
Toward Reliable Network Neuroscience for
Mapping Individual Differences

Chao Jiang1,2,3, Richard Betzel4, Ye He5, Yin-Shan Wang1,6,7, Xiu-Xia Xing8�, and Xi-Nian Zuo1,3,6,7�

1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
2School of Psychology, Capital Normal University, Beijing 100048, China

3Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
4Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States

5School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
6National Basic Science Data Center, Beijing 100190, China

7IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
8Department of Applied Mathematics, College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China

A rapidly emerging application of network neuroscience in
neuroimaging studies has provided useful tools to understand
individual differences in complex brain function. However, the
variability of methodologies applied across studies - with respect
to node definition, edge construction, and graph measurements-
makes it difficult to directly compare findings and also challeng-
ing for end users to select the optimal strategies for mapping in-
dividual differences in brain networks. Here, we aim to provide
a benchmark for best practices by systematically comparing the
reliability of human brain network measurements of individual
differences under different analytical strategies using the test-
retest design of the resting-state functional magnetic resonance
imaging from the Human Connectome Project. The results un-
covered four essential principles to guide reliable network neu-
roscience of individual differences: 1) use a whole brain parcel-
lation to define network nodes, including subcortical and cere-
bellar regions, 2) construct functional connectome using spon-
taneous brain activity in multiple slow bands, 3) optimize topo-
logical economy of networks at individual level, 4) characterise
information flow with metrics of integration and segregation.
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Over the past two decades, network neuroscience has helped
transform the field of neuroscience (1), providing a quantita-
tive methodology framework for modeling brains as graphs
(or networks) composed of nodes (brain regions) and edges
(their connections), namely connectomics (2). The organi-
zation and topology of macro-scale brain networks can be
characterized by a growing suite of connectomic measure-
ments including efficiency, centrality, clustering, small-word
topology, rich-club, etc (3–5). In parallel, resting-state fMRI
(rfMRI) has opened up new avenues towards understanding
the human brain function (6). In conjunction with network
neuroscience, rfMRI has led to the emergence of a multidisci-
plinary field, functional connectomics or functional network
neuroscience (FNN) (7–9), in which the brain’s intrinsic, in-
terregional connectivity is estimated from rfMRI recordings.
FNN has been widely used to investigate the system-level or-
ganization of the human brain function (10) and its relation-
ship with individual differences (11) in developmental (12),
socio-cultural (13) and clinical conditions (14).

An important topic in FNN and, indeed, any scientific
discipline, is the notion of measurement reliability. In gen-
eral, reliability characterises a proportion of measurement
variability between different subjects relative to the overall
variability including both between-subject and within-subject
(i.e., random) components (15), and is commonly used to
assess the consistency or agreement between measurements.
However, measurement reliability can also serve as a measure
of discriminablity. For example, if a measurement can suffi-
ciently capture individual characteristics, its reliability will
be higher than measurements that underestimate between-
subject variability. Thus, high reliability is essential for any
measurement to better differentiate a group of individuals,
i.e., inter-individual differences (16). Recent studies have
demonstrated that the reliability of measurements is equiv-
alent to the fingerprint or discriminablity of the measure-
ment under the Gaussian distribution (17) while it has well-
established statistical theory and applications to psychology
(i.e., psychometric theory) (18) and medicine (i.e., diagnosis
theory) (19). Reliability also provides an upper bound of the
measurement validity (5, 16), which cannot be readily quanti-
fied as the reliability (16). Therefore, high levels of reliability
is the first and most basic requirement for quantifying indi-
vidual differences in FNN. Accordingly, the optimization of
measurement reliability of the individual differences can help
guide FNN processing and analysis pipelines for neurodevel-
opmental (20) and clinical applications (21).

Previous studies have demonstrated that many measure-
ments made on networks estimated from rfMRI have limited
reliability (22, 23). These low levels of reliability could be an
indication of failure in handling individual variability at dif-
ferent levels (24, 25). In particular, experimental design and
processing decisions related to scan duration, determining
frequency range, and regressing global signal have impacts
on rfMRI measurements and thus their reliability (23, 26).
Although less focused on reliability, existing studies also re-
vealed that their findings are influenced by choices of parcel-
lation templates (27), edge construction and definition, and
choice of graph metrics (28). How these decisions affect the
reliability of FNN measurements deserves further investiga-
tion. These analytical choices have been implemented in dif-
ferent software packages (29) but can vary from one package
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to another in terms of their parameterization. Beyond limited
examinations on reliability (30–32), a systematic investiga-
tion into the reliability of FNN measurements is warranted to
guide FNN software use and analyses.

In this paper, we conducted a systematic FNN reliabil-
ity analysis using the test-retest rfMRI data from the Human
Connectome Project (HCP) (33). Note that the HCP imaging
acquisition settings and data pre-processing have integrated
various strategies to optimize the measurement reliability
(22, 34). We thus analyzed the minimally pre-processed HCP
rfMRI data and focused our work on four key post-processing
stages: node definition, edge construction, network measure-
ment, and reliability assessments. In the end, we propose a
set of principles to guide researchers in performing reliable
FNN, advancing the field-standard call for the best practices
in network neuroscience. Toward an open FNN, we released
all the codes and reliability data by building an online plat-
form for sharing the data and computational resources.

Results
A typical analysis pipeline in FNN includes steps for node
definition (parcellations) and edge construction (frequency
bands, connectivity estimation and filtering schemes) (Fig.
1a). To determine an optimal pipeline, our aim is to com-
bine the most reliable strategies across different parts of the
analysis by comparing the reliability of derived global net-
work metrics. The HCP test-retest data were employed for
reliability evaluation (Fig. 1b) using the intraclass correlation
(ICC) statistics on the measurement reliability with five levels
(36): 0< ICC≤ 0.2 (slight); 0.2< ICC≤ 0.4 (fair); 0.4<
ICC≤ 0.6 (moderate); 0.6< ICC≤ 0.8 (substantial); and
0.8 < ICC < 1.0 (almost perfect). Our analyses produce
massive amounts of reliability statistics: 524,160 ICCs. In
this section we first present overall reliability assessments as-
sociated with the various analytic strategies as well as their
impact on between- and within-subject variability (Fig. 1c).
We then determine the optimized pipelines based on the high-
est reliability measurements, while documenting the derived
both global and local network metrics and both their reliabil-
ity and variability at an individual level. Based upon these re-
sults, we built the open resources for reliable FNN, including
all the codes, reliability matrices and computation via an on-
line platform (http://ibraindata.com/research/
reliablenetworkneuroscience).

Whole brain networks are more reliable than cortical
networks. Elements derived from a brain parcellation (i.e.,
parcel) define the network nodes. Here, we evaluated relia-
bility based on 24 different parcellation choices (Fig. 2a, see
more details of these parcellations in Online Methods). In
the following parts of the paper, we name a parcellation as
‘ParcAbbr-NumberOfParcels’ (e.g., LGP-100 or its whole-
brain version wbLGP-458).

We found significant differences in ICC distributions
across the 24 parcellation choices (Fig. 2b, Friedman rank
sum test: χ2 = 20379.07,df = 23,p < 2.2× 10−16, effect
size WKendall = 0.377). The mean ICCs range from slight

(LGP-1000) to substantial (wbLGP-458). Given a particular
parcellation and definition of nodes, we illustrate the density
distribution of its ICCs under all other strategies (edge defi-
nition and metric derivation). Notably, whole-brain parcella-
tions yield higher measurement reliability than parcellations
of cerebral cortex on their own (the effect sizes > 0.65). This
improvement in reliability seems not simply a bi-product of
having more parcels. We chose the parcellations in which
the number of parcels (400 ≤ n ≤ 1000) almost overlapped
between the cortex and the whole brain, and found no corre-
lation between the number of parcels and the median ICCs
(r =−0.11,p= 0.7). We report the mean ICC and the num-
ber of almost perfect (noap) ICCs (≥ 0.8) as the descrip-
tive statistics for the density distributions. The wbLGP-458
(mean ICC: 0.671; noap ICC: 519), wbLGP-558 (mean ICC:
0.671; noap ICC: 540) and The wbBNP-568 (mean ICC:
0.664; noap ICC: 511) are the three most reliable choices
(see more details of the post-hoc Wilcoxon signed rank test
in Table S7). Among the cortical parcellations, the LGP-
500 (mean ICC: 0.362; noap ICC: 0), LGP-400 (mean ICC:
0.342; noap ICC: 0) and LGP-600 (mean ICC: 0.340; noap
ICC: 0) are the three most reliable choices (Table S3).

To better understand the effect of introducing 358 sub-
cortical parcels into the cortical parcellations, we decom-
posed the reliability changes into a two-dimensional repre-
sentation of changes of individual variability (Fig. 2c,d).
This idea was motivated by the analysis of reliability de-
rived with individual variability (15, 16) as in Fig. 1c. For
each ICC under a given parcellation choice, we calculated
the related between-subject variability Vb and within-subject
variability Vw. Changes in the individual variability associ-
ated with the reliability improvements from cortical to whole-
brain pipelines were plotted along with ∆Vb and ∆Vw as ar-
rows. These arrows are distributed across the three quadrants
(quadI: 0.94%; quadII: 59.99%; quadIII: 39.07%). We no-
ticed that most of these arrows were distributed into the opti-
mal quadrant where the improvements of test-retest reliabil-
ity by the whole-brain parcellation choices largely attributing
to the increases of between-subject variability and decreases
of within-subject variability. The decreases of both between-
subject and within-subject variability may also strengthen the
measurement reliability (the suboptimal quadIII in Fig. 2).

Spontaneous brain activity portrays more reliable net-
works in higher slow bands. Brain oscillations are hierar-
chically organized, and their frequency bands were theoreti-
cally driven by the natural logarithm linear law (35, 37). By
analogy, rfMRI oscillations can, similarly, be partitioned into
distinct frequency bands. Advanced by the fast imaging pro-
tocols (TR = 720ms), HCP test-retest data allows to obtain
more oscillation classes than traditional rfMRI acquisitions
(typical TR = 2s). We incorporate the Buzsáki’s framework
(35, 38) with the HCP dataset using the DREAM toolbox (39)
in the Connectome Computation System (29) to decompose
the time series into the six slow bands (Fig. 3a):

• slow-6 (0.0069-0.0116 Hz)

• slow-5 (0.0116-0.0301 Hz)
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Fig. 1. Analytical pipelines for reliable FNN. a) There are five stages during our analyses: (1) test-retest dataset (white box) downloaded from HCP website, (2) node
definition (green box) defining nodes using a set of brain areas of 24 different partitions of the human brain, (3) edge construction (yellow box) estimating individual correlation
matrices using the six frequency bands (slow 1-6) from Buzsáki’s theoretical framework on the brain oscillations (35) as well as the widely used empirical frequency band
(Slow-emp) (6) and transferring these matrices into adjacency matrices using 7×4×12 different strategies on edge construction including band-pass filtering, connectivity
estimation and edge filtering, (4) network analysis (blue box) systematically calculating various brain graph metrics on measurements of information flow, and (5) reliability
assessment (red box) evaluating test-retest reliability with massive linear mixed models. b) The test-retest data shared multimodal MRI datasets of 46 subjects in the HCP
S1200 release and the HCP Retest release. Each subject underwent the first four test scans on two days (two scans per day: Rest1 and Rest2) and return several months
later to finish the four retest scans on another two days. This was designed for evaluation of both the short-term (Rest1 vs. Rest2) and the long-term (Visit1 vs. Visit2)
reliability. c) Measurement reliability refers to the inter-individual or between-subject variability Vb relative to the intra-individual or within-subject variability Vw . Variability
of both between-subject (Vb) and within-subject (Vw) are normalized into between 0 and 1 by the total sample variances. Their changes (∆Vb and ∆Vw) introduce a
reliability gradient as represented by the vector (the black arrow). The length of the arrow reflects the amplitude of reliability changes when the reliability assessment from
one choice (pink circle, J) to another choice (red circle, K). Further, the arrow’s direction (JK) indicates the sources of this reliability change. Here the reliability becomes
from moderate to substantial level with increases of between-subject variability (∆Vb > 0) and decreases of within-subject variability (∆Vw < 0).

• slow-4 (0.0301-0.0822 Hz)

• slow-3 (0.0822-0.2234 Hz)

• slow-2 (0.2234-0.6065 Hz)

• slow-1− (0.6065-0.6944 Hz)

We noticed that, due to the limited sampling rate (TR),
this slow-1− only covers a small part of the full slow-1 band
(0.6065-1.6487 Hz) – we indicate this above. We also in-
cluded the frequency band, slow-emp (0.01-0.08 Hz) for
the sake of comparison, as it is covers a range commonly
used in rfMRI studies. A significant effect on order (χ2 =
9283.536,df = 6,p < 2.2×10−16,WKendall = 0.192) across
the frequency bands was revealed based on the density distri-
butions of ICC (Fig. 3b): slow-2, slow-1−, slow-3, slow-
emp, slow-4, slow-5, slow-6. Post-hoc paired tests indicated
that any pairs of neighbouring bands are significantly dif-
ferent from one another (for more details, see Table S9-13),
with measurement reliability increasing with faster frequency
bands. Note, however, that slow-1− (mean ICC: 0.564) did
not fit into this trend, possibly due to its limited coverage of
the full band. But remarkably, slow-1− exhibited the largest
number of almost prefect ICCs for potential reliability (noap
ICC: 1746, for more details, see Figure S8). Slow-emp (mean

ICC: 0.519; noap ICC: 434) contains overlapping frequen-
cies with both slow-4 (mean ICC: 0.560; noap ICC: 441) and
slow-5 (mean ICC: 0.494; noap ICC: 285), and higher ICCs
than the two bands but the effect sizes are small to moderate
(slow-emp vs. slow-4: 0.193; slow-emp vs. slow-5: 0.485).
Slow-6 is the choice with the lowest ICCs (mean ICC: 0.331;
noap ICC: 154) compared to other bands (large effect sizes:
r > 0.57).

To visualize variation in reliability across frequency
bands, we plotted a trajectory tracing reliability flow along
the five full (slow-6 to 2) bands in the reliability plane, whose
axes correspond to between- versus within-subject variabil-
ity (Fig. 3c). As expected, this nonlinear trajectory contains
two stages of almost linear changes of the network measure-
ment reliability from slow to fast oscillations: whole brain
versus cortex. In each case, the reliability improvements at-
tribute to both increases of between-subject variability and
decreases of within-subject variability while the improve-
ments of whole-brain network measurement reliability were
largely driven by the increased variability between subjects.

Topological economics individualize highly reliable
functional brain networks. Estimating functional connec-
tions can be highly challenging due to the absence of a
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Fig. 2. Parcellation choices impact measurement reliability and individual variability. a) Node definitions are derived from different resolutions of spatial parcellation
on the human cortex and whole brain (see more details of these name abbreviations in Online Methods). b) Density plots are visualized for distributions of the ICCs under
the various parcellation choices on node definition. These density distributions are ranked from top to bottom according to decreases of the mean ICCs while the four colors
depict the four quantiles. c) Reliability gradient between any one whole-brain parcellation choice and its corresponding cortical parcellation choice is decomposed into the
axis of changes of the between-subject variability (∆Vb) and the axis of changes of the within-subject variability (∆Vw). This gradient can be represented as an vector,
which is the black arrow from the origin with an angle θ with the x−axis while the color encodes this angle and the transparency or the length reflects the magnitude of the
degree of ICC improvement. According to the anatomy of reliability, the optimal space is in the second quadrant (quadII) while the first and third quadrant (quadI and quadIII)
are suboptimal for reliability. d) Improvements of reliability by the whole-brain node definition pipelines are represented as gradient arrows in the plane of individual variability.
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Fig. 3. Reliability gradient across the slow bands and changes of related individual variability. a) Classes of frequency bands for slow oscillations derived from the
natural logarithm linear law (35, 37). b) Density plots are visualized for the ICC distributions under the various frequency bands. These density distributions are ranked from
top to bottom according to decreases of the mean ICCs while the vertical lines depict the four quartiles. c) Network measurements are projected onto the reliability anatomy
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labeled as a circle. The red line shows the entire modeled trajectory tracing the reliability flow along slow-to-fast oscillations in cortex and whole brain.
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Fig. 4. Edge filtering schemes and their networking performance. (a) Twelve schemes of filtering edge are applied to an individual connectivity matrix, resulting in the 12
brain networks with their nodes colored as the Yeo2011-7Networks (40). (b) Global cost efficiency are plotted against network wiring costs of all the brain networks derived
with the 12 edge filtering schemes from all the individual rfMRI scans. Red dots represent the topology-based while blue dots are for threshold-based networks. These dot
plots are fitted into the topographic (contour) maps where the local maxima for each filtering choice is labeled as a circle. (c) Density plots are for ICC distributions under
various the 12 edge filtering schemes. These density distributions are ranked from top to bottom according to decreases of the mean ICCs while the two colors depict the
topology-based and threshold-based schemes. Four quartiles were indicated by vertical lines. (d) Network measurements are projected onto the reliability anatomy plane
coordinated by both between- and within-subject variability. Red dots represent the topology-based while blue dots are for threshold-based networks. The topographic
(contour) maps fit the dots and label the local maxima as a circle for each scheme and the global maxima as a triangle for the topology and threshold groups, respectively.

