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Abstract17

A new generation of scalable single cell whole genome sequencing (scWGS) meth-18
ods allows unprecedented high resolution measurement of the evolutionary dynamics19
of cancer cell populations. Phylogenetic reconstruction is central to identifying sub-20
populations and distinguishing the mutational processes that gave rise to them. Ex-21
isting phylogenetic tree building models do not scale to the tens of thousands of high22
resolution genomes achievable with current scWGS methods. We constructed a phy-23
logenetic model and associated Bayesian inference procedure, sitka, specifically for24
scWGS data. The method is based on a novel phylogenetic encoding of copy num-25
ber (CN) data, the sitka transformation, that simplifies the site dependencies induced26
by rearrangements while still forming a sound foundation to phylogenetic inference.27
The sitka transformation allows us to design novel scalable Markov chain Monte Carlo28
(MCMC) algorithms. Moreover, we introduce a novel point mutation calling method29
that incorporates the CN data and the underlying phylogenetic tree to overcome the30
low per-cell coverage of scWGS. We demonstrate our method on three single cell31
datasets, including a novel PDX series, and analyse the topological properties of the32
inferred trees. Sitka is freely available at https://github.com/UBC-Stat-ML/sitkatree.git.33
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1 Introduction34

A main challenge in investigating cancer evolution is the need to resolve the subpopulation35
structure of a heterogeneous tumour sample. Advances in next generation scWGS have36
enabled more accurate, quantitative measurements of tumours as they evolve [1, 2, 3, 4].37
Phylogenetic reconstruction is central to identifying clones in longitudinal xenoengraftment38
[5, 6] as well as patients [7], and has been used to approximate the rate and timing of39
mutation [8] to determine the origins and clonality of metastasis [9, 10]. Single cell cancer40
phylogenetics is an evolving field. Multiple approaches, spanning different study designs41
and data sources are reviewed in [11]. Many phylogenetic inference methods assume point42
mutations as input or a small number of leaf nodes [12, 13, 14, 15]. However, emerging43
single cell platforms produce up to thousands of single cell genomes and are suitable44
for determining copy number aberrations (CNA) [16, 1]. The method of [17] assumes45
a tree inferred from CNA exists and incorporates it in inference of point mutation based46
phylogenies. Distance based and agglomerative clustering methods such as neighbour47
joining are scalable and are used to elucidate hierarchical structures over cells [18, 19].48
While these are useful heuristics, they are statistically sub-optimal relative to likelihood49
based methods [20].50

We describe sitka, a phylogenetic model and the associated Bayesian inference proce-51
dure designed specifically for inference based on CN information extracted from scWGS52
data. Our method addresses two key challenges: first, each CN event typically affects a53
large number of genomic sites, breaking the independence assumptions required by exist-54
ing phylogenetic methods [21, 15, 13, 22]; second, while detailed modelling of dependent55
evolutionary processes is in principle possible, they entail computational requirements in-56
compatible with the scale of modern scWGS data [23]. To confront these two difficulties,57
sitka uses a novel phylogenetic encoding of CN data, providing a statistical-computational58
trade-off by simplifying the site dependencies induced by rearrangements, while still form-59
ing a sound foundation to phylogenetic inference. Based on this encoding, we propose an60
innovative phylogenetic tree exploration move which makes the cost of Markov chain Monte61
Carlo (MCMC) iterations bounded by O(|C|+ |L|), where |C| is the number of cells and |L|62
is the number of loci. In contrast, existing off-the-shelf likelihood-based methods incur an63
iteration cost of O(|C| |L|) [24, 13, 15]. Moreover, the novel move considers an exponential64
number of neighbouring trees whereas off-the-shelf moves consider a polynomial size set65
of neighbours.66

We compare sitka with other tree-inference methods on three real-world datasets, includ-67
ing triple negative breast cancer patient derived xenograft samples, high grade serous68
ovarian primary and matched relapse samples. Since the true phylogeny is unknown, we69
design a phylogenetic goodness-of-fit framework to quantitatively assess the performance70
of our method and to visualize reconstruction confidence as well as violations of our as-71
sumptions.72

We use the sitka inferred trees to analyse the topological properties of the real-world73
datasets. Finally, we introduce a model extension that enables the placement of single74
nucleotide variants (SNV) with high levels of missingness on a tree inferred from the CN75
data.76
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2 Results77

2.1 Sitka: scalable single cell phylogenetic tree inference78

Fig. 1 shows the workflow of the sitka method. Sitka is based on a transformation of single79
cell copy number matrices retaining only presence or absence of changes in copy number80
profiles between contiguous genomic bins. This transformation allows us to approximate81
a complex evolutionary process (integer-valued copy numbers, prone to a high degree of82
homoplasy and dense dependence structure across sites) using a probabilistic version83
of a perfect phylogeny (see Supplementary Fig. 1). We leverage the special structure84
created by the change point transformation to build a special purpose MCMC kernel, which85
has better computational scalability per move compared to classical phylogenetic kernels86
(Methods section 9.4.3).87

We visualise the input data to sitka in a colour-coded matrix exemplified in Supplementary88
Fig. 1-a. Each row in the matrix corresponds to an individual cell that has been sequenced89
in a single-cell platform. Each column in the matrix is a locus that is represented by a bin90
(a contiguous set of genomic positions). We assume that the integer copy number of each91
bin has been estimated as a preprocessing step, e.g., using a hidden Markov model [16].92
In Supplementary Fig. 1-a the copy number state is encoded by the colour of each entry93
in the matrix.94

The output of sitka includes two types of directed rooted trees. Type I is the tree used for95
MCMC sampling in the inference procedure, and type II, which is derived from type I, is96
used in visualisation (Fig. 2-a-c). The set of nodes in a type I tree is given by the union of97
the cells, the CN change points (markers) under study, and a root node v∗. The topology98
of a type I tree bears the following phylogenetic interpretation: given a cell c in the tree, c99
is hypothesized to harbour the markers in the shortest path between c and the root node100
v∗, and only those markers. We enforce the constraint that all cells are leaf nodes, while101
markers can be either internal or leaf nodes. Markers placed at the leaves are interpreted102
as outliers, for example measured CN change points that are false positives.103

We remove from the type I tree all marker nodes that are leaf nodes, i.e., markers that are104
not present in any cells. We also collapse into a single node, the list of connected marker105
nodes that have exactly one descendent (i.e., chains). Supplementary Fig. 2 shows a106
small type I tree, its transformation to a type II tree and the respective marker matrix. We107
visualise the input matrix and the estimated tree simultaneously by sorting the individual108
cells (rows of the matrix) such that they line up with the position of the corresponding leaves109
of the tree.110

Sitka uses change points as phylogenetic traits modelled using a relaxation of the perfect111
phylogeny assumption. Change points arising from non-overlapping CNA events do not112
break the perfect phylogeny assumption. Supplementary Fig. 3 shows examples of over-113
lapping CNA events and their effect on markers. The two scenarios that can lead to the114
violation of the perfect phylogeny assumption are (i) when a CNA gain event is followed115
by an overlapping loss event or (ii) when a loss event is followed by an overlapping loss116
event, and the second event removes either end-point of the first event. For both (i) and117
(ii), a violation occurs only when the second overlapping event hits the same copy as the118
first event.119
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Imposing a perfect phylogeny on the observed change points is restrictive, as we expect120
both violations of the assumptions (e.g., due to homoplasy), and measurement noise. To121
address this we use an observation model (Methods section 9.4.1) which assigns positive122
probability to arbitrary deviations from the perfect phylogeny assumption, while encourag-123
ing configurations where few loci and cells are involved in violations. Subsequently we124
impose the perfect phylogeny assumption on a latent maker matrix defined as follows.125
Given a type I tree t, the latent marker matrix x is a deterministic function x = x(t). We126
compute x : t → {0, 1}C×L by setting xc,l = 1 if the single-cell c is a descendent of the127
marker node l in tree t, and otherwise xc,l = 0. We use yc,l to refer to the observed change128
point l in individual cell c (Methods section 9.4.1).129

Synthetic experiments show that sitka’s performance degrades gracefully in the face of130
some of the key types of expected violation of the perfect phylogeny assumption (Fig. 3-131
a,b, Methods section 9.5).132

2.2 Performance of sitka relative to alternative approaches133

We compare the performance of sitka to alternative approaches on three scWGS datasets134
introduced here (Fig. 2-a-c). The first dataset, SA535, is generated for this project and135
contains 679 cells from three passages of a triple negative breast cancer (TNBC) patient136
derived xenograft sample. Passages X1, X5, and X8 had 62, 369, and 231 cells post quality137
filtering (Methods section 9.1) respectively. We also include 17 mostly diploid control cells.138
These cells are combined to generate the input to the analysis pipeline (Supplementary139
Fig. 6). The second dataset, labelled OV A, consists of cells from three samples taken140
from a patient with high grade serous (HGS) ovarian cancer. The first sample, SA1090,141
was from an ascites pre-treatment, while SA922 was from an ascites post-treatment. The142
third sample, SA921, was taken from the ovary. See Supplementary Fig. 7 for the tree and143
the CNA profile heatmap for this dataset. The final dataset, SA501 [25], is another TNBC144
xenograft tumour from 6 untreated passages, namely X2, X5, X6, X8, X11, and X15. After145
filtering, 515, 236, 328, 189, 836, and 308 cells remain in each passage respectively (for146
a total of 2,412 cells, see Supplementary Fig. 8). Table 1 shows the attrition after each147
step of filtering cells per passage in each dataset.148

