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Abstract 
 
Introduction: Motor fluctuations in Parkinson’s disease are characterized by unpredictability 
in the timing and duration of dopaminergic therapeutic benefit on symptoms including 
bradykinesia and rigidity. These fluctuations significantly impair the quality of life of many 
Parkinson’s patients. However, current clinical evaluation tools are not designed for the 
continuous, naturalistic (real-world) symptom monitoring needed to optimize clinical therapy 
to treat fluctuations. Although commercially available wearable motor monitoring, used over 
multiple days, can augment neurological decision making, the feasibility of rapid and 
dynamic detection of motor fluctuations is unclear. So far, applied wearable monitoring 
algorithms are trained on group data. Here, we investigate the influence of individual model 
training on short timescale classification of naturalistic bradykinesia fluctuations in 
Parkinson’s patients using a single wrist-accelerometer. 
Methods: As part of the Parkinson@Home study protocol, 20 Parkinson patients were 
recorded with bilateral wrist-accelerometers for a one hour OFF medication session and a 
one hour ON medication session during unconstrained activities in their own homes. 
Kinematic metrics were extracted from the accelerometer data from the bodyside with the 
largest unilateral bradykinesia fluctuations across medication states. The kinematic 
accelerometer features were compared over the whole one-hour recordings, and 
medication-state classification analyses were performed on one-minute segments of data. 
The influence of individual versus group model training, data window length, and total 
amount of training patients included in group model training on classification was analyzed. 
Results: Statistically significant areas under the curves (AUCs) for medication induced 
bradykinesia fluctuation classification were seen in 85% of the Parkinson patients at the 
single minute timescale using the group models. Individually trained models performed at the 
same level as the group trained models (mean AUC both 0.70, +/- respectively 0.18 and 
0.10) despite the small individual training dataset. AUCs of the group models improved as 
the length of the feature windows was increased to 300 seconds, and with additional training 
patient datasets.  
Conclusion: Medication induced fluctuations in bradykinesia can be classified using wrist 
worn accelerometery at the time scale of a single minute. Rapid, naturalistic Parkinson motor 
monitoring has important clinical potential to evaluate dynamic symptomatic and therapeutic 
fluctuations and help tailor treatments on a fast timescale. 
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Introduction 
Parkinson’s disease (PD) is a disabling neurodegenerative disorder characterized by motor 
and non-motor symptoms that affect patients’ motor performance and quality of life (QoL) 1–3. 
Symptomatic PD management initially focuses on dopamine replacement therapies 4. 
However, half of PD patients develop ‘wearing-off’ motor fluctuations during the first decade 
after diagnosis 5,6. Wearing-off motor fluctuations are defined as inconsistent therapeutic 
benefits on symptoms such as bradykinesia and rigidity, despite regular dopaminergic 
delivery 6. These motor fluctuations and other dopaminergic related side effects can 
markedly impair patients’ QoL 7. Motor fluctuations are therefore a primary indication for 
consideration of deep brain stimulation (DBS) 1,8. Adequate monitoring of motor fluctuations 
is essential for treatment evaluation, both in the presence and absence of DBS, and 
wearable motion sensing represents an appealing approach to support this quantification 
9,10, although several challenges remain to be addressed 11,12.  
 
Ideally, objective motor fluctuation monitoring should accurately measure and decode 
movement, during real world (naturalistic) activities, and be simple to implement for patients 
10,13. Currently used Parkinson’s evaluation tools such as the Movement Disorders Society 
Unified Parkinson Disease Rating Scale (MDS-UPDRS) and the Parkinson Disease QoL 
questionnaire (PDQ-39) are not designed for chronic dynamic, naturalistic symptom 
monitoring 14,15. They contain questionnaires which capture subjective estimates of 
retrospective symptoms over a week (MDS-UPDRS II and IV), or a month (PDQ-39), and 
these are dependent on patient recall, which is often imperfect, particularly in patients with 
cognitive dysfunction. Observing and scoring motor fluctuations requires trained health 
providers to perform single time point evaluations (MDS-UPDRS III). Motor diaries, often 
used as gold standard for 24-hour naturalistic monitoring, require self-reporting every 30 
minutes 16. This burden causes recall-bias and diary fatigue in long-term use 17.  
 