‘ground truth’ human functional connectome. To provide a
reliable way of building candidate edges of the connections,
we sampled the 12 schemes on graph edge filtering (Fig. 4a),
which turn a fully connected matrix into a sparse graphical
representation of the corresponding brain network. These
schemes can be categorized into two classes: threshold-based
versus topology-based schemes. Absolute weight threshold-
ing (ABS05), proportional thresholding (PROP10, PROP20),
degree thresholding (DEG5, DEG15), overall efficiency cost
optimization (ECO) and global cost efficiency optimization
(GCE) commonly employ an threshold for filtering edges
with higher strengths than a cut-off value. These schemes
are widely used in network neuroscience and ignore the in-

trinsic topological structure of the entire brain network (e.g,
leading to multiple connected components or isolated nodes).
In contrast, topology-based schemes such as minimum span-
ning tree (MST), orthogonal MST (OMST), planar maxi-
mally filtered graph (PMFG) and triangulated maximally fil-
tered graph (TMFG) come from other scientific disciplines
and are optimized based on the entire network topology (41–
44). To combine both the TMFG’s efficiency and OMST’s
accuracy, we proposed the orthogonal TMF graph (OTMFG).
All the schemes are plotted in the plane of cost versus global-
cost efficiency (45) to better visualize the economical proper-
ties of the derived networks (Fig. 4b). These plots are fitted
into the topographic (contour) maps where the local maxima
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Fig. 5. Measurement reliability and variability of global/nodal network metrics under the optimized pipeline. (a) Spider plots are visualized for ICCs (test-retest) with
the 95% confidence intervals (CIs, shadow bands) for the metrics of network integration, segregation, centrality and resilience. The associated symbols of the metrics can
be found in supplementary material Table S31. (b) The reliability anatomy was plotted as a function of between-subject variability (Vb) and within-subject variability (Vw). (c)
Ranks of ICCs across the 360 cortical parcels and the 358 subcortical parcels in the optimal pipeline (wbCABP-718, slow-2, pos, OMST) are depicted. Ten nodal metrics
are assessed including average shortest path length Lp, nodal efficiencyEnodal, local efficiencyElocal, clustering coefficient Cp, pagerank centrality Pc, degree centrality
Dc, eigenvector centrality Ec, resolvent centrality Rc, subgraph centrality Sc and betweeness centrality Bc.

for each filtering choice is labeled as a circle. The human
brain networks achieve higher global efficiency with lower
cost using topology-based schemes compared to threshold-
based schemes, suggesting increasingly optimal economics.

Significant differences in test-retest reliability were
detectable across these 12 edge-filtering schemes (χ2 =
9784.317,df = 11,p < 2.2× 10−16,WKendall = 0.189, see
Fig. 4c). Among the topology-based schemes, OMST (mean
ICC: 0.608; noap ICC: 765), OTMFG (mean ICC: 0.602;
noap ICC: 781) and TMFG (mean ICC: 0.570; noap ICC:
767) were the three most reliable choices. They showed
significantly greater reliability than the three most reliable
threshold-based, respectively: PROP20 (mean ICC: 0.593;

noap ICC: 632), PROP10 (mean ICC: 549; noap ICC: 445)
and GCE (mean ICC: 0.533; noap ICC: 352). Mean reli-
ability of MST are slight to fair (mean ICC: 0.309) but its
number of almost perfect reliability (noap ICC:362) is still
higher than all threshold-based schemes except PROP10 and
PROP20 (see more details in Figure S21).

Network measurements are labeled based on topol-
ogy and threshold groups and projected onto the reliability
anatomy plane, whose axes represent between- and within-
subject variability (Fig. 4d). The contour maps are recon-
structed for each scheme based upon the individual variabil-
ity of all the related network measurements. The topology-
based methods (red) showed overall higher ICCs than the
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threshold-based methods (blue), improvements that could be
attributed to increases in between-subject variability and de-
creases of within-subject variability. These observations are
consistent between cortex and whole brain networks while
topology-based whole brain network are almost perfectly re-
liable (meaning almost perfect reliability, i.e., ICC≥ 0.8).

We also explored connection transformation and edge
weights, two factors included in edge filtering, the choices of
connectivity transformation and weighing edges, regarding
their measurement reliability. Positive (Eq.pos) (mean ICC:
0.512; noap ICC: 1,031) and exponential (Eq.exp) transfor-
mation (mean ICC: 0.509; noap ICC: 1,855) were the two
most reliable choices. Comparing to the positive and abso-
lute (Eq.abs) (mean ICC: 0.508; noap ICC: 1,050) transfor-
mation, the exponential and distance-inverse (Eq.div) (mean
ICC: 0.500; noap ICC: 1,031) transformation show larger
number of almost perfect ICCs (see Table S15-21). Weighted
graphs are also more reliable than the binary graphs while the
normalized weighted graphs demonstrated the highest ICCs,
reflecting both the increased between-subject variability and
decreased within-subject variability.

Network integration and segregation can serve reli-
able metrics of information flow. The previous big data
analysis suggests that the optimally reliable pipeline should:
1) define network nodes using a whole-brain parcellation, 2)
filter the time series with higher frequency bands, 3) trans-
form the connectivity using positive transformation, 4) con-
struct network edges using individualized methods and nor-
malized weights. Using the optimal pipelines, we evaluated
the reliability levels of various metrics from network neu-
roscience and their differences across individuals. Focus-
ing on the optimized pipeline with the highest ICCs of the
various choices (wbLGP-458, slow-2, pos, OMST), we re-
ported test-retest reliability of the measurements as well as
their corresponding individual variability. In Fig. 5a, we
found that the global network measurements of information
segregation and integration are at the level of almost perfect
reliability except for the modularity Q (ICC=0.46, 95% CI =
[0.252,0.625]). These high-level ICCs are derived with large
between-subject variability and small within-subject variabil-
ity (Fig. 5b). These findings are reproducible across the other
two parcellation choices (wbCABP-718, wbBNP-458).

Similar to the global metrics, shortest path length Lp
and nodal efficiency Enodal exhibited the highest ICCs (al-
most perfect test-retest reliability) while ICCs of other nodal
metrics remained less than 0.6. To visualize node-level net-
work metrics, we reported results derived from the wbCABP-
718 choice. To improve spatial contrasts of reliability, we
ranked the parcels according to their ICCs and visualized
the ranks in Fig. 5c. Most nodal metrics are more reli-
able across the 360 cortical areas than the 358 subcortical
areas (Wilcoxon tests: all p-values less than 0.001, corrected
for multiple comparisons). However, Lp, Enodal and Bc
exhibited higher across subcortical areas than cortical areas
(corrected p < 0.001). Across the human cerebral cortex,
the right hemispheric areas demonstrated more reliable Cp
(corrected p < 0.0036) than the left hemispheric areas. In-

teresting patterns of the reliability gradient are also observ-
able along large-scale anatomical directions (dorsal>ventral,
posterior>anterior) across the nodal metrics of information
segregation and centrality. These spatial configuration pro-
files on the reliability reflected their correspondence on inter-
individual variability of these metrics, characterising the net-
work information flow through the slow-2 band.

Building an open resource for reliable network
neuroscience. The results presented here represent huge
costs in terms of computational resources (more than
1,728,000 core-hours on CNGrid, supported by Chinese
Academy of Sciences (http://cscgrid.cas.cn).
Derivations of the ICCs and their linear mixed models were
implemented in R and Python. As our practice in open
science, we have started to provide an online platform on
the reliability assessments (http://ibraindata.com/
research/reliablenetworkneuroscience/
reliabilityassessment). The big reliability data
were designed into an online database for providing the
community a resource to search reliable choices and
help the final decision-making. The website for this
online database provided more details of the reliability
data use (http://ibraindata.com/research/
reliablenetworkneuroscience/database).
Finally, we shared all the codes, figures and other reliability
resources via the website for boosting reliable FNN.

Discussions
This study examined the series of processing and analysis
decisions in constructing graphical representations of brains.
The focus, here, was on identifying the pipeline that gener-
ated reliable, individualized networks and network metrics.
The results of our study suggest that to derive reliable global
network metrics with higher inter-individual variances and
lower inner-individual variances, one should use whole-brain
parcellations to define network nodes, focus on higher fre-
quencies in the slow band for time-series filtering to derive
the connectivity, and use topology-based methods for edge
filtering to construct sparse graphs. Regarding network met-
rics, multi-level or multi-modal metrics appear more reliable
than single-level or single-model metrics. Derive reliable
measurements is critical in network neuroscience, especially
for translating network neuroscience into clinical practice,
which requires precise and specific biomarkers. Based on
these results, we provide four principles of reliable functional
connectomics which we discuss further in this section.

Principle I: Use a whole brain parcellation to define
network nodes. The basic unit of a graph is the node. How-
ever, variability across brain parcellations can yield dissimi-
lar graphs, distorting network metrics and making it difficult
to compare findings across studies(27, 46–48). In many clini-
cal applications (14, 21), researchers aim to identify disease-
specific connectivity profiles of the whole brain, including
cortical and subcortical structures, as well as cerebellum. A
recent review has raised the concern that many studies have

Jiang & Zuo | Reliable Network Neuroscience bioRχiv | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.05.06.442886doi: bioRxiv preprint 

http://cscgrid.cas.cn
http://ibraindata.com/research/reliablenetworkneuroscience/reliabilityassessment
http://ibraindata.com/research/reliablenetworkneuroscience/reliabilityassessment
http://ibraindata.com/research/reliablenetworkneuroscience/reliabilityassessment
http://ibraindata.com/research/reliablenetworkneuroscience/database
http://ibraindata.com/research/reliablenetworkneuroscience/database
https://doi.org/10.1101/2021.05.06.442886
http://creativecommons.org/licenses/by-nc-nd/4.0/


focused on restricted sets of nodes, e.g. cortex only, called
a field standard for the best practices in clinical network
neuroscience (24), which requires almost perfectly reliable
measurements (15, 49). Our meta-reliability assessments re-
vealed high reliability of measurements made involving func-
tional brain networks can be achieved, through the inclusion
of high-resolution subcortical nodes. This provides strong
evidences that the whole-brain node use should be part of the
standard analysis pipeline for network neuroscience applica-
tions. These improvements of reliability can be attributed
to increases in between-subject variability coupled with re-
ductions in within-subject variability relative to networks of
cortical regions alone. One possible neuroanatomical expla-
nation is that distant areas of cerebral cortex are intercon-
nected by the basal ganglia and thalamus (50) while also
communicating with different regions of the cerebellum via
polysynaptic circuits (51, 52), forming an integrated connec-
tome. These subcortical structures have been suggested to
play a role in both primary (e.g., motor) as well as higher-
order function (e.g., learning and memory (53)). Studies us-
ing rfMRI have delineated the resting-state functional con-
nectivity (RSFC) maps between these subcortical structures
and cortical networks of both primary and high-order func-
tions (54–56). A recent work revealed that inter-individual
variance in cerebellar RSFC networks exceeds that of cor-
tex (57). Meanwhile, these RSFC maps are highly individu-
alized and stable within individuals (58–60), indicating that
they possess reliable characteristics. In line with our obser-
vations, we argue that inclusion of the subcortical structures
as network nodes can enhance the between-subject variabil-
ity and stabilize the within-subject variability by providing
a more comprehensive measurements on the entirety of the
brain connectivity. Larger between-subject variability im-
plies that the associated measurements are more recognizable
between different subjects, leading to improved subject dis-
crimination, a finding that has been demonstrated (61, 62).

Principle II: Generate functional networks using spon-
taneous brain activity in multiple slow bands. It has
been a common practice in RSFC research area to estimate
the RSFC profile based on the low-frequency (0.01 - 0.1 Hz
or 0.01 - 0.08 Hz) fMRI time series (6). However, the test-
retest reliability of measurements made based on this fre-
quency band has been limited, with ICCs less than 0.4 (see
(22, 23) for systematic reviews). Other applications, how-
ever, have advocated adopting a multi-frequency perspective
to examine the amplitude of brain activity at rest (63) and
its network properties (64). This approach has been spurred
along by recent advances in multi-banded acquisitions and
fast imaging protocols, offering fMRI studies a way to exam-
ine resting-state brain activity at relatively higher frequen-
cies that may contain neurobiologically meaningful signals
(39, 65). Our study provides strong evidence of highly reli-
able signals across higher slow-frequency bands, which are
derived with the hierarchical frequency band theory of neu-
ronal oscillation system (35). Specifically, a spectrum of re-
liability increases was evident from slow bands to fast bands.
This reflects greater variability of the network measurements

between subjects and less measurement variability within
subject between the higher and lower bands of the slow fre-
quencies. In theory, each frequency band has an independent
role in supporting brain function. Lower frequency bands
are thought to support more general or global computation
with long-distance connections to integrate specific or local
computation, which are driven by higher slow bands based on
short-distance connections (37). Our findings of high reliabil-
ity (inter-individual differences) are perfectly consistent with
this theory from a perspective of individual variability. Previ-
ous findings have found that high-order associative (e.g., de-
fault mode and cognitive control) networks are more reliable
than the primary (e.g., somatomotor and visual) networks
(16, 22, 23). Our findings offer a novel frequency-based per-
spective on these network-level individual differences.

Principle III: Optimize topological economy to con-
struct network connections at individual level. There
is no gold standard on for human functional connectomes,
leading to plurality of approaches for inferring and construct-
ing brain network connections. Threshold-based methods fo-
cus on the absolute strength of connectivity, retaining con-
nections that are above some user-defined threshold and of-
tentimes involve applying the same threshold to all subjects.
Although this approach mitigate potential biases in network
metrics associated with differences in network density, it may
inadvertently also lead to decreased variability between sub-
jects. This is supported by our result finding that threshold-
based method yield low reliability of network measurements.
On the other hand, the human brain is a complex network that
is also near-optimal in terms of connectional economy, bal-
ancing tradeoffs of cost with functionality (66). In line with
this view, certain classes of topology-based methods for con-
nection definition may hold promise for individualized net-
work construction. Specifically, each individual brain opti-
mizes its economic wiring in terms of cost and efficiency,
reaching a trade-off between minimizing costs and allowing
the emergence of adaptive topology. Our results demonstrate
that such highly individualized functional connectomes gen-
erated by the topology-based methods are more reliable than
those by the threshold-methods. This reflects the increases
of individual differences in functional connectomes attribut-
ing to the optimal wiring economics at individual level. The
topological optimization also brings other benefits such as
ensuring that a graph forms a single connected component
and preserving weak connections. Indeed ,there is increasing
evidence supporting the hypothesis that weak connections are
neurobiologically meaningful and explain individual differ-
ences in mind, behavior and demographics as well as disor-
ders (67–69). Weak connections in a graph may be consistent
across datasets and reproducible within the same individual
over multiple scan sessions and therefore be reliable. Weak
connections might also play non-trivial roles in transformed
versions of the original brain network, e.g. so-called “edge-
based functional connectivity” (70). Among these topology-
based methods, MST is the simplest and promising filtering
method if computational efficiency is the priority. MST can
obtain a graph with the same number of nodes and edges, and
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it is not sensitive to scaling effects, because its structure only
depends on the order rather than the absolute values of the
edges (71). Although MST loses some local network mea-
surements due to the limited number of edges, it has some
other unique metrics that can be calculated (e.g., leaf frac-
tion, tree hierarchy). A better alternative might be TMFG
which computationally very efficient and statistically robust,
while the OMST and OTMFG are the most reliable choices
given priority to large individual differences.

Principle IV: Characterise information flow with net-
work integration and segregation metrics. Functional
connectomes reflect the outcome of communication pro-
cesses and information flows between pairs of brain regions.
How information and other signals propagate between pairs
of brain regions can be assayed using network neuroscien-
tific metrics and is essential to understanding normative con-
nectome function and its variation in clinical settings (72).
While the ground truth functional connectome is unknown
(and may not exist (73)), network models can help validate
the imaging-based reconstructions of human functional con-
nectomes (1). From a perspective of individual differences,
reliable FNN is the basis of achieving valid measurements
of the individual differences in FNN metrics (16). Our find-
ings indicated that both the brain network segregation and
integration could be reliably measured with functional con-
nectomics using rfMRI by the optimized pipelines. At the
global level, measures of information integration, e.g. char-
acteristic path length and efficiency, were more reliable than
those of information segregation, e.g. modularity and clus-
tering coefficient. Our results also revealed that measures of
integration were more stable across different scan sessions
(i.e., the test-retest) for an individual subject than the seg-
regation measurements while the inter-individual variability
are measured at the similar level for both integration and
segregation metrics. At nodal level, mapping reliability of
the network measurements revealed interesting spatial pat-
terns. Specifically, we found that cortical areas were gener-
ally associated with more reliable local measurements com-
pared to subcortical areas. This may reflect different func-
tional roles for human cortex and subcortex. For example,
the differences in reliability of path-based metrics might re-
flect the fact that there are more within-community paths in
cortex while between-community paths are more common
in subcortex. Beyond this cortical-subcortical gradient, re-
liability of the nodal information flow also fit the left-right
asymmetry and dorsal-ventral as well as posterior-anterior
gradient, implying the potential validity of individual dif-
ferences in information flow attributing to evolutionary, ge-
netic and anatomical factors (74–77). To facilitate the util-
ity of reliable network integration and segregation metrics in
FNN, we integrated all the reliability resources into an online
platform for reliability queries on specific metrics of infor-
mation flow (http://ibraindata.com/research/
reliablenetworkneuroscience).

Conclusion, limitations and future. Here, we adopt a big
data approach to systematically explore the reliability of

functional brain networks by richly sampling the parame-
ters of various steps in the network construction and analy-
sis pipeline. The results of this analysis provided robust ex-
perimental evidence supporting four key principles that will
support reliable network neuroscience measurements and ap-
plications. These principles can serve as the base for build-
ing guidelines on the use of FNN to map individual differ-
ences. Standard guidelines are essential for improvements
of reproducibility in the research practice, and our findings
provide experimental resources for such standardization in
future network neuroscience applications. We note, however,
that while our approach was extensive, it was not exhaustive
– the analytical sampling procedure could miss many other
existing choices (e.g., consensus-based thresholding for the
edge filtering stage). The processing decisions that yield reli-
able connectomes may yield the most reliable network statis-
tics, but there may be another way to process data that yields
overall a higher level of reliability in network measures. Fu-
ture work can build on our study by exploring these and other
choices using the online computation and evaluation platform
that accompanies the present study. Of note, the measure-
ment reliability is not the final goal but the validity, which
must be considered although not easily ready for a direct ex-
amination (16). Validation (through various indirect validity
assessments) on the use of the proposed principles represents
a promising arena for future FNN studies (5).