To evaluate inferred trees from sitka and other tree reconstruction methods, we use a good-149
ness of fit performance metric, which compares the compatibility of observed CN change150
points with a given phylogeny using Youden’s J index (Methods section 9.6, Fig. 2-d). Sitka151
has the highest Youden’s index across all three datasets. UPGMA and WPGMA perform simi-152
larly on SA501 and SA535. UPGMA performs slightly better than WPGMA on the OV A dataset.153
HDBSCAN has a close but slightly smaller Youden’s index than UPGMA over the SA535 and154
OV A datasets, but performs marginally better on SA501. NJ trails WPGMA on SA501 and155
the OV A datasets, and has the lowest Youden’s index on SA535. MrBayes performs well156
on the smallest dataset, SA535, with MrBayes-np2 and MrBayes-np8 performing similar to157
WPGMA, and MrBayesWithBinaryInput having achieved the second highest Youden’s in-158
dex. On theOV A data, MrBayesWithBinaryInput and MrBayes-np2 trail behind NJ, while159
MrBayes-np2 has the lowest Youden’s index among all methods on all datasets. Similar160
to the OV A case, MrBayesWithBinaryInput and MrBayes-np2 trail behind NJ over the161
SA501 dataset. Following [25], we run MrBayes for 10,000,000 generations. MrBayes-np8162
had completed only 278,000 iterations running on SA501 after several days. The results163
in this comparison suggest that sitka performs better than the baseline methods. Running164
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sitka on the real-world datasets took on average 22.3, 46.6, and 12.9 hours for the OV A,165
SA501, and SA535 datasets respectively, on a Linux workstation with 72 Intel Xeon Plat-166
inum 8272CL 2.60GHz CPU processors and 144 GB of memory. We complement these167
benchmarking results with experiments on synthetic data where sitka is also the highest168
performing method based on metrics measuring phylogenetic tree distance.169

2.3 Single cell resolution phylogenetic inference in PDX170

Here we analyse the foregoing three multi-sample datasets. To visualise the tree inference171
results we arrange the inferred consensus tree t (Methods section 9.4.5) and the cell-by-172
locus CN matrix side by side where the rows of the matrix correspond to the position of173
individual cells on the tree and the markers are arranged by their genomic position (Fig. 1-174
h). Fig. 2-a-c shows examples of the multi-channel visualisation where each marker is175
represented by a tuple of three different data-types or channels, namely: (i) the latent176
markers induced by the consensus tree, x(t); (ii) the matrix of marginal posterior probability177
that cell c is a descendent of marker l, computed via the average m̄ (Fig. 1-g, Methods178
section 9.4.5); and (iii) the sitka transformed input data yc,l.179

We use this view to assess potential discrepancies between the input data and the inferred180
tree. In most cells and loci (as quantified in Supplementary Fig. 9.6), the observed data181
is in close agreement with the inferred tree. In the following we provide some examples182
of disagreements. Consider first the ChrX in the OV 2295 dataset (Fig. 2-a). ChrX has a183
long orange band (inferred marker in channel (i)) not matched by a black band (observed184
marker in channel (iii)) suggesting that a perfect phylogeny violation has occurred. The185
pattern in this marker is consistent with the presence of an ancestral event followed by a186
deletion. In Fig. 2-b, a set of diploid cells are attached to the root of the tree. These are187
control cells included in the experiment and correspond to a region in the bottom of the188
matrix with no inferred markers (orange bands) and almost no observed markers (black189
bands). In this dataset, there are change points where the observed marker has a high190
density (black band), but the tree is reconstructed with the marker absent (no matching191
orange band). Examples can be found in Chr1, Chr7 and Chr16. One possible explanation192
could be that the end-points of each event were detected as slightly shifted across cells.193
For instance, in Supplementary Fig. 8 there are two loci with an amplification (CN state194
equal to three) in Chr1p where cells that harbour a mutation in the first locus appear not to195
have a mutation in the second locus, suggesting that the same event was called in the first196
locus in some cells, and in the second locus in others. An alternative hypothesis is that197
the cells in this dataset have a mutator phenotype that promotes CN mutations in these198
loci.199

Supplementary Fig. 9 shows the distribution of mismatch rates for each dataset, de-200
fined as the fraction of times that the observed and inferred markers do not match,201
i.e., 1

C

∑
c∈C 1[yc,l 6= xc,l] for l ∈ L (corresponding to the black and orange bands in202

Fig. 2-a). In OV 2295, 41 markers (11%) have a mismatch rate of over 50%, where203
marker chr15_67000001_67500000 has the highest mismatch rate at 70%. In SA501,204
30 markers (11%) have a mismatch rate of over 50%, 13 of which (5%) have a mis-205
match rate of over 75%. SA535 has the lowest maximum mismatch rate at 49% (marker206
15_72000001_72500000).207
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2.4 Placement of SNVs using the CNA inferred tree208

To determine the presence or absence of SNVs in cells using data with high levels of209
missingness, we develop an extension of sitka, the sitka-snv model. Given single cell level210
variant read counts, the model incorporates CN data to place SNVs on the sitka-inferred211
phylogenetic tree. This backbone CN tree, provides a principled way to pool statistical212
strength across groups of single cells sequenced at low coverage, including data from the213
DLP+ platform [16]. The output of the sitka-snv model is an extended tree that has marker214
nodes that comprise SNVs in addition to the original CNAs.215

The SNVs are added to the existing CNA-based tree with the computational complexity216
of O(|C| + |L|) per SNV. Fig. 3-c shows the result of SNV placement with the number217
of variant reads in SA535, corresponding to the tree shown in Fig. 2-c. Supplementary218
Figs. 17, 18, and 19 show the number of variant reads and the matching SNV call proba-219
bilities for the SA535, OV A and SA501 datasets respectively. Sitka and sitka-snv provide220
a comprehensive genomic analysis tool for large scale low-coverage scWGS.221

3 Discussion222

In this work we use data in which the genome of the single cells CNA profiles are partitioned223
into bins of a fixed size (500Kb), each assigned a constant integer CN state. The relatively224
large size is due to the low coverage inherent to the scWGS platform, but it implies that the225
same bin may harbour multiple CNA events. Biological processes that result in complex226
DNA rearrangements could further increase the probability of having two hits in one bin [26,227
27]. Such multiple hits can violate the perfect phylogeny assumptions. This highlights228
the importance of our goodness-of-fit and visualisation methods as they can detect such229
violations.230

Structural variations such as chromothripsis, that affect multiple segments of the genome231
at the same time, make it difficult to determine the rate of CNA events and suggest that232
CNA events may not be suitable molecular clocks to estimate branch lengths. One pos-233
sible remedy is to first infer the tree topology via markers based on CNA events and then234
conditioned on this topology, add SNVs to the tree. The number of SNVs on each edge of235
the tree may be used to inform branch lengths.236

Our preprocessing pipeline excludes multiple cells from the analysis (see Table 1). We filter237
out a fraction of cells to remove contaminated cells, either doublets or mouse cells, cells238
with too many erroneous sequencing artefacts, and cycling cells. Removing a portion of the239
sequenced cells will decrease the statistical power to determine the subclonal structure of240
the population—an important application of this work—, and may bias the sampling against241
clones that have a higher division rate. We expect this will be an intrinsic limitation to any242
scWGS phylogenetic methods and this motivates the design of improved classification243
methods detecting cell cycling from genomic and imaging data.244

Evaluating the performance of a phylogenetic reconstruction method on real-world245
datasets is difficult, mainly due to a lack of ground truth. One promising area of research is246
the use of CRISPR-Cas9 based lineage tracing [6]. In absence of ground truth data, we de-247
veloped a goodness-of-fit framework that to our knowledge enables a first of a kind bench-248
marking of phylogenetic inference methods over real-world scWGS CNA datasets.249
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Phylogenetic tree reconstruction is a principled way to identify subpopulations in a hetero-250
geneous single-cell population. This in turn enables the use of population genetics models251
that track the abundance of subpopulations over multiple timepoints [5] and to make infer-252
ences about the evolutionary forces acting on each clone. Further study with timeseries253
modelling will provide insight into therapeutic strategies promoting early intervention, drug254
combinations and evolution-aware approaches to clinical management.255
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9 Methods281

9.1 Pre-processing282

The raw data contain cells that are either contaminated (e.g., contains biological material283
from mice) or have undesired sequencing artefacts. These include cells that were captured284
for DNA sequencing when undergoing mitosis. Since the sitka model does not account for285
such phenomena, the filtering is an important step. Supplementary Fig. 15 shows the286
steps taken from pulling the raw data to the CNA integer matrix ready for sitka transfor-287
mation (details in the Supplementary Information). Briefly, we remove control cells, cells288
with highly-noisy CN calls, and cells that have very few mapped reads. We also remove289
copy number bins that lie in difficult to sequence regions of the genome (bins with low-290
mappability). Finally, we drop cells that, based on their CNA profile, are suspected to be291
cycling cells.292

9.2 The sitka transformation293

To obtain the C × LMarkers phylogenetic markers matrix y that comprises the input to the294
sitka model, we apply a lossy transformation to the C × LBins CNA matrix a that involves295
computing the change in copy number state between two consecutive bins. Supplemen-296
tary Fig. 1 shows a small CNA matrix and its corresponding transformation into the marker297
matrix. For brevity, in what follows we assume that only one chromosome is used, so that298
LBins = L and LMarkers = LBins − 1. In practice, we use all available chromosomes, and299
LMarkers = LBins−NChr where NChr denotes the total number of chromosomes used.300

Given a filtered cell-by-locus matrix a, we sort bins by their genomic position. Then in each301
chromosome, we compute markers as the binarised difference between consecutive bins.302
In other words, y = (yc,l′) and l′ ∈ {1, . . . , L− 1}, and303

yc,l′ := 1
(∣∣ac,l′ − ac,l′+1

∣∣ > 0
)
, (1)

where 1(x) is the indicator function.304

9.3 Fixing jitter and selection of phylogenetic markers305

The copy numbers available to us in this work are estimated independently for each cell.306
This is one reason why the start position (bin) of the same CN change event may be307
slightly different across cells, generating some jitter. We address this by enumerating308
each change point column in order of decreasing density (where the density of column l is309
given by