The strong clinical need for continuous symptom tracking, together with the wide availability 
and presence of affordable accelerometer-based sensors, has led to several academic and 
commercially available wearable sensor PD monitoring systems 18–22. Motor fluctuation 
monitoring with commercially available devices is currently mostly based on summary 
metrics derived from multiple days of sensor data and incorporation of these metrics during 
neurological consultation has led to promising augmentation of clinical decision making 21,23–
26. However, these sensor monitoring systems have thus far been found to be better 
correlated with clinical PD metrics on a time scale of days rather than hours  21,27,  which is a 
notably longer time window than used in the original development studies 19,21,28–30. 
Successful motor fluctuation classification over short time periods (minutes to hours) would 
enable dynamic therapeutic motor response monitoring, and we suggest individual model 
training as a methodological improvement to pursue this. So far, motor monitoring algorithms 
have typically been trained on group data, and individual model training is suggested due to 
intersubject heterogeneity of PD symptomatology 11,18,20,31. This hypothesis is strengthened 
by a recent successful algorithm-innovation combining short and long time epochs in a deep 
learning model correlating wrist- and ankle-accelerometer metrics with total UPDRS III 
scores on 5-minute epochs 32. 
 
Here, we investigate the performance of machine learning classification models identifying 
rapid (single minute level), medication-induced motor fluctuations in PD patients. The 
classification models are trained on unconstrained naturalistic (at home) motion data derived 
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from a unilateral wrist-worn accelerometer. Classification models based on individual data 
are compared with models based on group data. Further, we analyse the influence of the 
number of individuals included in the group model training data, and the length of analysed 
accelerometer data epochs (time window lengths), on classification results. We focused 
symptom decoding on bradykinesia since this cardinal feature of PD and has been found to 
be more challenging to detect with motion sensors than tremor or dyskinesia 1,33. This is 
likely due to higher distributional kinematic overlap of bradykinesia fluctuations with normal 
movements and normal periods of rest 18,34–36. 
 
We hypothesized that single minute bradykinesia classification would be achievable using 
machine learning and that individualized motion classification models in PD would 
demonstrate more reliable short-term classification of naturalistic bradykinesia fluctuations 
compared to group models. 
 
Results 
Study population and recorded data 
20 PD patients from the Parkinson@Home data repository 37 were included in this study. 
The Parkinson@Home study recorded accelerometer data in two medication-states, while 
PD patients were encouraged to perform an hour of their unconstrained activities in their 
own homes. MDS-UPDRS III and AIMS scores were assessed immediately prior to their 
recordings, performed by trained physicians directly in the patients’ homes. The first MDS-
UPDRS and AIMS assessment took place in the dopaminergic deprived state (pre-
medication), and the second assessment was repeated post-medication after patients 
reported experiencing a full effect of their usual dopaminergic medication. We included PD 
patients who showed an improvement in the sum of unilateral MDS-UPDRS III items 
representing upper extremity bradykinesia, in at least one body side (see Methods section). 
Wrist-accelerometer data only from the side with the largest unilateral upper extremity 
bradykinesia improvement were included for feature extraction and classification analyses 
(see Figure 1).  
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Figure 1: Accelerometer-based Parkinsonian motor fluctuation detection workflows.  
A: Left: A wrist-worn motion sensor (Physilog 4, Gait Up SA, CH; green circled) is used to collect 
unilateral tri-axial accelerometer data. X, Y, and Z represent acceleration (meters/second per second) 
in the three axes over time (seconds). Temporal windows are determined for data analysis and are 
indicated in different colours over time (win1, win2, …). Center: Signal preprocessing and feature 
extraction convert the raw tri-axial signal into a dataset containing M features (Table S1), calculated 
for every temporal window (in total M columns and N rows). For the training phase of the machine 
learning classification models, the true labels representing medication states are used. Right: In the 
testing phase, inserting the feature set (M x N) in the trained classification model leads to N 
medication state predictions.  
B: Workflow to train and test individual and group models. Identical features were extracted from the 
raw accelerometer data (grey symbols) for every individual participant. For the individually trained 
models (blue), the features from 80% of a participant’s epochs were used in the training phase (y-
axis). The trained individual model was tested with the remaining, unused, 20% of epochs during the 
test phase. The arrows (*) from test phase to training phase represent the multiple cross-validation 
folds applied to train and test the individual models on different selections of training and test data. 
For the group models (yellow), each participant was tested in turn, with data from the other 19 
participants used in the training phase.  
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Demographic and disease specific characteristics are presented in Table 1. In total, 3138 
minutes of accelerometer data were recorded in the 20 included patients. After balancing the 
data sets for medication status (see Methods), 2380 minutes of accelerometer data were 
included. On average 59.5 (+/- 14.3) minutes of accelerometer data from both pre- and post-
medication recordings were included per participant. We extracted multiple features which 
are described in the current literature to index naturalistic bradykinesia with a wrist-
accelerometer (see Table S1 for details and references). In total, 103 motion accelerometer 
features were extracted for every feature window, including both time domain and spectral 
features from the accelerometer.  
 

