;s constant
at zero. The second plot holds p;,ss constant at 0. The third plot varies p;s = pjoss jointly. (b)
Estimation of violation rates in real data and a set of synthetic data. (¢) Over 20,000 SNV’s
with high levels of missingness are placed on a backbone tree inferred from the CNA data
for SA535.
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Supplemental Figure 1. Description of the process involved in the construction of mark-
ers, the input to the sitka model. A binis a contiguous set of genomic positions. Each pair
of consecutive bins (e.g., bins 1 and 2 in (a)) is associated with a marker (e.g., marker
1) that measures for each individual cell, whether there is a difference between the CNA
states of the two bins. (a) The observed CNA matrix for a subset of bins on a chromo-
some. The rows are sequenced single cells, and the columns are bins. The CN states
are colour-coded. (b) The three markers shown are associated with the four bins. Each
marker records the presence (black) or absence (white) of a CN state change between a
pair of consecutive bins. Note that in the CNA matrix, there is a CN change at row 3 from
bin 1 to bin 2 (CN state 3 to 6). This is reflected in the marker matrix, at row 3 of marker 1
with a black square. There are no changes between bins 2 and 3 across any rows in the
CNA matrix. This is reflected in marker 2 comprising all white squares. (¢) For visualisation
purposes, the CNA matrix can be interlaced with the marker matrix to more clearly show
where the CNA changes occur. Each column of the marker matrix is inserted between the
associated pair of columns in the CNA matrix. The resulting matrix is an example of an
augmented view that combines data from two or more sources (here the CNA matrix and
the marker matrix). In an augmented view, we call columns from each source a channel.
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Supplemental Figure 2. Visualisation of a small type | tree ¢ (a), its transformation into
a type Il tree (b), and the corresponding marker matrix = = (z.;) (¢). Given a tree ¢, the
latent marker matrix x is a deterministic function z = z(¢). Note that the clade comprising
single-cells 3 and 4 has support in both markers 1 and 3. For clarity, we do not visualise
type | trees, but plot their transformation, i.e., type Il trees as follows. We remove from the
type | tree all marker nodes that have z.; = 0 for all single-cells c. Lists of connected edges
that have exactly one descendent (i.e., chains) are also collapsed into a single edge, e.g.,
the edge corresponding to markers 2 and 3 are collapsed into one edge (since marker 2
has only one descendent, namely single-cell 2).
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Supplemental Figure 3. The effects of overlapping CNA events on the perfect phylogeny
assumption. A segment of a chromosome with five consecutive bins and their four corre-
sponding markers are shown. Each panel follows the CN states interlaced with markers
for a cell at the ancestral state (top), after a CNA event (middle), and after a second over-
lapping CNA event (bottom). The numbers in the CNA squares show the integer CN state
(e.g., the ancestral state has two copies of the 5-bins long segment). (a) Two overlapping
CNA gains maintain the perfect phylogeny assumption. By the infinite site argument, it is
unlikely for the end-points of the two gain events to exactly match. The same argument
holds for a CNA loss followed by a CNA gain event. Note that in these cases, once a
change point is acquired, it is not lost. (b) If a loss event is followed by another loss event
in which either end-points of the first event is removed, the perfect phylogeny assumption
will be violated (e.g., marker 3 is lost after the second loss event). Note that a violation
does not occur if the loss events hit different copies of a segment. (c) Similarly, if a gain
event is followed by a loss event, only if the latter erases the end-points of the former is

the perfect phylogeny violated. Note how marker 2 and marker 3 are lost after the second
CNA event.
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Supplemental Figure 4. Pathological tree reconstruction under default observation prior.
(a) The true tree reconstruction in a simple example with a balanced phylogeny with two
clades of size two, and two unique markers, coloured red and blue, that distinguish the
left and right clades respectively. (b) The binarised input matrix corresponding to the four
cells at the two markers. The desired observation error rates should be zero and the latent
and observed marker matrices should match exactly, as the perfect phylogeny assumption
holds. If the observation error parameters are set to one, that is {7, = 1 and rii ., = 1,
then the latent marker matrix with all entries flipped as shown in (¢) will have an equal
likelihood under this setting as the desired latent matrix has when error rates are set to
zero. (d) The incorrect tree reconstruction where the left and right clades are erroneously
assigned to the blue and red markers.

a v Edge contraction b
v’ v
[N\ [\ < fm—
Edge insertion A

Supplemental Figure 5. (a) Reading from left to right: the interpretation of removing a
column in the matrix z is to perform contraction of an edge corresponding to a locus shown
in bold. Reading from right to left: the interpretation of inserting back a column while
assigning new binary values is an edge insertion. The circled node v refers to Step 1. The
subtrees in bold refer to those selected in Step 2. The edge in bold, the one introduced in
Step 3. (b) Decomposition used for the recursion of Section 9.4.3.
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Supplemental Figure 6. Phylogenetic tree and CNA profile heatmap for the SA535
dataset. The rows of the heatmap are sorted according to the placement of cells on the
phylogenetic tree. The columns of the heatmap are sorted by their genomic position.
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Supplemental Figure 7. Phylogenetic tree and CNA profile heatmap for the OV A dataset.
The nearly diploid cells with the loss of heterozygosity on chromosome X are from SA1090.
The cells with an amplification on chromosome 22 are from SA922. The rest belong to
SA921.
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Supplemental Figure 8. Phylogenetic tree and CNA profile heatmap for the SA501
dataset. Note that the diploid cells at the bottom of the heatmap are control cells that
were included in the experiment.
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Supplemental Figure 9. the distribution of mismatch rate defined as the fraction of cells
that have a mismatch between the inferred and jitter-fixed value of a marker.
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Supplemental Figure 10. (a) Tree imbalance index where zero indicates that the tree
is consistent with one simulated from a Yule model (completely balanced) and positive
values indicate deviation from the Yule model (more imbalanced). For ease of plotting,
each balance index is normalised by the absolute value of the maximum estimated statistic
among all samples. Cumulatively adding more timepoints (b), or for the maximal subtree
comprising cells of a specific timepoint (c).
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Supplemental Figure 11. Synthetic datasets simulated from Beta-splitting processes.
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Benchmark versus baseline methods
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Supplemental Figure 12. Tree reconstruction evaluation using a normalized Robin-
son—Foulds metric on synthetic datasets from S72, simulated from Beta-splitting pro-
cesses. Here normalization is done by dividing the RF distance of each inference method
by the worst performer per dataset.
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Supplemental Figure 13. A model and estimator comparison based on tree reconstruc-
tion accuracy for datasets from S10. For each dataset, inference was performed on both
the globally- and locally-parameterized model. Both the greedy and trace search estimates
were computed for each inference result.