∑
c∈C yc,l/|C|) and merging the column with its k = 2 immediate neighbours (see310

Algorithm 1 for details). An example of the result of the jitter correction heuristic is shown311
in Fig. 1 panel c. To speed-up computation, only a subset of markers present in at least312
a minimum number of cells are chosen for phylogenetic inference. That is, we removed313
columns l in y with relative density

∑
c∈C yc,l/|C| less than a threshold, set to 5%. Larger314

values of this threshold may lead to less resolved clades in the inferred tree.315
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Algorithm 1 JitterFix
1: procedure JITTER-FIX(y, k)
2: column-queue← OrderByDensityDecreasing(y)
3: columns-visited← {}
4: for column-index c in column-queue do
5: neighbours← neighbours (c, y, k)
6: for column-index n in neighbours do . The function neighbours is defined as the k columns to the

left and k to the right of c (when applicable)
7: if n /∈ columns-visited then
8: y1:C,c ← y1:C,c ∨ y1:C,n

9: y1:C,n ← 0
10: columns-visited← columns-visited ∪ n
11: return y

9.4 The sitka model316

9.4.1 Model description317

The sitka model starts with the perfect phylogeny assumption for the latent variables xc,l318
but allows deviation from it via allowing noisy observations yc,l. In a perfect phylogeny319
model, each phylogenetic trait arises only once on the rooted tree topology and all cells320
descending from that position will inherit that trait and no deletions are allowed.321

Let C and L denote the disjoint sets of cells and loci respectively.322

We posit an observation probability model p(y|x, θ), where θ are model parameters de-
scribed shortly, and both x and y are cell by locus matrices, the former being latent (derived
from the unobserved tree via x = x(t)), while the latter is the matrix obtained from the sitka
transformation. To model errors in copy number calls as well as perfect phylogeny viola-
tions, we introduce false positive and negative rate parameters rFP ∈ (0, 1) and rFN ∈ (0, 1)
respectively, and an error matrix

er
FP,rFN

=

[
1− rFP rFP

rFN 1− rFN

]
,

p
(
yc,l|xc,l, rFP, rFN

)
= er

FP,rFN

xc,l,yc,l
,

from which we set:323

p(y|x, θ) =
∏

l∈L

∏

c∈C
p
(
yc,l|xc,l, rFP

c,l (θ), r
FN
c,l (θ)

)
.

We define two type of models, differing in the choice of functions r·c,l(·) and dimension-324
ality of θ: one based on global error parameters, and one based on locus-specific error325
parameters.326

For the global parameterization, θ = θglobal = (rFN
global, r

FN
global), and the false positive and327

false negative functions are given by rFP
c,l (θglobal) = rFP

global and rFN
c,l (θglobal) = rFN

global.328

For the locus-specific error model, we set the error rates to be locus-dependent: θ =329
(rFP

1 , rFP
2 , . . . , rFP

|L|, r
FN
1 , rFN

2 , . . . , rFN
|L|), r

FP
c,l (θ) = rFP

l and rFN
c,l (θ) = rFN

l . With this extra flexibil-330

ity, the model can discount the effect of a trait violating the perfect phylogeny assumption,331
by setting high error rates for the trait’s locus.332
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The two parameterizations are compared in the Supplementary Information. We use the333
global parameterization by default unless mentioned otherwise.334

In both the global and locus-specific parameterizations, we need to construct a prior dis-335
tribution p(θ) over the error parameters. Using a uniform prior distribution with support on336
[0, 1] can lead to pathological cases as shown in Supplementary Fig. 4. To avoid that, we337
use the following prior distributions on the two types of error:338

rFP ∼ Uniform
(

0, rFP
)
,

rFN ∼ Uniform
(

0, rFN
)
.

We use rFP = 1/10 and rFN = 1/2 as default in our experiments.339

Next, we describe the prior p(t) on phylogenies using a two-step generative process:340

Sampling a mutation tree: let Vm = L∪{v∗} denote a vertex set composed of one vertex341
for each of the |L| loci plus one artificial root node v∗. The artificial root node induces342
an implicit notion of direction on the edges, viewing them as pointing away from v∗.343
Let T m denote the set of trees tm spanning Vm. The interpretation of tm is as follows:344
there is a directed path from vertex/locus l to l′ in tm if and only if the trait indexed by345
l is hypothesized to have emerged in a cell which is ancestral to the cell in which l′346
emerged. Pick one element tm ∈ T m.347

Sampling cell assignments: assign each cell to a vertex in tm. The interpretation of348
assigning cell c to locus l is that among the traits under study, c is hypothesized to349
possess only the traits visited by the shortest path from v∗ to l in tm. If a cell c is350
assigned to v∗, the interpretation is that c is hypothesized to possess none of the351
traits under study.352

The number of possible trees obtained from this two-step sampling process is:

|T | = |T m||{f : C → L ∪ {v∗}}|
= (|L|+ 1)(|L|+1)−2(|L|+ 1)|C|

= (|L|+ 1)|L|+|C|−1,

where we use Cayley’s formula to compute |T m|. Hence the uniform prior probability mass353
function over the possible outputs of this two-step sampling process is given by:354

p(t) =
1[t ∈ T ]

(|L|+ 1)|L|+|C|−1
,

where T is the set of all perfect phylogenetic trees that result from the two step generative355
process described above. This simple prior has a useful property: if a collection of say356
two splits are supported by m1 and m2 traits, then the prior probability for an additional357
trait to support the first versus second split is proportional to (m1 + 1,m2 + 1). Therefore,358
there is a “rich gets richer” behaviour built-in into the prior, which is viewed as useful in359
many Bayesian non-parametric models. Of course, more complicated priors over T could360
be easily incorporated as the complexity of inference typically comes from the likelihood361
rather than the prior. Simulation from the prior can be performed using Wilson’s algorithm362
[28], followed by independent categorical sampling to simulate the cell assignments.363
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9.4.2 Inference364

The posterior distribution,365
π(t, θ) ∝ p(t)p(θ)p(y|x(t), θ),

is approximated using MCMC. Two MCMC moves are used, described in the next two366
sections. The posterior distribution is summarized using a Bayes estimator described in367
Section 9.4.5. The model is implemented in the Blang probabilistic programming language368
[29].369

9.4.3 MCMC tree exploration move370

Sitka uses a tree sampling move to efficiently explore, at each MCMC iteration, the pos-371
terior distribution in a large neighbourhood of a given tree. Given a tree t and locus l,372
we define a neighbourhood N l(t) ⊂ T by removing l from t, and considering all possible373
ways to reattach l and hence defining a neighbourhood of phylogenetic trees (we also im-374
plemented a separate move reattaching cell nodes instead of locus nodes, its derivation375
follows similar lines as the move described in this section). The process of removing l is376
called an edge-contraction (removing an edge after connecting its two end-points) while377
the process of adding back a locus is called an edge-insertion. An edge insertion can be378
described as follows:379

1. Pick a non-cell vertex v, i.e. an element from the set R = {v∗} ∪ L\{l} where v∗ is380
the root node.381

2. Pick any subset of v’s descendent subtrees and disconnect them from v.382

3. Add a new node l under v and move the selected nodes from step 2 above and attach383
them to l.384

Fig. 1-f (right) shows an example of an edge-insertion. A locus named chr15_5950385
coloured red, has three children at MCMC iteration 100. This corresponds to node v in the386
above description. In step 2 of the edge insertion process, two of its children, namely cells387
RC07C and RC05C4 are chosen and disconnected from v. They are then inserted under388
locus chr1_4900, corresponding to l, which becomes a child of locus chr15_5950.389

In the following, we derive the probability distributions to be used in steps 1 and 2 above390
that lead to a Gibbs sampling algorithm (i.e. an MCMC move with no rejection step). The391
Gibbs sampler first selects a locus l from a fixed distribution (a tuning parameter), which392
we take for simplicity as being uniform over the |L| loci.393

After having sampled l, we partition N l(t\l) into blocks corresponding to the choice of node394

v made in Step 1, N l(t\l) = ∪vN l
v(t\l). The Gibbs conditional probabilities required in step395

1 above are of the form:396

ρ̄v =
ρv∑
ṽ∈R ρṽ

,

where:

ρv =
∑

t∈N l
v(t\l)

p(t)p(y|x(t), θ), (2)

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2020.05.06.058180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.058180


and t\l denotes the tree obtained after performing an edge contraction, where the con-
tracted edge is between l and the parent node of l. To compute ρv efficiently, we start with
the following likelihood recursion for all vertex v in t\l. First, for all vertices c corresponding
to a cell and b ∈ {0, 1}, define:

pbc = p
(
yc,l|b, θ

)
.

Next, we perform the following bottom-up recursion for all subtrees of t\l: for all v ∈ R,397
b ∈ {0, 1},398

pbv =
∏

v′′∈children(v)

pbv′′ ,

where children(v) denotes the list of children of vertex v.399

We can now return to the problem of computing ρ̄v. First, observe that the sum in Equa-400
tion (2) can be re-indexed by a bit vector b = (b1, b2, . . . , bk), bv′′ ∈ {0, 1} of length equal401
to k = |children(v)|. Each bit bv′′ is equal to one if children v′′ is to be moved into a child402
of v′ (refer to Supplementary Fig. 5), and zero if it is to stay as a child of v. For each403
possible assignment, we obtain a tree t ∈ N l

v(t\l), and its probability can be decomposed404
into factors corresponding to cells that are descendant of v (denoted Cv, solid red thick line405
under the tree of Supplementary Fig. 5-B) and those that are not (denoted C\v, dashed406
green thick line under the tree of Supplementary Fig. 5-B).407

The product of the likelihood factors corresponding to cells that are not descendants of v408
(“outside product”) does not depend on the choice of the bit vector. This outside product409
can be obtained as follows:410 ∏

c∈C\v
p0
c =

p0
v∗

p0
v

.