Characteristics 
 

Total number (% female) 20 (60%) 

Age (years, mean (sd)) 63.4 (6.4) 

Accelerometer data per medication state (minutes, mean (sd)) 59.5 
(14.3) 

Accelerometer data per medication state, after activity filtering (minutes, 
mean (sd)) 

44.5 
(13.9) 

PD duration (years, mean (sd)) 8.1 (3.5) 

Levodopa equivalent daily dosage (milligrams, mean (sd)) 959 (314) 

MDS-UPDRS III pre-medication 
MDS-UPDRS III post-medication 

43.8 
(11.6) 
27.1 (9.6) 

AIMS pre-medication 
AIMS post-medication 

0.5 (1.8) 
3.7 (4.2) 

Table 1: Demographic and disease specific characteristics of patient population. AIMS: 
Abnormal Involuntary Movement Scale. MDS-UPDRS: Movement Disorders Society Unified 
Parkinson Disease Rating Scale. Sd: standard deviation. *: fluctuation in (sub-)score between pre- 
and post-medication recording. **: scores related to the upper extremity included in analysis (based 
on the largest bradykinesia fluctuation).  
 
Group level statistical analysis of cardinal motion features across medication states  
First, we compared pre- and post-medication accelerometer recordings at the group level 
using four accelerometer features which represent commonly used motion features 
implemented in naturalistic bradykinesia signal processing (maximum acceleration 
magnitude, coefficient of variation of acceleration magnitude, root mean square of 
acceleration, and spectral power (below 4 Hz)) 18,38. The individual mean values per whole 
medication-state recording were compared at the group level. 
 
The pre- and post-medication recordings significantly differed at the group level based on 
the individual mean values of the four main accelerometer-features (MANOVA, Wilk’s lamba 
= 0.389, F-value = 14.2, p < 0.001). Post-hoc repeated measures ANOVAs demonstrated 
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that only the individual coefficient of variation averages significantly differed between pre- 
and post-medication states (p = 0.0042) (figure 2).  
 

 
Figure 2: Distributions of individual means for four main movement features. Coloured dots 
represent the mean feature values during the whole post-medication recording per participant (n=20). 
Individual post-medication mean values are standardised as z-scores (individual pre-medication 
recordings are used as references, and therefore the pre-medication mean values equal 0). The red 
asterix indicates a significant difference on group level between mean coefficient of variations of pre- 
and post-medication means (alpha=0.05, MANOVA and post-hoc analysis, FDR corrected). † = one 
positive outlier (1.7) not visualized. 
 
Machine learning classification of short window data epochs  
Next, to test classification performance over short time windows (60 second accelerometer 
feature windows), support vector (SV) and random forest (RF) machine learning models 
were applied. To tailor the classification models to different activity levels, we repeated all 
analyses with the inclusion of an “activity filter”, which selected periods of data with at least a 
minimal amount of movement for analysis (see Methods section). All medication state 
classifications using the four previously selected motion features led to low AUC scores 
(means per model ranged between 0.49 and 0.64) and low accuracies (means per model 
ranged between 49% and 60%) (see table S2 for detailed results).  
We therefore repeated our dynamic (1 minute) classification analysis, using an expanded 
kinematic feature set (103 features). With the full feature set, notably higher AUC scores and 
classification accuracies were seen for all individual and group (SV and RF) models (table 
S2, and figures S3AB). Mean AUC scores per model ranged between 0.65 and 0.70, and 
mean accuracies per model ranged between 60% and 65% (table S2). Most participants 
yielded AUC scores and accuracies significantly better than chance level (17 out of 20 
participants per model), tested through random surrogate dataset generation.  
 