Online Methods
Using the HCP test-retest dataset, our analytic procedure im-
plemented four post-processing stages (Fig. 1a): node defini-
tion, edge construction, network measurement and reliability
assessments. Specifically, the test-retest rfMRI dataset un-
derwent the standardized preprocessing pipeline developed
by the HCP team (34). The second step defines nodes (green
box) using sets of brain areas based on 24 partitions, and then
extracts the nodal time series. During the third step (yellow
box), individual correlation matrices are first estimated based
upon the six frequency bands derived from Buzsáki’s theo-
retical framework on brain oscillations (35) along with the
classical band widely used (0.01 - 0.08 Hz). These matrices
are then converted into adjacency matrices using 4×12 = 48
strategies on edge filtering. In the fourth step, we performed
graph analyses (blue box) by systematically calculating the
brain graph metrics at global, modular and nodal scales. Fi-
nally, test-retest reliability was evaluated (red box) as ICCs
with the linear mixed models.

Test-Retest Dataset. The WU-Minn Consortium in HCP
shared a set of test-retest multimodal MRI datasets of 46
subjects from both the S1200 release and the Retest release.
These subjects were retested using the full HCP 3T multi-
modal imaging and behavioral protocol. Each subject un-
derwent the four scans on two days (two scans per day:
Rest1 versus Rest2) during the first visit and returned sev-
eral months later to finish the four scans on another two days
during the second visit (Fig. 1b). The test-retest interval
ranged from 18 to 328 days (mean: 4.74 months, standard
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deviation: 2.12 months). Only 41 subjects (28 females, age
range: 26-35 years; 13 males, age range: 22-33 years) had
full length rfMRI data across all the eight scans, and were
included in the subsequent analyses. As indicated in the lit-
erature (22, 34), rfMRI protocols used by HCP for scanning
and preprocessing images have been optimized for reliability.

During the scanning, participants were instructed to
keep their eyes open and to let their mind wander while fix-
ating on a cross-hair projected on a dark background. Data
were collected on the 3T Siemens Connectome Skyra MRI
scanner with a 32-channel head coil. All functional images
were acquired using a multiband gradient-echo EPI imaging
sequence (2mm isotropic voxel, 72 axial slices, TR = 720ms,
TE = 33.1ms, flip angle = 52°, field of view = 208×180 mm2,
matrix size = 104× 90 and a multiband factor of 8). A total
of 1200 images was acquired for a duration of 14 min and 24
s. Details on the imaging protocols can be found in (78).

The protocols of rfMRI image preprocessing and
artifact-removal procedures are documented in detail else-
where and generated the minimally preprocessed HCP rfMRI
images. It is note that artifacts were removed using the Ox-
ford Center for Functional MRI of the Brain’s ICA-based X-
noiseifier (ICA + FIX) procedure, followed by MS-MAll for
inter-subject registration. The preprocessed rfMRI data were
represented as a time series of grayordinates (4D), combining
both cortical surface vertices and subcortical voxels (34).

Node Definition. A brain graph defines a node as a brain
area, which is generally derived by an element of brain par-
cellation (parcel) according to borders or landmarks of brain
anatomy, structure or function as well as an element of vol-
ume (voxel) in imaging signal acquisition or a cluster of vox-
els (79). Due to the high computational demand of voxel-
based brain graph, in this study we defined nodes as parcels
according to the following brain parcellation strategies (Fig.
2a). A surface-based approach has been demonstrated to out-
perform other approaches for fMRI analysis (26, 80) and thus
the nodes are defined in the surface space (total 30 surface
parcellation choices). We adopted a naming convention for
brain parcellations as follows: ‘ParcAbbr-NumberOfParcels’
(e.g., LGP-100 or its whole-brain version wbLGP-458).

HCP Multi-Modal Parcellation (MMP) A cortical parcel-
lation generated from multi-modal images of 210
adults from the HCP database, using a semi-automated
approach (81). Cortical regions are delineated with re-
spect to their function, connectivity, cortical architec-
ture, and topography, as well as, expert knowledge and
meta-analysis results from the literature (81). The atlas
contains 180 parcels for each hemisphere.

Local-Global Parcellation (LGP) A gradient-weighted
Markov Random Field model integrating local gra-
dient and global similarity approaches produces the
novel parcellations (82). The final version of LGP
comes with a multi-scale cortical atlas including 100,
200, 300, 400, 500, 600, 700, 800, 900, and 1000
parcels (equal numbers across the two hemispheres).

One benefit of using LGP is to have nodes with almost
the same size, and these nodes are also assigned to the
common large-scale functional networks (40).

Brainnetome Parcellation (BNP) Both anatomical land-
marks and connectivity-driven information are em-
ployed to develop this volumetric brain parcellation
(83). Specifically, anatomical regions defined as in
(84) are parcellated into subregions using functional
and structural connectivity fingerprints from HCP
datasets. Cortical parcels are obtained by projecting
their volume space to surface space. It is noticed
that the original BNP contains both cortical (105 ar-
eas per hemisphere) and subcortical (36 areas) regions
but only the 210 cortical parcels are included for the
subsequent analyses.

Whole-Brain Parcellation (wb) Inclusion of subcortical ar-
eas has been shown unignorable influences on brain
graph analyses (23, 60), and we thus also constructed
brain graphs with subcortical structures in volume
space as nodes by adding these nodes to the corti-
cal brain graphs. To get a high-resolution subcortical
parcellation, we adopted the 358 subcortical parcels
in (85). The authors employed data of 337 unrelated
HCP healthy volunteers and extended the MMP corti-
cal network partition into subcortex. This results a set
of whole-brain parcellations by combining these sub-
cortical parcels with the aforementioned cortical par-
cellations, namely wbMMP,wbLGP and wbBNP. We
noticed that the wbMMP-718 has been named by the
authors of (85) as the Cole-Anticevic Brain-wide Net-
work Partition, and we thus renamed the wbMMP-718
as wbCABP-718 for consistency.

Edge Construction. After defining the node with each par-
cellation, in each parcel, regional mean time series were esti-
mated by averaging the vertex time series at each time point.
To construct an edge between a pair of nodes, their represen-
tative time series entered into the following steps in order:
band-pass filtering, inter-node connectivity transformation,
and edge filtering.

Band-Pass Filtering. Resting-state functional connectivity
studies have typically focused on fluctuations below 0.08
Hz or 0.1 Hz (6, 86), and assumed that only these frequen-
cies contribute significantly to inter-regional functional con-
nectivity (FC) while other frequencies are artifacts (87). In
contrast, however, other studies have found that specific fre-
quency bands of the rfMRI oscillations make unique and neu-
robiologically meaningful contributions to resting-state func-
tional connectivity (22, 88). More recently, with fast fMRI
methods, some meaningful FC patterns were reported across
much higher frequency bands (89). These observations moti-
vate exploring a range of frequency bands beyond those typ-
ically studied in resting-state functional connectivity studies,
including faster frequencies.

Buzsáki and Draguhn (35) proposed a hierarchical orga-
nization of frequency bands driven by the natural logarithm
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linear law. This offers a theoretical template for partitioning
rfMRI frequency content into multiple bands (Fig. 3a). The
frequencies occupied by these bands have a relatively con-
stant relationship to each other on a natural logarithmic scale
and have a constant ratio between any given pair of neighbor-
ing frequencies (37). These different oscillations are linked
to different neural activities, including cognition, emotion
regulation, and memory (37, 64, 86). Advanced by the fast
imaging protocols offered by the HCP scanner, the short scan
interval (TR = 720ms) allows us to obtain more oscillation
classes that the traditional rfMRI method. We incorporate the
Buzsáki’s framework (35, 38) with the HCP fast-TR datasets
by using the DREAM toolbox (39) in the Connectome Com-
putation System (29). It decomposed the time series into the
six slow bands as illustrated in Fig. 3a.

Connectivity Transformation. For each scan, individual nodal
representative time series were band-pass filtered with each
of the six frequency bands, and another empirical frequency
band, slow-emp (0.01-0.08Hz). The Pearson’s correlation
rij ∈ [−1,1] between the filtered time series of each pair
of nodes i = 1, ...,N,j = 1, ...,N was calculated (N is the
number of nodes). These correlation values provided an es-
timation on the edge strengths between the two nodes, and
formed a N ×N symmetric correlation matrix R= (rij) for
each given subject, scan, parcellation, and frequency band.

Many network metrics are not well defined for neg-
atively weighted connections. In order to ensure that the
connection weights are positive only, we applied four types
of transformations to the symmetric correlation matrix: the
positive (Eq.pos), absolute (Eq.abs), exponential (Eq.exp)
and distance-inverse (Eq.div) functions, respectively. This
avoids the negative values in the inter-node connectivity
matrix W = (wij) where zij = tanh−1 (rij) is Fisher’s
z−transformation.

wij = zij + |zij |
2 ∈ [0,∞) (pos)

wij = |zij | ∈ [0,∞) (abs)

wij = ezij ∈ [0,∞) (exp)

wij = 2√
2× (1− rij)

∈ (0,∞) (div)

The connectivity matrix represents a set of the node
parcels and relational quantities between each pair of the
nodes, and will serve as the basis of following edge filtering
procedure for generation of the final brain graphs.

Edge Filtering. In a graph, edges represent a set of relevant
interactions of crucial importance to obtain parsimonious de-
scriptions of complex networks. Filtering valid edges can be
highly challenging due to the lack of ‘ground truth’ of the hu-
man brain connectome. To provide a reliable way of building
candidate edges, we sampled the following 12 schemes on
edge filtering and applied them to the connectivity matrices.

Absolute Weight Thresholding (ABS) This approach se-
lects those edges that exceed a manually defined abso-
lute threshold (e.g., correlations higher than 0.5), set-
ting all correlations smaller than 0.5 to 0 (ABS05).
This is a simple approach to reconstruct networks (90).

Proportional Thresholding (PROP) It is a common step in
the reconstruction of functional brain networks to en-
sure equal edge density across subjects (91–93). It
keeps the number of connections fixed across all in-
dividuals to rule out the influence of network density
on the computation and comparison of graph metrics
across groups. This approach includes the selection
of a fixed percentage of the strongest conncections as
edges in each individual network or brain graph. Com-
pared to ABS, PROP has been argued to reliably sep-
arate density from topological effects (30, 94) and to
result in more stable network metrics (95). This makes
it a commonly used approach for network construction
and analysis in disease-related studies. Here, we fo-
cused on two threshholds that are commonly reported
in the literature: 10% (PROP10) and 20% (PROP20).

Degree Thresholding (DEG) The structure of a graph can
be biased by the number of existing edges. Ac-
cordingly, statistical measures derived from the graph
should be compared against graphs that preserve the
same average degree, K. A threshold of the degree
can be chosen to produce graphs with a fixed mean de-
gree (e.g., K = 5, DEG5), which is the average nodal
degrees of an individual graph from a single subject’s
scan. Many network neuroscience studies have taken
this choice for K = 5 (96–99). We also include the
DEG15 for denser graphs of the brain networks.

Global Cost Efficiency Optimization (GCE) Given a net-
work with a cost ρ, its global efficiency is a function of
the cost Eg(ρ), and its GCE is J(ρ) =Eg(ρ)−ρ. Sev-
eral studies suggested that brain networks, in partic-
ular those with small-world topology, maximize their
global-cost efficiency (45), i.e., Jmax = maxρJ(ρ).
Computationally, this scheme is implemented by loop-
ing all network costs (e.g., adding edges with weights
in order) to find the Jmax (see Fig. 2b) where the cor-
responding edge weight was determined as the thresh-
old for edge filtering. In this sense, GCE is an individu-
alised and optimised version of ABS, PROP and DEG
while the latter three are commonly employed with a
fixed threshold for all individuals.

Overall Efficiency Cost Optimization (ECO) Both global
and local efficiency are important graph features to
characterize the structure of complex systems in terms
of integration and segregation of information (100).
ECO was proposed to determine a network density
threshold for filtering out the weakest links (101). It
maximizes an extension of Jmax, the ratio between the
overall (both global and local) efficiency and its wiring
cost maxρJext(ρ) = (Eg(ρ)+Eloc(ρ))/ρwhereEloc
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denotes the network local efficiency. The study (100)
also demonstrated that, to maximize J , these networks
have to be sparse with an average node degree K ' 3.

Minimum Spanning Tree (MST) This is an increasingly
popular method for identifying the smallest and most
essential set of connections while ensuring that the net-
work forms a fully connected graph (102–105). The
tenet of using MST is to summarize information and
index structure of the graph, and thus remove edges
with redundant information (41). Specifically, an MST
filtered graph will contain N nodes connected via
N − 1 connections with minimal cost and no loops.
This addresses key issues in existing topology filter-
ing schemes that rely on arbitrary and user-specified
absolute thresholds or densities.

Orthogonal Minimum Spanning Tree (OMST) This
topological filtering scheme was proposed recently
(42) to maximize the information flow over the
network versus the cost by selecting the connections
via the OMSTs. It samples the full-weighted brain
network over consecutive rounds of MST that are
orthogonal to each other (see Fig. 2b). Practically,
we extracted the 1st MST, and then we cleared their
connections and we tracked the 2nd MST from the
rest of the network connections, etc. Such an iterative
procedure (stopped by the M th MST) can get orthog-
onal MSTs and topologically filter brain network by
optimizing the GCE under the constrains by the MST,
leading to an integration of both GCE and MST

max
n∈[1,M ]

J(ρ(nMSTs)) =Eg(ρ(nMSTs))−ρ(nMSTs)

Planar Maximally Filtered Graph (PMFG) The idea un-
derneath PMFG (43) is to filter a dense matrix of
weights by retaining the largest possible subgraph
while imposing global constraints on the topology
of the resulting network. In particular, edges with
the strong connection weights are retained while con-
straining the subgraph to be a (spanning) tree globally.
Similarly, during the PMFG construction, the largest
weights are retained while constraining the subgraph
to be a planar graph globally. The PMFG algorithm
searches for the maximum weighted planar subgraph
by adding edges one by one. The resulting matrix is
sparse, with 3(N −2) edges. It starts by sorting all the
edges of a dense matrix of weights in non-increasing
order and tries to insert every edge in the PMFG. Edges
that violate the planarity constraint are discarded.

Triangulated Maximally Filtered Graph (TMFG) The
algorithm for implementing PMFG is computation-
ally expensive, and is therefore impractical when
applied to large brain networks (44). A more efficient
algorithms, TMFG, was developed that exhibited
greatly reduced computational complexity compared
to PMFG. This method captures the most relevant

information between nodes by approximating the
network connectivity matrix with the endorsement
association matrix and minimizing spurious associa-
tions. The TMFG derived network contains 3-node
(triangle) and 4-node (tetrahedron) cliques, imposing a
nested hierarchy and automatically generates a chordal
network (44, 106). Although TMFG is not widely
applied in network neuroscience studies, it as been
applied elsewhere and proven to be a suitable choice
for modeling interrelationships between psychological
constructs like personality traits (107).

Orthogonal TMF Graph (OTMFG) To combine both the
TMFG’s efficiency and OMST’s accuracy, we propose
OTMFG to maximize the information flow over the
network versus the cost by selecting the connections
of the orthogonal TMFG. It samples the full-weighted
brain network over consecutive rounds of TMFG that
are orthogonal to each other.

In summary, as illustrated in Fig. 4a, the 12 edge filter-
ing schemes transform a fully weighted matrix into a sparse
matrix to represent the corresponding brain network. They
can be categorized into two classes: threshold-based versus
topology-based schemes. ABS05, PROP10, PROP20, DEG5,
DEG15, ECO and GCE rely on a threshold for filtering and
retaining edges with higher weights than the threshold. These
schemes normally ignore the topological structure of the en-
tire network and can result in isolated nodes. In contrast,
the topology-based methods including MST, OMST, PMFG,
TMFG and OTMFG, all consider the global network topol-
ogy in determining which edges to retain. As illustrated in
Fig. 4b, all the schemes are plotted in the ρ−Jmax plane for
their network economics.

Network Analysis. We performed graph-theory-driven net-
work analysis by calculating several common graph-based
metrics for the resulting graphs. These measures, broadly,
can be interpreted based on whether the characterize the ex-
tent to which network structure allows for integrated or seg-
regation information flow. Examples of integrative measures
include average shortest path length (Lp), global efficiency
(Eg), and pseudo diameter (D). Segregation measures in-
clude clustering coefficient (Cp), local efficiency (Elocal),
transitivity (Tr), modularity (Q), and a suite of nodal cen-
trality measures (Appendix 1). All the metrics are cal-
culated using functions included in the Brain Connectiv-
ity Toolbox (108). We employed graph-tool (https://
graph-tool.skewed.de) and NetworKit (https://
networkit.github.io) to achieve high performance
comparable (both in memory usage and computation time) to
that of a pure C/C++ library. We treated these metrics as the
network measurements for subsequent reliability analysis.

Reliability Assessments. Measurement reliability is de-
fined as the extent to which measurements can be replicated
across multiple repeated measures. Test-retest reliability is
the closeness of the agreement between the results of succes-
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sive measurements of the same measure and carried out under
the same conditions of measurement.

Linear mixed models. As a group-level statistic, reliability
refers to the inter-individual or between-subject variability
Vb relative to the intra-individual or within-subject variabil-
ity Vw. Both the intra- and inter-individual variances can be
estimated using linear mixed model (LMM). In this study,
given a functional graph metric φ, we considered a random
sample of P subjects with N repeated measurements of a
continuous variable in M visits. φijk (for i = 1, · · · ,N and
j = 1, · · · ,M , and k = 1, · · · ,P ) denotes the metric from the
kth subject’s jth visit and ith measurement occasions. The
three-level LMM models φijk as the following equations:

Graph metric︷︸︸︷
φijk = γ000︸︷︷︸

fixed
intercept

+ p0k︸︷︷︸
random intercepts
level 3, subjects

+ v0jk︸︷︷︸
random intercepts

level 2, visits

+ eijk︸︷︷︸
random
residuals

Where γ000 is a fixed parameter (the group mean) and p0k,
v0jk and eijk are independent random effects normally dis-
tributed with a mean of 0 and variances σ2

p0, σ2
v0, and σ2

e . The
term p0k is the subject effect, v0jk is the visit effect and eijk
is the measurement residual. Age, gender and interval(∆t)
between two visits are covariants.