Note that this assumes p0
v > 0. As a workaround to cases where there are structural411

zeros, we recommend injecting small numerical values if p0
v = 0 (we used 10−6 in our412

implementation).413

For the cells under v, we now have to take into account whether they are selected under
the newly introduced locus or not. More precisely, for each of the children v1, v2, . . . , vk,
we have to take into account the value of the bit vector b = (b1, b2, . . . , bk). The sum over
possible assignments written naively has a number of terms which is exponential in k, but
can be rewritten into a product over k factors:

∑

t∈N l
v(t\l)

∏

c∈Cv

p
xc,l(t)
c =

1∑

b1=0

· · ·
1∑

bk=0

k∏

i=1

pbivi =
k∏

i=1

(p0
vi + p1

vi).

Putting it all together, we obtain for some constants Ki independent of v:

ρv = K1

∑

t∈N l
v(t\l)

p(y|x(t), θ)

= K1

∑

t∈N l
v(t\l)

∏

l′∈L

∏

c∈C
p
(
yc,l′ |xc,l′(t), rFP

c,l′(θ), r
FN
c,l′(θ)

)
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= K1


 ∏

l′∈L,l′ 6=l

∏

c∈C
p
(
yc,l′ |xc,l′(t), rFP

c,l′(θ), r
FN
c,l′(θ)

)

 ∑

t∈N l
v(t\l)

∏

c∈C
p
(
yc,l|xc,l(t), rFP

c,l (θ), r
FN
c,l (θ)

)

= K1K2

∑

t∈N l
v(t\l)

∏

c∈C
p
(
yc,l|xc,l(t), rFP

c,l (θ), r
FN
c,l (θ)

)

= K1K2

∑

t∈N l
v(t\l)

∏

c∈C
p
xc,l(t)
c

= K1K2

∑

t∈N l
v(t\l)


∏

c∈Cv

p
xc,l(t)
c






∏

c∈C\v
p
xc,l(t)
c




= K1K2



∏

c∈C\v
p
xc,l(t)
c




∑

t∈N l
v(t\l)

∏

c∈Cv

p
xc,l(t)
c

= K1K2

(
p0
v∗

p0
v

) ∑

t∈N l
v(t\l)

∏

c∈Cv

p
xc,l(t)
c

= K1K2

(
p0
v∗

p0
v

)
k∏

i=1

(p0
vi + p1

vi)

= K1K2K3

∏k
i=1(p0

vi + p1
vi)

p0
v

.

Putting these together we can compute the probabilities required in step 1 above:414

ρ̄v =
ρv∑
ṽ∈R ρṽ

(3)

=

(∏
vi∈children(v)

(
p0
vi

+p1
vi

)
p0
v

)

∑
ṽ∈R



∏

v′
i
∈children(ṽ)

(
p0
v′
i
+p1

v′
i

)
p0
ṽ




. (4)

Once v is sampled, we choose a subset of its children to move to v′ by sampling k inde-415
pendent Bernoulli random variables with the i-th one having bias416

p1
vi

p0
vi + p1

vi

,

and selecting children with corresponding Bernoulli realisations of 1.417

9.4.4 MCMC parameter exploration move418

To resample the parameters θ we condition on the tree t, and hence on the hidden state419
matrix x, and update θ in a Metropolis-within-Gibbs framework. There are two different420
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samplers depending on whether the global or locus-specific parameterization is used. We421
start with describing the former.422

We compute two sufficient statistics from the matrix x (i) the number of false positive in-423
stances, nFP, and (ii) the number of false negative instances, nFN,424

nFP = nFP(x) =
∑

c∈C

∑

l∈L
1[xc,l = 0, yc,l = 1]

nFN = nFN(x) =
∑

c∈C

∑

l∈L
1[xc,l = 1, yc,l = 0].

Based on these cached statistics, we obtain:

p(y|x, θglobal) ∝
(
rFP
)nFP(

rFN
)nFN(

1− rFP
)nN−nFN(

1− rFN
)nP−nFP

, (5)

where the the number of positive nP and negative nN instances in the data can be pre-
computed,

nP =
∑

c∈C

∑

l∈L
1[yc,l = 1]

nN = |C||L| − nP.

Based on the above expression, which can be evaluated in O(1) once the statistics are425
computed, we then use a slice sampling algorithm to update the parameters [30].426

The sampler for the locus-specific parameterization is very similar. The main difference is
that we compute the statistics for each locus l:

nFP
l = nFP

l (x) =
∑

c∈C
1[xc,l = 0, yc,l = 1]

nFN
l = nFN

l (x) =
∑

c∈C
1[xc,l = 1, yc,l = 0]

nP
l =

∑

c∈C
1[yc,l = 1]

nN
l = |C| − nP

l

p(y|x, θ) =
∏

l

(
rFP
l

)nFP
l
(
rFN
l

)nFN
l
(

1− rFP
l

)nN
l −nFN

l
(

1− rFN
l

)nP
l −nFP

l
.

Then a slice sampling move is applied to each locus-specific parameter.427

9.4.5 Posterior summarization428

Here we approximate the Bayes estimator by minimising the Bayes risk:429

argmint∈T
∑

t′∈T

∫
L(t, t′)π(t, dθ), (6)

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2020.05.06.058180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.058180


using the L1 metric on the matrices of induced indicators x(t) as the loss function:430

L(t, t′) =
∑

l∈L

∑

c∈C
|xc,l(t)− xc,l(t′)|.

It is useful to define the marginal indicatorsmc,l that can be conceptualised as the posterior431
probability of cell c to have trait l:432

mc,l =
∑

t∈T

∫
1[xc,l(t) = 1]π(t, dθ).

Using the MCMC samples t1, t2, . . . , tN , we obtain a Monte Carlo approximation:433

m̄c,l =
1

N

N∑

i=1

xc,l(t
i)→ mc,l,

with probability one.434

Fig. 1-g shows an example of the matrix m each element of which is one of the approxi-
mated m̄c,l . We can now write the objective function of Equation (6) via the above marginal
indicators:

∑

t′∈T

∫
L(t, t′)π(t, dθ) =

∑

t′∈T

∫ ∑

l∈L

∑

c∈C
|xc,l(t)− xc,l(t′)|π(t, dθ)

=
∑

l∈L

∑

c∈C

∑

t′∈T

∫
|xc,l(t)− xc,l(t′)|π(t, dθ)

=
∑

l∈L

∑

c∈C

{
mc,l(1− xc,l(t)) + (1−mc,l)xc,l(t)

}

=
∑

l∈L

∑

c∈C

{
xc,l(t)− 2mc,lxc,l(t)

}
+ constant. (7)

We use a greedy algorithm to approximately minimize Equation (7). We start with a star435
tree with leaves C rooted at v∗ and add loci from L one by one from a locus queue sorted436
by priority score. The priority score of each locus l is computed as437

priority(l) = max
t′∈N l(t)

q(t′)∑
t′′∈N l(t) q(t

′′)
,

where438

q(x) =
∏

c∈C

∏

l∈L(x)

qc,l(xc,l)

qc,l(xc,l) = 2mc,lxc,l − xc,l.

The quantities in the priority queue can be computed as in Section 9.4.3. We take the439
result of the minimization of the Bayes risk as the consensus tree.440
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9.4.6 Consensus tree and CNA heatmap visualisation441

To visualize the consensus tree, we collapse the chains (sequence of loci having only one442
child) as well as remove the subtrees containing no cells. We align the leaves of the tree443
which correspond to cells after collapsing to the rows of a cell-locus matrix.444

9.5 Synthetic experiments445

9.5.1 Benchmarking446

To assess the performance of sitka against alternative approaches, we ran inference on 72447
simulated datasets of varying characteristics. We will refer to this set of datasets as S72;448
its simulation procedure is described in Section 9.5.3. For each dataset in S72, we scored449
each method by computing the Robinson-Foulds (RF) [31] distance between the simulated450
tree and the inferred tree. The scores were normalized within each dataset by dividing451
each method’s score by the worst performing method’s score.452

We compared sitka against the following baseline methods: UPGMA, WPGMA, NJ, HDBSCAN,453
and balanced and ordinary least-squares minimum-evolution methods (BME, OME respec-454
tively) of [32]. We also report the score of a uniformly random bifurcating tree, Uniform,455
to help interpret the absolute scores. Each method was given raw data from S72, as well456
as input identical to that of sitka, i.e., filtered binary marker data. Sitka’s inference settings457
are summarized in Supplementary Table 2.458

Baseline methods performed significantly worse with sitka’s input and are thus omitted from459
the following summary. Sitka’s normalized RF score (0.62 ± 0.06) dominated all baseline460
methods, the next best performer was BME (0.90± 0.08). Sitka ranked first in all 72 but one461
set of data, where it ranked 6 for one dataset of size 500 × 800. Summing each method’s462
rank over all datasets, sitka scored a total rank of 77, while BME scored 193.5 (lower is463
better). These results are summarized in Supplementary Fig. 12.464

9.5.2 Exploratory experiments within sitka465

To explore the effectiveness of global versus local (locus-specific) parameterization (Sec-466
tion 9.4.1), and the posterior summarization method (Section 9.4.5), we ran inference on 10467
datasets. We will refer to this set of datasets as S10; its simulation procedure is described468
in Section 9.5.3. Inference settings are summarized in Supplementary Table 2.469

RF distances from the best-possible tree were computed as a metric. The best-possible470
tree is defined as the perfect phylogenetic tree constructed from the noiseless synthetic,471
unviolated cell-locus matrix data. For a baseline to compare the greedy estimator (GE) of472
Section 9.4.5 with, consider the trace search estimator (TSE). The TSE is defined as a473
tree in the sampler trace that minimizes the sample L1 distance (Section 9.4.5).474