In 90% of participants (18 out of 20) either the best individual or group model classified 
medication states per 60 seconds significantly better than chance level based on our 
surrogate datasets (figure 3 and table S2). Group trained models resulted in AUC scores 
statistically significantly higher than random classification in 17 participants. Individually 
trained models resulted in AUC scores statistically significantly higher than random 
classification in 13 participants. Both individual and group models resulted in mean AUC 
scores of 0.70 (+/- respectively 0.18 and 0.10), and mean accuracies of respectively 65% 
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(+/- 0.14) and 64% (+/- 0.08) over all 20 participants (figure 3, table S2). Notably, the 
individual models resulted in a larger standard deviation of AUC scores, including several 
AUC scores higher then 0.9 as well as below chance level (figure 3).  
Overall, these findings confirm the feasibility of rapid naturalistic bradykinesia classification 
based on wrist-accelerometer metrics. Individual model training resulted in a similar mean 
AUC with a wider standard deviation compared to group model training.  
 

 
Figure 3: Classification of medication induced motor fluctuations on short accelerometer time 
windows in individual participants. The first pair of bars represents the mean area under the curve 
(AUC) score over the twenty participants. Each subsequent pair of bars (002 to 090) represents the 
AUC scores from one participant. The blue bars represent the AUC score for the individual model, 
and the yellow bars represent the group model. Note that for the individual models, AUC scores are 
the averages over the multiple cross-validation folds within a participant (figure 1B). The asterisks 
indicate whether the corresponding AUC score was significantly better than chance level (5000-
repetitions permutation test). Both models have equal mean AUC scores. It is notable that the 
majority (18 out of 20 of participants) has at least one significant score. Half of the participants yielded 
a higher AUC score with the individual model than with the group model.  
 
Classification of bradykinesia-centred motor fluctuations versus co-occurring symptoms 
We wanted to test whether the models’ predictive performance was being driven by 
confounding fluctuations in tremor or dyskinesia. Therefore, we explored the relation 
between classification performance and clinical bradykinesia, tremor (both indexed by 
unilateral upper extremity MDS-UPDRS sub items, see Methods), and abnormal involuntary 
movement (represented by Abnormal Involuntary Movement Scale (AIMS)) fluctuations. We 
found no significant correlations between the individual classification performance and the 
individual clinically scored fluctuations in bradykinesia, tremor, and AIMS (see table S3, all p-
values larger than 0.1). At an individual level, we found significant AUC scores in participants 
with (13, 24, and 79) and without (39, 51, and 58) tremor fluctuations (figure S4A). Similarly, 
we found significant AUC scores in participants with (2, 15, 51, and 79) and without (39, 18, 
24, and 90) AIMS fluctuations (figure S4B).  
Individual predictive performance is found not to be proportional to the size of tremor or 
AIMS fluctuations, which suggests feasibility of using the applied metrics for PD patients with 
and without tremor and abnormal involuntary movements. Meanwhile, the severity of 
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bradykinesia did not influence the classification performance, suggesting feasibility of the 
metrics for patients with even mild-to-moderate bradykinesia fluctuations. 
 
Influence of training data size and feature window length  
We next sought to determine the number of patients needed to train a group level model with 
good classification performance. We found an increase in the predictive performance (AUC) 
of the group models as the number of patient datasets used during model training was 
increased (figure 4A). Above 15 participants the increase in mean AUC levelled off towards 
the 19 included participants.  
Next, we also wanted to investigate the impact of the accelerometer data feature window 
length on the predictive performance of the group models. Increasing the length of the 
feature windows up to 300 seconds improved the mean AUC (figure 4B). Due to data size 
limitations, the feature windows were not expanded further than 300 seconds. These 
analyses could not be reproduced for the individual models due to data size limitations. 
 
 

Figure 4: Increasing number of 
training patients and length of 
data window duration improves 
classification performance.  
A: Group models are trained for 
every patient with a varying number 
of included training data, (x-axis). On 
the y-axis, the AUC is shown for both 
SV and RF models ( both included 
activity filtering). An increase in AUC 
is seen for SV and RF models 
parallel to an increase in included 
training patients.  
B: Group models are trained for 
every patient with various feature 
window lengths (x-axis). On the y-
axis, the AUC of the SV and RF 
models are visualized. Due to the 
longer feature window lengths, we 
did not apply the activity filter in this 
sub-analysis to deal with data size 
limitations. Larger window lengths up 
to 300 seconds increased 

classification performance, while smaller window lengths decrease classification performance. 
AUC: area under the receiver operator characteristic; SV: support vector classifier; RF: random forest 
classifier. 
 