ICC Estimation. These variances are used to calculate the
test-retest reliability, which is measured by the dependabil-
ity coefficient and reflects the absolute agreement of mea-
surements. The dependability coefficient is a form of the
intraclass correlation coefficient (ICC) commonly, which is
the ratio of the variances due to the object of measurement
versus sources of error. To avoid negative ICC values and
obtain more accurate estimation of the sample ICC, the vari-
ance components in model are usually estimated with the re-
stricted maximum likelihood (ReML) approach with the co-
variance structure of an unrestricted symmetrical matrix (26).

Reliability(φ) = Vb
Vb+Vw

=
σ2
p0

σ2
p0 +σ2

e

(ICC)

A metric with moderate to almost perfect test-retest re-
liability (ICC≥ 0.4) is commonly expected in practice. The
level of reliability should not be judged only based upon the
point statistical estimation of ICC but its confidence inter-
vals (CI) (109). We employed the nonparametric conditional
bootstrap method for 1000 times to estimate their 95% CIs.

Statistics Evaluation. Our analyses can produce big data of
reliability statistics including 419,328 ICCs for the global
network metrics. These ICCs are grouped into four cate-
gories (parcellation, frequency band, connectivity transfor-
mation and edge filtering scheme), each of which has differ-
ent choices. Given each choice of a category, we estimated
its density distributions of ICCs and calculated two descrip-
tive statistics: 1) mean ICC values, which measures the gen-
eral reliability under the given choice; 2) number of almost

perfect (noap) ICC values, which measures the potential re-
liability under the given choice.

We further perform Friedman rank sum test to evalu-
ate whether the location parameters of the distribution of
ICCs are the same in each choice. Once the Friedman test
is significant, we employ the pairwise Wilcoxon signed rank
test for post-hoc evaluations to compare ICCs between each
pair of the distributions under different choices. The statisti-
cal significance levels are corrected with Bonferroni method
for controlling the family wise error rate at a level of 0.05.
We develop a method to visualize and evaluate the change
of ICCs (i.e., reliability gradient) between different choices
(Fig. 1c). Specifically, the reliability can be plotted as a
function of Vb and Vw in its anatomy plane (15, 16). The
gradient of reliability between two choices is modeled by the
vector (i.e., the black arrow), and decomposed into changes
of individual variability. The systematic evaluation on the
reliability of the global network metrics determines the op-
timal network neuroscience by combining the most reliable
pipeline choices. Finally, the optimized pipeline generates
the nodal metrics as well as their reliability.
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1 Parcellations - Node Definition

1.1 ICC Density distribution

LGP−1000

MMP−360

LGP−100

LGP−200

BNP−210

LGP−900

LGP−700

LGP−300

LGP−800

LGP−600

LGP−400

LGP−500

wbLGP−1358

wbLGP−1158

wbLGP−958

wbLGP−1258

wbCABP−718

wbLGP−758

wbLGP−1058

wbLGP−658

wbLGP−858

wbBNP−568

wbLGP−558

wbLGP−458

0.0 0.2 0.4 0.6 0.8 1.0
ICC

Quartiles 1 2 3 4

parcellation

Fig. S1. Parcellation - Density distribution

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.05.06.442886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442886
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.2 ICC Almost Perfect ( ICCs > 0.8 )

Table S1. Parcellation - Number of ICCs > 0.8

parcellation n ratio

wbLGP-558 540 0.2295918

wbLGP-458 519 0.2206633

wbBNP-568 511 0.2172619

wbLGP-958 486 0.2066327

wbLGP-1058 484 0.2057823

wbLGP-1258 482 0.2049320

wbLGP-858 478 0.2032313

wbCABP-718 463 0.1968537

wbLGP-658 444 0.1887755

wbLGP-1358 440 0.1870748

wbLGP-1158 416 0.1768707

wbLGP-758 413 0.1755952
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Fig. S2. Parcellation - Number of ICCs > 0.8
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1.3 Substantial or Above ( ICCs > 0.6 )

Table S2. Parcellation - Number of ICCs > 0.6

parcellation n ratio

wbLGP-458 1328 0.5646259

wbLGP-558 1320 0.5612245

wbBNP-568 1298 0.5518707

wbLGP-858 1263 0.5369898

wbLGP-758 1248 0.5306122

wbLGP-658 1245 0.5293367

wbLGP-1058 1239 0.5267857

wbCABP-718 1224 0.5204082

wbLGP-1258 1216 0.5170068

wbLGP-1158 1211 0.5148810

wbLGP-958 1209 0.5140306

wbLGP-1358 1141 0.4851190

LGP-500 97 0.0412415

LGP-700 92 0.0391156

LGP-600 85 0.0361395

BNP-210 71 0.0301871

MMP-360 66 0.0280612

LGP-400 51 0.0216837

LGP-300 47 0.0199830

LGP-800 46 0.0195578

LGP-900 38 0.0161565

LGP-1000 37 0.0157313

LGP-200 24 0.0102041

LGP-100 21 0.0089286
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1.4 Descriptive statistics Mean

Table S3. Parcellation - ICC Mean

parcellation variable n mean mean_z2r

wbLGP-458 ICC.z 2352 0.813 0.6712419

wbLGP-558 ICC.z 2352 0.812 0.6706921

wbBNP-568 ICC.z 2352 0.800 0.6640368

wbLGP-858 ICC.z 2352 0.777 0.6509814

wbLGP-658 ICC.z 2352 0.775 0.6498275

wbLGP-1058 ICC.z 2352 0.770 0.6469295

wbCABP-718 ICC.z 2352 0.765 0.6440126

wbLGP-758 ICC.z 2352 0.765 0.6440126

wbLGP-1258 ICC.z 2352 0.764 0.6434270

wbLGP-958 ICC.z 2352 0.760 0.6410770

wbLGP-1158 ICC.z 2352 0.746 0.6327565

wbLGP-1358 ICC.z 2352 0.731 0.6236768

LGP-500 ICC.z 2352 0.379 0.3618387

LGP-400 ICC.z 2352 0.356 0.3416859

LGP-600 ICC.z 2352 0.354 0.3399182

LGP-800 ICC.z 2352 0.354 0.3399182

LGP-300 ICC.z 2352 0.347 0.3337123

LGP-700 ICC.z 2352 0.344 0.3310437

LGP-900 ICC.z 2352 0.340 0.3274774

BNP-210 ICC.z 2352 0.335 0.3230063

LGP-200 ICC.z 2352 0.330 0.3185208

LGP-100 ICC.z 2352 0.329 0.3176219

MMP-360 ICC.z 2352 0.326 0.3149220

LGP-1000 ICC.z 2352 0.324 0.3131193
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1.5 Descriptive statistics Median

Table S4. Parcellation - ICC Median

parcellation variable n median

wbLGP-558 ICC 2352 0.662

wbBNP-568 ICC 2352 0.641

wbLGP-458 ICC 2352 0.637

wbLGP-858 ICC 2352 0.637

wbLGP-758 ICC 2352 0.636

wbLGP-658 ICC 2352 0.633

wbLGP-1058 ICC 2352 0.622

wbLGP-1258 ICC 2352 0.614

wbCABP-718 ICC 2352 0.613

wbLGP-1158 ICC 2352 0.613

wbLGP-958 ICC 2352 0.608

wbLGP-1358 ICC 2352 0.589

LGP-500 ICC 2352 0.392

LGP-800 ICC 2352 0.371

LGP-400 ICC 2352 0.369

LGP-600 ICC 2352 0.367

LGP-300 ICC 2352 0.356

LGP-900 ICC 2352 0.355

LGP-700 ICC 2352 0.352

BNP-210 ICC 2352 0.337

LGP-100 ICC 2352 0.335

LGP-200 ICC 2352 0.334

LGP-1000 ICC 2352 0.329

MMP-360 ICC 2352 0.314

1.6 Friedman Test

Table S5. Parcellation - Friedman Test

.y. n statistic df p method

ICC.z 2352 20379.07 23 0 Friedman test

1.7 Friedman Test Effect size

Table S6. Parcellation - Friedman Test Effect size

.y. n effsize method magnitude

ICC.z 2352 0.3767205 Kendall W moderate
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1.8 Paired Wilcoxon signed rank test

Table S7. Parcellation - Paired Wilcoxon signed rank test

group1 group2 n1 statistic alternative p p.adj p.adj.signif

BNP-210 LGP-100 2352 1302001 two.sided 1.60e-02 1.0000000 ns

BNP-210 LGP-1000 2352 1379617 two.sided 0.00e+00 0.0000030 ****

BNP-210 LGP-200 2352 1330962 two.sided 2.00e-03 0.5520000 ns

BNP-210 LGP-300 2352 1047149 two.sided 0.00e+00 0.0000037 ****

BNP-210 LGP-400 2352 928029 two.sided 0.00e+00 0.0000000 ****

BNP-210 LGP-500 2352 686156 two.sided 0.00e+00 0.0000000 ****

BNP-210 LGP-600 2352 1004541 two.sided 0.00e+00 0.0000000 ****

BNP-210 LGP-700 2352 1105948 two.sided 1.76e-04 0.0485760 *

BNP-210 LGP-800 2352 945406 two.sided 0.00e+00 0.0000000 ****

BNP-210 LGP-900 2352 1144573 two.sided 8.00e-03 1.0000000 ns

BNP-210 MMP-360 2352 1340035 two.sided 2.40e-04 0.0662400 ns

BNP-210 wbBNP-568 2352 160500 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbCABP-718 2352 162989 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-1058 2352 176518 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-1158 2352 199995 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-1258 2352 180282 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-1358 2352 232751 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-458 2352 145336 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-558 2352 148873 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-658 2352 175789 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-758 2352 180496 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-858 2352 170819 two.sided 0.00e+00 0.0000000 ****

BNP-210 wbLGP-958 2352 189206 two.sided 0.00e+00 0.0000000 ****

LGP-100 LGP-1000 2352 1315278 two.sided 6.00e-03 1.0000000 ns

LGP-100 LGP-200 2352 1255194 two.sided 5.26e-01 1.0000000 ns

LGP-100 LGP-300 2352 1010235 two.sided 0.00e+00 0.0000000 ****

LGP-100 LGP-400 2352 912286 two.sided 0.00e+00 0.0000000 ****

LGP-100 LGP-500 2352 659721 two.sided 0.00e+00 0.0000000 ****

LGP-100 LGP-600 2352 981916 two.sided 0.00e+00 0.0000000 ****

LGP-100 LGP-700 2352 1129951 two.sided 4.59e-04 0.1266840 ns

LGP-100 LGP-800 2352 994724 two.sided 0.00e+00 0.0000000 ****

LGP-100 LGP-900 2352 1156218 two.sided 1.40e-02 1.0000000 ns

LGP-100 MMP-360 2352 1275769 two.sided 1.06e-01 1.0000000 ns

LGP-100 wbBNP-568 2352 159540 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbCABP-718 2352 161073 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-1058 2352 170565 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-1158 2352 187780 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-1258 2352 168428 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-1358 2352 215782 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-458 2352 130296 two.sided 0.00e+00 0.0000000 ****
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Table S7. Parcellation - Paired Wilcoxon signed rank test (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

LGP-100 wbLGP-558 2352 136606 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-658 2352 172094 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-758 2352 179105 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-858 2352 167470 two.sided 0.00e+00 0.0000000 ****

LGP-100 wbLGP-958 2352 185024 two.sided 0.00e+00 0.0000000 ****

LGP-1000 LGP-200 2352 1144843 two.sided 5.00e-03 1.0000000 ns

LGP-1000 LGP-300 2352 907429 two.sided 0.00e+00 0.0000000 ****

LGP-1000 LGP-400 2352 756937 two.sided 0.00e+00 0.0000000 ****

LGP-1000 LGP-500 2352 564982 two.sided 0.00e+00 0.0000000 ****

LGP-1000 LGP-600 2352 766240 two.sided 0.00e+00 0.0000000 ****

LGP-1000 LGP-700 2352 813046 two.sided 0.00e+00 0.0000000 ****

LGP-1000 LGP-800 2352 724898 two.sided 0.00e+00 0.0000000 ****

LGP-1000 LGP-900 2352 862540 two.sided 0.00e+00 0.0000000 ****

LGP-1000 MMP-360 2352 1194004 two.sided 6.30e-01 1.0000000 ns

LGP-1000 wbBNP-568 2352 146449 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbCABP-718 2352 133629 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-1058 2352 143488 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-1158 2352 152381 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-1258 2352 140457 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-1358 2352 180243 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-458 2352 126403 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-558 2352 130477 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-658 2352 146959 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-758 2352 146560 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-858 2352 144497 two.sided 0.00e+00 0.0000000 ****

LGP-1000 wbLGP-958 2352 151257 two.sided 0.00e+00 0.0000000 ****

LGP-200 LGP-300 2352 925471 two.sided 0.00e+00 0.0000000 ****

LGP-200 LGP-400 2352 832641 two.sided 0.00e+00 0.0000000 ****

LGP-200 LGP-500 2352 576900 two.sided 0.00e+00 0.0000000 ****

LGP-200 LGP-600 2352 932917 two.sided 0.00e+00 0.0000000 ****

LGP-200 LGP-700 2352 1091274 two.sided 3.40e-06 0.0009301 ***

LGP-200 LGP-800 2352 917094 two.sided 0.00e+00 0.0000000 ****

LGP-200 LGP-900 2352 1112972 two.sided 1.30e-04 0.0358800 *

LGP-200 MMP-360 2352 1268709 two.sided 2.33e-01 1.0000000 ns

LGP-200 wbBNP-568 2352 144847 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbCABP-718 2352 149133 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-1058 2352 160610 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-1158 2352 180943 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-1258 2352 164714 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-1358 2352 207338 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-458 2352 130665 two.sided 0.00e+00 0.0000000 ****
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Table S7. Parcellation - Paired Wilcoxon signed rank test (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

LGP-200 wbLGP-558 2352 131597 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-658 2352 154264 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-758 2352 164041 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-858 2352 159660 two.sided 0.00e+00 0.0000000 ****

LGP-200 wbLGP-958 2352 176411 two.sided 0.00e+00 0.0000000 ****

LGP-300 LGP-400 2352 999180 two.sided 0.00e+00 0.0000000 ****

LGP-300 LGP-500 2352 629869 two.sided 0.00e+00 0.0000000 ****

LGP-300 LGP-600 2352 1060070 two.sided 2.00e-07 0.0000602 ****

LGP-300 LGP-700 2352 1259128 two.sided 1.03e-01 1.0000000 ns

LGP-300 LGP-800 2352 1069448 two.sided 2.00e-07 0.0000538 ****

LGP-300 LGP-900 2352 1299549 two.sided 6.00e-03 1.0000000 ns

LGP-300 MMP-360 2352 1483967 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbBNP-568 2352 164589 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbCABP-718 2352 158079 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-1058 2352 172650 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-1158 2352 196899 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-1258 2352 176738 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-1358 2352 227257 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-458 2352 143518 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-558 2352 144041 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-658 2352 173281 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-758 2352 170528 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-858 2352 163732 two.sided 0.00e+00 0.0000000 ****

LGP-300 wbLGP-958 2352 186563 two.sided 0.00e+00 0.0000000 ****

LGP-400 LGP-500 2352 767221 two.sided 0.00e+00 0.0000000 ****

LGP-400 LGP-600 2352 1251633 two.sided 2.34e-01 1.0000000 ns

LGP-400 LGP-700 2352 1517947 two.sided 0.00e+00 0.0000000 ****

LGP-400 LGP-800 2352 1303871 two.sided 1.20e-02 1.0000000 ns

LGP-400 LGP-900 2352 1477786 two.sided 0.00e+00 0.0000000 ****

LGP-400 MMP-360 2352 1583190 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbBNP-568 2352 178030 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbCABP-718 2352 168997 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-1058 2352 190089 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-1158 2352 212433 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-1258 2352 188919 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-1358 2352 246801 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-458 2352 151198 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-558 2352 159132 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-658 2352 190283 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-758 2352 185190 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-858 2352 182103 two.sided 0.00e+00 0.0000000 ****

LGP-400 wbLGP-958 2352 201977 two.sided 0.00e+00 0.0000000 ****
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Table S7. Parcellation - Paired Wilcoxon signed rank test (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

LGP-500 LGP-600 2352 1636990 two.sided 0.00e+00 0.0000000 ****

LGP-500 LGP-700 2352 1775407 two.sided 0.00e+00 0.0000000 ****

LGP-500 LGP-800 2352 1732442 two.sided 0.00e+00 0.0000000 ****

LGP-500 LGP-900 2352 1731306 two.sided 0.00e+00 0.0000000 ****

LGP-500 MMP-360 2352 1758329 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbBNP-568 2352 195928 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbCABP-718 2352 187217 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-1058 2352 202651 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-1158 2352 224307 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-1258 2352 206925 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-1358 2352 273700 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-458 2352 179170 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-558 2352 167854 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-658 2352 207577 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-758 2352 205183 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-858 2352 190097 two.sided 0.00e+00 0.0000000 ****

LGP-500 wbLGP-958 2352 223872 two.sided 0.00e+00 0.0000000 ****

LGP-600 LGP-700 2352 1517047 two.sided 0.00e+00 0.0000000 ****

LGP-600 LGP-800 2352 1268374 two.sided 2.70e-02 1.0000000 ns

LGP-600 LGP-900 2352 1454702 two.sided 0.00e+00 0.0000000 ****

LGP-600 MMP-360 2352 1486050 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbBNP-568 2352 151395 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbCABP-718 2352 146032 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-1058 2352 151532 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-1158 2352 174886 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-1258 2352 164221 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-1358 2352 210481 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-458 2352 142445 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-558 2352 138450 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-658 2352 156775 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-758 2352 158441 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-858 2352 148288 two.sided 0.00e+00 0.0000000 ****

LGP-600 wbLGP-958 2352 145886 two.sided 0.00e+00 0.0000000 ****

LGP-700 LGP-800 2352 994539 two.sided 0.00e+00 0.0000000 ****

LGP-700 LGP-900 2352 1232646 two.sided 3.15e-01 1.0000000 ns

LGP-700 MMP-360 2352 1426998 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbBNP-568 2352 161398 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbCABP-718 2352 152205 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-1058 2352 163976 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-1158 2352 185951 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-1258 2352 167287 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-1358 2352 219346 two.sided 0.00e+00 0.0000000 ****
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Table S7. Parcellation - Paired Wilcoxon signed rank test (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