The GE outperformed the TSE under both models. This suggests the proposed GE can,475
informally, harness more information from the posterior and more accurately summarize a476
posterior to arrive at a consensus tree than, say, a search over the posterior under some477
criterion. Under the TSE, the global model (0.44 ± 0.09) outperformed the local model478
(0.71 ± 0.06). This observation suggests that the local parameterization has a strong in-479
fluence on the trace (in tree space) of our sampler, as the TSE is essentially a search480
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over the posterior sample. Under the GE, the global model (0.31 ± 0.07) and local model481
(0.30 ± 0.07) performed evenly well. This observation suggests that the choice of param-482
eterization does not heavily influence the information contained in the marginal posterior483
over trees. Ultimately this experiment suggests that the GE summarizes the marginal pos-484
terior sufficiently well such that the global model, the simpler model of the two, suffices485
for reconstructing phylogenies and should be the preferred model. A summarizing plot is486
shown in Supplementary Fig. 13.487

In our final synthetic experiment, we aimed to study the effects of perfect phylogeny as-488
sumption violations on the reconstruction of trees, and attempted to draw connections to489
real world data. The two violations considered are infinite sites and loss violations, de-490
scribed in Section 9.5.3. Inference was performed on 130 datasets (S130). Inference set-491
tings are summarized in Supplementary Table 2, and the simulation procedure for S130492
is described in Section 9.5.3.493

The experiment results are summarized in Fig. 3-a. Holding one violation rate fixed at494
zero and varying the other, we observed linear effects for both types of violations. The495
results suggest sitka is more robust to infinite sites violations, with estimated effects to be496
0.31 ± 0.07, which is much less than loss violations (0.47 ± 0.07). When varied together,497
the linear effects were estimated to be 0.25 ± 0.04, 0.38 ± 0.04 respectively. In an attempt498
to draw connections to real datasets, we estimated both violation rates of real data to be499
less than 0.25 (the estimation procedure is described below; Fig. 3-b). These observations500
suggest sitka should perform reasonably well for the real datasets considered in this study,501
with RF distances in the vicinity of (0.2, 0.3).502

The violation rate estimation procedure was performed post-inference, and can be de-503
scribed as follows. Given the inferred tree and its corresponding marker matrix x (as in504
Section 9.4.1), and the sitka-transformed marker matrix y (as in Section 9.2), define the505
difference matrix z := x−y, i.e., z has entries zi,j = xi,j−yi,j . Next, define zLoss with entries506
zLoss
i,j := 1(zi,j > 0), and similarly zIS with entries zIS

i,j := 1(zi,j < 0). Given an integer-valued507
threshold εv > 0, we say a column or trait l in zv (for v ∈ {Loss, IS}) has a violation if there508
exists an island of size at least as large as εv. An island in column l is defined to be509
any sequence of row indices i, i + 1, . . . , i + s such that zvi,l = zvi+1,l = · · · = zvi+s,l = 1510
and zvi−1,l, z

v
i+s+1,l are, not necessarily the same, 0 or undefined. Finally, the proportion of511

columns with a given type of violation, loss or infinite sites, is taken to be the violation rate512
estimate. The intuition behind this estimation procedure is to identify the proportion of loci513
where the inferred tree (or its marker matrix) is in contradiction with observations.514

9.5.3 Data simulation515

Datasets in S72 were generated in two steps: (i) simulate a cell tree and its corresponding516
CNA data, and (ii) inject noise into the CNA data from step one.517

In the first step we used the simulator of [33] to generate trees along with CNAs, where518
leaf nodes represent observed cells and internal nodes represent latent ancestral cells,519
i.e., unobserved cells. An edge in the tree represents an ancestral relationship between520
the respective cells.521

The simulator of [33] itself consists of two parts, which we briefly describe as follows.522
First, the simulator samples a tree based on a generalization of the Blum-François Beta-523
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splitting model [34, 35], which is inspired by the Beta-splitting model of [36]. The Beta-524
splitting model is particularly well-suited for generating a wide range of topologies, varying525
from balanced to imbalanced tree structures. Second, given a tree, CNAs are simulated526
on the edges of the tree where the number and size of CNAs are drawn from Poisson527
and exponential distributions respectively. The simulator also accounts for clonal whole528
chromosome amplification events, motivated by punctuated evolution models [37].529

The second step of our synthetic data simulation process, independent of [33], injects530
noise into a cell by locus input CNA matrix y, and outputs a noisy matrix of the same size.531
Three types of noise were employed, namely, uniform noise, jitter noise, and a doubling532
noise.533

The uniform noise is parameterized by false positive (FPR) and false negative (FNR)534
rate parameters. For each element of the input matrix yij , add an integer Nij ∼535
Binomial(yij ,FNR) or subtract an integer Mij ∼ Binomial(1,FPR).536

The doubling noise is parameterized by a probability pd: for each row of the CNA matrix537
y, draw a factor K where K − 1 ∼ Binomial(1, pd), which is then multiplied to the row of538
the CNA matrix as noise. This procedure effectively, on average, doubles the copy number539
values for pd proportion of cells in the sample.540

The jitter noise is parameterized by a probability pj. First, map the CNA matrix to its marker541
matrix. Then for each marker, the locus corresponding to the marker is randomly duplicated542
to the previous bin(s), or the next bin(s). The number of bins J to be overwritten — zero,543
one, or two — is drawn from a Binomial(2, pj) distribution.544

Datasets in S72 were of sizes {500, 1000, 1500, 2000, 2500, 3000} cells by (approximately)545
{400, 600, 800} markers. For each combination of sizes, we generated four datasets based546
on different random seeds to make a total of 6 × 3 × 4 = 72 datasets. The approximate547
number of markers is the target number of markers after correcting for jitter and filtering.548
Supplementary Fig. 11 shows the CNA profiles of a subset of simulated data.549

To describe the simulation parameters used for S72, we follow the terminologies and no-550
tation used in [33]. For generating trees, the α and β values parameterize the generalized551
Beta-splitting model. We drew α, β from a uniform distribution on the interval (−1, 10). For552
generating CNA data, the mean number of CNA to be added to a branch in the tree was553
chosen to generate data with approximately the number of desired markers post filtering554
and jitter-fixing. The multiplier of the mean CNA on the root was set to 8, the whole am-555
plification rate (rate of an allele chosen to be amplified) was set to 0.5. The remaining556
parameters used default settings. See [33] for a more thorough description of parame-557
ters.558

For injecting noise, we drew the uniform noise parameters FPR and FNR from uniform559
distributions on the intervals (0.001, 0.01), (0.01, 0.03) respectively. The doubling noise pa-560
rameter pd was drawn from a Uniform(0.03, 0.07) distribution. The jitter noise parameter pj561
was drawn from a Uniform(0.3, 0.7) distribution.562

Datasets in S10 and S130 were also generated in two steps: (i) simulate a cell tree and its563
corresponding binary marker data satisfying perfect phylogeny assumptions, and (ii) inject564
noise and/or violations into the the binary marker data from step one.565
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In the first step, a tree is generated via Kingman’s coalescent [38].1 Briefly, we sample566
a coalescent tree for the set of cells C by uniformly selecting pairs of cells ci, cj ∈ C to567
coalesce backwards in time. The waiting time, or the branch length, between each event568
is exponentially distributed. Conditionally on the coalescent tree and given a set of loci L,569
we simulate a |C| × |L| marker matrix y. Every entry yi,j is initialized to 0. Then for each570
column l, we select a subset of cells C ′ from C to set yi,l to 1, for all i ∈ C ′. The subset571
of cells is sampled by choosing a branch on the tree with probability proportional to the572
branch length, and selecting all cells descendant from the selected branch. In essence,573
we are simulating the number of events via a Poisson process, and directly mapping these574
events to the cell-locus marker matrix. The above concludes the data generation procedure575
satisfying perfect phylogeny assumptions.576

In the second step of S10’s simulator, we injected artificial noise by introducing standard577
false positive and negative values into y. This concludes S10’s simulator. The simulator578
for S130 has an additional sampling step for controlling the degree of perfect phylogeny579
violations. We considered two types of violations: (i) the loss of markers along a tree’s580
branches, and (ii) the violation of the infinite sites (IS) assumption, that is, the occurrence581
of multiple distinct events in the same locus.582

The procedure for simulating loss of marker events can be described as follows. First,583
randomly select a locus l, then identify the most recent common ancestor a for the set of584
cells {i : yi,l = 1}. Given a, sample a cell d descendant of a (including a). Finally, the loss585
event is simulated by reverting yi,l to 0, for all i descendant of, and including, d.586

IS model violations were simulated as follows. Uniformly sample a pair of loci (j, k), and587
merge y·,j , y·,k into one column, yielding a cell-locus matrix of size one less than the original588
size. However, to maintain control over |L|, datasets in S130 were simulated with |L|+NIS589
loci such that after simulating IS violations, we recover a matrix of size |C|× |L|, where NIS590
is the number of IS violations.591

The total number of loss and infinite sites violation events (NLoss, NIS) were drawn from592
binomial distributions with probability pLoss, pIS respectively (and size |L|). As a final step,593
false positives and negatives were artificially injected.594

For both S10 and S130, datasets of size |C| × |L| = 500 × 100 with FNR and FPR both595
set to 0.002 were generated. For S130, the unordered pair (pLoss, pIS) were set to values in596
{(0, 0), (0.1, 0.1), . . . , (0.4, 0.4)} ∪ {(0, 0.1), (0, 0.2), (0, 0.3), (0, 0.4)}. For each configuration597
of simulation parameters, 10 different seeds were used to generate a total of 10 and 130598
datasets for S10 and S130 respectively.599

9.6 Goodness-of-fit600

To evaluate the goodness-of-fit of inferred trees on real data, we suggest a test comparing601
the posterior distribution over entries of the matrix x with the data y.602

Consider an inferred tree, τ and the corresponding genotype matrix g = g(τ). We set603
g(τ) = x(τ) for trees inferred from sitka. For trees inferred from the baseline methods, we604
define g(τ) as x(τ) except that g : τ → {0, 1}C×U where U the set of internal nodes of τ605
(Methods section 9.4.1). In general the inferred trees from the baseline methods do not606

1We used the R packages [39, 40] for simulation.
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have named internal nodes, nor do they have the same number of internal nodes as the607
number of loci L. Therefore we do not know which locus in the inferred tree τ corresponds608
to which locus in the matrix y. We note that this is not the case with trees inferred from sitka609
where the internal nodes of the tree correspond to the columns of the induced genotype610
matrix g. As a result, for methods other than sitka, for each column in the input data611
matrix, we pick a clade in τ that has the highest prediction accuracy for the entries in that612
column.613

For each method, we report Youden’s J index [41] which is equal to the sum of the sensitiv-614
ity and specificity minus 1. We now define a binary classification counts matrix function h,615
i.e., a function which, for two vectors w and z of length C, forms the confusion matrix:616

hi,j(w, z) =
∑

c∈C
1 (wc = i)1 (zc = j) .