Discussion 
Our results demonstrate successful classification of naturalistic bradykinesia fluctuations 
using wrist-accelerometer data on different timescales using conventional statistical 
approaches (over one-hour epochs) and machine learning classification (over one-minute 
epochs). We found that the coefficient of variation of the accelerometer amplitude was 
significantly increased following dopaminergic medication when a full 60 minutes of data was 
analyzed per medication condition. At shorter timescales (60 seconds) this feature 
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(complemented with 3 other accelerometery metrics) was not strongly predictive of 
medication state using machine learning. However, using a larger number of motion metrics 
(103), statistically significant classification of medication states could be achieved in 90% of 
participants (18 out of 20) using either group or the individually trained models (figure 3). 
Individual and group models resulted both in a mean AUC of 0.70 on the 60 second epochs, 
where the individual models’ AUC scores had a larger standard deviation (figure 3, table S2). 
Expansion of the data epoch length (from 60 to 300 seconds), as well as inclusion of more 
training participants, improved AUC scores in the group models. Limited individual data sizes 
withheld us from testing individual models with expanded data epochs and may explain the 
larger standard deviation for individual model AUCs (figure 1B and S1). 
 
These results represent the first demonstration of classification of Parkinsonian bradykinesia 
fluctuations using individually trained models for single wrist-accelerometer data on a rapid 
timescale. Although we show statistically significant classification over short time windows, 
we did not find added value yielded by individual model training based on our current results. 
Reproduction with longer accelerometer recordings for individuals is however likely to 
improve classification results further. 
In general, the presented classification models are notable due to the unconstrained 
naturalistic (real-world) data collection environment and short time scale of classification. 
Operating at this shorter timescale, the models show good classification performance 
compared with benchmark naturalistic medication-state detection models (figure 3) 34–36. 
Although better classification performances have previously been described with models 
using data over longer timescales or from more constrained recordings scenarios, these 
methodologies improve classification results at the cost of less naturalistic generalizability 
18,22,27,28,38. Adding a second motion sensor can likely increase performance at the cost of 
user-friendliness and feasibility 32. Systems using wrist, ankle and/or axial motion sensors 
have the theoretical advantage of  being more sensitive for arm versus leg- / gait centred 
symptomatology. 
 
Clinical relevance and methodological challenges of naturalistic and rapid PD motor 
monitoring  
Wearable accelerometery based PD monitoring systems have been developed to augment 
therapeutic decision making, 20,21,23 and to augment clinical assessments in pharmacological 
trials 11,39. Previous systems have been validated over the time course of days. However 
other suggested clinical state tracking applications would require short time scale feedback 
22, including fine-grained cycle-by-cycle medication adjustments and conventional 40,41 or 
adaptive 42–44 45 deep brain stimulation programming. 
    
Notably, we observed marked differences in classification accuracy using either 4 
accelerometer features, or 103 features (figure 3 and S3). This suggests that bradykinesia 
classification on shorter timescales, requires rich feature sets. The significance testing with 
surrogate datasets aimed to rule out any resulting overfitting. However, a thorough 
comparison of feature sets is often complicated by proprietary algorithms or the lack of open-
source code 12. This underlines the importance of transparent, open source, and 
reproducible movement metric feature sets for naturalistic PD monitoring 46,47. 
Another methodological challenge for rapid, objective, naturalistic short-term PD monitoring 
is the lack of a high quality labelling of data on the same time scale . PD clinical assessment 
tools, currently applied as gold standards, are limited in their applicability for rapid time 
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scales. Multiple longitudinal time windows of the dynamic accelerometer time series are 
labelled with a single clinical score which weakens model training and evaluation. In effect, 
sensor-based outcomes are often aggregated to match clinical evaluation metrics and time 
scales which might account for the current upper limit in wearable classification performance 
21,24,29. PD specific eDiaries 48–51, labelled video-recordings on fine time scales 52 and other 
virtual telemedicine concepts 53 may contribute to this challenge. 
 
Future scientific opportunities to improve naturalistic PD monitoring development  
We predict that the coming expansion of real-world motion data sets, containing long-term 
data over weeks to years in patients with PD, will support optimization of individually trained 
models 54. These larger datasets will also allow the exploration of alternative, more data-
dependent, computational analyses such as deep neural network classification and learning 
35,55. Moreover, unsupervised machine learning models could also be explored to overcome 
the issues of lacking temporally matching gold standard for model training and evaluation by 
surpassing the need of long-term, repetitive, true labels 11,56. The observed discriminative 
potential of the coefficient of variation (figure 2) might be of value in post-hoc differentiation 
of clusters in unsupervised machine learning models.  
 