LGP-700 wbLGP-458 2352 142001 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-558 2352 145607 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-658 2352 169299 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-758 2352 169104 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-858 2352 164010 two.sided 0.00e+00 0.0000000 ****

LGP-700 wbLGP-958 2352 173569 two.sided 0.00e+00 0.0000000 ****

LGP-800 LGP-900 2352 1418708 two.sided 0.00e+00 0.0000000 ****

LGP-800 MMP-360 2352 1553788 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbBNP-568 2352 181300 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbCABP-718 2352 172356 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-1058 2352 188254 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-1158 2352 193741 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-1258 2352 188270 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-1358 2352 242146 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-458 2352 162709 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-558 2352 160927 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-658 2352 189416 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-758 2352 190433 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-858 2352 183382 two.sided 0.00e+00 0.0000000 ****

LGP-800 wbLGP-958 2352 201777 two.sided 0.00e+00 0.0000000 ****

LGP-900 MMP-360 2352 1411598 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbBNP-568 2352 161762 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbCABP-718 2352 150635 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-1058 2352 167674 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-1158 2352 175152 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-1258 2352 162633 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-1358 2352 210734 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-458 2352 143322 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-558 2352 145640 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-658 2352 166904 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-758 2352 172439 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-858 2352 161857 two.sided 0.00e+00 0.0000000 ****

LGP-900 wbLGP-958 2352 177763 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbBNP-568 2352 153083 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbCABP-718 2352 137815 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-1058 2352 158332 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-1158 2352 185386 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-1258 2352 166968 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-1358 2352 219183 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-458 2352 137964 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-558 2352 138865 two.sided 0.00e+00 0.0000000 ****

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.05.06.442886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442886
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S7. Parcellation - Paired Wilcoxon signed rank test (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

MMP-360 wbLGP-658 2352 156009 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-758 2352 164978 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-858 2352 157870 two.sided 0.00e+00 0.0000000 ****

MMP-360 wbLGP-958 2352 182605 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbCABP-718 2352 1639241 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-1058 2352 1547859 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-1158 2352 1533796 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-1258 2352 1447228 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-1358 2352 1650972 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-458 2352 1125170 two.sided 1.22e-05 0.0033672 **

wbBNP-568 wbLGP-558 2352 1098196 two.sided 2.40e-06 0.0006486 ***

wbBNP-568 wbLGP-658 2352 1550059 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-758 2352 1595774 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-858 2352 1458694 two.sided 0.00e+00 0.0000000 ****

wbBNP-568 wbLGP-958 2352 1661566 two.sided 0.00e+00 0.0000000 ****

wbCABP-718 wbLGP-1058 2352 1166229 two.sided 8.90e-02 1.0000000 ns

wbCABP-718 wbLGP-1158 2352 1266087 two.sided 3.20e-01 1.0000000 ns

wbCABP-718 wbLGP-1258 2352 1176085 two.sided 5.60e-02 1.0000000 ns

wbCABP-718 wbLGP-1358 2352 1400531 two.sided 1.00e-07 0.0000293 ****

wbCABP-718 wbLGP-458 2352 831718 two.sided 0.00e+00 0.0000000 ****

wbCABP-718 wbLGP-558 2352 757451 two.sided 0.00e+00 0.0000000 ****

wbCABP-718 wbLGP-658 2352 1045849 two.sided 0.00e+00 0.0000006 ****

wbCABP-718 wbLGP-758 2352 1166760 two.sided 5.80e-02 1.0000000 ns

wbCABP-718 wbLGP-858 2352 1068928 two.sided 4.00e-07 0.0001190 ***

wbCABP-718 wbLGP-958 2352 1278722 two.sided 8.60e-02 1.0000000 ns

wbLGP-1058 wbLGP-1158 2352 1310431 two.sided 1.00e-02 1.0000000 ns

wbLGP-1058 wbLGP-1258 2352 1068697 two.sided 1.00e-07 0.0000157 ****

wbLGP-1058 wbLGP-1358 2352 1503855 two.sided 0.00e+00 0.0000000 ****

wbLGP-1058 wbLGP-458 2352 921542 two.sided 0.00e+00 0.0000000 ****

wbLGP-1058 wbLGP-558 2352 830108 two.sided 0.00e+00 0.0000000 ****

wbLGP-1058 wbLGP-658 2352 1070610 two.sided 3.00e-07 0.0000944 ****

wbLGP-1058 wbLGP-758 2352 1177300 two.sided 2.97e-01 1.0000000 ns

wbLGP-1058 wbLGP-858 2352 975194 two.sided 0.00e+00 0.0000000 ****

wbLGP-1058 wbLGP-958 2352 1341281 two.sided 5.59e-05 0.0154284 *

wbLGP-1158 wbLGP-1258 2352 1053122 two.sided 0.00e+00 0.0000005 ****

wbLGP-1158 wbLGP-1358 2352 1451123 two.sided 0.00e+00 0.0000000 ****

wbLGP-1158 wbLGP-458 2352 908290 two.sided 0.00e+00 0.0000000 ****

wbLGP-1158 wbLGP-558 2352 892111 two.sided 0.00e+00 0.0000000 ****

wbLGP-1158 wbLGP-658 2352 1078962 two.sided 3.00e-07 0.0000836 ****

wbLGP-1158 wbLGP-758 2352 1178685 two.sided 1.16e-01 1.0000000 ns

wbLGP-1158 wbLGP-858 2352 1008073 two.sided 0.00e+00 0.0000000 ****

wbLGP-1158 wbLGP-958 2352 1295606 two.sided 3.40e-02 1.0000000 ns
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Table S7. Parcellation - Paired Wilcoxon signed rank test (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

wbLGP-1258 wbLGP-1358 2352 1612256 two.sided 0.00e+00 0.0000000 ****

wbLGP-1258 wbLGP-458 2352 994969 two.sided 0.00e+00 0.0000000 ****

wbLGP-1258 wbLGP-558 2352 957447 two.sided 0.00e+00 0.0000000 ****

wbLGP-1258 wbLGP-658 2352 1172824 two.sided 4.40e-02 1.0000000 ns

wbLGP-1258 wbLGP-758 2352 1273752 two.sided 1.74e-01 1.0000000 ns

wbLGP-1258 wbLGP-858 2352 1150313 two.sided 8.00e-03 1.0000000 ns

wbLGP-1258 wbLGP-958 2352 1390511 two.sided 1.00e-07 0.0000197 ****

wbLGP-1358 wbLGP-458 2352 824258 two.sided 0.00e+00 0.0000000 ****

wbLGP-1358 wbLGP-558 2352 808992 two.sided 0.00e+00 0.0000000 ****

wbLGP-1358 wbLGP-658 2352 968209 two.sided 0.00e+00 0.0000000 ****

wbLGP-1358 wbLGP-758 2352 1031212 two.sided 0.00e+00 0.0000000 ****

wbLGP-1358 wbLGP-858 2352 936260 two.sided 0.00e+00 0.0000000 ****

wbLGP-1358 wbLGP-958 2352 1134304 two.sided 6.89e-04 0.1901640 ns

wbLGP-458 wbLGP-558 2352 1264741 two.sided 5.63e-01 1.0000000 ns

wbLGP-458 wbLGP-658 2352 1598752 two.sided 0.00e+00 0.0000000 ****

wbLGP-458 wbLGP-758 2352 1629670 two.sided 0.00e+00 0.0000000 ****

wbLGP-458 wbLGP-858 2352 1517308 two.sided 0.00e+00 0.0000000 ****

wbLGP-458 wbLGP-958 2352 1684990 two.sided 0.00e+00 0.0000000 ****

wbLGP-558 wbLGP-658 2352 1702013 two.sided 0.00e+00 0.0000000 ****

wbLGP-558 wbLGP-758 2352 1693929 two.sided 0.00e+00 0.0000000 ****

wbLGP-558 wbLGP-858 2352 1557712 two.sided 0.00e+00 0.0000000 ****

wbLGP-558 wbLGP-958 2352 1716972 two.sided 0.00e+00 0.0000000 ****

wbLGP-658 wbLGP-758 2352 1388101 two.sided 0.00e+00 0.0000049 ****

wbLGP-658 wbLGP-858 2352 1241424 two.sided 5.82e-01 1.0000000 ns

wbLGP-658 wbLGP-958 2352 1515613 two.sided 0.00e+00 0.0000000 ****

wbLGP-758 wbLGP-858 2352 970045 two.sided 0.00e+00 0.0000000 ****

wbLGP-758 wbLGP-958 2352 1351987 two.sided 3.70e-06 0.0010295 **

wbLGP-858 wbLGP-958 2352 1494529 two.sided 0.00e+00 0.0000000 ****
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1.9 Significance Map
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Fig. S4. Parcellation - Significance Map

1.10 Effect size

Table S8. Parcellation - Effect size

group1 group2 effsize n1 n2 magnitude

BNP-210 LGP-100 0.0512884 2352 2352 small

BNP-210 LGP-1000 0.1207652 2352 2352 small

BNP-210 LGP-200 0.0626895 2352 2352 small

BNP-210 LGP-300 0.1141191 2352 2352 small

BNP-210 LGP-400 0.2082967 2352 2352 small

BNP-210 LGP-500 0.3653563 2352 2352 moderate

BNP-210 LGP-600 0.1408717 2352 2352 small
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Table S8. Parcellation - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

BNP-210 LGP-700 0.0779897 2352 2352 small

BNP-210 LGP-800 0.1893357 2352 2352 small

BNP-210 LGP-900 0.0543280 2352 2352 small

BNP-210 MMP-360 0.0731563 2352 2352 small

BNP-210 wbBNP-568 0.7389896 2352 2352 large

BNP-210 wbCABP-718 0.7379236 2352 2352 large

BNP-210 wbLGP-1058 0.7216681 2352 2352 large

BNP-210 wbLGP-1158 0.7104950 2352 2352 large

BNP-210 wbLGP-1258 0.7231289 2352 2352 large

BNP-210 wbLGP-1358 0.6888160 2352 2352 large

BNP-210 wbLGP-458 0.7536559 2352 2352 large

BNP-210 wbLGP-558 0.7475750 2352 2352 large

BNP-210 wbLGP-658 0.7266246 2352 2352 large

BNP-210 wbLGP-758 0.7214303 2352 2352 large

BNP-210 wbLGP-858 0.7258208 2352 2352 large

BNP-210 wbLGP-958 0.7141604 2352 2352 large

LGP-100 LGP-1000 0.0539583 2352 2352 small

LGP-100 LGP-200 0.0129528 2352 2352 small

LGP-100 LGP-300 0.1500861 2352 2352 small

LGP-100 LGP-400 0.2208211 2352 2352 small

LGP-100 LGP-500 0.3913895 2352 2352 moderate

LGP-100 LGP-600 0.1695900 2352 2352 small

LGP-100 LGP-700 0.0698175 2352 2352 small

LGP-100 LGP-800 0.1689070 2352 2352 small

LGP-100 LGP-900 0.0495689 2352 2352 small

LGP-100 MMP-360 0.0317933 2352 2352 small

LGP-100 wbBNP-568 0.7436624 2352 2352 large

LGP-100 wbCABP-718 0.7394118 2352 2352 large

LGP-100 wbLGP-1058 0.7296547 2352 2352 large

LGP-100 wbLGP-1158 0.7220587 2352 2352 large

LGP-100 wbLGP-1258 0.7355677 2352 2352 large

LGP-100 wbLGP-1358 0.7044764 2352 2352 large

LGP-100 wbLGP-458 0.7640762 2352 2352 large

LGP-100 wbLGP-558 0.7569985 2352 2352 large

LGP-100 wbLGP-658 0.7310191 2352 2352 large

LGP-100 wbLGP-758 0.7275245 2352 2352 large

LGP-100 wbLGP-858 0.7326421 2352 2352 large

LGP-100 wbLGP-958 0.7209303 2352 2352 large

LGP-1000 LGP-200 0.0578365 2352 2352 small

LGP-1000 LGP-300 0.2105271 2352 2352 small

LGP-1000 LGP-400 0.3192842 2352 2352 moderate

LGP-1000 LGP-500 0.4487333 2352 2352 moderate

LGP-1000 LGP-600 0.3020832 2352 2352 moderate

LGP-1000 LGP-700 0.2719757 2352 2352 small

LGP-1000 LGP-800 0.3321805 2352 2352 moderate

LGP-1000 LGP-900 0.2340567 2352 2352 small

LGP-1000 MMP-360 0.0081145 2352 2352 small
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Table S8. Parcellation - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

LGP-1000 wbBNP-568 0.7500285 2352 2352 large

LGP-1000 wbCABP-718 0.7568211 2352 2352 large

LGP-1000 wbLGP-1058 0.7435657 2352 2352 large

LGP-1000 wbLGP-1158 0.7443931 2352 2352 large

LGP-1000 wbLGP-1258 0.7509503 2352 2352 large

LGP-1000 wbLGP-1358 0.7255476 2352 2352 large

LGP-1000 wbLGP-458 0.7662544 2352 2352 large

LGP-1000 wbLGP-558 0.7623347 2352 2352 large

LGP-1000 wbLGP-658 0.7456084 2352 2352 large

LGP-1000 wbLGP-758 0.7432770 2352 2352 large

LGP-1000 wbLGP-858 0.7434569 2352 2352 large

LGP-1000 wbLGP-958 0.7395782 2352 2352 large

LGP-200 LGP-300 0.2081011 2352 2352 small

LGP-200 LGP-400 0.2759045 2352 2352 small

LGP-200 LGP-500 0.4511007 2352 2352 moderate

LGP-200 LGP-600 0.1986975 2352 2352 small

LGP-200 LGP-700 0.0956037 2352 2352 small

LGP-200 LGP-800 0.2215336 2352 2352 small

LGP-200 LGP-900 0.0807512 2352 2352 small

LGP-200 MMP-360 0.0232331 2352 2352 small

LGP-200 wbBNP-568 0.7524502 2352 2352 large

LGP-200 wbCABP-718 0.7494454 2352 2352 large

LGP-200 wbLGP-1058 0.7351284 2352 2352 large

LGP-200 wbLGP-1158 0.7272050 2352 2352 large

LGP-200 wbLGP-1258 0.7374204 2352 2352 large

LGP-200 wbLGP-1358 0.7088809 2352 2352 large

LGP-200 wbLGP-458 0.7639591 2352 2352 large

LGP-200 wbLGP-558 0.7610277 2352 2352 large

LGP-200 wbLGP-658 0.7432334 2352 2352 large

LGP-200 wbLGP-758 0.7366071 2352 2352 large

LGP-200 wbLGP-858 0.7386798 2352 2352 large

LGP-200 wbLGP-958 0.7282388 2352 2352 large

LGP-300 LGP-400 0.1569344 2352 2352 small

LGP-300 LGP-500 0.4014572 2352 2352 moderate

LGP-300 LGP-600 0.1086461 2352 2352 small

LGP-300 LGP-700 0.0305094 2352 2352 small

LGP-300 LGP-800 0.1105415 2352 2352 small

LGP-300 LGP-900 0.0588944 2352 2352 small

LGP-300 MMP-360 0.1802777 2352 2352 small

LGP-300 wbBNP-568 0.7393016 2352 2352 large

LGP-300 wbCABP-718 0.7409097 2352 2352 large

LGP-300 wbLGP-1058 0.7254031 2352 2352 large

LGP-300 wbLGP-1158 0.7146360 2352 2352 large

LGP-300 wbLGP-1258 0.7276375 2352 2352 large

LGP-300 wbLGP-1358 0.6950338 2352 2352 large

LGP-300 wbLGP-458 0.7545390 2352 2352 large
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Table S8. Parcellation - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

LGP-300 wbLGP-558 0.7518696 2352 2352 large

LGP-300 wbLGP-658 0.7305186 2352 2352 large

LGP-300 wbLGP-758 0.7288353 2352 2352 large

LGP-300 wbLGP-858 0.7315947 2352 2352 large

LGP-300 wbLGP-958 0.7184744 2352 2352 large

LGP-400 LGP-500 0.3106815 2352 2352 moderate

LGP-400 LGP-600 0.0239758 2352 2352 small

LGP-400 LGP-700 0.2024827 2352 2352 small

LGP-400 LGP-800 0.0547714 2352 2352 small

LGP-400 LGP-900 0.1808123 2352 2352 small

LGP-400 MMP-360 0.2340978 2352 2352 small

LGP-400 wbBNP-568 0.7295883 2352 2352 large

LGP-400 wbCABP-718 0.7324939 2352 2352 large

LGP-400 wbLGP-1058 0.7127931 2352 2352 large

LGP-400 wbLGP-1158 0.7034513 2352 2352 large

LGP-400 wbLGP-1258 0.7163478 2352 2352 large

LGP-400 wbLGP-1358 0.6809360 2352 2352 large

LGP-400 wbLGP-458 0.7489080 2352 2352 large

LGP-400 wbLGP-558 0.7418199 2352 2352 large

LGP-400 wbLGP-658 0.7177687 2352 2352 large

LGP-400 wbLGP-758 0.7184835 2352 2352 large

LGP-400 wbLGP-858 0.7209195 2352 2352 large

LGP-400 wbLGP-958 0.7072074 2352 2352 large

LGP-500 LGP-600 0.3060236 2352 2352 moderate

LGP-500 LGP-700 0.4001344 2352 2352 moderate

LGP-500 LGP-800 0.3747741 2352 2352 moderate

LGP-500 LGP-900 0.3739231 2352 2352 moderate

LGP-500 MMP-360 0.3762905 2352 2352 moderate

LGP-500 wbBNP-568 0.7165713 2352 2352 large

LGP-500 wbCABP-718 0.7182115 2352 2352 large

LGP-500 wbLGP-1058 0.7002399 2352 2352 large

LGP-500 wbLGP-1158 0.6914885 2352 2352 large

LGP-500 wbLGP-1258 0.7026320 2352 2352 large

LGP-500 wbLGP-1358 0.6590763 2352 2352 large

LGP-500 wbLGP-458 0.7298496 2352 2352 large

LGP-500 wbLGP-558 0.7343705 2352 2352 large

LGP-500 wbLGP-658 0.7035363 2352 2352 large

LGP-500 wbLGP-758 0.7031792 2352 2352 large

LGP-500 wbLGP-858 0.7123423 2352 2352 large

LGP-500 wbLGP-958 0.6868862 2352 2352 large

LGP-600 LGP-700 0.2268428 2352 2352 small

LGP-600 LGP-800 0.0462445 2352 2352 small

LGP-600 LGP-900 0.1816469 2352 2352 small

LGP-600 MMP-360 0.1886473 2352 2352 small

LGP-600 wbBNP-568 0.7481082 2352 2352 large

LGP-600 wbCABP-718 0.7481815 2352 2352 large
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Table S8. Parcellation - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