For example h0,0(w, z) would count the number of times both elements of w and z were617
equal to zero (or true negative). We define accuracy for a given confusion matrix o com-618
puted from the h map above as:619

acc(o) :=
o0,0 + o1,1∑

i,j oi,j
.

We further define sensitivity and specificity as

sensitivity(o) :=
o1,1

o1,1 + o1,0
,

specificity(o) :=
o0,0

o0,0 + o0,1
,

youden(o) := sensitivity(o) + specificity(o)− 1.

For a given tree τ and its corresponding matrix g we compute the Youden’s score as fol-620
lows:621

1. for all locus l in y, ol = argmaxo′l,l′∈columns(g) acc(ol′),622

2. oτ =
∑

l′∈,columns(g) ol′623

3. youdenτ := youden(oτ ).624

That is for each locus in y, we take the clade that among all possible clades in τ maximizes625
the accuracy in predicting which cells are present in the l-th column of y. We then sum over626
all these scores to compute a confusion matrix for τ and use this agglomerative matrix to627
compute the Youden’s score for the tree. We use the delta method to calculate confidence628
intervals. Fig. 2-d shows the Youden’s score and its 95% confidence interval for sitka and629
6 baseline methods on 3 different real-world datasets. Sitka has a higher score than all630
competing methods.631

9.7 Application: assignment of single nucleotide variants632

Here we posit an observation probability model for adding single nucleotide variant (SNV)633
data to an existing phylogenetic tree.634
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For locus l in cell c, let ySNVc,l = (dc,l, νc,l, cc,l) denote the observed SNV data where the635
total number of reads, the number of reads with a variant allele, and the corresponding636
copy number are indicated by dc,l, νc,l, and cc,l respectively.637

We use xSNVc,l to denote an indicator variable taking the value one if and only if an an-638
cestor of cell c harboured a single nucleotide alteration event at locus l. This variable is639
unobserved and the focus of inference in this section. As in the sitka model, we assume a640
perfect phylogeny structure on these indicator variables, and add an error model to relate641
xSNVc,l to the observed data while allowing violations of the perfect phylogeny assumption642
and measurement noise. In the context of single nucleotide data, this is similar to [12]. The643
parameters of the error model are denoted θSNV = (εFP , εFN ), where εFP and εFN are644
false positive rate and false negative rates, respectively. Define:645

qbc,l = p(ySNVc,l |xSNVc,l , θSNV ) = p(νc,l|dc,l, cc,l, xSNVc,l = b, θSNV ), (8)

where dc,l and cc,l are given inputs. The likelihood probability of cell node c is denoted by646
qbc,l, where b ∈ {0, 1}. For b = 1, qbc,l reflects the likelihood of cell c being mutated at locus l;647

and for b = 0, qbc,l reflects the likelihood of cell c not being mutated at locus l. For dc,l = 0,648

we set qbc,l = 0.5.649

The probability qbc,l is obtained by marginalizing a mixture of binomial distributions depend-650
ing on all possible genotype states of locus l at cell c. Given the copy number cc,l, the651
possible genotype states are G = {A . . .A,AA . . .B ,A . . .BB , . . . ,B . . .B}, where each652
element has a length equal to cc,l. For example, the genotype AAB refers to a genotype653
with one variant allele B and two reference alleles A. For each genotype state gi, where i654
indexes the elements of G, the mean parameter of the corresponding binomial distribution655
is denoted by ξic,l:656

ξic,l =





B(gi)
cc,l

, 1 ≤ B(gi) < cc,l,

1− εFP , B(gi) = cc,l,
εFP , otherwise,

(9)

where B(gi) represents the number of variant alleles of genotype gi. Therefore, for b =
1,

q1
c,l = p(νc,l|dc,l, cc,l, xSNVc,l = 1, θSNV ) (10)

=

cc,l∑

i=1

p(gi)[ξ
νc,l
c,l (1− ξc,l)dc,l−νc,l ] (11)

+ εFN [ε
νc,l
FP (1− εFP )dc,l−νc,l ].

The value of p(gi) equals 1−εFN
cc,l

, and εFN represents the error due to mutation loss or tree657
errors.658

If the mutation status of cell c at locus l is a wildtype (i.e., mutation is not present), then659
the possible genotype states should not have any variant allele. The only possible geno-660
type state is {A . . .A}. The mean parameter of the binomial distribution equals εFP (false661
positive rate). Therefore,662

q0
c,l = p(νc,l|dc,l, cc,l, xSNVc,l = 0, εFP ). (12)
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With the proposed probability model for SNVs, we can incorporate both SNV data and663
CNA data to infer the underlying tree phylogeny in the sitka model. Therefore,664

p(y|x, θ) =
∏

c∈C

∏

l∈LCNA

p(yCNAc,l |xCNAc,l , θCNA)
∏

l∈LSNV

p(ySNVc,l |xSNVc,l , θSNV ), (13)

where C and L are the disjoint set of cells and loci, respectively. In this section, the loci set665
L includes both CNA and SNV traits.666

Assume now that we seek to add one locus to an existing tree. We proceed similarly to667
Section 9.4.3. Equation (4) can be rewritten in the following form:668

ρ̄v =




∏
vi∈children(v)

(γ0
vi

+γ1
vi

)

γ0
v




∑
v̄∈R




∏
v̄i∈children(v̄)

(γ0
v̄i

+γ1
v̄i

)

γ0
v̄



, (14)

where γbv, for b ∈ {0, 1} is:

γbv =

{
pbv, if l represents a CNA loci,
qbv, if l represents a SNV loci.

For v ∈ R = {v∗}⋃L\{l}, and b ∈ {0, 1} , the value of qbv is669

qbv =
∏

v′′∈children(v)

qb
v′′
. (15)

For the cell nodes that are the leaves of the tree qbv = qbc,l.670

9.7.1 Detection of SNVs for individual cells671

Given a fixed CNA tree (denoted by t) and the read counts data (ySNV denoted by y for672
simplicity), here the goal is to calculate the posterior distribution of xSNVc,l , the mutation673
status of locus l at cell c, which we denote by xc,l for simplicity.674

The joint probability distribution of xc,l, y and t can be written as:675

p(xc,l, y, t) =
∑

v∈R

∑

t′∈N l
v(t\l)

p(xc,l, t
′, y) (16)

=
∑

v∈R

∑

t′∈N l
v(t\l)

p(xc,l|t′)p(y|t′)p(t′), (17)

where R is the set of all loci nodes in the tree (including the root) excluding locus l. The676
joint probability distribution is calculated as677

p(xc,l = 1, y, t) =
∑

v∈P(c,t)

∑

t′∈N l
v(t\l)

p(y|t′)p(t′). (18)

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2020.05.06.058180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.058180


The set P(c, t) denotes all nodes on the shortest path from cell c to the root of the tree678
(including the root and excluding the cell c node). An example of the path on an imaginary679
tree is depicted in Supplementary Fig. 14. The nodes coloured in green belong to P(c, t).680
Therefore, the posterior probability distribution of xc,l = 1 yields681

p(xc,l = 1|y, t) =
p(xc,l = 1, y, t)

p(y, t)
=

∑
v∈P(c,t)

∑
t′∈N l

v(t\l) p(y|t′)p(t′)
p(y, t)

. (19)

Rewriting Equation (19) assuming uniform probability distribution for p(t′) yields:

p(xc,l = 1|y, t) ∝
∑

v∈P(c,t)

∑

t′∈N l
v(t\l)

p(y|t′),

=
∑

v∈P(c,t)

∑

t′∈N l
v(t\l)

∏

l′∈L

∏

c′∈C
p(yc′,l′ |t′),

=
∑

v∈P(c,t)

∑

t′∈N l
v(t\l)

∏

l′∈L
l′ 6=l

∏

c′∈C
p(yc′,l′ |t′)

∏

m′∈C
p(yc′,l|t′),

= K1

∑

v∈P(c,t)

∑

t′∈N l
v(t\l)

∏

c′∈C
p(yc′,l|t′),

= K1

∑

v∈P(c,t)

∑

t′∈N l
v(t\l)

∏

c′∈C\v
p(yc′,l|t′)

∏

c′∈Lv

p(yc′,l|t′),

where N denotes the set of all trait nodes, C denotes the set of all cell nodes, Cv denotes
the cells that are a descendant of node v, and C\v denotes the cells that are a not de-
scendant of node v. The product of the likelihood contributions for non-descendant nodes
can be calculated by taking the product of q0

c for all cells, divided by the ones that are
descendant of v: ∏

c′∈C\v
q0
c′ =

q0
v∗

q0
v

.