Additionally, open-source research initiatives should catalyse the development of naturalistic 
PD monitor models which are not dependent on proprietary software 10,38. The Mobilize-D 
consortium for example introduced a roadmap to standardize and structure naturalistic PD 
monitoring by creating specific ‘unified digital mobility outcomes’ 46,47. During the 
development of these outcomes, features describing distribution ranges and extreme values, 
rather than means or medians, should be considered 11. Parallel to open-source initiatives, 
other creative collaborations between industry and academia such as data-challenges might 
offer valuable (interdisciplinary) cross-fertilization 57. Further, adding more limb sensors to 
improve naturalistic PD monitoring is controversial. Although there is evidence supporting 
the combined use of wrist, ankle32,58, or insoles59 sensory, other reports do not show an 
improved performance but describe additional burden to the patient 35,60,61.  
 
Limitations 
Our study was limited by the individual data set sizes, which restricted inferences that could 
be made regarding models trained with individual versus group data. Also, the unconstrained 
character of the pre- and post-medication recordings led to an imbalance in terms of 
captured activities during the two medication states. The applied activity-filter addressed this 
limitation partly but does not rule out imbalance in exact activities. This imbalance 
compromises pattern recognition based data analysis 35, but is also inherent to naturalistic 
PD monitoring 18 and exploring the boundaries of this limitation is essential for future PD 
monitor applications. Replication of our methodologies in larger data sets, and inclusion of 
validated activity classifiers may contribute to overcoming this limitation. Future studies 
should also aim to detect symptom states beyond a binary differentiation between on- versus 
off-medication. 
 
Conclusion 
We here demonstrate that classification of naturalistic bradykinesia fluctuations at the minute 
time scale is feasible with machine learning models trained on both individual and group 
data in PD patients using a single wrist-worn accelerometer. At longer timescales of an hour 
– a single accelerometer feature, the coefficient of variation, is predictive of bradykinesia at 
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the group level. Extension of short accelerometer time epochs and an increased number of 
training patients improved classification of group trained models. Rapid, dynamic monitoring 
has the potential to support personalized and precise therapeutic optimization with 
medication and stimulation therapies in Parkinson’s patients.  
  
 
Methods  
 
Study sample 
For our analysis, we used data from the Parkinson@Home validation study 37. Detailed 
descriptions of the study’s protocol and feasibility have been described previously 62,63. In 
brief, the study recruited 25 patients diagnosed with PD by a movement disorders 
neurologist who were all undergoing dopaminergic replacement treatment with oral levodopa 
therapy. The Parkinson@Home study included PD patients who experienced wearing off 
periods (MDS-UPDRS part IV item 4.3 ≥1) and had at least slight Parkinson-related gait 
impairments (MDS-UPDRS part II item 2.12 ≥1 and/or item 2.13 ≥1). Participants who were 
treated with advanced therapies (DBS or infusion therapies) or who suffered significant 
psychiatric or cognitive impairments which hindered completion of the study protocol were 
excluded. 
 
For the current subset of PD patients, we excluded three participants who did not show a 
levodopa-induced improvement in unilateral upper extremity bradykinesia, on both sides 
(equal or less than zero points). Unilateral upper extremity bradykinesia was defined as the 
sum of MDS-UPDRS part III items 3c, 4b, 5b, and 6b for the left side, and items 3b, 4a, 5a, 
and 6a for the right side. Sum scores from medication on-states were compared with sum 
scores from medication off-states. For each included participant, only data from the side with 
the largest clinical change in upper extremity bradykinesia sub items were included. Two 
participants were further excluded because there was less than 40 minutes of accelerometer 
data available from their pre- or post-medication recording, resulting in a dataset of 20 
patients.  
 
The study protocol was approved by the local medical ethics committee (Commissie 
Mensgebonden Onderzoek, region Arnhem-Nijmegen, file number 2016-1776). All 
participants received verbal and written information about the study protocol and signed a 
consent form prior to participation, in line with the Declaration of Helsinki. The de-identified 
open source dataset will be made available to the scientific community by the Michael J Fox 
Foundation. 
 