LGP-600 wbLGP-1058 0.7383695 2352 2352 large

LGP-600 wbLGP-1158 0.7294442 2352 2352 large

LGP-600 wbLGP-1258 0.7369489 2352 2352 large

LGP-600 wbLGP-1358 0.7042384 2352 2352 large

LGP-600 wbLGP-458 0.7557913 2352 2352 large

LGP-600 wbLGP-558 0.7562789 2352 2352 large

LGP-600 wbLGP-658 0.7398462 2352 2352 large

LGP-600 wbLGP-758 0.7355434 2352 2352 large

LGP-600 wbLGP-858 0.7421715 2352 2352 large

LGP-600 wbLGP-958 0.7452103 2352 2352 large

LGP-700 LGP-800 0.1482687 2352 2352 small

LGP-700 LGP-900 0.0223819 2352 2352 small

LGP-700 MMP-360 0.1459144 2352 2352 small

LGP-700 wbBNP-568 0.7385190 2352 2352 large

LGP-700 wbCABP-718 0.7428081 2352 2352 large

LGP-700 wbLGP-1058 0.7280828 2352 2352 large

LGP-700 wbLGP-1158 0.7198417 2352 2352 large

LGP-700 wbLGP-1258 0.7322622 2352 2352 large

LGP-700 wbLGP-1358 0.6979349 2352 2352 large

LGP-700 wbLGP-458 0.7555548 2352 2352 large

LGP-700 wbLGP-558 0.7506720 2352 2352 large

LGP-700 wbLGP-658 0.7296047 2352 2352 large

LGP-700 wbLGP-758 0.7284709 2352 2352 large

LGP-700 wbLGP-858 0.7297612 2352 2352 large

LGP-700 wbLGP-958 0.7241542 2352 2352 large

LGP-800 LGP-900 0.1523587 2352 2352 small

LGP-800 MMP-360 0.2294773 2352 2352 small

LGP-800 wbBNP-568 0.7247815 2352 2352 large

LGP-800 wbCABP-718 0.7278916 2352 2352 large

LGP-800 wbLGP-1058 0.7110976 2352 2352 large

LGP-800 wbLGP-1158 0.7148132 2352 2352 large

LGP-800 wbLGP-1258 0.7177082 2352 2352 large

LGP-800 wbLGP-1358 0.6815238 2352 2352 large

LGP-800 wbLGP-458 0.7424878 2352 2352 large

LGP-800 wbLGP-558 0.7403174 2352 2352 large

LGP-800 wbLGP-658 0.7160305 2352 2352 large

LGP-800 wbLGP-758 0.7131063 2352 2352 large

LGP-800 wbLGP-858 0.7184349 2352 2352 large

LGP-800 wbLGP-958 0.7032708 2352 2352 large

LGP-900 MMP-360 0.1404051 2352 2352 small

LGP-900 wbBNP-568 0.7387104 2352 2352 large

LGP-900 wbCABP-718 0.7433471 2352 2352 large

LGP-900 wbLGP-1058 0.7243857 2352 2352 large

LGP-900 wbLGP-1158 0.7255897 2352 2352 large

LGP-900 wbLGP-1258 0.7343608 2352 2352 large

LGP-900 wbLGP-1358 0.7026858 2352 2352 large

LGP-900 wbLGP-458 0.7545988 2352 2352 large
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Table S8. Parcellation - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

LGP-900 wbLGP-558 0.7503933 2352 2352 large

LGP-900 wbLGP-658 0.7302955 2352 2352 large

LGP-900 wbLGP-758 0.7241196 2352 2352 large

LGP-900 wbLGP-858 0.7301608 2352 2352 large

LGP-900 wbLGP-958 0.7201412 2352 2352 large

MMP-360 wbBNP-568 0.7444282 2352 2352 large

MMP-360 wbCABP-718 0.7535082 2352 2352 large

MMP-360 wbLGP-1058 0.7311101 2352 2352 large

MMP-360 wbLGP-1158 0.7201675 2352 2352 large

MMP-360 wbLGP-1258 0.7319867 2352 2352 large

MMP-360 wbLGP-1358 0.6975871 2352 2352 large

MMP-360 wbLGP-458 0.7584484 2352 2352 large

MMP-360 wbLGP-558 0.7548697 2352 2352 large

MMP-360 wbLGP-658 0.7382470 2352 2352 large

MMP-360 wbLGP-758 0.7320983 2352 2352 large

MMP-360 wbLGP-858 0.7345617 2352 2352 large

MMP-360 wbLGP-958 0.7174438 2352 2352 large

wbBNP-568 wbCABP-718 0.2728574 2352 2352 small

wbBNP-568 wbLGP-1058 0.2162613 2352 2352 small

wbBNP-568 wbLGP-1158 0.1995484 2352 2352 small

wbBNP-568 wbLGP-1258 0.1386707 2352 2352 small

wbBNP-568 wbLGP-1358 0.2717290 2352 2352 small

wbBNP-568 wbLGP-458 0.0877119 2352 2352 small

wbBNP-568 wbLGP-558 0.0947171 2352 2352 small

wbBNP-568 wbLGP-658 0.2160494 2352 2352 small

wbBNP-568 wbLGP-758 0.2540569 2352 2352 small

wbBNP-568 wbLGP-858 0.1592633 2352 2352 small

wbBNP-568 wbLGP-958 0.2937065 2352 2352 small

wbCABP-718 wbLGP-1058 0.0359091 2352 2352 small

wbCABP-718 wbLGP-1158 0.0233259 2352 2352 small

wbCABP-718 wbLGP-1258 0.0388589 2352 2352 small

wbCABP-718 wbLGP-1358 0.1106258 2352 2352 small

wbCABP-718 wbLGP-458 0.2848362 2352 2352 small

wbCABP-718 wbLGP-558 0.3284945 2352 2352 moderate

wbCABP-718 wbLGP-658 0.1230697 2352 2352 small

wbCABP-718 wbLGP-758 0.0370190 2352 2352 small

wbCABP-718 wbLGP-858 0.0991309 2352 2352 small

wbCABP-718 wbLGP-958 0.0362152 2352 2352 small

wbLGP-1058 wbLGP-1158 0.0561301 2352 2352 small

wbLGP-1058 wbLGP-1258 0.1116554 2352 2352 small

wbLGP-1058 wbLGP-1358 0.1822538 2352 2352 small

wbLGP-1058 wbLGP-458 0.2180510 2352 2352 small

wbLGP-1058 wbLGP-558 0.2778507 2352 2352 small

wbLGP-1058 wbLGP-658 0.1051919 2352 2352 small

wbLGP-1058 wbLGP-758 0.0228152 2352 2352 small

wbLGP-1058 wbLGP-858 0.1661968 2352 2352 small

wbLGP-1058 wbLGP-958 0.0818575 2352 2352 small
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Table S8. Parcellation - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

wbLGP-1158 wbLGP-1258 0.1252645 2352 2352 small

wbLGP-1158 wbLGP-1358 0.1480026 2352 2352 small

wbLGP-1158 wbLGP-458 0.2274392 2352 2352 small

wbLGP-1158 wbLGP-558 0.2439547 2352 2352 small

wbLGP-1158 wbLGP-658 0.1045024 2352 2352 small

wbLGP-1158 wbLGP-758 0.0322159 2352 2352 small

wbLGP-1158 wbLGP-858 0.1551948 2352 2352 small

wbLGP-1158 wbLGP-958 0.0414800 2352 2352 small

wbLGP-1258 wbLGP-1358 0.2590570 2352 2352 small

wbLGP-1258 wbLGP-458 0.1735670 2352 2352 small

wbLGP-1258 wbLGP-558 0.1977710 2352 2352 small

wbLGP-1258 wbLGP-658 0.0419666 2352 2352 small

wbLGP-1258 wbLGP-758 0.0287042 2352 2352 small

wbLGP-1258 wbLGP-858 0.0559503 2352 2352 small

wbLGP-1258 wbLGP-958 0.1063742 2352 2352 small

wbLGP-1358 wbLGP-458 0.2918365 2352 2352 small

wbLGP-1358 wbLGP-558 0.3015406 2352 2352 moderate

wbLGP-1358 wbLGP-658 0.1847120 2352 2352 small

wbLGP-1358 wbLGP-758 0.1378691 2352 2352 small

wbLGP-1358 wbLGP-858 0.2044047 2352 2352 small

wbLGP-1358 wbLGP-958 0.0714880 2352 2352 small

wbLGP-458 wbLGP-558 0.0115092 2352 2352 small

wbLGP-458 wbLGP-658 0.2420159 2352 2352 small

wbLGP-458 wbLGP-758 0.2603953 2352 2352 small

wbLGP-458 wbLGP-858 0.1864424 2352 2352 small

wbLGP-458 wbLGP-958 0.2951134 2352 2352 small

wbLGP-558 wbLGP-658 0.3159288 2352 2352 moderate

wbLGP-558 wbLGP-758 0.3114833 2352 2352 moderate

wbLGP-558 wbLGP-858 0.2210771 2352 2352 small

wbLGP-558 wbLGP-958 0.3280744 2352 2352 moderate

wbLGP-658 wbLGP-758 0.1151963 2352 2352 small

wbLGP-658 wbLGP-858 0.0129152 2352 2352 small

wbLGP-658 wbLGP-958 0.1975321 2352 2352 small

wbLGP-758 wbLGP-858 0.1643324 2352 2352 small

wbLGP-758 wbLGP-958 0.0960455 2352 2352 small

wbLGP-858 wbLGP-958 0.1928274 2352 2352 small
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Fig. S5. Parcellation - Effect size

1.11 Variability Changes
Whole Brain vs. Cortex

• Quadrant 1: 𝑉𝑤 ↑,𝑉𝑏 ↑ : 0.0093684
• Quadrant 2: 𝑉𝑤 ↓,𝑉𝑏 ↑ : 0.5999534
• Quadrant 3: 𝑉𝑤 ↓,𝑉𝑏 ↓ : 0.3906782
• Quadrant 4: 𝑉𝑤 ↑,𝑉𝑏 ↓ : 0

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.05.06.442886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442886
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.9368%59.9953%

39.0678%

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
Within−subject Variability Changes

B
et

w
ee

n−
su

bj
ec

t V
ar

ia
bi

lit
y 

C
ha

ng
es

Fig. S6. Parcellation - Variability Changes
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2 Frequency Bands - Edge Construction

2.1 ICC Density distribution
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Fig. S7. Frequency - ICC Density distribution

2.2 Almost Perfect ( ICCs > 0.8 )
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Fig. S8. Frequency - Number of ICC >0.8
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2.3 Substantial or Above ( ICCs > 0.6 )
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Fig. S9. Frequency - Number of ICC >0.6
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2.4 Variability Changes
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Fig. S10. Frequency - Variability Changes
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2.5 Descriptive statistics Mean

Table S9. Frequency - ICC Mean

freq variable n mean mean_z2r

slow2 ICC.z 8064 0.689 0.5973392

slow1 ICC.z 8064 0.638 0.5635362

slow3 ICC.z 8064 0.621 0.5518239

slow-emp ICC.z 8064 0.575 0.5190218

slow4 ICC.z 8064 0.560 0.5079774

slow5 ICC.z 8064 0.494 0.4573854

slow6 ICC.z 8064 0.331 0.3194190

0.0

0.2

0.4

0.6

slow−emp slow−6 slow−5 slow−4 slow−3 slow−2 slow−1
Frequency Bands

IC
C

.z

freq

slow1
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slow5
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slow−emp

Fig. S11. Frequency - ICC Mean Bar plot

2.6 Descriptive statistics Median

Table S10. Frequency - ICC Median

freq variable n median

slow3 ICC 8064 0.526

slow-emp ICC 8064 0.475

slow2 ICC 8064 0.470

slow4 ICC 8064 0.465

slow5 ICC 8064 0.423

slow1 ICC 8064 0.395

slow6 ICC 8064 0.278
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2.7 Friedman Test

Table S11. Frequency - Friedman Test

.y. n statistic df p method

ICC.z 8064 9283.536 6 0 Friedman test

2.8 Friedman Test Effect size

Table S12. Frequency - Friedman Test Effect size

.y. n effsize method magnitude

ICC.z 8064 0.191872 Kendall W small

2.9 Paired Wilcoxon signed rank test

Table S13. Frequency - ICC group1 vs. group2

group1 group2 n1 estimate statistic alternative p p.adj p.adj.signif

slow-emp slow1 8064 -0.0162227 14054394 two.sided 9.68e-04 0.0203280 *

slow-emp slow2 8064 -0.0864131 10505882 two.sided 0.00e+00 0.0000000 ****

slow-emp slow3 8064 -0.0539695 10625450 two.sided 0.00e+00 0.0000000 ****

slow-emp slow4 8064 0.0150546 17102898 two.sided 0.00e+00 0.0000000 ****

slow-emp slow5 8064 0.0841908 23531772 two.sided 0.00e+00 0.0000000 ****

slow-emp slow6 8064 0.2231625 26254891 two.sided 0.00e+00 0.0000000 ****

slow1 slow2 8064 -0.0624239 9900068 two.sided 0.00e+00 0.0000000 ****

slow1 slow3 8064 -0.0200081 13838087 two.sided 8.77e-05 0.0018417 **

slow1 slow4 8064 0.0325830 15946425 two.sided 0.00e+00 0.0000000 ****

slow1 slow5 8064 0.1039074 18945816 two.sided 0.00e+00 0.0000000 ****

slow1 slow6 8064 0.2451552 23735075 two.sided 0.00e+00 0.0000000 ****

slow2 slow3 8064 0.0367993 16494499 two.sided 0.00e+00 0.0000000 ****

slow2 slow4 8064 0.1038401 19454026 two.sided 0.00e+00 0.0000000 ****

slow2 slow5 8064 0.1643515 22530367 two.sided 0.00e+00 0.0000000 ****

slow2 slow6 8064 0.2906672 25875758 two.sided 0.00e+00 0.0000000 ****

slow3 slow4 8064 0.0703217 20070190 two.sided 0.00e+00 0.0000000 ****

slow3 slow5 8064 0.1355815 23423580 two.sided 0.00e+00 0.0000000 ****

slow3 slow6 8064 0.2698008 26652991 two.sided 0.00e+00 0.0000000 ****

slow4 slow5 8064 0.0707338 21276606 two.sided 0.00e+00 0.0000000 ****

slow4 slow6 8064 0.2083264 25815007 two.sided 0.00e+00 0.0000000 ****

slow5 slow6 8064 0.1410985 24873960 two.sided 0.00e+00 0.0000000 ****
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2.10 Significance Map
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Fig. S12. Frequency - Significance Map

2.11 Effect size

Table S14. Frequency - Effect size

group1 group2 effsize n1 n2 magnitude

slow-emp slow1 0.0296722 8064 8064 small

slow-emp slow2 0.2374189 8064 8064 small

slow-emp slow3 0.2357191 8064 8064 small

slow-emp slow4 0.1417849 8064 8064 small

slow-emp slow5 0.5094890 8064 8064 large

slow-emp slow6 0.6519342 8064 8064 large

slow1 slow2 0.2699083 8064 8064 small

slow1 slow3 0.0520287 8064 8064 small

slow1 slow4 0.0646878 8064 8064 small

slow1 slow5 0.2408327 8064 8064 small

slow1 slow6 0.5023808 8064 8064 large

slow2 slow3 0.1000050 8064 8064 small

slow2 slow4 0.2699834 8064 8064 small

slow2 slow5 0.4490800 8064 8064 moderate

slow2 slow6 0.6292308 8064 8064 large

slow3 slow4 0.3096116 8064 8064 moderate

slow3 slow5 0.5028784 8064 8064 large

slow3 slow6 0.6802808 8064 8064 large

slow4 slow5 0.3770518 8064 8064 moderate

slow4 slow6 0.6310338 8064 8064 large
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Table S14. Frequency - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

slow5 slow6 0.5700624 8064 8064 large
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Fig. S13. Frequency - Effect size

3 R Tranforms - Edge Construction
Many network metrics are not well defined for negatively weighted connections. In order to ensure that the
connection weights are positive only, we applied four types of transformations to the symmetric correlation
matrix: the positive (Eq.pos), absolute (Eq.abs), exponential (Eq.exp) and distance-inverse (Eq.div)
functions, respectively. This avoids the negative values in the inter-node connectivity matrix 𝑊 = (𝑤𝑖𝑗)
where 𝑧𝑖𝑗 = tanh−1 (𝑟𝑖𝑗) is Fisher’s 𝑧−transformation.