Therefore:

p(xc,l = 1|y, t) ∝ K1

∑

v∈P(c,t)

q0
v∗

q0
v

∑

t′∈N l
v(t\l)

∏

c′∈Cv

p(yc′,l|t′). (20)

The likelihood contribution of descendant cells can be re-indexed by a binary vector b =682
(b1, b2, . . . , bk), where bi ∈ {0, 1}, and bi = 1 if the child v is to be moved into a child of the683
node l. The value of k denotes the number of children of v. The i∗th child of v which is684
on the path from node v to cell c is called v∗i . This implies bi∗ = 1 (See Supplementary685
Fig. 14). Therefore:686

∑

t′∈N l
v(t\l)

∏

c′∈Cv

p(yc′,l|t′) = q1
v∗c

1∑

b1=0

1∑

b2=0

. . .

1∑

bi−1=0

1∑

bi+1=0

. . .

1∑

bk=0

k∏

i=1
i6=i∗

qbivi . (21)
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Rewriting Equation (20) using Equation (21) yields:

p(xc,l = 1|y, t) ∝ K1

∑

v∈P(c,t)

q0
v∗

q0
v

q1
v∗c

1∑

b1=0

1∑

b2=0

. . .
1∑

bi−1=0

1∑

bi+1=0

. . .
1∑

bk=0

k∏

i=1
i6=i∗

qbivi ,

= K1

∑

v∈P(c,t)

q0
v∗

q0
v

q1
v∗c

k∏

i=1
i6=i∗

(q0
vi + q1

vi),

= K1

∑

v∈P(c,t)

q0
v∗

q0
v

∏k
i=1(q0

vi + q1
vi)

(q0
vi∗

+ q1
vi∗

)
q1
vi∗
,

= K1q
0
v∗

∑

v∈P(c,t)

q1
vi∗

q0
v(q

0
vi∗

+ q1
vi∗

)

k∏

i=1

(q0
vi + q1

vi). (22)

9.8 Computational complexity of the SNV calling algorithm687

The computational complexity of Equation (22) is O(|C| · |L|) with |C| the number of cells688
and |L| the number of loci. In order to reduce the complexity of calculating p(xc,l = 1|y, t)689
for each locus and cell, P ′(c, t) is defined to denote the nodes sitting on the path from root690
to cell c, excluding the root node and including the cell c node. Then,691

q∗v =

k∏

i=1

(q0
vi + q1

vi). (23)

Therefore,

K1q
0
v∗

∑

v∈P(c,t)

q1
vi∗

q0
v(q

0
vi∗

+ q1
vi∗

)

k∏

i=1

(q0
vi + q1

vi) = K1q
0
v∗

∑

v∈P ′(c,t)

q1
v

(q0
v + q1

v)

q∗parent(v)

q0
parent(v)

.

Calculating p(xc,l = 1|y, t) with a recursive approach reduces the complexity fromO(|C||L|)692
to O(|C|+ |L|), where as in the last section L is the union of SNV and CNA loci.693
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List of Figures694

Figure 1. Workflow of sitka. (a) Sitka takes copy number calls data from a heterogeneous695
single-cell population. The cells (rows of the copy number matrix) are randomly sorted. (b)696
A lossy binary transformation is applied to obtain markers data. (Methods section 9.2 and697
Supplementary Fig. 1). Note that each single-cell is now represented by the presence698
or absence of CN changes between consecutive bins. (c) The boundary conditions are699
smoothed to account for cell-specific marker miss-alignment. (Methods section 9.3) to700
correct for this marker misalignment. Note how the columns in the inset in panel-c are701
less noisy than their counterpart in panel-b. (d) A subset of markers present in at least702
5 percent of the cells are chosen for input to the tree inference algorithm. (e) An MCMC703
algorithm efficiently explores the tree space. (f) An example of an edge-insertion. (g) The704
indicator matrix of all post-bun-in MCMC trees are averaged to generate a matrix indicating705
the posterior probability of a cell being attached to a marker (Methods section 9.4.5). (h)706
The copy number data in (a) is sorted according to the inferred consensus tree, shown on707
the left of the matrix. (i) The inset shows the tuple of marker columns in the context of708
the copy number calls, namely inf. (inferred markers, i.e., latent state xc,l), post. (posterior709
probability of the latent state xc,l), and obs. (observed markers), interlaced with the CN710
columns (similar to Supplementary Fig. 1). The results are from the SA535 dataset, a711
triple negative breast cancer patient derived xenograft sample (Methods section 2.2).712
Figure 2. Results over real-datasets and benchmarking against baseline methods. (a),713
(b), and (c) show the consensus tree and marker-space matrix for the OV A, SA501, and714
SA535 datasets respectively. (d) Comparison to baseline methods.715
Figure 3. Synthetic experiments and an application to point mutation placement. (a) RF716
distance of Bayes tree estimate to the best-possible tree. The first plot holds pis constant717
at zero. The second plot holds ploss constant at 0. The third plot varies pis = ploss jointly. (b)718
Estimation of violation rates in real data and a set of synthetic data. (c) Over 20,000 SNV’s719
with high levels of missingness are placed on a backbone tree inferred from the CNA data720
for SA535.721
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Supplemental Figure 1. Description of the process involved in the construction of mark-
ers, the input to the sitka model. A bin is a contiguous set of genomic positions. Each pair
of consecutive bins (e.g., bins 1 and 2 in (a)) is associated with a marker (e.g., marker
1) that measures for each individual cell, whether there is a difference between the CNA
states of the two bins. (a) The observed CNA matrix for a subset of bins on a chromo-
some. The rows are sequenced single cells, and the columns are bins. The CN states
are colour-coded. (b) The three markers shown are associated with the four bins. Each
marker records the presence (black) or absence (white) of a CN state change between a
pair of consecutive bins. Note that in the CNA matrix, there is a CN change at row 3 from
bin 1 to bin 2 (CN state 3 to 6). This is reflected in the marker matrix, at row 3 of marker 1
with a black square. There are no changes between bins 2 and 3 across any rows in the
CNA matrix. This is reflected in marker 2 comprising all white squares. (c) For visualisation
purposes, the CNA matrix can be interlaced with the marker matrix to more clearly show
where the CNA changes occur. Each column of the marker matrix is inserted between the
associated pair of columns in the CNA matrix. The resulting matrix is an example of an
augmented view that combines data from two or more sources (here the CNA matrix and
the marker matrix). In an augmented view, we call columns from each source a channel.
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Figure 4: Visualization of a small tree t 2 T . The right side shows the matrix of binary latent
values xc,l where rows are cells and columns are loci. The left side shows a summary of the perfect
phylogeny. To remove clutter, we remove from the tree (but not the matrix) all loci where xc,l = 0
for all cells. We also collapse chains (list of edges with exactly one descendant) into a single edge.
Note that all clade containing more than one descendant cells is necessarily supported by one or
more traits l having value xc,l = 1 if and only if c is a descendant of the clade. Clades at the leaves,
which have size one may or may not be supported.

Sampling a mutation tree: let Vm = L [ {v⇤} denote a vertex set composed of one vertex for

each of the |L| loci plus one artificial root node v⇤. The artificial root node induces an implicit

notion of direction on the edges, viewing them as pointing away from v⇤. Let T m denote the

set of trees tm spanning Vm. The interpretation of tm is as follows: there is a directed path

from vertex/locus l to l0 in tm if and only if the trait indexed by l is hypothesized to have

emerged in a cell which is ancestral to the cell in which l0 emerged.

Sampling cell assignments: assign each cell to a vertex in tm. The interpretation of assigning

cell c to locus l is that among the traits under study, c is hypothesized to possess only the traits

visited by the shorted path from v⇤ to l in tm. If a cell c is assigned to v⇤, the interpretation

is that c is hypothesized to possess none of the traits under study.

Both steps can be viewed as graphs (for the second step, it is a bipartite graph with one

component being the set of loci, and the other, the set of cells). It is convenient to summarize both

processes at the union of the two graphs, which is also a tree, this time on |L| + |C| + 1 vertices,

V = L [ C [ {v⇤}. Let us denote the set of trees obtained by this two step process by T . Again,

the vertex v⇤ induces an implicit direction to edges in t 2 T .

Given t 2 T , the matrix x is a deterministic function obtained by setting xc,l = 1 if vertex c is

a descendant of vertex l in t, and zero otherwise. We denote this deterministic function by x(t).

We show a small example in Figure 4.

The tree structure encoded by T is unidentifiable: for example, if a tree contains a chain of traits,

then permutations of the traits yield the same matrix x(t). Since we are taking a Bayesian approach

this is not problematic. As we describe later, tree summaries we build from the posterior distribution

collapse the non-identifiable parts. Moreover, the specific choice we make for constructing the set

T help us obtain simple and e�cient sampling algorithms.