For our current analysis, only unilateral tri-axial accelerometer data from wrist-worn devices 
were analysed (Gait Up Physilog 4, Gait Up SA, CH). All data collection was performed in 
the participants’ homes. Recordings consisted of two sessions which took place on the same 
day. First, the pre-medication recording was performed in the morning after overnight 
withdrawal of dopaminergic medication. Second, the post-medication recording was 
performed when the participants experienced the full clinical effect after intake of their 
regular dopaminergic medication. During both recordings, participants performed an hour of 
unconstrained activities within and around their houses. At the start of both recordings, a 
formal MDS-UPDRS III was conducted by a trained clinician.  
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.03.458142doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458142
http://creativecommons.org/licenses/by/4.0/


 13 

Data pre-processing and feature extraction 
Accelerometer data were sampled at 200 Hz and down sampled to a uniform sampling rate 
of 120 Hertz (Hz) using piecewise cubic interpolation. The effect of gravity was removed 
from each of the three time series (x-, y-, and z-axes) separately, by applying a ‘l1-trend 
filter’ designed to analyse time-series with an underlying piecewise linear trend 64. Time 
series were low-pass filtered at 3.5 Hz to attenuate frequencies typically associated with 
Parkinsonian tremor in accelerometer time series 65. In addition to the three individual 
accelerometer time series, we computed a composite time series containing the vector 
magnitude of the three individual accelerometer axes [x2 + y2 + z2]. 
Multiple features previously shown to correlate with bradykinesia were extracted from the 
four time-series (x, y, z, and vector magnitude) (see extensive overview including references 
in table S1). The features included characteristics from the temporal domain, such as 
extreme values, variances, jerkiness, number of peaks, and root mean squares, and the 
spectral domain, such as spectral power in specific frequency ranges, and dominant 
frequencies. The standard window length of analysis for each extracted feature was set as 
60 seconds, meaning one mean value per feature was extracted per time series over every 
60 seconds of data. To explore the influence of varying window lengths (3, 10, 30, 90, 120, 
150, and 300 seconds), separate feature sets were extracted for each sub analysis. All 
individual feature sets were balanced for medication-status by discarding the surplus of 
available data in the longest recording (pre- or post-medication). Features were standardised 
by calculating individual z-scores per feature. To not average out pre- and post-medication 
differences, the mean of only the pre-medication recordings was extracted from a value, and 
the result was divided by the standard deviation of only the pre-medication recordings 66.  
 
Descriptive statistics and analysis of variance 
The demographic and disease characteristics of the included participants are described in 
Table 1. Unilateral scores are provided only for the side on which accelerometer data was 
analysed. To first test statistical distinguishability of the pre- and post-medication recordings 
at the group level, before using the entire dataset as an input, four main accelerometer 
features were chosen a priori. These four features covered the most often used domains of 
motion metrics applied for naturalistic bradykinesia monitoring (maximum acceleration, 
coefficient of variation of acceleration over time, root mean square of acceleration over time, 
and the total spectral power below 4 Hz) 18,38, and were extracted from the vector magnitude 
time series. Individual averages of each of the four features over the entire dataset (~60 
minutes per condition) were analysed for statistically significant differences between the 
medication states with a multivariate analysis of variance (M-ANOVA). Post-hoc repeated 
measures ANOVA were performed to explore which feature(s) contributed to the pre- versus 
post-medication difference. An alpha-level of 0.05 was implemented and multiple 
comparison correction was performed using the false discovery rate (FDR) method 
described by Benjamini and Hochberg 67. 
 
Classification of medication states 
 
Individually trained and group trained models 
Supervised classification analyses were performed to test whether differentiation between 
short-term pre- and post-medication was feasible, based on 60-second accelerometer 
features (figure 1). First, this was tested using the four previously mentioned features 
extracted from the vector magnitude signal, afterwards the feature set was expanded to 
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include all described features, as well as the x, y, z time series (table S1). Analyses were 
performed using a support vector machine (SV) and a random forest (RF) classifier. 
Classification models trained on individual data and models trained on group data were then 
compared (figure 1B).  
For individually trained models, 80% of a participant’s total balanced data was used as 
training data, and 20% as test data (figure S1). Small blocks (2%) of training data which 
neighboured the test data were discarded (figure S1) to decrease the temporal dependence 
between training and test data. To prevent bias caused by the selected block of test data, a 
41-fold cross-validation was performed. Each fold (out of 41) includes two continual blocks of 
10% of total data, one block from the pre- and one block from the post-medication recording 
as test data (percentiles 0 to 10 and 50 - 60, percentiles 1 to 11 and 51 to 61, …, and 
percentiles 40 to 50 and 90 to 100, see visualisation in figure S2). 
For group trained models, a leave one out cross-validation was performed. For every 
participant, a model was trained based on all data (balanced for medication status) from the 
remaining 19 participants and tested on all data (balanced for medication status) of the 
specific participant (figure 1B). To assess all models, the area under the receiver operator 
curve (AUC) and the classification accuracy were calculated as predictive metrics. For the 
individual models, individual classification outcomes were averaged over the 41 folds.  
To test statistical significance of each individual and group model performance, 5000 
permutation tests were performed, in which medication state labels were shuffled. The 95th 
percentile of permutation scores was taken as significance threshold (alpha = 0.05), and 
FDR multiple comparison corrections were performed 67. 
 