𝑤𝑖𝑗 = 𝑧𝑖𝑗 + |𝑧𝑖𝑗|
2 ∈ [0, ∞) (pos)

𝑤𝑖𝑗 = |𝑧𝑖𝑗| ∈ [0, ∞) (abs)

𝑤𝑖𝑗 = e𝑧𝑖𝑗 ∈ [0, ∞) (exp)

𝑤𝑖𝑗 = 2
√2 × (1 − 𝑟𝑖𝑗)

∈ (0, ∞) (div)
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Fig. S14. Transform r to weight

3.1 ICC Density distribution

div
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ICC

Quartiles 1 2 3 4
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Fig. S15. Transforms - ICC Density distribution

3.2 Almost Perfect ( ICCs > 0.8 )

Table S15. Transforms - Number of ICCs > 0.8

transform n

exp 1855

div 1740

abs 1050

pos 1031
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Fig. S16. Transforms - Number of ICC > 0.8

3.3 Substantial or Above ( ICCs > 0.6 )

Table S16. Transforms - Number of ICCs > 0.6

transform n

pos 3977

exp 3930

abs 3912

div 3798
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abs
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Fig. S17. Transforms - Number of ICC > 0.8
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3.4 Descriptive statistics Mean

Table S17. Transforms - ICC Mean

transform variable n mean mean_z2r

pos ICC.z 14112 0.564 0.5109392

exp ICC.z 14112 0.561 0.5087190

abs ICC.z 14112 0.560 0.5079774

div ICC.z 14112 0.548 0.4990198

3.5 Descriptive statistics Median

Table S18. Transforms - ICC Median

transform variable n median

pos ICC 14112 0.474

abs ICC 14112 0.465

exp ICC 14112 0.398

div ICC 14112 0.392

3.6 Friedman Test

Table S19. Transforms - Friedman Test

.y. n statistic df p method

ICC.z 14112 480.0639 3 0 Friedman test

3.7 Friedman Test Effect size

Table S20. Transforms - Friedman Test Effect size

.y. n effsize method magnitude

ICC.z 14112 0.0113394 Kendall W small

3.8 Paired Wilcoxon signed rank test

Table S21. Transforms - ICC group1 vs. group2

group1 group2 n1 statistic alternative p p.adj p.adj.signif

abs div 14112 50949564 two.sided 0e+00 0.0e+00 ****

abs exp 14112 47946915 two.sided 8e-07 4.8e-06 ****

abs pos 14112 44430310 two.sided 3e-03 1.8e-02 *

div exp 14112 35746898 two.sided 0e+00 0.0e+00 ****

div pos 14112 39669204 two.sided 0e+00 0.0e+00 ****

exp pos 14112 42638630 two.sided 0e+00 0.0e+00 ****
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Table S21. Transforms - ICC group1 vs. group2 (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

3.9 Significance map
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Fig. S18. Transforms - Significance Map

3.10 Effect size

Table S22. Transforms - Effect size

group1 group2 effsize n1 n2 magnitude

abs div 0.1009229 14112 14112 small

abs exp 0.0439603 14112 14112 small

abs pos 0.0232195 14112 14112 small

div exp 0.1257376 14112 14112 small

div pos 0.1139965 14112 14112 small

exp pos 0.0582916 14112 14112 small
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Fig. S19. Transforms - Effect size

4 Schemes - Edge Construction

4.1 ICC Density distribution
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Fig. S20. Schemes - ICC Density distribution
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4.2 Almost Perfect ( ICCs > 0.8 )

Table S23. Schemes - Number of ICCs > 0.8

scheme n

OTMFG 781

TMFG 767

OMST 765

PMFG 737

PROP20 632

PROP10 445

MST 362

GCE 352

DEG15 306

DEG5 213

ABS05 189

ECO 127
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Fig. S21. Schemes - Number of ICC > 0.8

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.05.06.442886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442886
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.3 Substantial or Above ( ICCs > 0.6 )

Table S24. Schemes - Number of ICCs > 0.8

scheme n

OMST 1860

OTMFG 1832

TMFG 1670

PMFG 1659

PROP20 1564

PROP10 1345

GCE 1210

DEG15 1175

DEG5 1035

ECO 837

MST 719

ABS05 711

711

719

837

1035

1175

1210

1345

1564

1659

1670

1832

1860

ABS05

MST

ECO

DEG5

DEG10

GCE

PROP10

PROP20

PMFG

TMFG

OTMFG

OMST

0 500 1000 1500 2000
n

Number of ICCs > 0.6

Fig. S22. Schemes - Number of ICC > 0.6

4.4 Varibility Changes
OMST, OTMFG, PROP20, TMFG, PMFG, PROP10
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Fig. S23. Schemes - Variability Changes
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4.5 Descriptive statistics Mean

Table S25. Schemes - ICC Mean

scheme variable n mean meanz2r

OMST ICC.z 4704 0.706 0.6081624

OTMFG ICC.z 4704 0.697 0.6024601

PROP20 ICC.z 4704 0.683 0.5934662

TMFG ICC.z 4704 0.647 0.5696469

PMFG ICC.z 4704 0.635 0.5614855

PROP10 ICC.z 4704 0.617 0.5490358

GCE ICC.z 4704 0.595 0.5334821

DEG15 ICC.z 4704 0.547 0.4982684

DEG5 ICC.z 4704 0.486 0.4510359

ECO ICC.z 4704 0.431 0.4061567

ABS05 ICC.z 4704 0.337 0.3247965

MST ICC.z 4704 0.319 0.3086024
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Fig. S24. Schemes - ICC mean and se
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4.6 Descriptive statistics Median

Table S26. Schemes - ICC Median

scheme variable n median

OMST ICC 4704 0.522

OTMFG ICC 4704 0.507

PROP20 ICC 4704 0.506

PROP10 ICC 4704 0.476

GCE ICC 4704 0.473

PMFG ICC 4704 0.455

TMFG ICC 4704 0.455

DEG15 ICC 4704 0.442

DEG5 ICC 4704 0.400

ECO ICC 4704 0.366

ABS05 ICC 4704 0.223

MST ICC 4704 0.117

4.7 Friedman Test

Table S27. Schemes - Friedman Test

.y. n statistic df p method

ICC.z 4704 9784.317 11 0 Friedman test

4.8 Friedman Test Effect size

Table S28. Schemes - Friedman Test Effect size

.y. n effsize method magnitude

ICC.z 4704 0.1890909 Kendall W small

4.9 Paired Wilcoxon signed rank test

Table S29. Schemes - ICC group1 vs. group2

group1 group2 n1 statistic alternative p p.adj p.adj.signif

ABS05 DEG15 4704 2694254 two.sided 0.00e+00 0.0000000 ****

ABS05 DEG5 4704 3270500 two.sided 0.00e+00 0.0000000 ****

ABS05 ECO 4704 3943115 two.sided 0.00e+00 0.0000000 ****

ABS05 GCE 4704 2271646 two.sided 0.00e+00 0.0000000 ****

ABS05 MST 4704 4965999 two.sided 0.00e+00 0.0000003 ****

ABS05 OMST 4704 1467195 two.sided 0.00e+00 0.0000000 ****

ABS05 OTMFG 4704 1591487 two.sided 0.00e+00 0.0000000 ****

ABS05 PMFG 4704 2360874 two.sided 0.00e+00 0.0000000 ****
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Table S29. Schemes - ICC group1 vs. group2 (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

ABS05 PROP10 4704 2285372 two.sided 0.00e+00 0.0000000 ****

ABS05 PROP20 4704 1672112 two.sided 0.00e+00 0.0000000 ****

ABS05 TMFG 4704 2232779 two.sided 0.00e+00 0.0000000 ****

DEG15 DEG5 4704 7803402 two.sided 0.00e+00 0.0000000 ****

DEG15 ECO 4704 8444214 two.sided 0.00e+00 0.0000000 ****

DEG15 GCE 4704 4108796 two.sided 0.00e+00 0.0000000 ****

DEG15 MST 4704 8200729 two.sided 0.00e+00 0.0000000 ****

DEG15 OMST 4704 2665961 two.sided 0.00e+00 0.0000000 ****

DEG15 OTMFG 4704 2810801 two.sided 0.00e+00 0.0000000 ****

DEG15 PMFG 4704 4054470 two.sided 0.00e+00 0.0000000 ****

DEG15 PROP10 4704 3445204 two.sided 0.00e+00 0.0000000 ****

DEG15 PROP20 4704 2504887 two.sided 0.00e+00 0.0000000 ****

DEG15 TMFG 4704 3834624 two.sided 0.00e+00 0.0000000 ****

DEG5 ECO 4704 8040590 two.sided 0.00e+00 0.0000000 ****

DEG5 GCE 4704 3328222 two.sided 0.00e+00 0.0000000 ****

DEG5 MST 4704 7483490 two.sided 0.00e+00 0.0000000 ****

DEG5 OMST 4704 2135420 two.sided 0.00e+00 0.0000000 ****

DEG5 OTMFG 4704 2269997 two.sided 0.00e+00 0.0000000 ****

DEG5 PMFG 4704 2996624 two.sided 0.00e+00 0.0000000 ****

DEG5 PROP10 4704 2832475 two.sided 0.00e+00 0.0000000 ****

DEG5 PROP20 4704 1965712 two.sided 0.00e+00 0.0000000 ****

DEG5 TMFG 4704 2747205 two.sided 0.00e+00 0.0000000 ****

ECO GCE 4704 2438845 two.sided 0.00e+00 0.0000000 ****

ECO MST 4704 6602202 two.sided 0.00e+00 0.0000000 ****

ECO OMST 4704 1445475 two.sided 0.00e+00 0.0000000 ****

ECO OTMFG 4704 1561756 two.sided 0.00e+00 0.0000000 ****

ECO PMFG 4704 2072641 two.sided 0.00e+00 0.0000000 ****

ECO PROP10 4704 2273516 two.sided 0.00e+00 0.0000000 ****

ECO PROP20 4704 1494010 two.sided 0.00e+00 0.0000000 ****

ECO TMFG 4704 1864579 two.sided 0.00e+00 0.0000000 ****

GCE MST 4704 8955851 two.sided 0.00e+00 0.0000000 ****

GCE OMST 4704 3276387 two.sided 0.00e+00 0.0000000 ****

GCE OTMFG 4704 3459105 two.sided 0.00e+00 0.0000000 ****

GCE PMFG 4704 5127650 two.sided 2.85e-05 0.0018810 **

GCE PROP10 4704 5081947 two.sided 3.30e-06 0.0002158 ***

GCE PROP20 4704 3034877 two.sided 0.00e+00 0.0000000 ****

GCE TMFG 4704 4875617 two.sided 0.00e+00 0.0000000 ****

MST OMST 4704 712172 two.sided 0.00e+00 0.0000000 ****

MST OTMFG 4704 795758 two.sided 0.00e+00 0.0000000 ****

MST PMFG 4704 1340430 two.sided 0.00e+00 0.0000000 ****

MST PROP10 4704 1771350 two.sided 0.00e+00 0.0000000 ****

MST PROP20 4704 1149079 two.sided 0.00e+00 0.0000000 ****

MST TMFG 4704 1164787 two.sided 0.00e+00 0.0000000 ****

OMST OTMFG 4704 5863222 two.sided 0.00e+00 0.0000000 ****

OMST PMFG 4704 7183474 two.sided 0.00e+00 0.0000000 ****

OMST PROP10 4704 7386941 two.sided 0.00e+00 0.0000000 ****

OMST PROP20 4704 6196410 two.sided 0.00e+00 0.0000000 ****
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Table S29. Schemes - ICC group1 vs. group2 (continued)

group1 group2 n1 statistic alternative p p.adj p.adj.signif

OMST TMFG 4704 6887505 two.sided 0.00e+00 0.0000000 ****

OTMFG PMFG 4704 7021466 two.sided 0.00e+00 0.0000000 ****

OTMFG PROP10 4704 7154543 two.sided 0.00e+00 0.0000000 ****

OTMFG PROP20 4704 5995825 two.sided 0.00e+00 0.0000028 ****

OTMFG TMFG 4704 6682826 two.sided 0.00e+00 0.0000000 ****

PMFG PROP10 4704 5618652 two.sided 1.45e-01 1.0000000 ns

PMFG PROP20 4704 4515273 two.sided 0.00e+00 0.0000000 ****

PMFG TMFG 4704 4119850 two.sided 0.00e+00 0.0000000 ****

PROP10 PROP20 4704 2886243 two.sided 0.00e+00 0.0000000 ****

PROP10 TMFG 4704 5169273 two.sided 4.31e-04 0.0284460 *

PROP20 TMFG 4704 6289407 two.sided 0.00e+00 0.0000000 ****

4.10 Significance map
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Fig. S25. Schemes - Significance Map

4.11 Effect size

Table S30. Schemes - Effect size

group1 group2 effsize n1 n2 magnitude

ABS05 DEG15 0.4336085 4704 4704 moderate

ABS05 DEG5 0.3385623 4704 4704 moderate

ABS05 ECO 0.2339104 4704 4704 small

ABS05 GCE 0.5006219 4704 4704 large

ABS05 MST 0.1010940 4704 4704 small
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Table S30. Schemes - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

ABS05 OMST 0.6272196 4704 4704 large

ABS05 OTMFG 0.6064118 4704 4704 large

ABS05 PMFG 0.4861088 4704 4704 moderate

ABS05 PROP10 0.4962328 4704 4704 moderate

ABS05 PROP20 0.5953801 4704 4704 large

ABS05 TMFG 0.5043800 4704 4704 large

DEG15 DEG5 0.3656085 4704 4704 moderate

DEG15 ECO 0.4643143 4704 4704 moderate

DEG15 GCE 0.2213037 4704 4704 small

DEG15 MST 0.4629302 4704 4704 moderate

DEG15 OMST 0.4439416 4704 4704 moderate

DEG15 OTMFG 0.4196640 4704 4704 moderate

DEG15 PMFG 0.2243101 4704 4704 small

DEG15 PROP10 0.3230340 4704 4704 moderate

DEG15 PROP20 0.4729914 4704 4704 moderate

DEG15 TMFG 0.2592393 4704 4704 small

DEG5 ECO 0.4011082 4704 4704 moderate

DEG5 GCE 0.3443975 4704 4704 moderate

DEG5 MST 0.3530459 4704 4704 moderate

DEG5 OMST 0.5266713 4704 4704 large

DEG5 OTMFG 0.5058619 4704 4704 large

DEG5 PMFG 0.3921309 4704 4704 moderate

DEG5 PROP10 0.4209417 4704 4704 moderate

DEG5 PROP20 0.5574678 4704 4704 large

DEG5 TMFG 0.4294553 4704 4704 moderate

ECO GCE 0.4829184 4704 4704 moderate

ECO MST 0.2472343 4704 4704 small

ECO OMST 0.6246376 4704 4704 large

ECO OTMFG 0.6073007 4704 4704 large

ECO PMFG 0.5251605 4704 4704 large

ECO PROP10 0.5082960 4704 4704 large

ECO PROP20 0.6300488 4704 4704 large

ECO TMFG 0.5579538 4704 4704 large

GCE MST 0.5682424 4704 4704 large

GCE OMST 0.3497301 4704 4704 moderate

GCE OTMFG 0.3209678 4704 4704 moderate

GCE PMFG 0.0609041 4704 4704 small

GCE PROP10 0.0677587 4704 4704 small

GCE PROP20 0.3900709 4704 4704 moderate

GCE TMFG 0.0968897 4704 4704 small

MST OMST 0.7314210 4704 4704 large
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Table S30. Schemes - Effect size (continued)

group1 group2 effsize n1 n2 magnitude

MST OTMFG 0.7144886 4704 4704 large

MST PMFG 0.6232274 4704 4704 large

MST PROP10 0.5694680 4704 4704 large

MST PROP20 0.6742707 4704 4704 large

MST TMFG 0.6506873 4704 4704 large

OMST OTMFG 0.1072281 4704 4704 small

OMST PMFG 0.3108939 4704 4704 moderate

OMST PROP10 0.2977166 4704 4704 small

OMST PROP20 0.1111673 4704 4704 small

OMST TMFG 0.2713060 4704 4704 small

OTMFG PMFG 0.2809687 4704 4704 small

OTMFG PROP10 0.2638212 4704 4704 small

OTMFG PROP20 0.0798667 4704 4704 small

OTMFG TMFG 0.2305216 4704 4704 small

PMFG PROP10 0.0210514 4704 4704 small

PMFG PROP20 0.1549509 4704 4704 small

PMFG TMFG 0.1861855 4704 4704 small

PROP10 PROP20 0.4119006 4704 4704 moderate

PROP10 TMFG 0.0511920 4704 4704 small

PROP20 TMFG 0.1263285 4704 4704 small
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Fig. S26. Schemes - Effect size
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5 Metrics - Network Analysis

5.1 Metrics

Table S31. Brief descriptions of the network metrics examined

Level Measure Attribute Character

Global

basic
degree 𝑘
number of edge 𝑛𝑒
density 𝑑

integration

global efficiency 𝐸𝑔
average shortest path length 𝐿𝑝𝑎
average nodal path length 𝐿𝑝𝑏
pseudo diameter 𝐷

segregation

clusteringcoef by BCT toolbox 𝐶𝑝𝑎
clusteringcoef by Graph-tool 𝐶𝑝𝑏
local efficiency algorithm 1 by BCT toolbox 𝐸𝑙𝑜𝑐1
local efficiency algorithm 2 by BCT toolbox 𝐸𝑙𝑜𝑐2
modularity 𝑄
transitivity by BCT toolbox 𝑇 𝑟𝑎
transitivity by Graph-tool 𝑇 𝑟𝑏

centrality

average betweenness 𝐵𝑐
average eigenvector 𝐸𝑐
average pagerank 𝑃𝑐
average subgraph 𝑆𝑐

resilience

assortativity 𝑟
scalar assortativity 𝑟𝑠
synchronizability 𝑆
average resolvent 𝑅𝑣

Nodal

integration
nodal path length 𝐿𝑝𝑎
local path length 𝐿𝑝𝑏

segregation

clustering coefficient by BCT toolbox 𝐶𝑝𝑎
clustering coefficient Graph-tool 𝐶𝑝𝑏
local efficiency 1 by BCT toolbox 𝐸𝑙𝑜𝑐1
local efficiency 2 by BCT toolbox 𝐸𝑙𝑜𝑐2
nodal efficiency 𝐸𝑛𝑜𝑑𝑎𝑙

centrality

degree centrality 𝐷𝑐
betweeness centrality 𝐵𝑐
eigenvector centrality 𝐸𝑐
pagerank centrality 𝑃𝑐
subgraph centrality 𝑆𝑐
resolvent centrality 𝑅𝑐

Superscript 𝑏 (eg. 𝐸𝑔𝑏) is used for the binary graphs, superscript 𝑤 (eg. 𝐸𝑔𝑤) is used for the weighted
graphs, and superscript 𝑛 (eg. 𝐸𝑔𝑛) is used for the normalized weighted graphs.
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5.2 ICC Density distribution
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Fig. S27. Metrics - Density distribution