Supplemental Figure 14. A schematic view of the underlying tree inferred from CNA and
SNV loci across multiple cells. Black and white nodes represent cells and loci, respectively.
The grey triangle represents a subtree rooted at a node. It includes all of the nodes and
edges in the subtree.
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Copy number and cell meta-data
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Supplemental Figure 15. Filtering the CNA data for tree inference.
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Supplemental Figure 16. An example of replicating cells. Note the scattered localised
deletions. This heatmap is from a HER2+ PDX line. These late replicating cells form a
finger like clade in the tree. The top inset shows chromosome 4 while the bottom inset
spans chromosomes 7 and 8.
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Supplemental Figure 17. SNV variant reads data and SNV call probabilities for SA535
dataset beside the underlying phylogenetic tree.
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Supplemental Figure 18. SNV variant reads data and SNV call probabilities for OVA
dataset beside the underlying phylogenetic tree..
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Supplemental Figure 19. SNV variant reads data and SNV call probabilities for SA501
dataset beside the underlying phylogenetic tree.

46


https://doi.org/10.1101/2020.05.06.058180

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.058180; this version posted September 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

List of Supplementary Figures

Supplemental Figure 1. Description of the process involved in the construction of mark-
ers, the input to the sitka model

Supplemental Figure 2. Visualisation of a small tree and its corresponding marker ma-
trix

Supplemental Figure 3. Perfect phylogeny and effects of overlapping CNA events.
Supplemental Figure 4. Pathological tree reconstruction under default observation
prior

Supplemental Figure 5. (a) Reading from left to right: the interpretation of removing a
column in the matrix z is to perform contraction of an edge corresponding to a locus shown
in bold. Reading from right to left: the interpretation of inserting back a column while
assigning new binary values is an edge insertion. The circled node v refers to Step 1. The
subtrees in bold refer to those selected in Step 2. The edge in bold, the one introduced in
Step 3. (b) Decomposition used for the recursion of Section 9.4.3.

Supplemental Figure 6. Phylogenetic tree and CNA profile heatmap for the SA535

dataset
Supplemental Figure 7. Phylogenetic tree and CNA profile heatmap for the OV A
dataset
Supplemental Figure 8. Phylogenetic tree and CNA profile heatmap for the SA501
dataset

Supplemental Figure 9. The distribution of mismatch rate

Supplemental Figure 10. The tree topology balance

Supplemental Figure 11. A subset of synthetic datasets used for benchmarking
Supplemental Figure 12. Tree reconstruction evaluation on synthetic datasets.
Supplemental Figure 13. Synthetic experiment comparing global versus local parameter-
izations.

Supplemental Figure 14. A schematic representation of CNA and SNV tree
Supplemental Figure 15. Filtering the CNA data for tree inference.

Supplemental Figure 16. An example of replicating cells

Supplemental Figure 17. SNV variant reads data and SNV call probabilities for SA535
dataset beside the underlying phylogenetic tree.

Supplemental Figure 18. SNV variant reads data and SNV call probabilities for OVA
dataset beside the underlying phylogenetic tree..

Supplemental Figure 19. SNV variant reads data and SNV call probabilities for SA501
dataset beside the underlying phylogenetic tree.

47


https://doi.org/10.1101/2020.05.06.058180

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.058180; this version posted September 4, 2021. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplemental Table 1. Summary of real-world datasets used. final is the final number
of cells after all filters except for ! 1mr are applied. final additionally filters out 1mr cells,
those that have total mapped reads fewer than 500,000. Abbreviations used are tp: time
point; qual. : quality; !'sphase: not sphase; !Imr: not low mapped reads.

Dataset parameter value
Real datasets engine PT
Real datasets globalParameterization true
Real datasets fprBound 0.1
Real datasets fnrBound 0.5
Real datasets nChains 1
Real datasets nScans 1000
Real datasets nPassesPerScan 1
Real datasets thinning 1
Real datasets burnin fraction 0.5
S72 engine PT
S72 globalParameterization true
S72 fprBound 0.1
S72 fnrBound 0.5
S72 nChains 1
S72 nScans 20000
S72 nPassesPerScan 1
S72 thinning 1
S72 burnin fraction 0.5
S10 globalParameterization true, false
5130 globalParameterization true
510,5130 engine PT
510,5130 fprBound 0.1
510,5130 fnrBound 0.5
S510,5130 nChains 8
510,5130 nScans 5000
510,5130 nPassesPerScan 10
510,5130 thinning 1
S510,5130 burnin fraction 0.5

Supplemental Table 2. Inference settings used for each dataset.
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