Activity filtering 
The reported analyses were repeated after removing data windows without movement 
activity. To identify data windows that do not contain any motion activity, different 
methodologies of activity filtering are described in PD monitoring literature 9,38,68. We applied 
an activity filter which classified every 60 seconds window with a coefficient of variation of 
the vector magnitude less than 0.3 as ‘no activity’ and discarded them from analysis (figure 
S2). The choice of selected feature was based on previous work38, and the threshold is 
chosen pragmatically by group-level observations of video-annotated sections identified as 
non-active 37. The activity-filtered data sets were individually balanced for medication-states. 
For example, if a participant’s data set resulted in 50 ‘active’ minutes pre-medication, and 
only 45 ‘active’ minutes post-medication, the surplus of features from 5 ‘active’ minutes pre-
medication were discarded at the end of the data set. On average, 44.5 minutes (+/- 13.9 
minutes) of features were included after applying the activity filter and balancing the 
individual data to include equal individual features per medication state (Table 1). 
 
The influence of training data size, and feature window lengths 
To test the impact of the size of the training set in the group models, the training phases 
were repeated with varying numbers of participants included in the training data (figure 4). 
As in the original group model analysis, the test data consisted of all data from one 
participant. The number of training data participants varied between 1 and 19. To prevent 
selection bias in the selection of the training participants, the analyses were repeated five 
times per number of included training participants, with different random selections of 
training participants. Individual model classification were excluded from this analysis by 
definition.  
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To analyse the influence of feature window lengths, we repeated the group model analysis 
with features extracted from data windows of 3, 10, 30, 90, 120, 150, and 300 seconds 
duration (figure 4). For every analysis, one participant was selected as a test participant, and 
the other 19 were training participants. This was repeated for all participants and the 
averages over 20 test participants were reported. This was performed at the group level 
modelling only, as individual models were limited by total available data size. 
 
Comparing two models’ predictive performance 
Equality plots were drawn to compare the AUC scores and accuracies between two models, 
for example a model using 4 features versus 103 features, a model using a SV classifier 
versus a RF classifier, a model with versus without activity filtering (figure S3). All 
comparisons were performed separately for the individual and group models. For example, 
model A led to a higher AUC score than model B in 14 out of 20 participants (14 dots above 
the equality line). Permutation tests plotted 20 random dots on an equality plot and tested 
whether the permuted distribution generated 14 or more dots (out of 20) above the equality 
line. This was repeated 5000 times, and the probability that the distribution ‘14 out of 20’ was 
the result of chance was determined. 
 
Predictive performance and clinical assessed symptom fluctuations 
The influence of clinical bradykinesia, tremor and abnormal involuntary movement 
fluctuations on predictive performance was tested at a group level by Spearman R 
correlations between the fluctuation in individual bradykinesia and tremor sub scores and 
AIMS scores, and the predictive performance (table S3). Individual participants were 
visualized according to descending tremor and AIMS fluctuation ratings to enable visual 
comparison of predictive performance with and without co-occurring tremor and abnormal 
involuntary movement fluctuation (respectively figure S4A and S4B). The tremor scores 
consisted of the MDS-UPDRS III items representing unilateral upper extremity tremor (items 
15b, 16b, and 17b for the left side, and items 15a, 16a, and 17a for the right side). 
 
Software 
Raw acceleration time series were down sampled and filtered (for gravity effects) in Matlab. 
All further pre-processing, feature extraction, and analysis was performed in Jupyter 
Notebook (Python 3.7). The code used to extract features and analyse data is available at 
www.github.com/jgvhabets/brady_reallife/ 69. 
 
Data availability 
The de-identified open source dataset will be made available to the scientific community by 
the Michael J Fox Foundation. 
 
Code availability 
The code used to extract features and analyse data is available at 
github.com/jgvhabets/brady_reallife/. 
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