5.3 Almost Perfect ( ICCs > 0.8 )

Table S32. Metrics - Number of ICCs > 0.8

character n

3 𝐿𝑝𝑛
𝑎 2350

4 𝐸𝑔𝑛 924

2 𝐸𝑙𝑜𝑐𝑛
1 835

1 𝐶𝑝𝑛
𝑎 575

5 𝐷𝑛 559

6 𝑇 𝑟𝑛
𝑎 433
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Fig. S28. Metrics - Number of ICC > 0.8

5.4 Substantial or Above ( ICCs > 0.6 )

Table S33. Metrics - Number of ICCs > 0.6

character n

3 𝐿𝑝𝑛
𝑎 3194

4 𝐸𝑔𝑛 3032

2 𝐸𝑙𝑜𝑐𝑛
1 2886

1 𝐶𝑝𝑛
𝑎 2709

7 𝑇 𝑟𝑛
𝑎 2273

6 𝐷𝑛 1383

5 𝑄𝑛 140
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Fig. S29. Metrics - Number of ICC > 0.6

5.5 Descriptive statistics Mean

Table S34. Metrics - ICC Mean

character n meanz2r

𝐿𝑝𝑛
𝑎 8064 0.6847483

𝐸𝑔𝑛 8064 0.5628534

𝐸𝑙𝑜𝑐𝑛
1 8064 0.5241176

𝐶𝑝𝑛
𝑎 8064 0.5057482

𝑇 𝑟𝑛
𝑎 8064 0.4683854

𝐷𝑛 8064 0.3952442

𝑄𝑛 8064 0.3531167

5.6 Descriptive statistics Median

Table S35. Metrics - ICC Median

character n median

𝐸𝑔𝑛 8064 0.510

𝐿𝑝𝑛
𝑎 8064 0.499

𝐶𝑝𝑛
𝑎 8064 0.497

𝐸𝑙𝑜𝑐𝑛
1 8064 0.472

𝑇 𝑟𝑛
𝑎 8064 0.439

𝑄𝑛 8064 0.371

𝐷𝑛 8064 0.323

5.7 Paired Wilcoxon signed rank test
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Table S36. Metrics - ICC group1 vs. group2

character1 character2 n1 statistic alternative p p.adj p.adj.signif

𝐶𝑝𝑛𝑎 𝐸𝑙𝑜𝑐𝑛
1 8064 12227711 two.sided 9.20e-06 0.0001934 ***

𝐶𝑝𝑛𝑎 𝐿𝑝𝑛𝑎 8064 8726636 two.sided 0.00e+00 0.0000000 ****

𝐶𝑝𝑛𝑎 𝐸𝑔𝑛 8064 13406103 two.sided 0.00e+00 0.0000000 ****

𝐶𝑝𝑛𝑎 𝑄𝑛 8064 23845905 two.sided 0.00e+00 0.0000000 ****

𝐶𝑝𝑛𝑎 𝐷𝑛 8064 23503271 two.sided 0.00e+00 0.0000000 ****

𝐶𝑝𝑛𝑎 𝑇 𝑟𝑛𝑎 8064 18879595 two.sided 0.00e+00 0.0000000 ****

𝐸𝑙𝑜𝑐𝑛
1 𝐿𝑝𝑛𝑎 8064 8214982 two.sided 0.00e+00 0.0000000 ****

𝐸𝑙𝑜𝑐𝑛
1 𝐸𝑔𝑛 8064 13804539 two.sided 0.00e+00 0.0000000 ****

𝐸𝑙𝑜𝑐𝑛
1 𝑄𝑛 8064 23296271 two.sided 0.00e+00 0.0000000 ****

𝐸𝑙𝑜𝑐𝑛
1 𝐷𝑛 8064 24208558 two.sided 0.00e+00 0.0000000 ****

𝐸𝑙𝑜𝑐𝑛
1 𝑇 𝑟𝑛𝑎 8064 17771904 two.sided 0.00e+00 0.0000000 ****

𝐿𝑝𝑛𝑎 𝐸𝑔𝑛 8064 21277439 two.sided 0.00e+00 0.0000000 ****

𝐿𝑝𝑛𝑎 𝑄𝑛 8064 26286171 two.sided 0.00e+00 0.0000000 ****

𝐿𝑝𝑛𝑎 𝐷𝑛 8064 28471330 two.sided 0.00e+00 0.0000000 ****

𝐿𝑝𝑛𝑎 𝑇 𝑟𝑛𝑎 8064 24806988 two.sided 0.00e+00 0.0000000 ****

𝐸𝑔𝑛 𝑄𝑛 8064 26666127 two.sided 0.00e+00 0.0000000 ****

𝐸𝑔𝑛 𝐷𝑛 8064 27744888 two.sided 0.00e+00 0.0000000 ****

𝐸𝑔𝑛 𝑇 𝑟𝑛𝑎 8064 21280096 two.sided 0.00e+00 0.0000000 ****

𝑄𝑛 𝐷𝑛 8064 15808230 two.sided 3.65e-01 1.0000000 ns

𝑄𝑛 𝑇 𝑟𝑛𝑎 8064 9856527 two.sided 0.00e+00 0.0000000 ****

𝐷𝑛 𝑇 𝑟𝑛𝑎 8064 8856878 two.sided 0.00e+00 0.0000000 ****

5.8 Significance map
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Fig. S30. Metrics - Significance Map
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5.9 Effect size

Table S37. Metrics - Effect size

character1 character2 effsize n1 n2 magnitude

𝐶𝑝𝑛
𝑎 𝐸𝑙𝑜𝑐𝑛

1 0.0442149 8064 8064 small

𝐶𝑝𝑛
𝑎 𝐿𝑝𝑛

𝑎 0.3729141 8064 8064 moderate

𝐶𝑝𝑛
𝑎 𝐸𝑔𝑛 0.1094179 8064 8064 small

𝐶𝑝𝑛
𝑎 𝑄𝑛 0.4462449 8064 8064 moderate

𝐶𝑝𝑛
𝑎 𝐷𝑛 0.4629948 8064 8064 moderate

𝐶𝑝𝑛
𝑎 𝑇 𝑟𝑛

𝑎 0.3823045 8064 8064 moderate

𝐸𝑙𝑜𝑐𝑛
1 𝐿𝑝𝑛

𝑎 0.4014701 8064 8064 moderate

𝐸𝑙𝑜𝑐𝑛
1 𝐸𝑔𝑛 0.0895200 8064 8064 small

𝐸𝑙𝑜𝑐𝑛
1 𝑄𝑛 0.4124881 8064 8064 moderate

𝐸𝑙𝑜𝑐𝑛
1 𝐷𝑛 0.5027420 8064 8064 large

𝐸𝑙𝑜𝑐𝑛
1 𝑇 𝑟𝑛

𝑎 0.3025436 8064 8064 moderate

𝐿𝑝𝑛
𝑎 𝐸𝑔𝑛 0.3055529 8064 8064 moderate

𝐿𝑝𝑛
𝑎 𝑄𝑛 0.5641222 8064 8064 large

𝐿𝑝𝑛
𝑎 𝐷𝑛 0.7079035 8064 8064 large

𝐿𝑝𝑛
𝑎 𝑇 𝑟𝑛

𝑎 0.5101946 8064 8064 large

𝐸𝑔𝑛 𝑄𝑛 0.6054757 8064 8064 large

𝐸𝑔𝑛 𝐷𝑛 0.6915405 8064 8064 large

𝐸𝑔𝑛 𝑇 𝑟𝑛
𝑎 0.3167091 8064 8064 moderate

𝑄𝑛 𝐷𝑛 0.0132182 8064 8064 small

𝑄𝑛 𝑇 𝑟𝑛
𝑎 0.3249259 8064 8064 moderate

𝐷𝑛 𝑇 𝑟𝑛
𝑎 0.3637976 8064 8064 moderate
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6 More Metrics - Network Analysis

6.1 ICC Density distribution
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6.2 Almost Perfect ( ICCs > 0.8 )

Table S38. Metrics - Number of ICCs > 0.8

character n

14 𝐿𝑝𝑛
𝑎 2350

11 𝐿𝑝𝑛
𝑏 2349

16 𝐸𝑔𝑛 924

8 𝐸𝑙𝑜𝑐𝑛
1 835

9 𝐸𝑙𝑜𝑐𝑛
2 792

5 𝐶𝑝𝑛
𝑎 575

17 𝐷𝑛 559

21 𝑇 𝑟𝑛
𝑎 433

6 𝐸𝑐𝑤 137

19 𝑇 𝑟𝑛
𝑏 131

4 𝐶𝑝𝑛
𝑏 114

18 𝐷𝑤 57

15 𝑘𝑤 27

12 𝑃𝑐𝑏 4

1 𝑟𝑤 2

2 𝐵𝑐𝑏 1

3 𝐵𝑐𝑤 1

7 𝐸𝑙𝑜𝑐𝑏
1 1

10 𝐿𝑝𝑏
𝑏 1

13 𝐿𝑝𝑏
𝑎 1

20 𝑇 𝑟𝑤
𝑏 1
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Fig. S33. Metrics - Number of ICC > 0.8

6.3 Substantial or Above ( ICCs > 0.6 )

Table S39. Metrics - Number of ICCs > 0.6

character n

27 𝐿𝑝𝑛
𝑎 3194

21 𝐿𝑝𝑛
𝑏 3190

33 𝐸𝑔𝑛 3032

18 𝐸𝑙𝑜𝑐𝑛
2 2913

15 𝐸𝑙𝑜𝑐𝑛
1 2886

10 𝐶𝑝𝑛
𝑎 2709

51 𝑇 𝑟𝑛
𝑎 2273

39 𝐷𝑛 1383

48 𝑇 𝑟𝑛
𝑏 1316

11 𝐶𝑝𝑤
𝑎 1302

19 𝐸𝑙𝑜𝑐𝑤
2 1085

16 𝐸𝑙𝑜𝑐𝑤
1 998

13 𝐸𝑐𝑤 664
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Table S39. Metrics - Number of ICCs > 0.6 (continued)

character n

9 𝐶𝑝𝑏
𝑎 603

6 𝐶𝑝𝑏
𝑏 595

8 𝐶𝑝𝑤
𝑏 592

31 𝑘𝑤 481

34 𝐸𝑔𝑤 467

7 𝐶𝑝𝑛
𝑏 463

52 𝑇 𝑟𝑤
𝑎 385

22 𝐿𝑝𝑤
𝑏 375

28 𝐿𝑝𝑤
𝑎 375

17 𝐸𝑙𝑜𝑐𝑏
2 345

14 𝐸𝑙𝑜𝑐𝑏
1 314

47 𝑇 𝑟𝑏
𝑏 276

50 𝑇 𝑟𝑏
𝑎 276

41 𝑟𝑏
𝑠 247

42 𝑟𝑛
𝑠 229

43 𝑟𝑤
𝑠 229

49 𝑇 𝑟𝑤
𝑏 153

3 𝑟𝑤 148

36 𝑄𝑛 140

37 𝑄𝑤 140

35 𝑄𝑏 109

40 𝐷𝑤 107

2 𝑟𝑛 100

32 𝐸𝑔𝑏 83

1 𝑟𝑏 81

20 𝐿𝑝𝑏
𝑏 67

26 𝐿𝑝𝑏
𝑎 67

30 𝑘𝑏 64

4 𝐵𝑐𝑏 50

12 𝐸𝑐𝑏 40

29 𝑆𝑐𝑏 40

5 𝐵𝑐𝑤 32

23 𝑃𝑐𝑏 18

38 𝐷𝑏 16

24 𝑃𝑐𝑤 14

46 𝑆𝑤 12

25 𝑅𝑣𝑏 2

44 𝑆𝑏 2

45 𝑆𝑛 2
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Fig. S34. Metrics - Number of ICC > 0.6

6.4 Descriptive statistics Mean
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Table S40. Metrics - ICC Mean

character n meanz2r

𝐿𝑝𝑛
𝑎 8064 0.6847483

𝐿𝑝𝑛
𝑏 8064 0.6842168

𝐸𝑔𝑛 8064 0.5628534

𝐸𝑙𝑜𝑐𝑛
1 8064 0.5241176

𝐸𝑙𝑜𝑐𝑛
2 8064 0.5219382

𝐶𝑝𝑛
𝑎 8064 0.5057482

𝑇 𝑟𝑛
𝑎 8064 0.4683854

𝐶𝑝𝑤
𝑎 8064 0.4621172

𝑘𝑤 8064 0.4542164

𝐸𝑔𝑤 8064 0.4381993

𝐸𝑙𝑜𝑐𝑤
2 8064 0.4144730

𝐿𝑝𝑤
𝑏 8064 0.4094914

𝐿𝑝𝑤
𝑎 8064 0.4094914

𝐸𝑙𝑜𝑐𝑤
1 8064 0.4053213

𝐷𝑛 8064 0.3952442

𝑇 𝑟𝑤
𝑎 8064 0.3935553

𝑇 𝑟𝑛
𝑏 8064 0.3790930

𝑇 𝑟𝑤
𝑏 8064 0.3704978

𝐶𝑝𝑏
𝑎 8064 0.3679068

𝐶𝑝𝑏
𝑏 8064 0.3627075

𝑄𝑛 8064 0.3531167

𝑄𝑤 8064 0.3531167

𝐶𝑝𝑤
𝑏 8064 0.3487325

𝑇 𝑟𝑏
𝑏 8064 0.3346006

𝑇 𝑟𝑏
𝑎 8064 0.3346006

𝐸𝑔𝑏 8064 0.3301530

𝐸𝑐𝑤 8064 0.3265843

𝑄𝑏 8064 0.3239017

𝐿𝑝𝑏
𝑏 8064 0.3140209

𝐿𝑝𝑏
𝑎 8064 0.3140209

𝑟𝑤 8064 0.3067918

𝐸𝑙𝑜𝑐𝑏
2 8064 0.3049789

𝐷𝑤 8064 0.3031638

𝐵𝑐𝑏 8064 0.3013466

𝐵𝑐𝑤 8064 0.2986165

𝑟𝑛 8064 0.2885648

𝐸𝑙𝑜𝑐𝑏
1 8064 0.2858122

𝑟𝑛
𝑠 8064 0.2802930

𝑟𝑤
𝑠 8064 0.2802930

𝑟𝑏
𝑠 8064 0.2784491

𝑟𝑏 8064 0.2231797
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Table S40. Metrics - ICC Mean (continued)

character n meanz2r

𝐸𝑐𝑏 8064 0.2222293

𝑆𝑐𝑏 8064 0.1983362

𝐷𝑏 8064 0.1916023

𝑘𝑏 8064 0.1712945

𝑅𝑣𝑏 8064 0.1664371

𝐶𝑝𝑛
𝑏 8064 0.1566982

𝑆𝑤 8064 0.1135087

𝑆𝑏 8064 0.1036267

𝑆𝑛 8064 0.1036267

𝑃𝑐𝑏 8064 0.0629168

𝑃𝑐𝑤 8064 0.0619207

6.5 Descriptive statistics Median

Table S41. Metrics - ICC Median

character n median

𝐸𝑔𝑛 8064 0.510

𝐶𝑝𝑤
𝑎 8064 0.507

𝐿𝑝𝑛
𝑏 8064 0.499

𝐿𝑝𝑛
𝑎 8064 0.499

𝐶𝑝𝑛
𝑎 8064 0.497

𝐸𝑙𝑜𝑐𝑤
2 8064 0.489

𝐸𝑙𝑜𝑐𝑤
1 8064 0.485

𝑘𝑤 8064 0.483

𝐸𝑙𝑜𝑐𝑛
2 8064 0.481

𝐸𝑔𝑤 8064 0.473

𝐸𝑙𝑜𝑐𝑛
1 8064 0.472

𝐿𝑝𝑤
𝑏 8064 0.442

𝐿𝑝𝑤
𝑎 8064 0.442

𝑇 𝑟𝑛
𝑎 8064 0.439

𝐶𝑝𝑤
𝑏 8064 0.427

𝑇 𝑟𝑤
𝑎 8064 0.424

𝑇 𝑟𝑤
𝑏 8064 0.410

𝐶𝑝𝑏
𝑎 8064 0.403

𝐶𝑝𝑏
𝑏 8064 0.394

𝑇 𝑟𝑛
𝑏 8064 0.379

𝑄𝑛 8064 0.371

𝑄𝑤 8064 0.371

𝑇 𝑟𝑏
𝑏 8064 0.357

𝑇 𝑟𝑏
𝑎 8064 0.357

𝑄𝑏 8064 0.348
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Table S41. Metrics - ICC Median (continued)

character n median

𝐸𝑔𝑏 8064 0.344

𝐸𝑙𝑜𝑐𝑏
2 8064 0.342

𝐿𝑝𝑏
𝑏 8064 0.328

𝐿𝑝𝑏
𝑎 8064 0.328

𝑟𝑤 8064 0.326

𝐷𝑛 8064 0.323

𝐵𝑐𝑏 8064 0.318

𝐵𝑐𝑤 8064 0.318

𝐷𝑤 8064 0.314

𝑟𝑛 8064 0.303

𝐸𝑙𝑜𝑐𝑏
1 8064 0.302

𝐸𝑐𝑤 8064 0.285

𝑟𝑏
𝑠 8064 0.259

𝑟𝑛
𝑠 8064 0.257

𝑟𝑤
𝑠 8064 0.257

𝐸𝑐𝑏 8064 0.216

𝑟𝑏 8064 0.187

𝑆𝑐𝑏 8064 0.186

𝐷𝑏 8064 0.184

𝑅𝑣𝑏 8064 0.150

𝑘𝑏 8064 0.089

𝐶𝑝𝑛
𝑏 8064 0.012

𝑃𝑐𝑏 8064 0.000

𝑃𝑐𝑤 8064 0.000

𝑆𝑏 8064 0.000

𝑆𝑛 8064 0.000

𝑆𝑤 8064 0.000
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6.6 Significance map
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Fig. S35. Metrics - Significance Map
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