To complete the construction of the prior on trees, we need to assign probabilities to elements

9

Marker

Present

Absent

cell 1

cell 2

cell 3

cell 4

cell 5

Type I tree

root

cell 1

cell 2

cell 3

cell 4

cell 5

Type II tree

a b c

Cell Marker Root
Vertex type

Supplemental Figure 2. Visualisation of a small type I tree t (a), its transformation into
a type II tree (b), and the corresponding marker matrix x = (xc,l) (c). Given a tree t, the
latent marker matrix x is a deterministic function x = x(t). Note that the clade comprising
single-cells 3 and 4 has support in both markers 1 and 3. For clarity, we do not visualise
type I trees, but plot their transformation, i.e., type II trees as follows. We remove from the
type I tree all marker nodes that have xc,l = 0 for all single-cells c. Lists of connected edges
that have exactly one descendent (i.e., chains) are also collapsed into a single edge, e.g.,
the edge corresponding to markers 2 and 3 are collapsed into one edge (since marker 2
has only one descendent, namely single-cell 2).
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Supplemental Figure 3. The effects of overlapping CNA events on the perfect phylogeny
assumption. A segment of a chromosome with five consecutive bins and their four corre-
sponding markers are shown. Each panel follows the CN states interlaced with markers
for a cell at the ancestral state (top), after a CNA event (middle), and after a second over-
lapping CNA event (bottom). The numbers in the CNA squares show the integer CN state
(e.g., the ancestral state has two copies of the 5-bins long segment). (a) Two overlapping
CNA gains maintain the perfect phylogeny assumption. By the infinite site argument, it is
unlikely for the end-points of the two gain events to exactly match. The same argument
holds for a CNA loss followed by a CNA gain event. Note that in these cases, once a
change point is acquired, it is not lost. (b) If a loss event is followed by another loss event
in which either end-points of the first event is removed, the perfect phylogeny assumption
will be violated (e.g., marker 3 is lost after the second loss event). Note that a violation
does not occur if the loss events hit different copies of a segment. (c) Similarly, if a gain
event is followed by a loss event, only if the latter erases the end-points of the former is
the perfect phylogeny violated. Note how marker 2 and marker 3 are lost after the second
CNA event.
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1.3. Workflow

x = (xc,l), y is the data or a data summary, and ✓ are model parameters. To model errors in copy

number calls, we introduce false positive and negative rate parameters rFP 2 (0, 1) and rFN 2 (0, 1)

respectively, and an error matrix

erFP,rFN
=

2
64

1 � rFP rFP

rFN 1 � rFN

3
75 ,

p
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FP, rFN
⌘
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.

from which we set:

p(y|x, ✓) =
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l2L

Y

c2C
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yc,l|xc,l, r

FP
c,l (✓), rFN

c,l (✓)
⌘

.

where the scalar erFP,rFN

xc,l,yc,l takes values as in Table 1.1. Here we use a global parameterisation where

the false positive and false negative functions rFP
c,l (✓) and rFN

c,l (✓) are chosen to be constant.

xc,l yc,l pc,l

1 0 0 1 � rFP

2 0 1 rFP

3 1 0 rFN

4 1 1 1 - rFN

Table 1.1: The false positive and false negative errors in sitka’s observation model.

In the global parameterisation, we have ✓ = (rFP
global, r

FN
global). Using a uniform prior distribution

for both error rates can lead to pathological cases as shown in Figure 1.6. To avoid that, we use

the following:

rFP
global ⇠ Uniform

⇣
0, rFP

⌘
,

rFN
global ⇠ Uniform

⇣
0, rFN

⌘
,

We use rFP = 1/10 and rFN = 1/2 as defaults in our experiments. We use a larger rFN; although

errors in HMM copy number calls can lead to both types of errors, there are more mechanisms that

can cause a false negative, including a copy number gain, followed by an overlapping copy number

loss.
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Supplemental Figure 4. Pathological tree reconstruction under default observation prior.
(a) The true tree reconstruction in a simple example with a balanced phylogeny with two
clades of size two, and two unique markers, coloured red and blue, that distinguish the
left and right clades respectively. (b) The binarised input matrix corresponding to the four
cells at the two markers. The desired observation error rates should be zero and the latent
and observed marker matrices should match exactly, as the perfect phylogeny assumption
holds. If the observation error parameters are set to one, that is rFP

global = 1 and rFN
global = 1,

then the latent marker matrix with all entries flipped as shown in (c) will have an equal
likelihood under this setting as the desired latent matrix has when error rates are set to
zero. (d) The incorrect tree reconstruction where the left and right clades are erroneously
assigned to the blue and red markers.
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Supplemental Figure 5. (a) Reading from left to right: the interpretation of removing a
column in the matrix x is to perform contraction of an edge corresponding to a locus shown
in bold. Reading from right to left: the interpretation of inserting back a column while
assigning new binary values is an edge insertion. The circled node v refers to Step 1. The
subtrees in bold refer to those selected in Step 2. The edge in bold, the one introduced in
Step 3. (b) Decomposition used for the recursion of Section 9.4.3.

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2020.05.06.058180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.058180


Supplemental Figure 6. Phylogenetic tree and CNA profile heatmap for the SA535
dataset. The rows of the heatmap are sorted according to the placement of cells on the
phylogenetic tree. The columns of the heatmap are sorted by their genomic position.

Supplemental Figure 7. Phylogenetic tree and CNA profile heatmap for the OV A dataset.
The nearly diploid cells with the loss of heterozygosity on chromosome X are from SA1090.
The cells with an amplification on chromosome 22 are from SA922. The rest belong to
SA921.
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Supplemental Figure 8. Phylogenetic tree and CNA profile heatmap for the SA501
dataset. Note that the diploid cells at the bottom of the heatmap are control cells that
were included in the experiment.

Supplemental Figure 9. the distribution of mismatch rate defined as the fraction of cells
that have a mismatch between the inferred and jitter-fixed value of a marker.
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Supplemental Figure 10. (a) Tree imbalance index where zero indicates that the tree
is consistent with one simulated from a Yule model (completely balanced) and positive
values indicate deviation from the Yule model (more imbalanced). For ease of plotting,
each balance index is normalised by the absolute value of the maximum estimated statistic
among all samples. Cumulatively adding more timepoints (b), or for the maximal subtree
comprising cells of a specific timepoint (c).
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Supplemental Figure 11. Synthetic datasets simulated from Beta-splitting processes.
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Supplemental Figure 12. Tree reconstruction evaluation using a normalized Robin-
son–Foulds metric on synthetic datasets from S72, simulated from Beta-splitting pro-
cesses. Here normalization is done by dividing the RF distance of each inference method
by the worst performer per dataset.
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Supplemental Figure 13. A model and estimator comparison based on tree reconstruc-
tion accuracy for datasets from S10. For each dataset, inference was performed on both
the globally- and locally-parameterized model. Both the greedy and trace search estimates
were computed for each inference result.
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Supplemental Figure 14. A schematic view of the underlying tree inferred from CNA and
SNV loci across multiple cells. Black and white nodes represent cells and loci, respectively.
The grey triangle represents a subtree rooted at a node. It includes all of the nodes and
edges in the subtree.
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Supplemental Figure 15. Filtering the CNA data for tree inference.

2.5. Tree evaluation

Figure 2.8: Phylogenetic tree and CNA profile heatmap for the SA501 dataset.

2.5 Tree evaluation

2.5.1 Predictive test

To evaluate the inferred trees, we suggest a test that involves predicting the entries in the input

binary matrix given to the tree inference method. We take the binarised input matrix yC⇥L, the

input matrix to the sitka algorithm as described in Section 2.3.4 as ground truth. Consider an

inferred tree, ⌧ , and the corresponding genotype matrix g = T (⌧). In general the inferred trees

from the baseline methods do not have named internal nodes, nor do they have the same number of

internal nodes as the number of loci L. Therefore we do not know which locus in the inferred tree

⌧ corresponds to which locus in the matrix y. We note that this is not the case with trees inferred

from sitka where the internal nodes of the tree correspond to the columns of the induced genotype

matrix. As a result, for methods other than sitka, for each column in the input data matrix, we

pick a clade in ⌧ that has the highest prediction accuracy for the entries in that column.

For each method, we report Youden’s J index [109] which is equal to sensitivity + specificity -

1. We define below the function h to be a binary classification counts matrix, i.e., for two C-vectors

w and z it forms the confusion matrix. h : {0, 1}1⇥C ⇥ {0, 1}1⇥C 7! {0, 1}2⇥2 where

hi,j(w, z) =
X

c2C

1 (wc = i)1 (zc = j) .

25

Copy number state

Sporadic localised deletions on chromosome 4 (top) and
 chromosomes 7 and 8  (bottom) are 
likely a sign of late-replicating cells. 

C
ells

Chromosomes

Clade comprising likely late-replicating cells 

Supplemental Figure 16. An example of replicating cells. Note the scattered localised
deletions. This heatmap is from a HER2+ PDX line. These late replicating cells form a
finger like clade in the tree. The top inset shows chromosome 4 while the bottom inset
spans chromosomes 7 and 8.
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Supplemental Figure 17. SNV variant reads data and SNV call probabilities for SA535
dataset beside the underlying phylogenetic tree.
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Supplemental Figure 18. SNV variant reads data and SNV call probabilities for OVA
dataset beside the underlying phylogenetic tree..
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Supplemental Figure 19. SNV variant reads data and SNV call probabilities for SA501
dataset beside the underlying phylogenetic tree.
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Supplemental Table 1. Summary of real-world datasets used. final is the final number
of cells after all filters except for !lmr are applied. final additionally filters out lmr cells,
those that have total mapped reads fewer than 500,000. Abbreviations used are tp: time
point; qual. : quality; !sphase: not sphase; !lmr: not low mapped reads.

Dataset parameter value
Real datasets engine PT
Real datasets globalParameterization true
Real datasets fprBound 0.1
Real datasets fnrBound 0.5
Real datasets nChains 1
Real datasets nScans 1000
Real datasets nPassesPerScan 1
Real datasets thinning 1
Real datasets burnin fraction 0.5
S72 engine PT
S72 globalParameterization true
S72 fprBound 0.1
S72 fnrBound 0.5
S72 nChains 1
S72 nScans 20000
S72 nPassesPerScan 1
S72 thinning 1
S72 burnin fraction 0.5
S10 globalParameterization true, false
S130 globalParameterization true
S10,S130 engine PT
S10,S130 fprBound 0.1
S10,S130 fnrBound 0.5
S10,S130 nChains 8
S10,S130 nScans 5000
S10,S130 nPassesPerScan 10
S10,S130 thinning 1
S10,S130 burnin fraction 0.5

Supplemental Table 2. Inference settings used for each dataset.
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